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1. Introduction

It is well known that parametric representations of geometrical objects have many 
applications in different fields, see for example [7, Chapter 1]. Although those build with 
quotients of polynomials can benefit from a wealth of knowledge coming from Commu-
tative Algebra, there exist natural geometric constructions where nonrationality arises, 
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for instance offset and conchoid constructions (see [9]). At the same time, surjectivity 
of parametrizations is important in those context where particular points with special 
properties can be missed, or techniques like integration require certain open sets to be 
completely covered by the parametrization. Also, when transforming differential equa-
tions with radical coefficients into algebraic differential equations, these parametrizations 
appear (see [5], [6]) and providing surjectivity helps to deal with some particular princi-
pal value problems. In this direction, the aim of this paper is to explore the surjectivity 
of a certain class of parametrizations, built using rational operations and extraction of 
roots.

Let V be a curve or an algebraic surface over C for which a parametrization P is 
available. This parametrization can be visualized as a map from a subset of the suit-
able dimensional complex affine space on V. It therefore makes sense to talk about the 
surjectivity of P.

If the parametrization is not surjective, when working with it instead of the implicit 
equations of V, information about the part of V not covered by P is lost. This fact may 
have undesirable consequences in some applications since the information sought in V
may lie out of the image of P; in the introduction of [13] this phenomenon is illustrated 
with some examples. Thus, the need to study the surjectivity of parametrizations arises.

If V is a curve and P is a rational parametrization, the problem is essentially solved 
in [10] (see [1] and [2] for different approaches) where, in addition to giving sufficient 
conditions to guarantee surjectivity, it is shown that, at most, only one point can be 
missed via P, and it is shown how to detect it. In addition, it is also proved that every 
rational curve can be surjectively parametrized.

When V is a surface, even if P is a rational parametrization, the problem is consider-
ably more complicated. In fact, in [4] it is shown that there are rational surfaces that do 
not admit surjective rational parametrizations. One way to overcome this difficulty is to 
look for finite families of parametrizations such that the union of their images covers V
(see [8], [14], [13]). On the other hand, in [11] particular families of surfaces are presented 
that do admit surjective rational parametrizations.

In this paper, we apparently reduce the complexity of the problem by working with 
curves instead of surfaces but increase the difficulty by allowing the parametrization to 
be radical; a radical parametrization is, intuitively, a tuple of rational functions whose 
numerators and denominators are nested expressions of radicals of polynomials with 
Jacobian rank equal to one, see [12] for more details. Therefore, this work should be 
considered as a first step towards the general study of surjectivity in the radical case, 
leaving open problems for future work such as obtaining, if feasible, surjective radical 
parametrizations. This article focuses mainly on obtaining sufficient conditions to guar-
antee surjectivity.

The first obstacle we face is to adequately define what we mean by surjectivity in the 
radical case. Let us see the problem in a trivial example. The rational parametrization (

2t
t2+1 ,

t2−1
t2+1

)
of the unit circle covers all the curve except the north pole point (0, 1). 

However, if we consider the radical parametrization (t, 
√

1 − t2) of the same curve, taking 
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the square root as a function (i.e. just choosing one of the two possibilities for every 
radicand), we can only aspire to cover one half of the curve. Our approach is to refer to 
the union of the images of the given parametrization and all its conjugates. Thus, in the 
example above, we would be simultaneously talking about (t, ±

√
1 − t2) and, now, the 

union of the images is the entire circle; see Example 2.4 and Remark 3.13.
Since, in the case of rational curve parametrizations, the only point of the curve that 

can be lost is the limit as the parameter approaches infinity of the map (in projective 
geometry language, it is the image of the point at infinity of the projective line), a 
sufficient condition for surjectivity is that at least one of the rational functions of the 
parametrization has a numerator with a degree strictly bigger than the degree of the de-
nominator. With the intention of imitating this result in the radical case, we introduce 
weights to adequately define the degree of polynomials with nested radicals, see Defini-
tion 2.6. However, this does not solve the problem completely (see Example 2.7). The 
reason is that indeterminations of type 0/0 can appear. To overcome this difficulty we 
introduce the notion of guilty polynomial (see Definition 3.5), and the weaker notion of 
suspicious polynomial (see Definition 4.9), to finally give a sufficient condition of radical 
surjectivity, see Theorem 3.8 and Corollary 4.13.

The paper is structured as follows: in Section 2 we recall some notions and re-
sults of radical parametrizations, we introduce the notion of surjectivity for a radical 
parametrization, and we outline our strategy. In Section 3 we introduce the notion of 
guiltiness and we prove the main Theorem 3.8. Some consequences are derived there. 
In Section 4 we discuss the hypotheses of the main theorem and present an alternative 
condition to guiltiness, namely being suspicious, that is more convenient from a compu-
tational point of view but in principle more restrictive (see Theorem 4.12). In Section 5
we conclude the article with bounds on the number of missing points in the case when 
some of our conditions for surjectivity do not hold.

2. Notation and preliminaries

A radical parametrization is a tuple (x1, . . . , xn) of elements of the last field of a radical 
tower F0 ⊆ · · · ⊆ Fm where F0 = C(t) and Fi = Fi−1(δi) such that δeii ∈ Fi−1 (see more 
details in [12]). We will work with the polynomial ring C[t, Δ1, . . . , Δm] where weights 
on the variables will be introduced later. In this ring lie the defining polynomials of the 
δi, namely Ei := Δei

i − gi(t, Δ1, . . . , Δi−1) where degΔj
(gi) < ej for all j = 1, ..., i − 1. 

We will denote the Δi collectively as Δ, and similarly for other indexed names.

Remark 2.1. Any rational function in C(t, δ ) can be written as a polynomial in C(t)[ δ ]. 
For instance, assuming that δ = δ1 let’s see that given

q(δ1) =
e1−1∑

qi(t)δi1 ∈ C(t)[δ1]

i=0
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its inverse q−1(δ1) ∈ C(t)[δ1]. In fact, for the resultant

r(t) = ResultantΔ1

(
Δe

1 − g1(t),
e1−1∑
i=0

qi(t)Δi
1

)
∈ C(t),

there are polynomials A, B ∈ C(t)[Δ1] of degree less than e1 − 1 and e1 respectively, 
such that

r(t) = A(Δi
1 − g1(t)) + B

e1−1∑
i=0

qi(t)Δi
1

and therefore

q−1(δ1) = r−1(t)B(δ1) ∈ C(t)[δ1].

Recall from [12] that a radical parametrization of a curve, among other stuff, incor-
porates a pair (P, E ), where

P(t, Δ ) =
(
p1(t, Δ)
q1(t, Δ)

, . . . ,
pn(t, Δ)
qn(t, Δ)

)
(1)

is an element of C(t, Δ)n, and E = (E1, . . . , Em). We will use throughout this paper 
the following definition of surjectivity:

Definition 2.2. We say that the parametrization is surjective or normal when the set

X(P) :=

⎧⎪⎨⎪⎩x ∈ Cn

∣∣∣∣∣∣∣ ∃ (t, Δ ) ∈ Cm+1 s.t.
Ei(t, Δ ) = 0, ∀ i = 1, . . . ,m;
P(t, Δ ) is well defined; and
P(t, Δ ) = x

⎫⎪⎬⎪⎭
is Zariski closed in Cn.

Let us call DP the algebraic subset of Cm+n+2 of points (t, Δ , x, z) satisfying the 
equations Ei(t, Δ ) = 0, i = 1, . . . , m; pi(t, Δ ) − xi qi(t, Δ) = 0; i = 1, . . . , n; and 
z · lcm(q1(t, Δ ), . . . , qn(t, Δ)) − 1 = 0. We have then the projection

DP −→ X(P)⊂ Cn

(t, Δ , x, z) 	→ x
(2)

where X(P) denotes the Zariski closure of X(P). Note that every constructible set 
involved is unidimensional (see [12]). Then, the set of missing points X(P) \ X(P) is 
finite. Observe that the radical variety defined in [12], in our case, radical curve, is an 
irreducible component of X(P), so, when irreducible, X(P) is the whole radical variety.
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Remark 2.3. The definition of surjective in Definition 2.2 corresponds to the usual notion 
of surjective map in the following way. For each combination of possible branches in (1), 
we can introduce a map from a subset of C to Cn. Surjectivity in Definition 2.2 requires 
that X(P) = X(P) (see (2)), and hence that the union of the images of all these maps 
is X(P).

Example 2.4. Let P(t, Δ) = (t, Δ) where E := Δ2 − (1 − t2). Then, DP is

DP =

⎧⎪⎪⎪⎨⎪⎪⎪⎩(t,Δ, x, y, z) ∈ C5

∣∣∣∣∣∣∣∣∣
x− t = 0
y − Δ = 0

z = 1
Δ2 − (1 − t2) = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

By the Closure Theorem (see [3, Ch. 3.2, Th. 3 or Ch. 4.4, Th. 3]) we have that X(P)
is the curve C := {(x, y) ∈ C2 | x2 + y2 = 1}. Let us now analyze X(P), that is

X(P) :=
{

(x, y) ∈ C2

∣∣∣∣∣ ∃ (t,Δ) ∈ C2 s.t.Δ
2 = 1 − t2

(t,Δ) = (x, y)

}
.

First, we observe that X(P) ⊂ C since t2 + Δ2 = 1. On one hand, if (a, b) ∈ C, 
taking t = a, and Δ as one of the roots of 

√
1 − a2, we get that (a, b) ∈ DP , and hence 

X(P) = X(P). So X(P) is Zariski closed and hence, by Definition 2.2, P is surjective.
On the other hand P provides two maps, namely, (t, ±

√
1 − t2), and the union of their 

images is C.

Recall the notation V (I) for the algebraic subset of the affine space defined by an 
ideal I and I(X) for the ideal of polynomials vanishing at all the points of a subset X of 
the affine space. Again by the Closure Theorem, we have that X(P) = V (I(DP) ∩C[x]). 
Observe that X(P) is the image of DP by the projection (t, Δ , x, z) 	→ x. This means 
that I(X(P)) = I(X(P)) ⊃ I(DP) ∩ C[x]. Therefore, surjectivity is equivalent to the 
projection of DP being Zariski closed. Given this fact, our main tool will be the Extension 
Theorem:

Theorem 2.5. [Extension Theorem, see [3] Ch. 3.1, Th. 3] Let I = 〈f1, . . . , fs〉 ⊆
C[x1, . . . , xn] and let Ĩ = I ∩C[x2, . . . , xn]. For each 1 ≤ i ≤ s, write

fi = ci(x2, . . . , xn)xNi
1 + terms in which x1 has degree < Ni,

where Ni ≥ 0 and ci �= 0. Suppose that we have a partial solution (a2, . . . , an) ∈ V (Ĩ). 
If there exists ci which is nonzero at (a2, . . . , an) then there exists a1 ∈ C such that 
(a1, a2, . . . , an) ∈ V (I).
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Theorem 2.5 can be used to lift any partial solution x of I(DP) ∩C[x] to DP , proving 
surjectivity.

In the case of rational curve parametrizations, to check whether the rational 
parametrization is surjective it suffices to check that for one of the components the 
degree of the numerator is larger than its denominator’s. In order to replicate this result 
for radical parametrizations, we will provide C[t, Δ] with a structure of graded ring with 
rational weights for the variables.

Definition 2.6. First we define deg(t) = 1. Then we define recursively the degree of Δi

as the degree of gi divided by ei, with the classical definition of degree for a polynomial 
on several weighted variables; recall that Δei

i = gi.

Example 2.7. This example illustrates how the condition on the degrees that works in the 
rational case is not sufficient in the radical case. Consider the parametrization P(t) =
(0, t −

√
t2 − 1) of the vertical axis x = 0 in C2. If we take Δ1 to be a square root 

of g1(t) = t2 − 1, the degree of the polynomial corresponding to the y coordinate, 
y(t, Δ1) = t ± Δ1, would be 1 in any case. Since the denominator of y is constant, 
the desired condition on the degrees is true. However, the origin does not correspond to 
any value of t ∈ C with any of its two possible square roots.

We need to exclude some expressions in order to find easy to check sufficient conditions 
of surjectivity. In order to apply the Extension Theorem to polynomials that will arise 
from eliminating the Δi by multiplying conjugates, we need conditions to ensure that we 
can control the degrees of those products. Note that one can eliminate the Δi with the 
set {E1, . . . , Em}, which is a triangular Gröbner basis with respect to the lexicographical 
ordering Δm > · · · > Δ1 > t.

Definition 2.8. For every f ∈ C[t, Δ ], we denote as N(f) the normal form of f with 
respect to {E1, . . . , Em}. Note that the normal form is just the polynomial obtained by 
repeatedly substituting every instance of Δei

i by gi.
If f ∈ C[t], observe that N(f) = f .

Example 2.9 (continuation of Example 2.7). The problem in Example 2.7 is that t = ∞
corresponds to an affine point in the parametrization. There we have two leading mono-
mials, t and 

√
t2 − 1, that in a way cancel each other. In fact, to reach such cancel-

lation with radicals, one usually multiplies by the conjugate. For f(t,Δ1) = t − Δ1

and its conjugate f(t, −Δ1) = t + Δ1, the normal form of their product (recall 
E1 = Δ2

1 − (t2 − 1)) is N(t2 − Δ2
1) = rem(t2 − Δ2

1, E1) = 1. In terms of radicals, 
we can write (t −

√
t2 − 1)(t +

√
t2 − 1) = 1. Note that we lose degree when, after mul-

tiplying by all conjugates of f , we apply the equality E1 = 0 to substitute Δ2
1 in terms 

of t.
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3. Sufficient condition for surjectivity

Let us denote by AP the Zariski closure of the projection of DP via the map 
(t, Δ , x, z) 	→ (t, Δ , x). We will apply repeatedly the Extension Theorem (Theorem 2.5) 
to lift a point x in X(P) (i.e. a solution of I(DP) ∩ C[x] = I(AP) ∩ C[x]), first to AP , 
and later to DP . In the first step, we will control the coefficients of the generator of the 
ideal I(AP) ∩ C[x1, t] (and similarly for xi with i > 1) so that for every point of X(P)
there exists a corresponding value of t (see Theorem 3.8). To this end we will consider 
a product involving the conjugates of the numerator of the first component of P whose 
degree should be preserved upon simplification of roots. This is the motivation for the 
next definition. From here onwards we will denote the imaginary unit with an upright i
as opposed to the italic i for a variable.

Definition 3.1. For k = 1, . . . , m, denote γk = exp(2πi/ek). Let f ∈ C[t, Δ ]. We define 
fm = f(t, Δ1, . . . , Δm) and recursively for k = m, . . . , 1,

Fk =
ek∏
j=1

fk(t,Δ1, . . . ,Δk · γj
k), (3)

fk−1 = rem(Fk, Ek) ∈ C[t,Δ1, . . . ,Δk−2][Δk−1] (see Lemma 3.2). (4)

Then we define the normalized remainder of f as R(f) = f0 ∈ C[t].
If f ∈ C[t], observe that R(f) = f .

Lemma 3.2. With the notation of Definition 3.1, fk−1 ∈ C[t, Δ1, . . . , Δk−1].

Proof. By construction,

Fk(t,Δ1, . . . ,Δk) = Fk(t,Δ1, . . . , γkΔk).

Writing Fk as a polynomial in Δk, namely Fk =
∑

h ah · Δh
k , we have ah = ah · γh

k . 
Therefore, if ek does not divide h, γh

k �= 1 so ah = 0. It follows that Fk is a polynomial 
in t, Δ1, . . . , Δk−1, Δek

k :

Fk =
∑
l

alekΔlek
l ,

so its remainder when dividing by Ek with respect to Δk is:

fk−1 =
∑
l

alekgk(t,Δ1, . . . ,Δk−1)l. �
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Remark 3.3.

1. fk−1 is the resultant of fk and Ek with respect to Δk, since the resultant is the 
product of the evaluations of fk in the roots of Ek. In other words, R(f) is obtained 
by nested resultants.

2. We defined fk−1 as a remainder by a polynomial but using the normal form instead 
one obtains the same R(f).

3. In general, R(f) is a power of the norm of f(t, δ ) as an algebraic element over C(t).
4. If the radicals are not nested, i.e. every gk ∈ C[t], we can substitute the recursive 

definition by the product

R(f) = N

⎛⎝ ∏
i1,...,im

f(t, γi1
1 Δ1, . . . γ

im
m Δm)

⎞⎠ .

This is not true in general, as the next example illustrates.

Example 3.4. Consider E1 = Δ2
1 − t, E2 = Δ2

2 − Δ1 − 1 and f = Δ1Δ2 + t. If we 
compute the whole product instead of taking remainders after conjugating each variable 
separately, we obtain

N
(∏

f(t,±Δ1,±Δ2)
)

= (−2t3 + 2t2)Δ1 + t4 − t3 + t2.

Following Definition 3.1, we get R(f) = t4 − 3t3 + t2.

Since conjugation does not change the degree, from (3), we get deg(Fk) = ek ·deg(fk); 
on the other hand deg(Δk) = deg(gk)/ek by Definition 2.6, so reducing Fk by Ek (i.e. 
substituting Δek

k = gk in Fk) will not change the degree in the general case. Therefore, 
the degree of R(f) is, at most, deg(f) · e1 · · · em, with equality as the expected case. 
However, Example 2.9 shows that this is not always true, due to cancellations upon 
reduction. Now we introduce a definition for the exceptions.

Definition 3.5. Let f ∈ C[t, Δ ]. We define f to be guilty when

deg(f) · e1 · · · em > deg(R(f)).

Remark 3.6. By definition, no polynomial in C[t] is guilty.

Example 3.7 (continuation of Example 2.9). We have

f1 = f = t− Δ1, F1 = (t− Δ1)(t + Δ1), f0 = R(f) = 1.

Since deg(f) = 1 and e1 = 2, f is guilty. If we had started instead with y = t −
√
t− 1, 

we would have had the same f = t − Δ1 but now with E1 = Δ2
1 − (t − 1), so that 
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R(f) = t2− t +1 and f would not be guilty; one can also check that the parametrization 
would be surjective.

With the previous definitions we intend to control the “image of infinity” (i.e. the 
behavior of the branches as t approaches infinity) as in rational parametrizations. How-
ever, there is an extra issue that may appear in with radical, which is the possibility
of indeterminations of type 0/0. These happen for those values of t, Δ satisfying the 
equations E, pi and qi, where i indicates the component of P where the indetermination 
occurs. Now we can state the main theorem.

Theorem 3.8. Let P be as in (1), with N(pi) = pi and N(qi) = qi for i = 1, . . . , n, and 
E be the sequence of defining polynomials of the radical expressions. Suppose that:

1. there exists i such that pi is not guilty and deg pi > deg qi;
2. for all i, the ideal Ii(P) := 〈 E , pi, qi〉 is the whole C[t, Δ].

Then the parametrization is surjective.

Proof. Recall that AP is the Zariski closure of the projection (t, Δ , x, z) 	→ (t, Δ , x)
of DP . We will repeatedly apply the Extension Theorem (Theorem 2.5) to lift a point 
x ∈ X(P) = V (I(DP) ∩C[x]), firstly, to AP , and, later, to DP .

Without loss of generality, assume that hypothesis 1 holds for i = 1. Let F1(x1, t) be 
the generator of the ideal I(AP) ∩ C[x1, t]. This makes sense because each component 
of AP has dimension one (see [12, Th. 3.11]) and its projection to the variables (x1, t)
is finite (in [12, Proof of Th. 3.11], the (t, Δ , x, z) 	→ (t, Δ , x) of DP is finite and, since 
the dimension is one, the missing points of the (t, Δ , x, z) 	→ (t, Δ , x) are a finite set). 
Let

G1(x1, t) = R(x1q1 − p1).

By construction G1 ∈ I(AP) so F1 divides G1. In Lemma 3.14 below we show that, if 
we consider G1 as a polynomial in x1, its constant coefficient has greater degree in t
than the other coefficients. Therefore the leading coefficient of G1 with respect to t is 
constant, and the same thing happens to F1. Then, every point of X(P) can be lifted 
to a value of t by Theorem 2.5. But since each polynomial Ei = Δei

i − gi is monic with 
respect to Δi and they are in I(AP), every point can be lifted to the Δ as well.

Finally, consider a point x0 in the curve and all its lifts to the values t0, Δ 0. We need 
to lift to the variable z via the condition z · lcm(q1, . . . , qn) = 1.

Since t0, Δ 0, x0 satisfy the equations qixi − pi = 0 for all i ∈ {1, . . . , n} and the 
E equations, if any qi(t0, Δ 0) = 0 we would also have pi(t0, Δ 0) = 0 contradicting 
hypothesis 2. �
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Remark 3.9. Let P(t) = (p1(t)/q1(t), . . . , pn(t)/qn(t)) ∈ C(t)n be a rational parametriza-
tion in reduced form; that is, gcd(pi, qi) = 1 for all i ∈ {1, . . . , n}. Let us assume that 
there exists i0 ∈ {1, . . . , n} such that deg(pi0) > deg(qi0). Then P(t) satisfies the hy-
potheses of Theorem 3.8.

Indeed, by Definition 2.8, it holds that N(pi) = pi and N(qi) = qi for all i. By 
Remark 3.6, pi0 is not guilty and pi0/qi0 satisfies hypothesis (1). Concerning hypothesis 
(2) one has that, since gcd(pi, qi) = 1, then 1 ∈ Ii(P) = 〈pi, qi〉. So Ii(P) = C[t, Δ ].

Corollary 3.10. Let P be as in (1), with all its entries being reduced polynomials in 
C[t, Δ ] (i.e. N(pi) = pi and qi = 1 for i = 1, . . . , n). If hypothesis (1) in Theorem 3.8
is satisfied, then P is surjective.

Proof. Let us see that the second hypothesis of Theorem 3.8 is satisfies. Let pi ∈ C[t, Δ ]
be the i-th entry of P, then Ii(P) = 〈E, pi, 1〉 = 〈1〉 = C[t, Δ ]. �
Corollary 3.11. Let P be such that some of its entries are rational (i.e. elements of 
C(t)) and one of its rational entries satisfies the degree condition. If every non-rational 
components pi/qi is polynomial in C[t, Δ ], and N(pi) = pi, then P is surjective.

Proof. Taking into account Definition 2.8, and the hypothesis on the non-rational entries 
of P, we have that N(pi) = pi and N(qi) = qi for all i. Also, reasoning as in Remark 3.9, 
we know that the hypothesis (1) of Theorem 3.8 holds. Now the result follows from 
Corollary 3.10. �
Remark 3.12. The curve of Cn defined by the complex polynomials

{yni
i − gi(x)}i=1,...,n−1,

and ni ∈ N, can be surjectively parametrized as

P = (t,Δ1, . . . ,Δn−1)

where Ei := Δni
i − gi(t).

We observe that N(Δi) = Δi. Thus, the claim follows from Corollary 3.11.

Remark 3.13. As particular examples of the previous remark, we have the plane curves 
xn + yn = a, with a ∈ C.

Lemma 3.14. With the notation and hypotheses of Theorem 3.8, let f = xq − p, taking 
subindices out for the sake of simplicity. Then, abusing the notation of Definition 3.1, for 
every k = 0, . . . , m, the constant coefficient of fk with respect to x has degree ek+1 · · · em ·
deg(p) which is strictly greater than that of the other coefficients. In particular, this 
applies to G1 = R(f) = f0.
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Proof. We apply descending induction on k; the case k = m is trivial by hypothesis.
Assume it true for k, that is, if fk = arx

r + · · · + a0 with aj ∈ C[t, Δ1, . . . , Δk] then 
deg(a0) = ek+1 · · · em · deg(p) > deg(aj) for j > 0. Let

Fk =
ek∏
i=1

(
ar(t,Δ1, . . . ,Δk · γi

k)xr + · · · + a0(t,Δ1, . . . ,Δk · γi
k)
)

= brekx
rek + · · · + b0

Observe that deg(b0) = deg(a0) · ek = ek · · · em · deg(p), the last equality by induction 
hypothesis.

For j > 0, bj is a sum of products of exactly ek of the conjugated a’s, not all being 
a0. Since the degree of a0 is strictly greater than the degree of the others, all summands 
in bj have degree strictly less than ek · deg(a0) = deg(b0).

Now, since all instances of Δk in Fk are powers of Δek
k (see proof of Lemma 3.2) we can 

see each bj as a polynomial in Δek
k instead of just Δk, i.e. bj = b̃j(t, Δ1, . . . , Δk−1, Δek

k ). 
Then

fk−1 = b̃rek(t,Δ1, . . . ,Δk−1, gk)xrek + · · · + b̃0(t,Δ1, . . . ,Δk−1, gk).

The constant term of fk−1 above coincides with the k − 1 step in the computation of 
R(p), possibly up to a sign. Since p is not guilty, in each reduction step for R(p) the 
degree does not drop. This shows that

deg(b̃0(t,Δ1, . . . ,Δk−1, gk)) = deg(b0) > deg(bj) ≥ deg(b̃j(t,Δ1, . . . ,Δk−1, gk)). �
4. On the hypotheses for surjectivity

Deciding whether a polynomial is guilty or not can be done by defining and checking a 
sort of leading coefficient for our polynomials. We will see this for m = 1 (i.e. Δ = (Δ1)). 
The generalization to m > 1 is natural in the unnested case (i.e. gi(t, Δ1, . . . , Δi−1) ∈
C[t]). For the nested case, see Remark 4.2.

Let us denote g(t) = g1(t) = a0 + · · · + akt
k, Δ = Δ1, δ = δ1. Consider an already 

reduced polynomial

f(t,Δ) = c0(t) + c1(t)Δ + · · · + ce−1(t)Δe−1 ∈ C[t,Δ].

Since we defined deg(Δ) = k/e, naming ∂ci := degt(ci(t)), we have that for i ∈ {0, . . . ,
e − 1}

M := deg(f(t,Δ)) = max{deg(ci(t)Δi)} = max
{
∂ci + k

e
i

}
.

According to Remark 3.3,
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R(f) = ResultantΔ(f(t,Δ),Δe − g(t)) =
e−1∏
r=0

f(t, γrδ(t)) ∈ C(t),

with γ = exp(2πi/e). Now, define

J = {i ∈ {0, . . . , e− 1} / ∂ci + k

e
i = M}

and

fl(Δ) =
∑
i∈J

ci∂ciΔi ∈ C[Δ],

where ci∂ci is the leading coefficient of ci(t) = ci0 + ci1t + · · · + ci∂cit
∂ci . For any factor 

of R(f)

f(t, γrδ) = c0(t) + c1(t)γr e
√
g(t) + · · · + ce−1(t)γr(e−1) e

√
(g(t))e−1,

its coefficient of degree M is

∑
i∈J

ci∂ciγ
ri(ak)

i
e

(recall ak is the leading coefficient of g(t)). With this notation, we state the following 
result.

Lemma 4.1. With the above notation, the following are equivalent:

1. f(t, Δ) is not guilty.
2. For all r ∈ {0, . . . , e − 1}, 

∑
i∈J

ci∂ciγ
ria

i/e
k �= 0.

3. ResultantΔ(fl(Δ), Δe − ak) �= 0.

Proof. Let L =
e−1∏
r=0

∑
i∈J

ci∂ciγ
ria

i/e
k = ResultantΔ(fl(Δ), Δe − ak)). The right equality 

proves (2) ⇔ (3).
We observe that, as seen in the proof of Lemma 3.2, R(f) is the substitution Δe =

g(t) in the product of all f(t, γrΔ), which depends on t and Δe. The highest degree 
homogeneous component (with our definition of degree) of such polynomial is the product 
of the conjugates of the M − th homogeneous component of f(t, Δ):

A(t,Δe) =
e−1∏∑

ci∂cit
∂ciγriΔi.
r=0 i∈J
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On the other side, and reasoning likewise, ResultantΔ(fl(Δ), Δe−ak)) is the substitution 
Δe = ak in the product of all fl(γrΔ):

B(Δe) =
e−1∏
r=0

∑
i∈J

ci∂ciγ
riΔi.

Since B(ak) = L,

R(f) = ResultantΔ(f(t,Δ),Δe − g(t)) = LtM ·e + lower degree terms,

which means that (1) is equivalent to (3). �
Remark 4.2. Lemma 4.1 should be easily extendable to the case with not nested radicals 
and, with some more work, maybe, to the general case. However the notation needed for 
the definition of fl( Δ), mainly in the general case, would be cumbersome.

The following examples show that the hypotheses in Theorem 3.8 are sufficient but 
not necessary.

Example 4.3. On the condition of guiltiness, consider the radical parametrization x =
y = t(

√
t −

√
t + 1). It can be checked that it is surjective, although it is defined by 

p1 = t(Δ1 −Δ2) with Δ2
1 = t, Δ2

2 = t + 1 which is guilty. More in detail, the polynomial 
that relates t and x (what we called G1 in the proof of Theorem 3.8) is

t4 − 4x2t3 − 2x2t2 + x4,

which is monic in t of degree 4, while from the theorem the expected degree would be 
3
2 · 4 = 6; the degree drop is due to the reduction occurring by multiplication of the four 
conjugates. However, since it is a monic polynomial, we can apply Theorem 2.5 for any 
value of x.

Example 4.4. On the degree condition, the Bernoulli lemniscate (x2 +y2)2 = x2−y2 can 
be parametrized by

x = t + t3

1 + t4
, y = t− t3

1 + t4

which is surjective although the degree condition is not fulfilled. See [10] for more details.

Example 4.5. Consider the parametrization 
(

t(
√
t−1)

t−1 , t2+1
t−1

)
. The pair t = 1, Δ1 = 1 is 

a zero of the ideal I1(P) = 〈Δ2
1 − t, t(Δ1 − 1), t − 1〉, so hypothesis 2 is not satisfied. 

However, this is not a problem with respect to surjectivity. Indeed, since hypothesis 1 
is satisfied, every point of X(P) can be lifted to t, Δ; after this, even though we do not 



142 J. Caravantes et al. / Journal of Algebra 640 (2024) 129–146
have hypothesis 2 to guarantee the lifting to z for t = 1, there is no affine point in that 
situation because the second component becomes infinity for that parameter value.

Remark 4.6. The solutions of the ideal Ii(P) are instances of indeterminations of the 
type 0/0 for the i-th component. Since the subideal generated by E has dimension 1 in 
C[t, Δ ], three things can happen to the solution set of Ii(P):

• it is empty, which corresponds by Hilbert’s Nullstellensatz to the part of hypothesis 
2 regarding the i-th component;

• it is finite;
• it is unidimensional. This indicates that both pi and qi become identically zero for 

some component of the unidimensional V ( E ). Since E is a Gröbner basis by itself 
and both pi and qi are assumed to be in normal form with respect to E, this cannot 
happen when V ( E ) is irreducible (i.e. when the subideal generated by E is primary).

The rest of the section discusses more restrictive conditions than guiltiness that are, on 
the other hand, easier to check. That is, we can substitute hypothesis (2) of Theorem 3.8
with something else that still provides surjectivity.

Proposition 4.7. With the previous notations, if f ∈ C[t, Δ ] and (t0, Δ 0) ∈ Cm+1 satisfy 
f(t0, Δ 0) = 0 and Ei(t0, Δ 0) = 0 for every i, then R(f)(t0) = 0.

Proof. By hypothesis fm = f vanishes at the point. Since each Fk is a multiple of fk
and each fk−1 is the remainder of Fk by Ek, it follows that all these polynomials vanish 
as well. But R(f) = f0. �

As a consequence, we have the following condition, which is computationally more 
convenient, for instance with resultants.

Corollary 4.8. If gcd(R(qi), R(pi)) = 1 for all i = 1, . . . , n, then hypothesis 2 of Theo-
rem 3.8 holds.

Next we offer another approach. Since checking guiltiness involves considering po-
tentially too many conjugates and reducing, the following definition is convenient in a 
computational sense.

Definition 4.9. We say, again recursively, that a polynomial f ∈ C[t, Δ ] is suspicious
when either of these occurs:

1. there are at least two terms of highest degree; or
2. for some i, Δi appears in the (only) leading term and gi(t, Δ1, ..., Δi−1) is suspicious.



J. Caravantes et al. / Journal of Algebra 640 (2024) 129–146 143
Note that, when gi is suspicious, the polynomial Δi ∈ C[t, Δ] is also suspicious because 
it trivially satisfies condition 2.

Example 4.10. Consider the expression

√
t2 − 1

√
t−

√
t2 − 1 + 3.

Naming δ1 =
√
t2 − 1 and δ2 =

√
t− δ1, we have that f(t, Δ1, Δ2) = Δ1Δ2 + 3, which 

has degree 3/2. It is a suspicious polynomial, since g2(t, Δ1) = t −Δ1 is clearly suspicious 
and Δ2 appears in the leading monomial.

However, f(t, Δ1, Δ2) + t2 is not suspicious because its degree is 2 and the highest 
degree homogeneous component only has the term t2.

Remark 4.11. If the radicals are not nested, then the gi cannot be suspicious. In particular 
this happens if the radical parametrization is defined with only one root.

Theorem 4.12. If a polynomial is not suspicious then it is not guilty.

Proof. Let f be not suspicious. With the notations of Definition 3.1, we will prove the 
following by descending induction: every fk is not suspicious and deg(fk−1) = ek ·deg(fk). 
The case k = m is trivial. Now we suppose it true for k and prove it for k − 1.

For any g ∈ C[t, Δ ] we will denote as C(g) its homogeneous component of highest 
degree. Then C(fk) = atαΔβ1

1 · · ·Δβk

k where a ∈ C, α, β1, . . . , βk ≥ 0. Note that, since 
fk is not suspicious, C(fk) cannot involve any Δi with suspicious gi (see Definition 4.9, 
second condition), so we have βi = 0 for every i ∈ {1, . . . , k} such that gi is suspicious.

We consider two cases:

• If gk is suspicious, βk = 0, so C(Fk) = C(fk)ek . When passing to fk−1, the substi-
tution of Δek

k = gk does not affect C(Fk) and cannot increase the degree of lower 
terms because deg(Δek

k ) = deg(gk), so C(fk−1) = C(Fk).
• If gk is not suspicious,

C(Fk) = aektαekΔβ1ek
1 · · ·Δβk−1ek

k−1

(
ek∏
i=1

γi
k

)βk

Δβkek
k .

Using again that the substitution of Δek
k = gk does not increase degrees,

C(fk−1) = aektαekΔβ1ek
1 · · ·Δβk−1ek

k−1

(
ek∏
i=1

γi
k

)βk

C(gk)βk .

But since gk is not suspicious, C(gk) only has one monomial not involving suspicious 
variables. Therefore fk−1 is not suspicious. On the other hand,
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deg(fk−1) = αek + deg(Δ1)β1ek + · · ·deg(Δk−1)βk−1ek + deg(gk)βk

and since deg(gk) = ek deg(Δk),

deg(fk−1) = ek (α + deg(Δ1)β1 + · · ·deg(Δk)βk) = ek deg(fk).

We conclude deg(f0) = deg(R(f)) = deg(f) · e1 · · · em. �
Corollary 4.13. Theorem 3.8 is also true if “not guilty” is replaced by “not suspicious”.

5. On missing points

Recall that we call missing points those x in the finite set X(P) \X(P) (see Defini-
tion 2.2), i.e. points for which there do not exist (t, Δ) ∈ Cm+1 such that Ei(t, Δ) = 0
for all i and P(t, Δ) is well defined and equal to x.

To find missing points, let us apply projective elimination techniques as in [3, Section 
8.5]:

1. Consider the ideal I ⊂ C[t, Δ , x, z] generated by the equations defining DP (see 
Section 2).

2. Let Ih ⊂ C[x][w, t, Δ , z] be the ideal generated by the (w, t, Δ , z)-homogenization 
of the elements of I (a method based on Gröbner bases to compute Ih can be found 
in [3, Section 8.5, Proposition 10]).

3. Note that DP = V (Ih), where DP is the projective closure of DP in Pm+2×Cn (see 
[3, Section 8.5, Proposition 8]). Then, by [3, Section 8.5, Corollary 9], the projection 
of DP ⊂ Pm+2 ×Cn → Cn is exactly X(P), so it is Zariski closed in Cn.

4. Therefore, the missing points are contained in the projection of the points of DP at 
infinity; that is, the projection of DP ∩ V (w) = DP \ DP onto the x coordinates is 
a finite superset of the set of missing points.

This is also a way to compute missing points for rational curves. However, it is simpler 
to compute the limit of the parametrization at infinity, see [10]. We want to replicate 
the latter for radical parametrizations. It is worth observing that some missing points 
are related to condition 1 of Theorem 3.8 (the one which allows us to lift to AP , see 
beginning of Section 3) and the others are related to condition 2 (the one which allows 
the point in AP to be lifted to DP).

Remark 5.1. The points that may not be lifted from X(P) to AP are those for which 
the leading coefficients cαi

(xi) of Fi(xi, t) = cαi
(xi)tαi + · · · (the generator of the ideal 

I(AP) ∩C[xi, t]) vanish simultaneously.
There are at most deg(cα1) · · ·deg(cαn

) candidates x to be missing points. Moreover, 
V (cα1(x1), . . . , cαn

(xn)) ∩ X(P) is a superset of missing points due to condition 1 of 
Theorem 3.8.
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Remark 5.2. Consider the “Castle” (union of all tower varieties of [12]) V ( E ) in the 
m + 1-dimensional space of coordinates (t, Δ). The rational map (t, Δ ) 	→ P(t, Δ )
defined in V ( E ) will be called P, abusing the notation. V ( E ) is of pure dimension one 
([12]) so, since the fundamental locus of a rational map has codimension greater than or 
equal to 2 in smooth algebraic varieties, P can be extended to the whole desingularization 
C of the projective closure of V ( E ).

The points that are not lifted from X(P) to AP are the images by P of the points of 
X(P) that are “images” by P of points at infinity of V ( E ). The degree of V ( E ) is, at 
most, ε1 · · · εm, where εi = max{ei, deg(gi)} with the classical definition of degree, since 
it is an affine complete intersection of hypersurfaces of degrees ε1, . . . , εm. Therefore, the 
points at infinity of V ( E ) are, counted with multiplicity, ε1 · · · εm. This proves that a 
bound for the amount of missing points due to the lack of hypothesis 1 is ε1 · · · εm.

Example 5.3. Consider P =
(

n
√

t(t−1)n−1

t−1 ,
m
√

(2t−1)(t−1)m−1

t−1

)
=

(
Δ1
t−1 ,

Δ2
t−1

)
, with E1 =

Δn
1 − t(t − 1)n−1, E2 = Δm

2 − (2t − 1)(t − 1)m−1. Note that P can be simplified to (
n

√
t

t−1 ,
m

√
2t−1
t−1

)
, and this imposes a different way to choose Δ and E.

It is easy to see that X(P) is defined by the equation xn−ym+1 = 0. The polynomials 
F1 and F2 of Remark 5.1 are

F1(x, t) = xn(t− 1) − t = (xn − 1)t− xn,

F2(y, t) = ym(t− 1) − 2t + 1 = (ym − 2)t− ym + 1.

Then deg(cα1) = n and deg(cα2) = m. The possible missing points are those whose first 
coordinate is an n-th root of 1 and second coordinate is an m-th root of 2. One can 
check that, indeed, all those points cannot be reached for any value of t, so we have mn

missing points in total. Therefore, the bounds in Remarks 5.1 and 5.2 are sharp.
Note that F1(x, 1) = −1, hence no point in AP has coordinate t = 1, so there are no 

additional missing points.

Remark 5.4. In Example 5.3, it is not difficult to check that the parametrization is proper 
(i.e. generically injective). In general, when X(P) is irreducible, one could deduce proper-
ness if the greatest common divisor of F1 and F2, seen as polynomials with coefficients 
in the field of rational functions of X(P), is the power of a degree one polynomial.

Remark 5.5. The points that cannot be lifted from AP to DP are among those whose 
coordinates (t, Δ) satisfy the equations E1, . . . , Em, pi, qi for some i = 1, . . . , n. Taking 
their projections on the space of x coordinates implies that the number of missing points 
due to hypothesis 2 failure is less than or equal to the number of solutions of those 
algebraic systems of equations.
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