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Given an algebraic surface implicitly defined by an irreducible polynomial, we present a method 
that decides whether or not this surface can be parametrized by a polynomial parametrization 
without base points and, in the affirmative case, we show how to compute this parametrization.

1. Introduction

We present some absolutely novel results which allow us to decide whether or not an algebraic surface can be polynomially 
parameterized with the additional characteristic that the polynomial parameterization does not have base points. From these results, 
a constructive algorithm is derived for such a polynomial parametrization if one exists.

Although in the case of curves the problem of polynomial parametrizations is well studied and characterized (see Manocha and 
Canny, 1991, and Sendra et al., 2007), for the case of surfaces, as far as the authors’ knowledge is concerned, only some partial 
results are known, such as approximate polynomial constructions (Pérez–Díaz et al., 2007, Shen and Pérez–Díaz, 2019, Wang et al., 
2024) or questions related to the polynomial reparametrization and base points (see Cox et al., 2022 and Pérez-Díaz and Sendra, 
2020).

In recent times, the study of these varieties has generated a great deal of interest especially for the applications of surfaces in 
important problems related to different areas such as engineering, industry, modeling or artificial intelligence (Hoffmann et al., 
1993, Hoschek and Lasser, 1993). Also studied are the reparametrization of surfaces (see Pérez-Díaz, 2006, Pérez-Díaz, 2013), the 
calculation of the implicit equation that defines a surface represented by a parametrization (see Pérez-Díaz and Sendra, 2008 or 
Alcázar and Pérez-Díaz, 2020), calculation of the fiber of the rational application induced by the parametrization and its singularities 
(see Pérez-Díaz and Sendra, 2004 and Pérez–Díaz et al., 2015), etc.

The polynomial character of a variety (a surface or a curve) is interesting because of the applications it implicitly permits. For 
example, plotting in the polynomial case avoids many problems in computer-aided geometric design, or in the geometric modeling 
(Pérez-Díaz and Sendra, 2003). When one has a rational parametrization of a surface, the numerical instability when the values, 
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substituted in the parameters of the parametrizations, get close to the poles of the rational functions is a problematic issue for 
the applications mentioned above since in this case, the denominators define algebraic curves whose points are all poles of the 
parametrization.

The problem dealt with in this paper could be of interest to the computer aided geometric design (CAGD) community. In CAGD, 
polynomial parametrizations are widely used to represent curves and surfaces. They provide a concise mathematical representation, 
are computationally efficient, and can be manipulated easily to achieve various shapes. The most commonly used polynomial para-

metric representations are Bézier curves and B-spline curves. For the case of surfaces, the applications of polynomial parametrizations 
in CAGD are very important as for instance in shape design since with the help of polynomial curves and surfaces, designers in in-

dustries such as automotive, aerospace, and product design can create and manipulate shapes efficiently. In computer graphics and 
animation, polynomial curves and surfaces are essential tools since they help in defining the motion paths or morphing shapes. 
Polynomial surfaces can be used to define the boundary of objects, and mathematical tools can quickly check for intersections or 
close approaches, which are critical in simulations or video games. In robotics and CNC machining, polynomial curves can represent 
the path that a robot arm or tool should follow, ensuring smooth and predictable motions. In computer graphics, parametric surfaces 
can be used to map 2D textures onto 3D objects seamlessly. In engineering simulations, polynomial parametrizations can help in 
creating an approximate solution domain where computations are performed (see e.g. Boehm et al., 1984, Cohen et al., 2001, Farin, 
2002, Farin et al., 2002, Hoschek and Lasser, 1993, Piegl and Tiller, 1997, Rogers and Adams, 1990).

In this paper, we first present some preliminary results that essentially deal with bases points (see Section 2). The non-existence of 
base points is also important since, in general, these points are obstructions to obtaining properties of hypersurfaces (even in implic-

itness, see Pérez-Díaz and Sendra, 2008 or Pérez-Díaz and Sendra, 2013). It is thus important to study when such a parameterization 
can be found.

In Section 3, important results characterizing the existence of polynomial parameterizations without base points are presented. 
The proofs are constructive and it is shown how to construct the polynomial parametrization, if it exists. Note that sometimes the 
polynomial parameterization must necessarily be improper. Nevertheless, given an algebraic surface  , one may apply Schicho’s 
algorithm (see Schicho, 1998) and compute a rational proper parametrization  of  . One could then apply Pérez-Díaz and Sendra 
(2020) and polynomially parameterize  , if a proper polynomial parametrization exists. However, there are some problems with this 
way of proceeding. On the one hand, the method would be much less effective than the one presented in this paper in which only one 
system needs to be solved. On the other hand, one could only find proper polynomial parametrization, if one exists (in this paper, we 
are able to find also improper polynomial parametrizations). Moreover and more important, to apply the reparametrization algorithm 
presented in Pérez-Díaz and Sendra (2020), one needs an additional transversality condition to be satisfied by  . This condition, 
which has to do with the intersection of the base points, is restrictive and in case it is not satisfied, the algorithm presented in 
Pérez-Díaz and Sendra (2020) cannot be applied.

Finally, once the theoretical results that support the method developed here are proved, in Section 4, we present an algorithm for 
polynomial parametrization which is illustrated in detail by several examples.

It would be interesting to continue this study on the polynomial character of a given algebraic surface, even if the polynomial 
parametrization that we could find has base points. However, as can be seen in this article, the non-existence of bases points is 
essential and forms the cornerstone in the initialization of the method developed here.

In addition, as the reader can check throughout the paper, the terminology without base points refers to a compactification of 
the affine space to a projective space. This is a specific choice and there are many other ways to compactify, as for instance as a 
product of two projective lines (e.g. tensor-product surfaces). This approach will be a very interesting idea for a future work that 
opens important questions such as if it could be possible that a surface does not admit a polynomial parameterization without base 
points in ℙ2 (in the sense of this paper) but admits a polynomial parameterization without base points over a compactification other 
than ℙ2.

2. Notation and preliminaries

In this section, we introduce some previous results related to base points and the notation that will be used throughout this paper. 
For more details, refer to Cox et al. (2022).

In the following, 𝕂 is an algebraically closed field of characteristic zero, 𝑥 = (𝑥1, … , 𝑥4), 𝑦 = (𝑦1, … , 𝑦4) and 𝑡 = (𝑡1, 𝑡2, 𝑡3). Fur-

thermore, 𝔽 is the algebraic closure of 𝕂(𝑥, 𝑦), and ℙ𝑘(𝕂) denotes 𝑘–dimensional projective space.

For a rational map

 ∶ ℙ𝑘1 (𝕂) ⤏ ℙ𝑘2 (𝕂)
ℎ = (ℎ1 ∶⋯ ∶ ℎ𝑘1+1) ⟼ (𝑚1(ℎ) ∶⋯ ∶𝑚𝑘2+1(ℎ)),

where the non-zero 𝑚𝑖 are homogeneous polynomials in ℎ of the same degree, we denote by deg() the degree deg
ℎ
(𝑚𝑖), and by 

degMap() the degree of the map ; that is, the cardinality of a generic fiber of  (see e.g., Harris, 1995). Recall that the rational 
map  is proper or invertible if degMap() = 1. Otherwise, we say that  is improper.

Let 𝑔 ∈ 𝕃[𝑡1, 𝑡2, 𝑡3] be homogeneous and non-zero, where 𝕃 is a field extension of 𝕂. Then, 𝒞(𝑔) denotes the projective plane 
curve defined by 𝑔 over the algebraic closure of 𝕃. Hence, if 𝒞(𝑓 ), 𝒞(𝑔) are two curves in ℙ2(𝕂) and 𝐴 ∈ ℙ2(𝕂), we represent 
by mult𝐴(𝒞(𝑓 ), 𝒞(𝑔)) the multiplicity of the intersection of 𝒞(𝑓 ) and 𝒞(𝑔) at 𝐴. In addition, we denote by mult(𝐴, 𝒞(𝑓 )) the 
2

multiplicity of 𝒞(𝑓 ) at 𝐴.
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Finally,  ⊂ ℙ3(𝕂) represents a rational projective surface, and

 ∶ ℙ2(𝕂) ⤏  ⊂ ℙ3(𝕂)
𝑡 ⟼ (𝑝1(𝑡) ∶⋯ ∶ 𝑝4(𝑡))

denotes a rational parametrization of the projective rational surface  , where 𝑝𝑖 are homogeneous non-zero polynomials of the 
degree 𝑛 and gcd(𝑝1, … , 𝑝4) = 1.

Definition 1. A base point of  is a point 𝐴 ∈ ℙ2(𝕂) such that 𝑝𝑖(𝐴) = 0 for every 𝑖 ∈ {1, 2, 3, 4}. ℬ() represents the set of base 
points of  ; i.e. ℬ() =𝒞(𝑝1) ∩⋯ ∩𝒞(𝑝4).

In order to deal with the base points of the parametrization, we introduce the following auxiliary polynomials:

𝑊1(𝑥, 𝑡) ∶=
4∑
𝑖=1

𝑥𝑖 𝑝𝑖(𝑡1, 𝑡2, 𝑡3), 𝑊2(𝑦, 𝑡) ∶=
4∑
𝑖=1

𝑦𝑖 𝑝𝑖(𝑡1, 𝑡2, 𝑡3),

where 𝑥𝑖, 𝑦𝑖 are new variables. We will work with the projective plane curves 𝒞(𝑊𝑖) in ℙ3(𝔽 ). Under these conditions, using the 
multiplicity of intersection of these two curves, we define the multiplicity of a base point as follows.

Definition 2. The multiplicity of a base point 𝐴 ∈ℬ() is mult𝐴(𝒞(𝑊1), 𝒞(𝑊2)), that is, is the multiplicity of intersection at 𝐴 of 
𝒞(𝑊1) and 𝒞(𝑊2); we denote this multiplicity by

mult(𝐴,ℬ()) ∶= mult𝐴(𝒞(𝑊1),𝒞(𝑊2))

In addition, we define the multiplicity of the base points locus of  , denoted mult(ℬ()), as

mult(ℬ()) ∶=
∑

𝐴∈ℬ()
mult(𝐴,ℬ()) =

∑
𝐴∈ℬ()

mult𝐴(𝒞(𝑊1),𝒞(𝑊2)).

Note that, since 𝑔𝑐𝑑(𝑝1, … , 𝑝4) = 1, the set ℬ() is either empty of finite.

We have the following degree formula relating degrees and base point locus multiplicity. For this purpose, in the following, 
we denote by deg() the algebraic degree of  , and Content𝜐(𝑝) represents the content of a polynomial 𝑝 with respect to a set of 
variables 𝜐 (that is, the greatest common divisor of the coefficients of 𝑝 with respect to the variables 𝜐).

Theorem 1.

mult(ℬ()) = deg()2 − deg() ⋅ degMap().

Furthermore, one may compute mult(ℬ()) as

mult(ℬ()) = deg𝑡(Content{𝑥,𝑦}(Res𝑡3 (𝑊1,𝑊2))).

The above formulae shows that the multiplicity of the base point locus of a projective rational surface parametrization can be 
expressed as the degree of the content of a univariate resultant (see Cox et al., 2022). The equality mult(ℬ()) = deg()2 − deg() ⋅
degMap() relates the degree of the surface, the degree of the parametrization, the base point multiplicity and the degree of the 
rational map induced by the parametrization.

The following corollary is a direct consequence of Theorem 1.

Corollary 1.

1. If  is birational, then deg()2 − mult(ℬ()) = deg().
2. A rational surface whose degree is not the square of a natural number cannot be birationally parametrized without base points in ℙ2(𝕂).

3. Polynomial parametrizations without base points

In this section, we deal with the problem of computing, if it exists, a polynomial parametrization without base points of a given 
implicitly defined algebraic surface.

For this purpose, let  be a projective surface defined by the homogeneous irreducible polynomial

𝐹 (𝑥) = 𝑓𝑑 (𝑥1, 𝑥2, 𝑥3) − (𝑥4𝑓𝑑−1(𝑥1, 𝑥2, 𝑥3) +⋯+ 𝑥𝑑4𝑓0) ∈𝕂[𝑥],

where 𝑑 ∶= deg() and 𝑓𝑗 (𝑥1, 𝑥2, 𝑥3) are homogeneous polynomials of degree 𝑗, for 𝑗 = 0, … , 𝑑. Recall that the corresponding affine 
surface is obtained by dehomogenizing w.r.t. the variable 𝑥4. We denote the corresponding affine surface by 𝑎 defined by the 
3

irreducible polynomial 𝑓 (𝑥1, 𝑥2, 𝑥3) = 𝐹 (𝑥1, 𝑥2, 𝑥3, 1) ∈𝕂[𝑥1, 𝑥2, 𝑥3].
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Furthermore, if (𝑡) = (𝑝1(𝑡) ∶⋯ ∶ 𝑝4(𝑡)) is a parametrization of  , the affine rational parametrization given by

𝑎(𝑡1, 𝑡2) = (𝑝1(𝑡1, 𝑡2)∕𝑝4(𝑡1, 𝑡2), 𝑝2(𝑡1, 𝑡2)∕𝑝4(𝑡1, 𝑡2), 𝑝3(𝑡1, 𝑡2)∕𝑝4(𝑡1, 𝑡2))

parametrizes 𝑎.
Recall that a surface  is polynomial if  can be parametrized by a polynomial parametrization  of the form

(𝑡) = (𝑝1(𝑡) ∶ 𝑝2(𝑡) ∶ 𝑝3(𝑡) ∶ 𝑝4(𝑡)) ∈ ℙ3(𝕂), 𝑝4(𝑡) = 𝑡𝑛3,

where 𝑛 ∶= deg(). Observe that this is equivalent to saying that 𝑎 is polynomial since in this case, 𝑎 can be parametrized by

𝑎(𝑡1, 𝑡2) = (𝑝1(𝑡1, 𝑡2,1), 𝑝2(𝑡1, 𝑡2,1), 𝑝3(𝑡1, 𝑡2,1)) ∈𝕂[𝑡1, 𝑡2]3.

We assume without loss of generality that deg(𝑝𝑖(𝑡1, 𝑡2, 1)) = 𝑛, 𝑖 = 1, 2, 3. Otherwise, we apply a linear change of coordinates on 
𝑎. Clearly this new surface is polynomial if and only if 𝑎 is polynomial. Furthermore, if one computes a polynomial parametrization 
of this new surface, undoing the change of coordinates, we get a polynomial parametrization for 𝑎 . We also assume that 𝑛 ≥ 2 since 
for the case 𝑛 = 1,  is a plane (see Corollary 1) and for this case, we may easily compute a proper polynomial parametrization.

As we state in the introduction, one may apply Schicho’s algorithm (Schicho, 1998) to determine a proper rational parametrization 
 of  . Afterwards, one could apply Pérez-Díaz and Sendra (2020), and polynomially parameterize  , if a suitable polynomial 
parametrization exists. However, using this process some problems arise. First, the method would be much less efficient than the one 
presented in this paper, in which we only have to solve a linear system. Second, only proper polynomial parameterizations could be 
found, if they exist, but in this work, we are able to find improper polynomial parameterizations as well. Moreover, in order to apply 
the reparametrization algorithm presented in Pérez-Díaz and Sendra (2020),  is required to satisfy an additional transversality the 
transversality condition. This transversality condition, which has to do with the intersection of the base points, is restrictive and in 
case it is not fulfilled, the algorithm in Pérez-Díaz and Sendra (2020) can not be applied.

We start with the following theorem, where properties related to the desired polynomial parametrization without base points are 
proved.

Theorem 2. Let  be a polynomial parametrization of degree 𝑛 of a given surface  of degree 𝑑. Let

 (𝑡1, 𝑡2) = (𝑞1(𝑡1, 𝑡2) ∶ 𝑞2(𝑡1, 𝑡2) ∶ 𝑞3(𝑡1, 𝑡2)), 𝑞𝑖(𝑡1, 𝑡2) = 𝑝𝑖(𝑡1, 𝑡2,0), 𝑖 = 1,2,3.

Then

1.  does not have base points if and only if 𝑛2 = 𝑑 ⋅ degMap(). Furthermore,  is proper if and only if 𝑛2 = 𝑑.

2.  does not have base points if and only if deg( ) = 𝑛.

3. Let deg( ) = 𝑘 ≥ 1. Then  is a homogeneous parametrization of a projective plane curve,  , defined by an irreducible component 
of 𝑓𝑑 .

4. Let  be without base points.  is proper if and only if 𝑓𝑑(𝑥1, 𝑥2, 𝑥3) = 𝑔(𝑥1, 𝑥2, 𝑥3)𝑛, where 𝑔(𝑥1, 𝑥2, 𝑥3) is the irreducible polynomial 
of degree 𝑛 defining the curve  .

5. Let  be without base points.  is improper if and only if 𝑓𝑑 (𝑥1, 𝑥2, 𝑥3) = ℎ(𝑥1, 𝑥2, 𝑥3)𝑛, where ℎ(𝑥1, 𝑥2, 𝑥3) is the irreducible polyno-

mial of degree 𝓁 < 𝑛 defining the curve  .

Proof. 1. The first statement follows from the degree formula

mult(ℬ()) = deg()2 − deg() ⋅ degMap()

introduced in Theorem 1. If  does not have base points then mult(ℬ()) = ∅ and we get

deg()2 = 𝑛2 = deg() ⋅ degMap() = 𝑑 ⋅ degMap().

In addition,  is proper if and only if degMap() = 1 which is equivalent to 𝑛2 = 𝑑.

2. The condition mult(ℬ()) = ∅ is equivalent to

gcd(𝑝1(𝑡1, 𝑡2,0), 𝑝2(𝑡1, 𝑡2,0), 𝑝3(𝑡1, 𝑡2,0)) = 1.

Note that

deg(gcd(𝑝1(𝑡1, 𝑡2,0), 𝑝2(𝑡1, 𝑡2,0), 𝑝3(𝑡1, 𝑡2,0))) > 1

if and only if there exists a point 𝐴 ∈ ℙ2(𝕂) such that 𝑝𝑖(𝐴) = 0 for every 𝑖 ∈ {1, 2, 3, 4}.

3. Since

0 = 𝐹 ((𝑡)) = 𝐹 ((𝑡1, 𝑡2,0)) = 𝑓𝑑 ( )
4

we deduce that  parametrizes the projective plane curve,  , defined by an irreducible component of 𝑓𝑑 .
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4. Since deg( ) = 𝑛 (statement 2),  is proper if and only if  parametrizes an irreducible plane curve of degree 𝑛 (see Sendra 
et al., 2007). Thus, since deg( ) = 𝑛 = deg(𝑝1) = deg(𝑝2) = deg(𝑝3) and 𝑑 = 𝑛2∕degMap(),

𝑓𝑑 (𝑥1, 𝑥2, 𝑥3) = 𝑔(𝑥1, 𝑥2, 𝑥3)𝑛∕degMap(),

where 𝑔(𝑥1, 𝑥2, 𝑥3) is the irreducible polynomial of degree 𝑛 defining the curve  (see Pérez-Díaz and Sendra, 2004 and Chapter 
4 in Sendra et al., 2007).

5. First, observe that deg( ) = 𝑛 (statement 2). Therefore  is improper if and only if  =  (𝑅), where deg(𝑅) = 𝑟 > 1 and 
deg( ) = 𝓁 < 𝑛. Hence deg( ) = 𝑟 ⋅ 𝓁 = 𝑛, and hence  parametrizes a plane curve of degree 𝓁 (see Sendra et al., 2007). 
Therefore,

𝑓𝑑 (𝑥1, 𝑥2, 𝑥3) = ℎ(𝑥1, 𝑥2, 𝑥3)𝑟⋅𝑛∕degMap(),

where ℎ(𝑥1, 𝑥2, 𝑥3) is the irreducible polynomial of degree 𝓁 < 𝑛 defining the curve  (we recall that from Sendra et al., 2007, 
if we compute the implicit equation from  we get ℎ𝑟). □

From Theorem 2, in particular statements 4 and 5, we easily get the following corollary.

Corollary 2. Let  be a rational surface of degree 𝑑. If  can be parametrized by a polynomial parametrization  of degree 𝑛 without base 
points then

𝑓𝑑 (𝑥1, 𝑥2, 𝑥3) = ℎ(𝑥1, 𝑥2, 𝑥3)𝛽

where ℎ(𝑥1, 𝑥2, 𝑥3) is an irreducible polynomial of degree 𝛼 ≤ 𝑛, and 𝑑 = 𝛼 ⋅ 𝛽 = 𝑛2∕degMap().

Remark 1. Recall that in the case of algebraic plane curves, the problem of polynomial parametrizations is thoroughly studied and 
characterized (see Manocha and Canny, 1991, and Chapter 6 of Sendra et al., 2007). In particular and in order to compare with 
Corollary 2, a plane curve of degree 𝑑 can be parametrized by a polynomial parametrization if and only if 𝑓𝑑 (𝑥1, 𝑥2) = (𝑏𝑥1 −
𝑎𝑥2)𝑑 , 𝑎, 𝑏 ∈𝕂 and there exists a unique infinity branch at the infinity point (𝑎 ∶ 𝑏 ∶ 0).

For the case of surfaces, as far as the authors’ knowledge is concerned, only some partial results are known, such as approximate 
polynomial constructions (Pérez–Díaz et al., 2007, Shen and Pérez–Díaz, 2019, Wang et al., 2024) or questions concerning polynomial 
reparametrization and base points (see Cox et al., 2022 and Pérez-Díaz and Sendra, 2020). In particular, Pérez-Díaz and Sendra (2020)

presents an algorithm for reparametrizing birational surface parametrizations into birational polynomial surface parametrizations 
without base points, if they exist. However, no results relating the highest order form of the implicit polynomial are provided.

In the following, and in order to simplify the reasoning, we assume that we are given a surface  of degree 𝑑 such that

𝑓𝑑 (𝑥1, 𝑥2, 𝑥3) = 𝑔(𝑥1, 𝑥2, 𝑥3)𝑛∕𝜇,

where 𝑔(𝑥1, 𝑥2, 𝑥3) is an irreducible polynomial of degree 𝑛, and 𝜇 ∈ ℕ, 𝜇 ≠ 0. Observe that if  can be parametrized by a parametriza-

tion  of degree 𝑛 without base points then 𝜇 = degMap(). However, note that some surfaces could be parameterized polynomially 
by an improper parametrization (see Example 4).

Under these conditions, we may compute  a proper parametrization of the curve  represented by the homogeneous polyno-

mial 𝑔(𝑥1, 𝑥2, 𝑥3). Observe that if  is a polynomial parametrization without base points of degree 𝑛 of a given surface  of degree 𝑑, 
then  exists. The converse of this statement is not true that is, one may have  and still  can not be parametrized polynomially 
by a parametrization without base points (see Example 3).

For the case of a given surface  of degree 𝑑 such that

𝑓𝑑 (𝑥1, 𝑥2, 𝑥3) = ℎ(𝑥1, 𝑥2, 𝑥3)𝑟⋅𝑛∕𝜇,

where ℎ(𝑥1, 𝑥2, 𝑥3) is an irreducible polynomial of degree 𝓁, and 𝜇 ∈ ℕ, 𝜇 ≠ 0, we will see that the theoretical reasoning is similar to 
Remark 3. In this case, a rational improper parametrization of degree 𝑛 of the curve defined by ℎ has to be computed (see Remark 3

and Example 2). However, we will see that some technical difficulties arise.

Finally, by abuse of notation we represent the components 𝑝𝑖, 𝑖 = 1, 2, 3, of the parametrization we are looking for,  = (𝑝1 ∶ 𝑝2 ∶
𝑝3 ∶ 𝑡𝑛3), by

(𝑝1(𝑡), 𝑝2(𝑡), 𝑝3(𝑡)) = 𝑛(𝑡1, 𝑡2) + 𝑡3𝑛−1(𝑡1, 𝑡2) + 𝑡23∕2!𝑛−2(𝑡1, 𝑡2) +⋯+ 𝑡𝑛3∕𝑛!0(𝑡1, 𝑡2),

where 𝑖(𝑡1, 𝑡2) ∈𝕂[𝑡1, 𝑡2]3 are homogeneous and deg(𝑖) = 𝑖, for 𝑖 = 1, … , 𝑛. Note that 𝑛(𝑡1, 𝑡2) = (𝑡1, 𝑡2).
Furthermore, in the following, 𝜌,𝑡3=0,𝑠(𝑡) will denote the Taylor polynomial of 𝜌(𝑡) at 𝑡3 = 0 of order 𝑠 ∈ ℕ.

Theorem 3 presents a necessary and sufficient condition for the existence of a homogeneous polynomial parametrization of 
without base points. The proof of this theorem is constructive and then a method solving the problem of polynomial parametrization 
5

is derived.
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Theorem 3.  is a homogeneous polynomial parametrization of  with 𝜇 = degMap() and without base points if and only if

𝑈,𝑡3=0,𝑛2 (𝑡) = 𝑡
𝜇

3 𝑉 𝜇∕𝑛,𝑡3=0,𝑛2 (𝑡) (3.1)

where

𝑈 (𝑡) ∶= 𝑔(), 𝑉 (𝑡) ∶= 𝑓𝑑−1() + 𝑡𝑛3𝑓𝑑−2() +⋯+ 𝑡
𝑛(𝑛2−1)
3 𝑓0.

In particular, equality (3.1) is equivalent to the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑈 (𝑡1, 𝑡2,0) = 0

𝜕𝓁𝑈

𝜕𝑡3
(𝑡1, 𝑡2,0) = 0, 𝓁 = 1,… , 𝜇 − 1

𝜕𝜇𝑈

𝜕𝜇𝑡3
(𝑡1, 𝑡2,0) = 𝜇! ⋅ 𝑉 (𝑡1, 𝑡2,0)

𝜇

𝑛

𝜕𝜇+1𝑈
𝜕𝜇+1𝑡3

(𝑡1, 𝑡2,0) = 𝜇! ⋅ 𝜇
𝑛
𝑉 (𝑡1, 𝑡2,0)

𝜇−𝑛
𝑛 ⋅ 𝜕𝑉

𝜕𝑡3
(𝑡1, 𝑡2,0)

⋮

𝜕𝜇+𝑘𝑈
𝜕𝜇+𝑘𝑡3

(𝑡1, 𝑡2,0) =
𝜇!⋅𝑘⋅𝜇
𝑛

⋯ 𝜇−(𝑘−2)𝑛
𝑛

𝑉 (𝑡1, 𝑡2,0)
𝜇−(𝑘−1)𝑛

𝑛 ⋅ ( 𝜕𝑉
𝜕𝑡3

(𝑡1, 𝑡2,0))𝑘−1 +⋯+
𝜇!⋅𝜇⋅𝑘
𝑛

𝑉 (𝑡1, 𝑡2,0)
𝜇−𝑛
𝑛 ⋅ 𝜕

𝑘−1𝑉
𝜕𝑘−1𝑡3

(𝑡1, 𝑡2,0)

(3.2)

for 𝑘 = 1, … , 𝑛2 − 𝜇, 𝑛 ≥ 2.

Proof. Since 𝐹 () = 0, where

𝐹 (𝑥) = 𝑓𝑑 (𝑥1, 𝑥2, 𝑥3) − (𝑥4𝑓𝑑−1(𝑥1, 𝑥2, 𝑥3) +⋯+ 𝑥𝑑4𝑓0),

𝑓𝑑 () = 𝑡𝑛3𝑓𝑑−1() +⋯+ 𝑡𝑛𝑑3 𝑓0 = 𝑡𝑛3(𝑓𝑑−1() +⋯+ 𝑡
𝑛(𝑑−1)
3 𝑓0).

From Theorem 2, we get that the previous equality is equivalent to

𝑈 (𝑡) = 𝑡
𝜇

3 𝑉 (𝑡)𝜇∕𝑛

which implies that

𝑈,𝑡3=0,𝑛2 (𝑡) = 𝑡
𝜇

3 𝑉 1∕𝑛,𝑡3=0,𝑛2 (𝑡).

On the other hand, observe that 𝑈 (𝑡) = 𝑡
𝜇

3 𝑉 (𝑡)𝜇∕𝑛 is equivalent to 𝑈 (𝑡)𝑛∕𝜇 = 𝑡𝑛3𝑉 (𝑡) and deg(𝑈 ) = deg(𝑡𝜇3𝑉
𝜇∕𝑛) = 𝑛2. Hence, if 

𝑈,𝑡3=0,𝑛2 (𝑡) = 𝑡
𝜇

3 𝑉 𝜇∕𝑛,𝑡3=0,𝑛2 (𝑡) by the properties of Taylor polynomial we deduce that 𝑈 (𝑡)𝑛∕𝜇 = 𝑡𝑛3𝑉 (𝑡) and then, 𝐹 () = 0, and 
 is polynomial. Note that deg() = deg( ) = 𝑛 and 𝑛2 = 𝑑 ⋅ 𝜇 hence,  does not have base points.

Finally, we observe that equality (3.1) is equivalent to the system (3.2), which is obtained by equating the coefficients w.r.t. the

variable 𝑡3. □

From the proof of the previous theorem, we deduce the following corollaries where the main result is that Theorem 3 provides a 
unique solution (if it exists) depending on at most two undetermined parameters.

In the following, we denote by Γ the set of undetermined parameters of a certain parametrization  , and Card(Γ ) represents 
the cardinal of this set.

Corollary 3. Let  (𝑡, Γ ) be a parametrization satisfying

𝑈,𝑡3=0,𝑘(𝑡) = 𝑡
𝜇

3 𝑉 𝜇∕𝑛,𝑡3=0,𝑘(𝑡)

for some 𝑘 ∈ ℕ with 1 ≤ 𝑘 ≤ 𝑛2 and Card(Γ ) ≤ 2. If  can be parametrized by a polynomial parametrization,  with deg() = 𝑛, 
degMap() = 𝜇 and  does not have base points, then  is a polynomial parametrization of  without base points.

Proof.  (𝑡, Γ ) denotes a solution of the system obtained from the equality 𝑈,𝑡3=0,𝑘(𝑡) = 𝑡
𝜇

3 𝑉 𝜇∕𝑛,𝑡3=0,𝑘(𝑡) for some 𝑘 ∈ ℕ with 1 ≤
6

𝑘 ≤ 𝑛2, with Card(Γ ) ≤ 2. Observe that by construction deg( ) = 𝑛 and  does not have base points. Furthermore degMap( ) = 𝜇.
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Since  can be parametrized by  , which is a polynomial parametrization of degree 𝑛, with degMap() = 𝜇 and without base 
points, then (𝑅) = , where 𝑅 = (𝑟1, 𝑟2, 𝑡3), 𝑟𝑖 ∈ 𝕂[𝑡] and deg(𝑟1) = deg(𝑟2) = 1 (see Pérez-Díaz, 2006 or Pérez-Díaz, 2013). Thus, 
𝑟1 = 𝑡1 + 𝑎𝑡2 and 𝑟2 = 𝑡2 + 𝑏𝑡1, which implies that Card(Γ ) ≤ 2 and  is a polynomial parametrization of  . □

Corollary 4. Let  (𝑡, Γ ) be a parametrization satisfying the equalities in the system (3.2). Then, Card(Γ ) ≤ 2 and  is the unique 
solution of the system (3.2).

Proof. Let 𝑖(𝑡, Γ𝑖 ) two solutions of the system (3.2) where Card(Γ𝑖 ) ≤ 2 (see Corollary 3). By construction, 𝑖 do not have base 
points, degMap(𝑖) = 𝜇 and deg(𝑖) = 𝑛 for 𝑖 = 1, 2. Hence 1(𝑅) = 2, where 𝑅 = (𝑟1, 𝑟2, 𝑡3), 𝑟𝑖 ∈𝕂[𝑡] and deg(𝑟1) = deg(𝑟2) = 1 (see 
Pérez-Díaz, 2006 or Pérez-Díaz, 2013). Thus, 𝑟1 = 𝑡1 + 𝑎𝑡2 and 𝑟2 = 𝑡2 + 𝑏𝑡1, which implies that Γ1

= Γ2
⊆ {𝑎, 𝑏}. Therefore, the 

system provides a unique solution that depends at most on two unknown parameters {𝑎, 𝑏}. □

The system (3.2) can be expressed by the equations we present in Remark 2, which involve only the derivatives of 𝑈 (𝑡) and 𝑉 (𝑡)
with respect to the variable 𝑡3.

In order to present these equations, we introduce the following notation: let 𝐻(𝑥) be a homogeneous polynomial and a projective 
parametrization  = (𝑚1, 𝑚2, 𝑚3, 𝑚4) depending on some variables, in particular in the variable 𝑠. The polynomial 𝐻𝑥𝑘

represents 
the partial derivative w.r.t. 𝑥𝑘 of 𝐻 . We will consider 𝐻(), and

∇(𝐻) ⋅ 𝜕
𝜕𝑠

=𝐻𝑥1
()

𝜕𝑚1
𝜕𝑠

+𝐻𝑥2
()

𝜕𝑚2
𝜕𝑠

+𝐻𝑥3
()

𝜕𝑚3
𝜕𝑠

+𝐻𝑥4
()

𝜕𝑚4
𝜕𝑠

.

Furthermore, if we differentiate again, we obtain

𝐻𝑥1𝑥1
()(

𝜕𝑚1
𝜕𝑠

)2 + 2𝐻𝑥1𝑥2
()

𝜕𝑚1
𝜕𝑠

𝜕𝑚2
𝜕𝑠

+ 2𝐻𝑥1𝑥3
()

𝜕𝑚1
𝜕𝑠

𝜕𝑚3
𝜕𝑠

+ 2𝐻𝑥1𝑥4
()

𝜕𝑚1
𝜕𝑠

𝜕𝑚4
𝜕𝑠

+𝐻𝑥2𝑥2
()(

𝜕𝑚2
𝜕𝑠

)2

+ 2𝐻𝑥2𝑥3
()

𝜕𝑚2
𝜕𝑠

𝜕𝑚3
𝜕𝑠

+ 2𝐻𝑥2𝑥4
()

𝜕𝑚2
𝜕𝑠

𝜕𝑚4
𝜕𝑠

+𝐻𝑥3𝑥3
()(

𝜕𝑚3
𝜕𝑠

)2 + 2𝐻𝑥3𝑥4
()

𝜕𝑚3
𝜕𝑠

𝜕𝑚4
𝜕𝑠

+𝐻𝑥4𝑥4
()(

𝜕𝑚4
𝜕𝑠

)2,

and we represent this polynomial by

∇2(𝐻) ⋅
(
𝜕

𝜕𝑠

)2
+ ∇(𝐻) ⋅ 𝜕

2

𝜕2𝑠
.

If we differentiate again, we would obtain

∇3(𝐻) ⋅
(
𝜕

𝜕𝑠

)3
+ 4∇2(𝐻) ⋅

(
𝜕

𝜕𝑠

)(
𝜕2

𝜕2𝑠

)
+∇(𝐻) ⋅ 𝜕

3

𝜕3𝑠
.

In a similar way these polynomials would be represented for higher order derivatives.

Remark 2.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑈 (𝑡1, 𝑡2,0) = 𝑔( )

𝜕𝑈

𝜕𝑡3
(𝑡1, 𝑡2,0) = ∇𝑔( ) ⋅𝑛−1

𝜕2𝑈
𝜕2𝑡3

(𝑡1, 𝑡2,0) = ∇2𝑔( ) ⋅ (𝑛−1)2 + ∇𝑔( ) ⋅𝑛−2

⋮

𝜕𝑘𝑈

𝜕𝑘𝑡3
(𝑡1, 𝑡2,0) = ∇𝑘𝑔( ) ⋅ (𝑛−1)𝑘 +⋯+∇𝑔( ) ⋅𝑛−𝑘

(3.3)

and

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪

𝑉 (𝑡1, 𝑡2,0) = 𝑓𝑑−1( )

𝜕𝑉

𝜕𝑡3
(𝑡1, 𝑡2,0) = ∇𝑓𝑑−1( ) ⋅𝑛−1

𝜕2𝑉
𝜕2𝑡3

(𝑡1, 𝑡2,0) = ∇2𝑓𝑑−1( ) ⋅𝑛−1 + ∇𝑓𝑑−1( ) ⋅𝑛−2

⋮

𝜕𝑘𝑉 𝑘 𝑘

(3.4)
7

⎪⎩ 𝜕𝑘𝑡3
(𝑡1, 𝑡2,0) = ∇ 𝑓𝑑−1( ) ⋅𝑛−1 +⋯+∇𝑓𝑑−1( ) ⋅𝑛−𝑘
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for 𝑘 = 1, … , 𝑛2 (𝑛 ≥ 2).

From the previous equalities and Theorem 3, we get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑔( ) = 0

∇𝑔( ) ⋅𝑛−1 = 0

∇𝓁𝑔( ) ⋅ (𝑛−1)𝓁 +⋯+∇𝑔( ) ⋅𝑛−𝓁 = 0, 𝓁 = 1,… , 𝜇 − 1

∇𝜇𝑔( ) ⋅ (𝑛−1)𝜇 +⋯+∇𝑔( ) ⋅𝑛−𝜇 = 𝜇! ⋅ 𝑓𝑑−1( )
𝜇

𝑛

∇𝜇+1𝑔( ) ⋅ (𝑛−1)𝜇+1 +⋯+∇𝑔( ) ⋅𝑛−𝜇−1 = 𝜇! ⋅ 𝜇
𝑛
𝑓𝑑−1( )

𝜇−𝑛
𝑛 ∇𝑓𝑑−1( ) ⋅𝑛−1

⋮

∇𝜇+𝑘𝑔( ) ⋅ (𝑛−1)𝜇+𝑘 +⋯+∇𝑔( ) ⋅𝑛−𝜇−𝑘 =
𝜇! ⋅ 𝜇⋅𝑘

𝑛
⋯ 𝜇−(𝑘−2)𝑛

𝑛
𝑓𝑑−1( )

𝜇−(𝑘−1)𝑛
𝑛 (∇𝑓𝑑−1( ) ⋅𝑛−1)𝑘−1 +⋯+

𝜇! ⋅ 𝜇⋅𝑘
𝑛
𝑓𝑑−1( )

𝜇−𝑛
𝑛

𝜕𝑘−1𝑓𝑑−1()
𝜕𝑘−1𝑡3

(0), 𝑘 = 1,… , 𝑛2 − 𝜇.

(3.5)

Note that since deg(𝑔) = 𝑛,

∇𝑘𝑔(𝑥1, 𝑥2, 𝑥3) = 0, 𝑘 > 𝑛.

In addition, since deg(𝑓𝑑−1) = 𝑑 − 1, we get

∇𝑘𝑓𝑑−1(𝑥1, 𝑥2, 𝑥3) = 0, 𝑘 > 𝑑 − 1.

In fact,

∇𝑘𝑓𝑗 (𝑥1, 𝑥2, 𝑥3) = 0, 𝑘 > 𝑗

because deg(𝑓𝑗 ) = 𝑗, for 𝑗 = 0, … , 𝑑 − 1.

Finally observe that from the equation

∇𝜇𝑔( ) ⋅ (𝑛−1)𝜇 +⋯+∇𝑔( ) ⋅𝑛−𝜇 = 𝜇! ⋅ 𝑓𝑑−1( )
𝜇

𝑛

we deduce that if 𝑉 can n be parametrized by a polynomial parametrization without base points then 𝑓𝑑−1( )
𝜇

𝑛 should be a 
homogeneous polynomial in the variables 𝑡1, 𝑡2.

In the following theorem, we prove that the computation of the polynomial parametrization, if it exists, is independent of the 
rational parametrization, 𝑛(𝑡1, 𝑡2), of the curve  .

Theorem 4. Let (𝑡1, 𝑡2) be a homogeneous proper parametrization of  . If  can be parametrized by a polynomial parametrization,  , 
without base points, then there exists a reparametrization of  ,  = (𝑟1, 𝑟2, 𝑡3) where deg(𝑟𝑖) = 1, 𝑟𝑖 ∈ 𝕂[𝑡1, 𝑡2], and  is a polynomial 
parametrization of  without base points. Furthermore,  = =.

Proof. First observe that since  is a proper parametrization of  , we have deg() = 𝑛 (see Chapter 4 in Sendra et al., 2007).

On the other hand, since  can be parametrized by a polynomial parametrization  of degree 𝑛 without base points, using 
statement 2 of Theorem 2, we obtain  = (𝑟1, 𝑟2), where 𝑟𝑖(𝑡1, 𝑡2) ∈𝕂[𝑡1, 𝑡2] are homogeneous polynomials of degree 1 (note that 
deg( ) = 𝑛 and see Pérez-Díaz, 2006). Therefore,  = (𝑟1, 𝑟2, 𝑡3) is a polynomial reparametrization of  and deg( ) = deg() = 𝑛

and degMap( ) = degMap(). Hence, 𝑛2 = 𝑑 ⋅ degMap( ), which allows us to conclude that  does not have base points. Finally, 
we also get  = =. □

Once we have computed a rational parametrization of 𝑔(𝑥1, 𝑥2, 𝑥3), namely 𝑛(𝑡1, 𝑡2), we solve the system (3.2) (see also Re-

mak 2) which satisfies the following important property that allows one to easily solve the equations involved. The key is that 
𝑓𝑑−1( )𝜇∕𝑛 should be a homogeneous polynomial in the variables 𝑡1, 𝑡2 since otherwise  can not be parametrized by a polynomial 
parametrization without base points (see Remark 2).

Lemma 1. The system (3.2) is a triangular system in the undetermined coefficients of 𝑖, for 𝑖 = 1, … , 𝑛. Furthermore, in order to compute 
8

𝑖, in general, we do not need to solve the whole system.
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Algorithm Polynomial parametrization.

Given an implicit algebraic projective surface  defined by the polynomial, 𝐹 (𝑥) = 𝑓𝑑 (𝑥1, 𝑥2, 𝑥3) − (𝑥4𝑓𝑑−1(𝑥1, 𝑥2, 𝑥3) +⋯ + 𝑥𝑑4𝑓0), deg(𝐹 ) = 𝑑, this 
algorithm decides whether  can be parametrized by a polynomial parametrization without base points.

1. Check whether 𝑓𝑑 (𝑥1, 𝑥2, 𝑥3) = 𝑔(𝑥1, 𝑥2, 𝑥3)𝑛∕𝜇 , where 𝑔(𝑥1, 𝑥2, 𝑥3) is an irreducible polynomial of degree 𝑛 defining a rational plane curve  , and 
𝜇 ∈ ℕ, 𝜇 ≠ 0. In the affirmative case, go to Step 2 (note that if  can be parametrized by a polynomial parametrization,  , without base points 
then 𝜇 = degMap() and deg() = 𝑛). Otherwise, check Remark 3 or RETURN  can not parametrized by a polynomial parametrization without base 
points (see Theorem 2).

2. Compute a rational proper parametrization of  , namely 𝑛(𝑡1, 𝑡2) = (𝑡1, 𝑡2).
3. Represent the components of the parametrization we are looking for,  = (𝑝1 ∶ 𝑝2 ∶ 𝑝3 ∶ 𝑡𝑛3), by

(𝑝1(𝑡), 𝑝2(𝑡), 𝑝3(𝑡)) = 𝑛(𝑡1, 𝑡2) + 𝑡3𝑛−1(𝑡1, 𝑡2) + 𝑡23∕2!𝑛−2(𝑡1, 𝑡2) +⋯+ 𝑡𝑛3∕𝑛!0(𝑡1, 𝑡2),

where

𝑛−𝑘(𝑡1, 𝑡2) = (𝑎1,𝑛−𝑘𝑡𝑛−𝑘1 +⋯+ 𝑎𝑛+1−𝑘,𝑛−𝑘𝑡
𝑛−𝑘
2 , 𝑏1,𝑛−𝑘𝑡

𝑛−𝑘
1 +⋯+ 𝑏𝑛+1−𝑘,𝑛−𝑘𝑡

𝑛−𝑘
2 , 𝑐1,𝑛−𝑘𝑡

𝑛−𝑘
1 +⋯+ 𝑐𝑛+1−𝑘,𝑛−𝑘𝑡

𝑛−𝑘
2 ) ∈𝕂[𝑡1, 𝑡2]3, 𝑘 = 1,… , 𝑛

are homogeneous and deg(𝑖) = 𝑖, for 𝑖 = 1, … , 𝑛.

4. For 𝑘 from 1 to 𝑠, where 𝑠 ≥ 𝑛 is such that Card(Γ ) > 2, solve the system

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∇𝓁𝑔( ) ⋅ (𝑛−1)𝓁 +⋯+∇𝑔( ) ⋅𝑛−𝓁 = 0, 𝓁 = 1,… , 𝜇 − 1

∇𝜇+𝑘𝑔( ) ⋅ (𝑛−1)𝜇+𝑘 +⋯+∇𝑔( ) ⋅𝑛−𝜇−𝑘 =
𝜇! ⋅ 𝜇⋅𝑘

𝑛
⋯ 𝜇−(𝑘−2)𝑛

𝑛
𝑓𝑑−1( )

𝜇−(𝑘−1)𝑛
𝑛 (∇𝑓𝑑−1( ) ⋅𝑛−1)𝑘−1 +⋯+

𝜇! ⋅ 𝜇⋅𝑘
𝑛
𝑓𝑑−1( )

𝜇−𝑛
𝑛

𝜕𝑘−1𝑓𝑑−1()
𝜕𝑘−1 𝑡3

(0), 𝑘 = 1,… , 𝑛2 − 𝜇.

(4.1)

5. Check whether

𝑈,𝑡3=0,𝑛2 (𝑡) = 𝑡
𝜇

3 𝑉 𝜇∕𝑛 ,𝑡3=0,𝑛2 (𝑡), 𝑈 = 𝑔(), 𝑉 = 𝑓𝑑−1() +⋯+ 𝑡
𝑛(𝑛2−1)
3 𝑓0

or 𝐹 () = 0. In the affirmative case, RETURN  can be parametrized by a polynomial parametrization defined by  with degMap() = 𝜇 and without 
base points. Otherwise, check Remark 3 or RETURN  can not parametrized by a polynomial parametrization without base points (see Theorem 2).

Proof. In order to simplify the proof, we may assume with lost of generality that 𝜇 = 1. Under these conditions, in the first equality, 
which is homogeneous of degree (𝑛 − 1)𝑛 + (𝑛 − 1) = 𝑛2 − 1, we determine 𝑛−1 =

(𝑎1,𝑛−1𝑡𝑛−11 +⋯+ 𝑎𝑛,𝑛−1𝑡
𝑛−1
2 , 𝑏1,𝑛−1𝑡

𝑛−1
1 +⋯+ 𝑏𝑛,𝑛−1𝑡

𝑛−1
2 , 𝑐1,𝑛−1𝑡

𝑛−1
1 +⋯+ 𝑐𝑛,𝑛−1𝑡

𝑛−1
2 )

that has 3𝑛 undetermined parameters. Maybe some additional equations should be considered to compute completely 𝑛−1 depending 
on the independent equations obtained from this first equality. These equations are clearly linear in 𝑎𝑖,𝑛−1, 𝑏𝑖,𝑛−1, 𝑐𝑖,𝑛−1, 𝑖 = 1, … , 𝑛.

In the second equality, which is homogeneous of degree (𝑛 − 2)𝑛 + 2(𝑛 − 1) = 𝑛2 − 2, we determine

𝑛−2 = (𝑎1,𝑛−2𝑡𝑛−21 +⋯+ 𝑎𝑛−1,𝑛−2𝑡
𝑛−2
2 , 𝑏1,𝑛−2𝑡

𝑛−2
1 +⋯+ 𝑏𝑛−1,𝑛−2𝑡

𝑛−2
2 , 𝑐1,𝑛−2𝑡

𝑛−2
1 +⋯+ 𝑐𝑛−1,𝑛−2𝑡

𝑛−2
2 )

which has 3(𝑛 −1) undetermined parameters. Maybe some additional equations should be considered to compute completely 𝑛−2 de-

pending on the independent equations obtained from the second equality. These equations are clearly linear in 𝑎𝑖,𝑛−2, 𝑏𝑖,𝑛−2, 𝑐𝑖,𝑛−2, 𝑖 =
1, … , 𝑛 − 1.

In general, in the 𝑘-th equality (for 𝑘 = 1, … , 𝑛), which is homogeneous of degree (𝑛 − 𝑘)𝑛 + 𝑘(𝑛 − 1) = 𝑛2 − 𝑘, we determine

𝑛−𝑘 = (𝑎1,𝑛−𝑘𝑡𝑛−𝑘1 +⋯+ 𝑎𝑛−𝑘+1,𝑛−𝑘𝑡
𝑛−𝑘
2 , 𝑏1,𝑛−𝑘𝑡

𝑛−𝑘
1 +⋯+ 𝑏𝑛−𝑘+1,𝑛−𝑘𝑡

𝑛−𝑘
2 , 𝑐1,𝑛−𝑘𝑡

𝑛−𝑘
1 +⋯+ 𝑐𝑛−𝑘+1,𝑛−𝑘𝑡

𝑛−𝑘
2 )

which has 3(𝑛 − 𝑘 + 1) undetermined parameters. Maybe some additional equations should be considered to compute completely 
𝑛−𝑘 depending on the independent equations obtained from this equality. These equations are clearly linear in 𝑎𝑖,𝑛−𝑘, 𝑏𝑖,𝑛−𝑘, 𝑐𝑖,𝑛−𝑘, 𝑖 =
1, … , 𝑛 − 𝑘 + 1.

For 𝑘 = 𝑛 + 1, … , 𝑛2, we obtain equalities of degree (𝑛 − 𝑘)𝑛 + 𝑘(𝑛 − 1) = 𝑛2 − 𝑘, and the undetermined parameters previously 
introduced that have not yet been calculated that is, we do not have new undetermined parameters.

The system whose undetermined parameters are 𝑎𝑖,𝑗 , 𝑏𝑖,𝑗 , 𝑐𝑖,𝑗 only provides a solution in each step (see Corollary 4) and we have 
to consider new steps till Card(Γ ) ≤ 2. □

4. Algorithm and examples

In this section, we summarize the method presented in Section 3 in the following algorithm, which decides whether a given 
implicit algebraic projective surface can be parametrized by a polynomial parametrization without base points.
9

Furthermore, we illustrate this algorithm with several examples where different situations are considered.
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Remark 3. For the case of a given surface  of degree 𝑑 such that

𝑓𝑑 (𝑥1, 𝑥2, 𝑥3) = ℎ(𝑥1, 𝑥2, 𝑥3)𝑟⋅𝑛∕𝜇,

where ℎ(𝑥1, 𝑥2, 𝑥3) is an irreducible polynomial of degree 𝓁, and 𝜇 ∈ ℕ, 𝜇 ≠ 0, we may apply the previous algorithm which is based 
in Theorem 3.

In Step 1, we have to factor the highest order form and to decide if the irreducible factor represents a rational curve. For this 
purpose, one may use previous results and algorithms some of them are implemented in well known mathematical software (in 
this paper we use Maple 2022). More precisely, for factorizing multivariate polynomials, the factor command in Maple 2022 offers 
two algorithms: Wang’s algorithm (see Wang, 1978) and the algorithm by Monagan and Tuncer (Monagan and Tuncer, 2016 and 
Monagan and Tuncer, 2018). The problem of deciding the rationality of a plane curve can be approached using for instance the 
results of Chapters 3 and 4 in Sendra et al. (2007).

In Step 2, we compute a non-proper rational parametrization of  of degree 𝑛. For this purpose, we determine a proper 
parametrization  of degree 𝓁 and we consider (𝑡𝑟1, 𝑡

𝑟
2) =  (𝑡1, 𝑡2). Let 𝑛(𝑡1, 𝑡2) =  (𝑡1, 𝑡2). One may prove as in Theorem 4

that if a polynomial parametrization exists, it is independent of the rational parametrization of the curve  .

Step 4 is similar but the systems obtained are not linear. In this case, and reasoning as in Theorem 3, we consider

𝑈 (𝑡) ∶= 𝑓𝑑 (), 𝑉 (𝑡) ∶= 𝑓𝑑−1() +⋯+ 𝑡𝑑−13 𝑓0

and we impose 𝑈,𝑡3=0,𝑑⋅𝑛(𝑡) = 𝑡3 𝑉 ,𝑡3=0,𝑑⋅𝑛(𝑡) (note that some of the coefficients of these Taylor polynomials are identically zero). 
Since the system obtained is not linear, in this case the computations are more effective if we do not use radicals.

In the following examples, we illustrate the method presented in this paper for computing a polynomial parametrization without 
base points of a given surface  , if one exists. In the first example (Example 1) we obtain a proper polynomial parametrization but 
in the last example (Example 4), the polynomial parametrization is improper. Additionally, we also show an example where the 
algorithm returns that the input surface can not be parametrized by a polynomial parametrization without base points (Example 3), 
and in Example 2 we illustrate Remark 3.

Example 1. Let  be an algebraic surface of degree 𝑑 = 9 defined by the irreducible homogeneous polynomial

𝐹 (𝑥) = 𝑓9(𝑥1, 𝑥2, 𝑥3) − (𝑥4𝑓8(𝑥1, 𝑥2, 𝑥3) +⋯+ 𝑥94𝑓0),

where

𝑓9 = (𝑥31 − 3𝑥21𝑥2 + 3𝑥1𝑥22 + 𝑥1𝑥
2
3 − 𝑥32)

3,

𝑓8 = −(7𝑥81 − 56𝑥71𝑥2 + 6𝑥71𝑥3 + 196𝑥61𝑥
2
2 − 18𝑥61𝑥2𝑥3 + 8𝑥61𝑥

2
3 − 392𝑥51𝑥

3
2 + 18𝑥51𝑥

2
2𝑥3 − 40𝑥51𝑥2𝑥

2
3 − 2𝑥51𝑥

3
3

+ 490𝑥41𝑥
4
2 − 6𝑥41𝑥

3
2𝑥3 + 80𝑥41𝑥

2
2𝑥

2
3 + 𝑥41𝑥

4
3 − 392𝑥31𝑥

5
2 − 80𝑥31𝑥

3
2𝑥

2
3 − 2𝑥31𝑥2𝑥

4
3 + 196𝑥21𝑥

6
2 + 40𝑥21𝑥

4
2𝑥

2
3 + 𝑥21𝑥

2
2𝑥

4
3

− 56𝑥1𝑥72 − 8𝑥1𝑥52𝑥
2
3 + 7𝑥82),

𝑓7 = −(22𝑥71 − 147𝑥61𝑥2 + 11𝑥61𝑥3 + 441𝑥51𝑥
2
2 − 22𝑥51𝑥2𝑥3 + 2𝑥51𝑥

2
3 − 735𝑥41𝑥

3
2 + 11𝑥41𝑥

2
2𝑥3 − 8𝑥41𝑥2𝑥

2
3 + 735𝑥31𝑥

4
2 + 12𝑥31𝑥

2
2𝑥

2
3

− 441𝑥21𝑥
5
2 − 8𝑥21𝑥

3
2𝑥

2
3 + 147𝑥1𝑥62 + 2𝑥1𝑥42𝑥

2
3 − 21𝑥72 − 𝑥73),

𝑓6 = −(35𝑥61 − 210𝑥51𝑥2 + 4𝑥51𝑥3 + 525𝑥41𝑥
2
2 − 4𝑥41𝑥2𝑥3 − 12𝑥41𝑥

2
3 − 700𝑥31𝑥

3
2 + 36𝑥31𝑥2𝑥

2
3 + 525𝑥21𝑥

4
2 − 36𝑥21𝑥

2
2𝑥

2
3 + 2𝑥21𝑥

4
3

− 210𝑥1𝑥52 + 12𝑥1𝑥32𝑥
2
3 + 35𝑥62),

𝑓5 = −(35𝑥51 − 175𝑥41𝑥2 − 𝑥41𝑥3 + 350𝑥31𝑥
2
2 − 13𝑥31𝑥

2
3 − 350𝑥21𝑥

3
2 + 26𝑥21𝑥2𝑥

2
3 + 175𝑥1𝑥42 − 13𝑥1𝑥22𝑥

2
3 − 35𝑥52),

𝑓4 = −(−𝑥2 + 𝑥1)(21𝑥31 − 63𝑥21𝑥2 + 63𝑥1𝑥22 − 4𝑥1𝑥23 − 21𝑥32),

𝑓3 = −7(−𝑥2 + 𝑥1)3, 𝑓2 = −(−𝑥2 + 𝑥1)2, 𝑓1 = 0, 𝑓0 = 0.

In Step 1, we observe that

𝑓9(𝑥1, 𝑥2, 𝑥3) = 𝑔(𝑥1, 𝑥2, 𝑥3)3 = (𝑥31 − 3𝑥21𝑥2 + 3𝑥1𝑥22 + 𝑥1𝑥
2
3 − 𝑥32)

3

and the curve  defined by the irreducible polynomial 𝑔(𝑥1, 𝑥2, 𝑥3) with deg(𝑔) = 𝑛 = 3 is rational. This implies, that if a polynomial 
parametrization  = (𝑝1 ∶ 𝑝2 ∶ 𝑝3 ∶ 𝑡𝑛3) without base points exists, then  would be proper and deg() = 𝑛 = 3.

In Step 2, we compute a rational proper parametrization of  . We get,

3(𝑡1, 𝑡2) = (𝑡1, 𝑡2) =
(
𝑡31, 𝑡

3
1 + 𝑡1𝑡

2
2, 𝑡

3
2
)
.

In Step 3, we represent the components of the parametrization we are looking for,  , as
10

(𝑝1(𝑡), 𝑝2(𝑡), 𝑝3(𝑡)) = 3(𝑡1, 𝑡2) + 𝑡32(𝑡1, 𝑡2) + 𝑡23∕2!1(𝑡1, 𝑡2) + 𝑡33∕3!0(𝑡1, 𝑡2),
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where

3−𝑘(𝑡1, 𝑡2) = (𝑎1,3−𝑘𝑡3−𝑘1 +⋯+ 𝑎4−𝑘,3−𝑘𝑡
3−𝑘
2 , 𝑏1,3−𝑘𝑡

3−𝑘
1 +⋯+ 𝑏4−𝑘,3−𝑘𝑡

3−𝑘
2 , 𝑐1,3−𝑘𝑡

3−𝑘
1 +⋯+ 𝑐4−𝑘,3−𝑘𝑡

3−𝑘
2 ) ∈𝕂[𝑡1, 𝑡2]3,

𝑘 = 1,2,3

are homogeneous and deg(𝑖) = 𝑖 for 𝑖 = 1, … , 3.

In the Step 4, we compute 2(𝑡1, 𝑡2), deg(2) = 2. For this purpose, we consider the equation

∇𝑔( ) ⋅2 = 𝑓8( )
1
3 .

Observe that the system generated from the coefficients of the previous equality w.r.t. {𝑡1, 𝑡2} is linear in the undetermined coeffi-

cients of 2. We find that

2(𝑡1, 𝑡2) = (3𝑏3,2𝑡21, 𝑏1,2𝑡
2
1 + 𝑏3,2𝑡

2
2 + 𝑏2,2𝑡1𝑡2, 𝑡

2
1 + 3∕2𝑏2,2𝑡22 − 9∕2𝑡1𝑡2𝑏3,2 + 3∕2𝑡1𝑡2𝑏1,2).

Now, we compute 1(𝑡1, 𝑡2), deg(1) = 1. We consider the equation

∇2𝑔( ) ⋅ (2)2 + ∇𝑔( ) ⋅1 = ∇𝑓8( ) ⋅2.

Observe that the system generated from the coefficients of the previous equality w.r.t. {𝑡1, 𝑡2} is linear in the undetermined coeffi-

cients of 1. We find that

1(𝑡1, 𝑡2) = (6𝑏23,2𝑡1 + 2𝑡2,2𝑏3,2𝑏2,2𝑡2 + 𝑏1,1𝑡1 + 2𝑡2,4𝑏3,2𝑡1 − 9𝑡2𝑏23,2 + 3∕4𝑡2𝑏22,2 + 3∕2𝑡2𝑏1,1)

2(𝑡1, 𝑡2) = (3𝑏3,2𝑡21,3𝑏3,2𝑡
2
1 + 𝑏3,2𝑡

2
2 + 𝑏2,2𝑡1𝑡2, 𝑡

2
1 + 3𝑏2,2𝑡22∕2).

We compute 0(𝑡1, 𝑡2), deg(0) = 0. We consider the equation

∇3𝑔( ) ⋅ (2)3 + 3∇2𝑔( ) ⋅21 + ∇𝑔( ) ⋅0 = ∇2𝑓8( ) ⋅2 + ∇𝑓8( ) ⋅1.

Observe that the system generated from the coefficients of the previous equality w.r.t. {𝑡1, 𝑡2} is linear in the undetermined parame-

ters of 0. We find that

0(𝑡1, 𝑡2) = (6𝑏33,2 + 3𝑏2,2,−12𝑏33,2 + 3𝑏3,2𝑏1,1 + 3𝑏2,2,−27∕2𝑏23,2𝑏2,2 − 3∕8𝑏32,2 + 6𝑏23,2 + 9∕4𝑏2,2𝑏1,1).

1(𝑡1, 𝑡2) = (6𝑏23,2𝑡1 + 2𝑡2,2𝑏3,2𝑏2,2𝑡2 + 𝑏1,1𝑡1 + 2𝑡2,4𝑏3,2𝑡1 − 9𝑡2𝑏23,2 + 3∕4𝑡2𝑏22,2 + 3∕2𝑡2𝑏1,1)

2(𝑡1, 𝑡2) = (3𝑏3,2𝑡21,3𝑏3,2𝑡
2
1 + 𝑏3,2𝑡

2
2 + 𝑏2,2𝑡1𝑡2, 𝑡

2
1 + (3𝑏2,2𝑡22)∕2).

Note that the number of undetermined coefficients in  w.r.t. the variables {𝑡1, 𝑡2} is 3. So, we consider more equations till the 
number of undetermined parameters decreases (see Corollary 3). Hence, we consider the equation

∇4𝑔( ) ⋅ (2)4 + 6∇3𝑔( ) ⋅ (2)21 + 3∇2𝑔( ) ⋅ (1)2 + 4∇2𝑔( ) ⋅20

= ∇3𝑓8( ) ⋅ (2)2 + 2∇2𝑓8( ) ⋅1 + ∇𝑓8( ) ⋅0,

from where we get a system that is linear in 𝑏4, and we obtain

 = (𝑏33,2𝑡
3
3 + 1∕2𝑡33𝑏2,2 + 3𝑏3,2𝑡21𝑡3 + 3𝑏23,2𝑡1𝑡

2
3 + 𝑡2𝑡

2
3 + 𝑡31, 𝑏

3
3,2𝑡

3
3 + 1∕2𝑡33𝑏2,2 + 1∕4𝑏3,2𝑏22,2𝑡

3
3 + 3𝑏3,2𝑡21𝑡3 + 𝑏3,2𝑡

2
2𝑡3 + 𝑏2,2𝑡1𝑡2𝑡3

+ 3𝑏23,2𝑡1𝑡
2
3 + 1∕4𝑡23𝑡1𝑏

2
2,2 + 𝑡2𝑡

2
3 + 𝑏3,2𝑏2,2𝑡2𝑡

2
3 + 𝑡31 + 𝑡1𝑡

2
2,1∕8𝑡

3
3𝑏

3
2,2 + 𝑡33𝑏

2
3,2 + 𝑡3𝑡

2
1 + 3∕2𝑡3𝑏2,2𝑡22 + 2𝑏3,2𝑡1𝑡23 + 3∕4𝑡23𝑡2𝑏

2
2,2 + 𝑡32).

Note that Card(Γ ) = 2. We go to Step 5 and we check that 𝐹 () = 0. Therefore, the algorithm RETURNS that  can be parametrized 
by a proper polynomial parametrization defined by  without base points.

For the case of a given surface  of degree 𝑑 such that

𝑓𝑑 (𝑥1, 𝑥2, 𝑥3) = ℎ(𝑥1, 𝑥2, 𝑥3)𝑟⋅𝑛∕𝜇,

where ℎ(𝑥1, 𝑥2, 𝑥3) is an irreducible polynomial of degree 𝓁, and 𝜇 ∈ ℕ, 𝜇 ≠ 0, we reason as we state in Remark 3. For this purpose, 
we consider

𝑈 (𝑡) ∶= 𝑓𝑑 (), 𝑉 (𝑡) ∶= 𝑓𝑑−1() +⋯+ 𝑡𝑑−13 𝑓0

and we impose 𝑈,𝑡3=0,𝑑 𝑛(𝑡) = 𝑡3 𝑉 ,𝑡3=0,𝑑 𝑛(𝑡).

Example 2. Let  be an algebraic surface of degree 𝑑 = 4 defined by the irreducible homogeneous polynomial
11

𝐹 (𝑥) = 𝑓4(𝑥1, 𝑥2, 𝑥3) − (𝑥4𝑓3(𝑥1, 𝑥2, 𝑥3) +⋯+ 𝑥44𝑓0),
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where

𝑓4 = (𝑥1 − 𝑥3)4,

𝑓3 = −4(𝑥1 − 𝑥3)2(3𝑥1 − 8𝑥2 − 3𝑥3),

𝑓2 = −(−98𝑥21 − 192𝑥1𝑥2 + 196𝑥1𝑥3 + 256𝑥22 + 192𝑥2𝑥3 − 98𝑥23),

𝑓1 = −(−5604𝑥1 − 796𝑥3 + 2144𝑥2), 𝑓0 = −4489.

In Step 1, we observe that

𝑓4(𝑥1, 𝑥2, 𝑥3) = ℎ(𝑥1, 𝑥2, 𝑥3)4 = (𝑥1 − 𝑥3)4

and the curve  defined by the polynomial ℎ(𝑥1, 𝑥2, 𝑥3) = (𝑥1 − 𝑥3) with deg(ℎ) = 1 is rational. This implies, that if a polynomial 
parametrization  without base points exists, then  would be proper with deg() = 𝑛 = 2 and we have to compute a non-proper 
parametrization  of the line  defined by ℎ(𝑥1, 𝑥2, 𝑥3).

In Step 2, we compute a rational improper parametrization of degree 𝑛 = 2 of the curve  . We get

2(𝑡1, 𝑡2) = (𝑡1, 𝑡2) =
(
𝑡21, 𝑡

2
2, 𝑡

2
1
)
.

In Step 3, we represent the components of the parametrization  we are looking for

(𝑝1(𝑡), 𝑝2(𝑡), 𝑝3(𝑡)) = 2(𝑡1, 𝑡2) + 𝑡31(𝑡1, 𝑡2) + 𝑡23∕2!0(𝑡1, 𝑡2),

where

2−𝑘(𝑡1, 𝑡2) = (𝑎1,2−𝑘𝑡2−𝑘1 +⋯+ 𝑎3−𝑘,2−𝑘𝑡
2−𝑘
2 , 𝑏1,2−𝑘𝑡

2−𝑘
1 +⋯+ 𝑏3−𝑘,2−𝑘𝑡

2−𝑘
2 , 𝑐1,2−𝑘𝑡

2−𝑘
1 +⋯+ 𝑐3−𝑘,2−𝑘𝑡

2−𝑘
2 ) ∈𝕂[𝑡1, 𝑡2]3, 𝑘 = 1,2

are homogeneous and deg(𝑖) = 𝑖 for 𝑖 = 1, 2.

In the Step 4, we compute 1(𝑡1, 𝑡2), deg(1) = 1. For this purpose, we consider

𝑈 (𝑡) ∶= 𝑓4(), 𝑉 (𝑡) ∶= 𝑓3() +⋯+ 𝑡33𝑓0

and we impose 𝑈,𝑡3=0,8(𝑡) − 𝑡3 𝑉 ,𝑡3=0,8(𝑡) = 0. From the first non-zero coefficient of the previous equality we get a system (constructed 
from the coefficients w.r.t. {𝑡1, 𝑡2}) in the undetermined coefficients of 1. We obtain,

1(𝑡1, 𝑡2) = (𝑎1,1𝑡1 + 𝑎2,1𝑡2, 𝑏1,1𝑡1 + 𝑏2,1𝑡2, 𝑎1,1𝑡1 + 𝑎2,1𝑡2 − 4𝑡2).

Now, we compute 0(𝑡1, 𝑡2), deg(0) = 1 considering the second non-zero coefficient of the equality 𝑈,𝑡3=0,8(𝑡) − 𝑡3 𝑉 ,𝑡3=0,8(𝑡) = 0. 
We find that

0(𝑡1, 𝑡2) = (𝑐1,0, 𝑏1,0, 𝑐1,0),

and

 = (1∕2𝑐1,0𝑡23 + 𝑎1,1𝑡1𝑡3 + 𝑎2,1𝑡2𝑡3 + 𝑡21,1∕2𝑏1,0𝑡
2
3 + 𝑏1,1𝑡1𝑡3 + 𝑏2,1𝑡2𝑡3 + 𝑡22,1∕2𝑐1,0𝑡

2
3 + 𝑎1,1𝑡1𝑡3 + 𝑎2,1𝑡2𝑡3 − 4𝑡2𝑡3 + 𝑡21)

Note that the number of undetermined coefficients in  w.r.t. the variables {𝑡1, 𝑡2} is 6 (i.e. Card(Γ ) = 6). So, we consider more 
equations till the number of undetermined parameters decreases (see Corollary 3). Hence, in the next step, we get a solution in the 
undetermined coefficients 𝑏1,1, 𝑏2,1, and

 = (1∕2𝑐1,0𝑡23 + 𝑎1,1𝑡1𝑡3 + 𝑎2,1𝑡2𝑡3 + 𝑡21,1∕2𝑏1,0𝑡
2
3 + 5𝑡1𝑡3 − 3∕2𝑡3𝑡2 + 𝑡22,1∕2𝑐1,0𝑡

2
3 + 𝑎1,1𝑡1𝑡3 + 𝑎2,1𝑡2𝑡3 + 4𝑡2𝑡3 + 𝑡21).

We observe that the number of undetermined coefficients in  w.r.t. the variables {𝑡1, 𝑡2} is 4 (i.e. Card(Γ ) = 4). So, we consider 
more equations and we get a system that is linear in 𝑎1,1, 𝑎2,1, 𝑏1,0. We find that

 = (1∕2𝑐1,0𝑡23 + 𝑎1,1𝑡1𝑡3 − 𝑡2𝑡3 + 𝑡21,−67∕16𝑡
2
3 + 5∕2𝑡23𝑎1,1 + 5𝑡1𝑡3 − 3∕2𝑡3𝑡2 + 𝑡22,1∕2𝑐1,0𝑡

2
3 + 𝑎1,1𝑡1𝑡3 + 3𝑡2𝑡3 + 𝑡21).

We consider two more equations defined from the Taylor polynomial, and we get the value for 𝑏1,0 and 𝑐1,0. We find that

 = (1∕4𝑎21,1𝑡
2
3 + 𝑎1,1𝑡1𝑡3 − 𝑡2𝑡3 + 𝑡21,−67∕16𝑡

2
3 + 5∕2𝑡23𝑎1,1 + 5𝑡1𝑡3 − 3∕2𝑡3𝑡2 + 𝑡22,1∕4𝑎

2
1,1𝑡

2
3 + 𝑎1,1𝑡1𝑡3 + 3𝑡2𝑡3 + 𝑡21).

Note that Card(Γ ) = 1. We go to Step 5 and we get 𝐹 () = 0. Hence, the algorithm RETURNS that  can be parametrized by a 
proper polynomial parametrization  without base points.

In the following example we conclude that the given input surface  does not have a polynomial parametrization without base 
12

points.
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Example 3. Let  be an algebraic surface of degree 𝑑 = 4 defined by the irreducible homogeneous polynomial

𝐹 (𝑥) = 𝑓4(𝑥1, 𝑥2, 𝑥3) − (𝑥4𝑓3(𝑥1, 𝑥2, 𝑥3) +⋯+ 𝑥44𝑓0),

where

𝑓4 = (𝑥21 − 2𝑥1𝑥2 − 𝑥1𝑥3 + 𝑥22)
2,

𝑓3 = −(4𝑥31 − 13𝑥21𝑥2 − 3𝑥21𝑥3 + 11𝑥1𝑥22 + 𝑥1𝑥2𝑥3 − 3𝑥32 − 𝑥33),

𝑓2 = −(5𝑥21 − 9𝑥1𝑥2 + 𝑥1𝑥3 + 3𝑥22 + 3𝑥23), 𝑓1 = −(−3𝑥3 − 𝑥2), 𝑓0 = −1.

In Step 1, we observe that

𝑓4(𝑥1, 𝑥2, 𝑥3) = 𝑔(𝑥1, 𝑥2, 𝑥3)2 = (𝑥21 − 2𝑥1𝑥2 − 𝑥1𝑥3 + 𝑥22)
2

and the curve  defined by the polynomial 𝑔(𝑥1, 𝑥2, 𝑥3) with deg(𝑔) = 𝑛 = 2 is rational. This implies that if a polynomial parametriza-

tion  without base points exists, then  would be proper and deg() = 𝑛 = 2.

In Step 2, we compute a rational proper parametrization

2(𝑡1, 𝑡2) = (𝑡1, 𝑡2) =
(
𝑡21, 𝑡

2
1 + 𝑡1𝑡2, 𝑡

2
2
)
.

In Step 3, we represent the components of the parametrization  we are looking for

(𝑝1(𝑡), 𝑝2(𝑡), 𝑝3(𝑡)) = 2(𝑡1, 𝑡2) + 𝑡31(𝑡1, 𝑡2) + 𝑡23∕2!0(𝑡1, 𝑡2),

where

2−𝑘(𝑡1, 𝑡2) = (𝑎1,2−𝑘𝑡2−𝑘1 +⋯+ 𝑎3−𝑘,2−𝑘𝑡
2−𝑘
2 , 𝑏1,2−𝑘𝑡

2−𝑘
1 +⋯+ 𝑏3−𝑘,2−𝑘𝑡

2−𝑘
2 , 𝑐1,2−𝑘𝑡

2−𝑘
1 +⋯+ 𝑐2−𝑘,2−𝑘𝑡

2−𝑘
2 ) ∈𝕂[𝑡1, 𝑡2]3, 𝑘 = 1,2

are homogeneous and deg(𝑖) = 𝑖 for 𝑖 = 1, 2.

In the Step 4, we compute 1(𝑡1, 𝑡2), deg(1) = 2. For this purpose, we consider the equation

∇𝑔( ) ⋅1 = 𝑓4( )
1
2 .

Observe that the system generated from the coefficients of the previous equality w.r.t {𝑡1, 𝑡2} is linear in the undetermined coefficients 
of 1. We find that

1(𝑡1, 𝑡2) = ((2 + 2𝑏2,1)𝑡1 − 𝑡2, 𝑏1,1𝑡1 + 𝑏2,1𝑡2,−𝑡1 + (−4 − 4𝑏2,1 + 2𝑏1,1)𝑡2).

Now, we compute 0(𝑡1, 𝑡2), deg(0) = 1. We consider the equation

∇2𝑔( ) ⋅ (1)2 + ∇𝑔( ) ⋅0 = ∇𝑓3( ) ⋅1.

Observe that the system generated from the coefficients of the previous equality w.r.t. {𝑡1, 𝑡2} is linear in the undetermined coeffi-

cients of 0. We find that

0(𝑡1, 𝑡2) = (2𝑏22,1 − 2𝑏1,1 + 8𝑏2,1 + 6,2𝑏1,1𝑏2,1 − 2𝑏22,1 + 2,2𝑏21,1 − 8𝑏1,1𝑏2,1 + 8𝑏22,1 − 8𝑏1,1 + 14𝑏2,1 + 8)

and

 = (𝑏22,1𝑡
2
3 − 𝑏1,1𝑡

2
3 + 2𝑏2,1𝑡1𝑡3 + 4𝑏2,1𝑡23 + 𝑡21 + 2𝑡1𝑡3 − 𝑡2𝑡3 + 3𝑡23, 𝑏1,1𝑏2,1𝑡

2
3 − 𝑏22,1𝑡

2
3 + 𝑏1,1𝑡1𝑡3 + 𝑏2,1𝑡2𝑡3 + 𝑡21 + 𝑡1𝑡2 + 𝑡23, 𝑏

2
1,1𝑡

2
3

− 4𝑏1,1𝑏2,1𝑡23 + 4𝑏22,1𝑡
2
3 + 2𝑏1,1𝑡2𝑡3 − 4𝑏1,1𝑡23 − 4𝑏2,1𝑡2𝑡3 + 7𝑏2,1𝑡23 − 𝑡1𝑡3 + 𝑡22 − 4𝑡2𝑡3 + 4𝑡23).

One may check that there is no solution to the next equation given by

∇3𝑔( ) ⋅ (1)3 + 3∇2𝑔( ) ⋅10 = ∇2𝑓3( ) ⋅1 + ∇𝑓3( ) ⋅0.

Thus the algorithm RETURNS that  can not be parametrized by a polynomial parametrization without base points.

In the following example we conclude that the given input surface  has a polynomial parametrization without base points which 
is improper.

Example 4. Let  be an algebraic surface of degree 𝑑 = 2 defined by the irreducible homogeneous polynomial

𝐹 (𝑥) = 𝑓2(𝑥1, 𝑥2, 𝑥3) − (𝑥4𝑓1(𝑥1, 𝑥2, 𝑥3) + 𝑥24𝑓0),
13

where
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𝑓2 = 𝑥21 − 𝑥2𝑥3, 𝑓1 = 2𝑥1, 𝑓0 = −1.

In Step 1, we observe that

𝑓2(𝑥1, 𝑥2, 𝑥3) = 𝑔(𝑥1, 𝑥2, 𝑥3) = (𝑥21 − 𝑥2𝑥3)

and the curve  defined by the polynomial 𝑔(𝑥1, 𝑥2, 𝑥3) with deg(𝑔) = 𝑛 = 2 is rational. We observe that 𝑛∕𝜇 = 1 which implies that 
if a polynomial parametrization  without base points exists, then 𝜇 = degMap() = 2 and deg() = 𝑛 = 2.

In Step 2, we compute a rational proper parametrization

2(𝑡1, 𝑡2) = (𝑡1, 𝑡2) =
(
𝑡1𝑡2, 𝑡

2
2, 𝑡

2
1
)
.

In Step 3, we represent the components of the parametrization  we are looking for

(𝑝1(𝑡), 𝑝2(𝑡), 𝑝3(𝑡)) = 2(𝑡1, 𝑡2) + 𝑡31(𝑡1, 𝑡2) + 𝑡23∕2!0(𝑡1, 𝑡2),

where

2−𝑘(𝑡1, 𝑡2) = (𝑎1,2−𝑘𝑡2−𝑘1 +⋯+ 𝑎3−𝑘,2−𝑘𝑡
2−𝑘
2 , 𝑏1,2−𝑘𝑡

2−𝑘
1 +⋯+ 𝑏3−𝑘,2−𝑘𝑡

2−𝑘
2 , 𝑐1,2−𝑘𝑡

2−𝑘
1 +⋯+ 𝑐3−𝑘,2−𝑘𝑡

2−𝑘
2 ) ∈𝕂[𝑡1, 𝑡2]3, 𝑘 = 1,2

are homogeneous and deg(𝑖) = 𝑖 for 𝑖 = 1, 2.

In the Step 4, we compute 1(𝑡1, 𝑡2), deg(1) = 1. For this purpose, we consider the equation

∇𝑔( ) ⋅1 = 𝑓1( ).

Observe that this system is linear in the undetermined coefficients of 1. We find that

1(𝑡1, 𝑡2) = (𝑎1,1𝑡1 + 𝑎2,1𝑡2,2𝑎1,1𝑡2,2𝑎2,1𝑡1).

Now, we compute 0(𝑡1, 𝑡2), deg(0) = 1. We consider the equation

∇2𝑔( ) ⋅ (1)2 + ∇𝑔( ) ⋅0 = ∇𝑓1( ) ⋅1.

Observe that this system is linear in the undetermined coefficients of 0. We find that

0(𝑡1, 𝑡2) = (2𝑎1,1𝑎2,1 + 2,2𝑎21,1,2𝑎
2
2,1),

and

(𝑡1, 𝑡2) = (𝑎1,1𝑎2,1𝑡23 + 𝑎1,1𝑡1𝑡3 + 𝑎2,1𝑡2𝑡3 + 𝑡1𝑡2 + 𝑡23, (𝑎1,1𝑡3 + 𝑡2)2, (𝑎2,1𝑡3 + 𝑡1)2).

Note that Card(Γ ) = 2. We go to Step 5 and we check that 𝐹 () = 0. Therefore, the algorithm RETURNS that  can be parametrized 
by a polynomial parametrization without base points defined by  . In this case,  is not proper and in fact degMap() = 2.
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