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Abstract: Castration-resistant prostate cancer (CRPC) development is the foremost concern after
treatment of patients with high risk with locally advanced or metastatic prostate cancer. Androgen
receptor (AR) is the main driver of CRPC development, through its interaction with epigenetic
modifier genes, placing epigenetics modifications in the forefront of CRPC development. Comparing
the DNA methylation and expression profile of androgen-sensitive and -refractory prostate cancer
cells, we describe the epigenetic silencing of claudin-3 (CLDN3) in AR positive cells resistant to
androgen deprivation (LNCaP-abl). CLDN3 silencing was associated with DNA methylation, loss
of histone acetylation and H3K27 methylation, and was re-expressed by the combined treatment
with the epigenetic modulators Aza and SAHA. From a functional point of view, CLDN3 loss
was associated with increased cellular invasion. Immunohistochemical analysis showed decreased
CLDN3 expression in samples from CRPC patients. Interestingly, CLDN3 expression was significantly
decreased in samples from patients with high total Gleason score (≥8) and locally advanced tumors.
Finally, CLDN3 loss of expression was associated with worse disease-free survival and time to clinical
progression. In conclusion, our findings strongly indicate that epigenetic silencing of CLDN3 is a
common event in CRPC that could be useful as a molecular marker for the prognosis of prostate
cancer patients and to discriminate aggressive from indolent prostate tumors.
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1. Introduction

Prostate cancer is the most frequent cancer in males and the second-leading cause of
male cancer-death [1]. Prostate cancer cell growth and survival is dependent on androgens
and androgen receptor, allowing their use as a therapeutic target for advanced, metastatic,
or recurrent prostate cancer [2]. However, disease progression, despite antiandrogen
therapy, is the rule, with a transition from androgen-dependence to castrate-resistance, in
which cancer cells become driven by alternative growth signaling pathways [3]. This makes
mandatory the investigation of new forms of therapy, including theranostic agents targeting
neuroendocrine prostate cancer [4–7], the aggressive histologic subtype of prostate cancer
that most commonly arises in later stages of prostate cancer as a mechanism of treatment
resistance [3,8].

Despite the depletion of circulating androgens after androgen-deprivation therapy (ADT),
sustained AR signaling remains the primary molecular mechanism driving CRPC [9,10]. Sev-
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eral mechanisms have been proposed for the persistent AR activity observed in CRPC, includ-
ing AR amplification and overexpression [11,12], AR mutations [13], intratumoral androgen
synthesis [14], overexpression of AR coactivators [15], aberrant kinase pathway activation [16],
and the constitutive expression of AR splice variants [17]. These molecular findings allowed
the development of new therapies to block AR activity and androgen synthesis. Treatment
options for CRPC patients include abiraterone, which inhibits a pivotal enzyme in androgen
synthesis, or enzalutamide, which is an antagonist of AR [18,19]. However, resistance to the
second-generation hormonal treatments has emerged in the last years. The only treatment op-
tion for these patients is traditional chemotherapeutic agents, such as docetaxel or cabazitaxel,
but unfortunately these treatments only increase patient survival a few months [20]. Thus,
the study of the molecular mechanism underlying resistance to ADT is a priority health issue,
which could allow the development of personalized therapies.

AR regulates gene expression through its interaction with co-activators and co-repressors
at the regulatory sequences. These coregulators include epigenetic modifiers that regulate
epigenetic modifications and then chromatin structure around the androgen responsive
elements (AREs) affecting AR transcriptional activity. The best-known epigenetic modifica-
tions so far are DNA methylation and posttranslational histone modifications. A growing
number of epigenetic modifying enzymes have been found as co-regulators of AR function
that have contrary effects on gene expression. AR interacts with the histone acetyltrans-
ferases (HATs) p300/CBP and p160/SRC, causing an increase in gene expression, but it also
binds to corepressor complexes containing histone deacetylases (HDACs) [21,22], which
determines the deacetylation of histones and a more condensed state of the chromatin that
impedes the access of the transcriptional machinery. In addition, AR also modifies histone
methylation at regulatory sequences by recruiting the histone methyltransferases (HMTs)
and demethylases (HDMs).

It has been suggested that AR regulates a different gene expression profile in hormone-
sensitive prostate cancer and CRPC [23]. These results could be explained, at least in part,
by changes in the epigenetic modifications, DNA methylation, and histone modifications
at the gene regulatory regions induced by changes in AR-coregulator interaction pattern in
androgen-dependent prostate cancer and CRPC.

In previous studies, we have identified groups of hypermethylated genes to be used
as molecular markers for prostate cancer diagnosis and for the prognosis of advanced
prostate cancer [24,25]. In the present study, by combining genome-wide DNA methylation
and expression analysis we have identified a set of epigenetically deregulated genes with
prominent functions in CRPC development. Among these, we have selected CLDN3 that
belong to a family of integral membrane proteins that are part of tight junctions. These
intercellular junctions act as permeability barriers conferring polarity to epithelial cells
and playing a crucial role in maintaining the cell–cell integrity. Unraveling the molecular
mechanism that controls its expression is crucial, since claudins deregulation has been
correlated with cancer progression and metastasis [26].

2. Results
2.1. DNA Methylation Profile of Androgen-Independent Prostate Cancer Cells

The aim of this study was to unmask epigenetically deregulated genes in CRPC as
potentially useful as molecular markers. To mimic the properties of the androgen-sensitive
forms of the disease and CRPC, we utilized LNCaP, LNCaP abl (abl), PC3, and DU145
cell lines. LNCaP is an androgen-sensitive cell line that represents the androgen-sensitive
prostate cancer, and abl is its androgen-refractory counterpart, which are AR-positive and
represent most of the CRPC. Abl cells were generated after long-term androgen deprivation
of the LNCaP cell line [27]. Consistent with its CRPC phenotype, abl cells grow faster
than the parental cell line LNCaP cells in hormone-depleted medium [28,29], and did
not respond to enzalutamide treatment (Figure S1). PC3 and DU145 represent a small
proportion (20%) of CRPC that do not express AR.
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To identify deregulated genes that might account for progression of CRPC maintaining
AR function, we performed a genome-wide measurement of DNA methylation status of
~480.000 CpGs using the Illumina Infinium Human Methylation 450K with the cell lines
described previously. Following normalization and batch correction of array data, first
we performed differential methylation analysis between abl and LNCaP cells revealing a
significant decrease in DNA methylation in abl cells (Figure 1A), as was expected, since
global DNA hypomethylation has been extensively associated with prostate cancer pro-
gression. To identify differential methylated probes, we selected those with a ∆β > 0.5
between LNCaP and abl cells. With this criterion, we found 1116 probes hypermethylated
and 2594 hypomethylated in abl respect to LNCaP cells. Among these, 37% of the hyper-
methylated probes were located in the promoter region of 264 genes, while 30% of the
hypomethylated were found in the promoter region of 477 genes. By contrast, the number of
hypomethylated probes located in intergenic regions was greater than the hypermethylated
(Figure 1B).
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lated (fold change < −2 and p value < 0.05) and upregulated (fold change > 2 and p value < 0.05). *** 
p < 0.001. 

Since the main objective of this study was to find deregulated genes by DNA meth-
ylation changes in CRPC maintaining AR expression and function, we next compared the 
methylation profile of AR negative (PC3 and DU145) and LNCaP cells, and lists of hypo- 
and hypermethylated genes were selected following similar criteria described for abl cells. 
The comparison of the differentially methylated genes in abl and AR-negative cells will 

Figure 1. DNA methylation and expression profile of LNCaP and LNCaP abl cell lines. (A) Compari-
son of global DNA methylation levels of LNCaP and LNCaP abl cell lines. (B) Venn diagram showing
genomic location of hypermethylated and hypomethylated probes in LNCaP abl cells compared to
LNCaP cell line. (C) Volcano plot comparing gene expression profile between LNCaP and LNCaP
abl cell lines. Each data-point represents a gene, with green dots representing downregulated (fold
change < −2 and p value < 0.05) and upregulated (fold change > 2 and p value < 0.05). *** p < 0.001.

Since the main objective of this study was to find deregulated genes by DNA methy-
lation changes in CRPC maintaining AR expression and function, we next compared the
methylation profile of AR negative (PC3 and DU145) and LNCaP cells, and lists of hypo-
and hypermethylated genes were selected following similar criteria described for abl cells.
The comparison of the differentially methylated genes in abl and AR-negative cells will
allow us to discriminate those changes that occur because of the loss of AR function from
those that occur in tumors maintaining AR function.

This comparison revealed genes hypermethylated and hypomethylated, respectively,
in both abl and AR negative cells, indicating that those could be associated with CRPC
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progression independently of the AR function. However, more interesting are the spe-
cific differentially methylated genes in abl because this cell line recapitulates the CRPC
expressing AR that represent the majority of the CRPC.

To further establish a correlation between DNA methylation and gene expression of
the differentially methylated genes only in abl, we re-analyzed gene expression profiles of
LNCaP and abl cells already published [17] (GSE11428) (Figure 1C) and compared them to
the specific DNA methylation profile of abl cells. We found 22 genes that were hypermethy-
lated and downregulated and 22 genes that were hypomethylated and upregulated in abl
compared with LNCaP cells (Table S1). Among these, we selected one hypermethylated
(CLDN3) and two hypomethylated (EGF and ELF5) genes for further validation.

Bisulfite sequencing confirmed the data from the methylation array for CLDN3, EGF,
and ELF5 (Figure 2). In particular, we observed a high correlation between the data from
the array and bisulfite sequencing, as shown in the β-values for some of the CpGs analyzed
in the array (Table S2) and the percentage of methylated clones for the same CpG.
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Figure 2. Analysis of CLDN3 (A), EGF (B), and ELF (C) methylation status in LNCaP and LNCaP abl
cell lines. Schematic depiction of the CLDN3 (A), EGF (B), and ELF (C) promoter region around the
corresponding transcription start site (thick blue vertical line). CpG dinucleotides are represented as
short vertical lines. Results of bisulfite genomic sequencing of 10 individual colonies are shown. Pres-
ence of a methylated or unmethylated cytosine is indicated by a black or white square, respectively.
Blue stars represent the CpGs analyzed in the array.

The correlation between DNA methylation and expression of the selected genes was
confirmed by qRT-PCR. CLDN3 mRNA were almost absent in abl cells (Figure 3A), and the
treatment with the demethylating agent 5-aza-2-deoxycytidine (aza) increased its levels,
indicating that the observed decrease in its expression are due, at least in part, to DNA
promoter methylation (Figure 3B). However, aza treatment decreased CLDN3 mRNA
in LNCaP cells, where unmethylated, that could be due to changes in the expression of
transcription factors regulating CLDN3 expression. The levels of EGF and ELF5 mRNA
were higher in abl cells correlating with promoter hypomethylation (Figure 3A), but the
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treatment with aza increased their expression (Figure 3C,D). This effect could be due to
changes in the expression of transcription factors regulating their expression or reactivation
of additional transcription start sites present in the body of the genes. As was expected,
EGF and ELF5 levels were increased in the cell methylated cell line (LNCaP) after aza
treatment (Figure 3C,D).
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Figure 3. QRT-PCR showing the mRNA expression levels of CLDN3, EGF, and ELF5 in prostate cancer
cell lines (A). The treatment with 2 µM (AZA) of the demethylating agent 5-aza-2-deoxycytidine
reactivates expression in methylated cell lines (B–D). Data shown represent the mean ± s.e.m. of
three independent experiments completed in triplicate. * p < 0.05; *** p < 0.001.

2.2. Loss of CLDN3 Increases Cell Invasiveness

From the selected genes, we focused on CLDN3. This gene codifies for a protein that
belongs to a family of claudins, which are important components of the tight junctions
(TJs) and are crucial structures for the maintenance of cellular polarity in epithelial and
endothelial cells [30]. The expression profile of CLDN3 can be tissue-specific and vary
among cell types within a given tissue, suggesting a specific role of CLDN3 in different
tissue or different environment. We observed that CLDN3 was silenced in the cell line
recapitulating a more aggressive and therapy-resistant stage of prostate tumors (abl), but
it was expressed in androgen sensitive prostate cancer cells (LNCaP), representing initial
stages of prostate cancer development.

The data showed on Figures 2 and 3 established a link between CLDN3 promoter
hypermethylation and gene silencing. However, CLDN3 re-expression observed after
demethylating treatment was smaller than could be expected. This lack of effect could be
due to the presence of additional epigenetic marks related with gene silencing at CLDN3
promoter region. To address this issue, next we analyzed the enrichment of activating
(AcH3 and H3K4me3) and repressive histone marks (H3K9me3 and H3K27me3) at the
promoter region of CLDN3 in LNCaP and abl cells. In abl cells, we observed an increase
in the repressive marks and a decrease in the histone active marks compared to LNCaP
cells, which correlates with the loss of expression observed in this cell line (Figure 4A).
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These results could explain, at least in part, the lack of the demethylating treatment effect
on CLDN3 expression in abl cells. In fact, the combined treatment with aza and the
HDAC inhibitor SAHA increased CLDN3 expression more than the individual treatment
(Figure 4B). The tendency of the results showed in Figure 4 strongly indicate that CLDN3
expression is epigenetically regulated in CRPC.
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Figure 4. (A) Chromatin immunoprecipitation analyses for histone H3 acetylation (AcH3) and the
methylation of lys4 (K4H3me3), lys9 (K9H3me3), and lys27 (K27H3me3) of histone H3 of CLDN3 in
prostate cancer cell line. The graph shows the enrichment of CLDN3 promoter DNA measured by
real-time PCR. Data shown represent the mean ± s.e.m. of two independent experiments. (B) QRT-
PCR showing mRNA expression levels of CLDN3 in prostate cancer cell lines treated with 5 µM
SAHA or 2 µM AZA plus 5 µM SAHA. Data shown represent the mean ± s.e.m. of three independent
experiments completed in triplicate.

To analyze the possible role of CLDN3 in the progression of prostate cancer, we
analyzed the effect of CLDN3 loss of expression on the cell phenotype. First, we observed
that CLDN3 is expressed by LNCaP cells (Figure 5A), but is not detected in abl cells, which
is consistent with the mRNA levels.

The comparison of invasiveness of both cell types showed that invasion capacity
of abl was higher than LNCaP cells. (Figure 5B). The number of colonies formed by
abl was greater that LNCAP cells, but the cell density of colonies was greater in LNCaP
cells (Figure 5C). To confirm if these effects were associated with disturbances in CLDN3
expression, we silenced CLDN3 in LNCaP cells (Figure 5D). CLDN3 knock-down increased
cell invasion, which is consistent with the higher invasiveness observed in abl with respect
to LNCaP cells.
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Figure 5. Loss of CLDN3 is associated with increased cellular invasion in prostate cancer cell lines.
(A) CLDN3 expression in LNCap and LNCaP abl cell lines determined by Western Blot and confocal
analysis. Red staining indicates positivity for CLDN3 and nuclei were labelled with DAPI (blue).
Micro-photographs were taken at 40X magnification. Scale bar 25 µM (B) Comparison of cellular
invasion capacity of LNCaP and LNCaP abl cell lines. (C) Colony formation assay of LNCaP and
LNCaP abl cell lines. (D) Effect of CLDN3 siRNA on cellular invasion of LNCaP cells. Loss of
CLDN3 is associated with increased invasion capacity of LNCaP cells in a similar way than LNCaP
abl compared with LNCaP cells. Micro-photographs were taken at 10X magnification.

2.3. CLDN3 Expression in Prostate Tumor Samples

Once the relevance of CLDN3 silencing in a CRPC model was demonstrated, we
further investigated CLDN3 expression in samples from patients with benign prostatic
hyperplasia (BPH), primary tumors that did not develop resistance to androgen deprivation
(androgen-sensitive prostate cancer HS-PC), and tumors that progressed afterwards to
CRPC. Prostatic glands from BPH showed high levels of CLDN3 at the cell membranes,
and there were no differences with HS-PC, but a significant decrease in CRPC samples was
observed (Figure 6A).

Since the samples studied came from a variety of patients with localized, locally
advanced and disseminated disease, the relationship between the CLDN3 expression
and clinicopathological features of the patients was analyzed. We found a significant
decrease in CLDN3 protein levels in samples from patients with high total Gleason score
(≥8) and locally advanced tumors (AJCC IV) (Figure 6B). Analyzing clinical follow up
yielded CLDN3 loss of expression implied a lower disease-free survival and time to clinical
progression (Figure 6C), indicating that CLDN3 expression can predict the prognosis of
prostate cancer patients.
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Figure 6. Analysis of CLDN3 expression in normal prostate and prostate cancer samples. (A) Micro-
graphs from benign prostatic hyperplasia (BPH), hormone sensitive (HS) and resistant (HR) prostate
cancers (PT) (200×). Immunolocalization of CLDN3 (brown staining). The signals for CLDN3 in
BPH and HS were intense. In turn, most HR tumors cells showed an evident loss of the signal for
CLDN3. The graph shows CLDN3 expression in BPH, HS, and HR prostate tumors measured by
immunohistochemistry. (B). Analysis of the relationship between CLDN3 levels with Gleason score
and AJCC group staging at diagnosis. (C) Clinical progression-free survival (TCP) and biochemical
progression-free survival (TBP) of patients showing low (red line) or high expression (green line) of
CLDN3. * p < 0.05; *** p < 0.001.

3. Discussion

Prostate cancer is driven by AR signaling, and several compounds targeting AR path-
way and androgen synthesis have been used for advanced prostate cancer treatment. The
development of prostate cancer resistance to these treatments remains a universal problem,
which ultimately contributes to the deadliness of the disease. Developing treatment resis-
tance can be achieved by AR loss of expression. However, the vast majority of CRPC are
characterized by continued AR expression and signaling despite androgen deprivation and
AR antagonist treatment. Discrimination between patients either suitable for surveillance
strategies or in need of therapy is crucial to prevent over-treatment and to reduce prostate
cancer mortality. Uncovering the specific molecular events driven AR-dependent CRPC is
crucial for diagnosis and design of specific treatment strategies.

Progression of prostate cancer to castration-resistant and metastatic form of the disease
may involve the collaboration of genetic and epigenetic alterations. The most common
genetic alteration observed in CRPC is elevated AR copy number and activity [13]. Aberra-
tions in epigenetic modifications, in particular DNA methylation and histone modifications
have also been involved in CRPC development. AR regulates gene transcription by its inter-
action with epigenetic modifiers pointing the focus in a collaborative interaction between
genetic and epigenetic alterations in CRPC development.

In this study, we have defined the DNA methylation profile of CRPC cells and iden-
tified a panel of epigenetic regulated genes with important roles in CRPC. We found
some genes whose methylation changes did not correlate with parallel changes in gene
expression. A possible explanation is that those genes might have been transcribed from
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transcription start sites (TSSs) different from the TSSs that showed the methylation changes.
TSSs of a specific gene can vary from tissue to tissue [31], and the TSSs described in the
database are not always accurate. Among the selected genes, we demonstrated that reduced
expression of CLDN3 was related to promoter hypermethylation in the CRPC cell line
abl. Other studies have demonstrated that CLDN3 expression was regulated by promoter
methylation in esophageal cancer [32] and ovarian cancer cells [33]. Epigenetic silencing
by DNA hypermethylation of other CLDNs have also been described, such as CLDN1 in
podocytes [34] and breast cancer [35] and CLDN4 in bladder cancer [36].

CLDN3 belongs to a family of proteins involved in the formation and function of tight
junctions. Cell-to-cell adhesion in epithelial cells is maintained through adherent junctions,
and changes in the expression of claudins related to these structures have been described in
a number of human cancers. However, the expression levels of claudins are heterogeneous
and differ even in the same tumor type. In breast cancer, the expression of claudin-1 was
found to be downregulated in estrogen receptor (ER)-positive luminal A and luminal B
breast cancer, while increased expression was observed in ER-negative basal-like breast
cancer subtype [37]. In ovarian cancer, the biological effect of CLDN3 expression appears
to be tumor specific. Shang et al., demonstrated that CLDN3 and CLDN4 knock down
increase tumor growth and metastatic potential in an ovarian xenograft model [38]. By
contrast, other studies have found that CLDN3 silencing reduces cell proliferation and
tumor growth [39]. In prostate cancer, CLDN3 expression has been found in normal, PIN,
primary and metastatic prostate cancer. Consistent with these studies, we found CLDN3
expression in normal and primary prostate cancer, but it was decreased in patients with
advanced prostate cancer that did not respond to hormonal treatments. In addition, CLDN3
loss of expression was correlated with elevated Gleason and shorter disease-free survival
and time to clinical progression, strongly suggesting that loss of CLDN3 expression could
be an excellent biomarker for the development of the more aggressive forms of the disease.

Despite the number of studies showing the expression of CLDNs in prostate cancer,
its biological function is largely unrevealed. It is well accepted that loss of tight junction
function is correlated to cancer progression and metastasis [40], since it can cause loss
of cell polarity and increased cell invasiveness [41]. Loss of CLDN function in tumors
has been suggested to be a mechanism underlying deficient cell adhesion and a crucial
event in the evolution of tumor cells toward metastasis [42,43]. In ovarian cancer cells,
CLDN3 and CLDN4 loss of expression promotes epithelial-mesenchymal transition (EMT),
suggesting a central role in epithelial phenotype [44]. CLDN3 expression inhibits cell
motility and invasiveness of hepatocellular carcinoma cells, suggesting a role as metastasis
suppressor gene in this tumor type [45]. In this line, our data show that the loss of CLDN3
expression could be preventing cell–cell interactions favoring cell invasion, thus suggesting
that the more aggressive phenotype of androgen-independent prostate cancer cells could
be explained, at least in part, by CLDN3 epigenetic silencing. Other studies have associated
the loss of CLDN3 with decreased cell growth and migration in PC3 cells that represent a
model of CRPC lacking AR [46,47]. In the present study, we found CLDN3 downregulated
in a model of CRPC expressing AR that represent most of the CRPC patients.

In our study, the loss of CLDN3 expression observed in CRPC cells and tumors could
be explained, at least in part, by the loss of CLDN3 control by AR, since it has been
demonstrated that AR regulates a different expression profile in androgen-sensitive and
independent prostate cancer cells. In Sertoli cells, CLDN3 expression is regulated by AR
when stimulated by the canonical pathway (testosterone) through its binding toAREs
located at the promoter region of CLDN3 [48]. Our data show that, in CRPC cells, the loss
of CLDN3 expression is associated with an enrichment in epigenetic repressive marks at
CLDN3 promoter region, while in the androgen sensitive prostate cancer cells, expressive
CLDN3 epigenetic activating marks are present, suggesting that different transcription
factors and coregulators are recruited to CLDN3 promoter region in androgen-sensitive
and refractory prostate cancer.
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We acknowledge certain limitations of our study, such as the lack of animal models to
confirm the data from the cell lines, as well as the need to determine the detailed molecular
mechanism by which CLDN3 loss of expression is implicated in CRPC progression.

In conclusion, in the present study, we have identified a panel of epigenetic deregulated
genes in CRPC to be used as molecular markers for the prediction of CRPC development
after androgen deprivation therapy. Of the selected genes, CLDN3 loss of expression is a
common event in CRPC that could be used to predict the fall of hormonal response and the
development of the more aggressive forms of the disease.

4. Materials and Methods
4.1. Cell Lines and Tumor Samples

LNCaP, PC3, and DU145 cells were obtained from the DSMZ and maintained in RPMI-
1640 with 10% FBS. LNCaP abl cells were provided by Dr. Zoran Culig (Innsbruck Medical
University, Austria) [27] and maintained in RPMI-1640 with 10% of charcoal-treated FBS.
Cells were maintained at 37 ◦C in a humidified atmosphere of 95% air and 5% CO2. For
the treatments, LNCaP and LNCaP-abl cells were treated with 2 µM 5-aza-2-deoxycytidine
(Sigma-Aldrich, St. Louis, MO, USA) for 72 h or 5 µM SAHA for 24 h. Treatment was
refreshed every 24 h.

CLDN3 expression was evaluated in 89 prostate tumor samples and 10 benign prostatic
hyperplasia (BPH) tissues. Disease-free survival analysis was performed with the same
cohort from a previous study [24]. Clinical evolution based on PSA and imaging was
recorded. The primary endpoint assessed was disease-specific survival. The study was
approved by the Ethics Committee of Hospital Universitario de Getafe (A17-11 of 10-27-
2011) and was performed in accordance with the ethical standards as laid in the Declaration
of Helsinki and its latter amendments.

4.2. Methylation450 Beadchip

Genomic DNA isolation was performed according to a standard phenol/chloroform/
isoamyl alcohol extraction protocol, after a proteinase K digestion. After bisulfite conversion
DNA was used to hybridize on the Infinium HumanMethylation450 Beadchip, following
the Illumina Infinium HD Methylation protocol. To calculate the DNA methylation status of
the CpG sites, we selected the β-value, which represents the signal ratio from a methylated
probe relative to the sum of the methylated and unmethylated probes and takes any value
between 0 (unmethylated) and 1 (completely methylated). To avoid possible sources
of technical bias that might influence the results, we excluded every β value that had
a threshold detection value of p > 0.01. GenomeStudio normalizes data using internal
controls included in the HumanMethylation 450 BeadChip and also normalizes data with
respect to internal back-ground probes.

4.3. Bisulfite Genomic Sequencing

For bisulfite genomic sequencing primers were designed using the Methyl Primer
Express v1.0 software (Applied Biosystems, Waltham, MA, USA). PCR products were
loaded onto 1.5% agarose gels, stained with ethidium bromide and visualized under
UV transilluminator. DNA was extracted using QIAquick Gel Extractin Kit and ligated
into pGEM-T easy plasmid. The plasmid was transformed in competent bacterial cells
and plated onto LB/ampicillin/IPTG/X-Gal plates. A minimum of ten white colonies
of each sequence and sample were processed by miniprep and plasmids were sequence
automatically to determinate their methylation degree. Primer sequences and annealing
temperatures used are available upon request.

4.4. Cell Viability, Colony Formation and Invasion Assays

Cell viability was determined by the MTT assay. LNCaP and LNCaP-abl cells were
seeded at 1000 cells/well onto 96-well plate, and cell viability was measured at indicated
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times by staining with MTT and measuring the absorbance at 595 nm. Optical density was
directly proportional to cell number up to the maximum density measured.

For colony formation assays, 500 cells/well were seeded into 6-well plates and cultured
for 15 days. The colonies were stained with 0.05% crystal violet solution and counted. The
experiments were performed at least three times.

Invasion assays were performed in Matrigel chambers (BD). Matrigel invasion cham-
bers were rehydrated with serum-free DMEM or RPMI at 37 ◦C and 5% CO2 for 1 h. Trans-
fected cells were trypsinized, resuspended in serum-free DMEM or RPMI, and 7 × 104 cells
were transferred to the upper chamber. 600 µL of growth medium containing 10% FBS was
added to the bottom wells. The cells were cultured at 37 ◦C and 5% CO2 for 24 h. Following
incubation, the medium was aspired, and the cells remaining on the upper surface of the
filter were stained with crystal violet for 1 h. The average number of migrated cells was
determined by counting the cells in 3 random high-power field (10×).

4.5. mRNA and Protein Analysis

Total RNA was isolated with TRIzol Reagent (Invitrogen, Waltham, MA, USA). An
amount of 4 µg of total RNA was reverse transcribed using Super-Script III Reverse Tran-
scriptase (Invitrogen) and using Oligo-dT as primer. PCR amplifications were performed in
96-well optical plates in a volume of 20 µL. We used 0.2 µg of cDNA, 5 pmol of each primer,
and 10 µL of 2× SYBRgreen PCR Master Mix (Applied Biosystems). Primers were designed
between different exons and encompassing large introns to avoid any amplification of
genomic DNA. Primer sequences and annealing temperatures used are available upon
request. Expression values were normalized against the expression of glyceraldehyde-3-
phosphate-dehydrogenase (GAPDH) and used as an endogenous control to ensure cDNA
quality and loading accuracy, following the ∆∆Ct method. QRT-PCR was performed on an
ABI 7500 Fast (Applied Biosystems, Waltham, MA, USA).

Cell lysates for protein analysis were solubilized in RIPA buffer and resolved through
10% sodium dodecyl sulfate polyacrylamide gels, transferred to a nitrocellulose membrane,
and immunoblotted with a polyclonal rabbit anti-CLDN3 (Thermo Fisher, Waltham, MA,
USA). Equal loading was tested by reprobing with a polyclonal antibody against human β-
tubuline (Sigma). Immunoreactive proteins were visualized by the ECL immunodetection
system (Amersham Pharmacia Biotech, Piscataway, NJ, USA) with horseradish peroxidase-
conjugated secondary antibodies.

For immunofluorescence assay, cells were fixed with 4% paraformaldehyde, perme-
abilized in 0.1% TritonX-100 in PBS for 10 min, and stained with antibody against CLDN3
(Thermo Fischer) followed by Alexa Fluor 488-conjugated anti-mouse antibody (Invitrogen).
To perform nuclear staining, cells were incubated with DAPI. The fluorescent images were
acquired using a confocal microscopy, Leica TCS-SL.

For the analysis of gene expression profile of LNCaP and abl cells GSE11428 dataset
was downloaded and differentially expressed genes and volcano map were generated with
R Software (v3.2.3).

4.6. CLDN3 siRNA

The siRNA targeting CLDN3 was synthesized by Ambion. For this assay, 7 × 105 cells
were seeded, and transfection was performed using oligofectamine (Invitrogen, Waltham,
MA, USA) according to the manufacturer’s protocol. After 72 h, transfection CLDN3
expression was analyzed by protein blotting. We used Scramble siRNA as a control.

4.7. Immunohistochemical Analysis

Paraffin-embedded samples from patients diagnosed of BPH (n = 10) or PC (n = 89)
were used. The immunohisto-chemical staining for CLDN3 was performed using a poly-
clonal rabbit anti-CLDN3 (Thermo Fisher, Waltham, MA, USA), following the method previ-
ously described [49]. The immunostaining scores were ranged into four categories based on
the staining pattern of the majority of tumor cells in the whole section, which were grouped
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into two main categories for statistical purposes (0–1: negative/low staining; 2–3: moder-
ate/high staining). Normal human colon samples were used as claudin-immunopositive
controls. Negative controls were performed by omitting the first antibody.

Immunostaining scores and clinical data were analysed using one-way ANOVA and
or Bonferroni’s multiple comparison tests. Log-rank test and survival curves were used to
determine the relationship between claudin-3 staining and time to biochemical and clinical
progression. The statistical significance of differences between groups was expressed by
asterisks (* 0.01 < p < 0.05; ** 0.001 < p < 0.01; *** p < 0.001).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24010803/s1.
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