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Affine equivalences of trigonometric curves.

Juan Gerardo Alcázara,1,2, Emily Quinteroa,3

aDepartamento de F́ısica y Matemáticas, Universidad de Alcalá, E-28871 Madrid, Spain

Abstract

We provide an efficient algorithm to detect whether two given trigonometric
curves, i.e. two parametrized curves whose components are truncated Fourier
series, in any dimension, are affinely equivalent, i.e. whether there exists an
affine mapping transforming one of the curves onto the other. If the coefficients
of the parametrizations are known exactly (the exact case), the algorithm boils
down to univariate gcd computation, so it is efficient and fast. If the coefficients
of the parametrizations are known with finite precision, e.g. floating point
numbers (the approximate case), the univariate gcd computation is replaced by
the computation of singular values of an appropriate matrix. Our experiments
show that the method works well, even for high degrees.

1. Introduction

Two objects are affinely equivalent if there exists a nonsingular affine trans-
formation mapping one of the objects onto the other one. Detecting whether
two objects are related by an affine mapping is a classical problem in applied
fields like Pattern Recognition, Image Processing and Computer Vision, and
has been addressed in many papers using different strategies: see for instance
[7, 10, 19, 20, 25] and the references in these papers. Essentially, the underlying
problem is to be able to recognize a same image when it undergoes a smooth de-
formation, which is modelled as an affine mapping. Furthermore, an important
particular instance of affine equivalence is the situation when the two objects
are related by a similarity, in which case both objects are the same except for
position and scaling.

In this paper, we consider the affine equivalence problem for parametrized
curves in any dimension whose components are truncated Fourier series. In
some references [13, 14], these curves receive the name of trigonometric curves,
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or generalized trigonometric curves. In other, more applied, references (see for
instance [24]), these curves are called elliptic Fourier descriptor (EFD) repre-
sentations, and are often used to describe closed planar and space curves (see
for instance the references in [24]). In particular, for these curves one can com-
pute shape descriptors (see [8, 9, 15], among many others), which are numbers
that can be computed from the parametrization, and that can be used for curve
recognition, in particular for similarity recognition.

The approach that we use here to solve the affine equivalence problem for
trigonometric curves is similar to the approach recently used in papers like
[2, 3, 11], coming from the fields of Symbolic Computation and Computer Aided
Geometric Design, to detect symmetry [3], similarity [2], affine and even projec-
tive equivalence [11] for rational curves, i.e. curves parametrized by quotients
of polynomials. Basically, in these papers it is shown that for any mapping be-
tween two rational curves (that can coincide, in the case of symmetry detection)
one has another mapping in the parameter space (usually, the field of real or
complex numbers) which corresponds to a Möebius transformation. Then the
symmetry, similarity, affine or projective transformation itself can be written in
terms of the parameters of this Möebius transformation. Solving a polynomial
system whose unknowns are the parameters of the Möebius transformation leads
to the mapping we are seeking, or to a proof that such a mapping does not exist,
in the case when the objects are not affinely equivalent.

For trigonometric curves it is a well-known trick to compute a rational
parametrization depending on one complex parameter taking values in the unit
circle, and thus the techniques above are applicable. However, the rational
parametrization of a trigonometric curve has special properties, that one can
exploit. In particular, we can prove that the associated Möebius transforma-
tion has a predictable shape only depending in one parameter, so that the final
computation boils down to computing a greatest common divisor of univari-
ate complex polynomials. In the presence of floating point numbers (what we
call the approximate case), however, due to numerical inaccuracies this greatest
common divisor can be constant, and thus the method must be adapted. A good
option is to replace greatest common divisors by approximate common divisors
(see for instance [5, 16, 18, 17, 26]). However, and since we could not find any
public implementation of approximate common divisors of univariate polyno-
mials over the complex numbers, here we replace approximate gcds by singular
value computation of certain matrices, associated to the univariate polynomials
whose approximate gcd we would like to compute.

The structure of the paper is the following. In Section 2 we provide some
background on trigonometric curves, and some general results that we use later.
The algorithm for the exact case is presented in Section 3. The approximate case
is addressed in Section 4. Finally, Section 5 contains our conclusion, together
with some open problems.
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2. Preliminaries on trigonometric curves.

A trigonometric curve C ⊂ Rn, following [14], is a parametric curve whose
components are truncated Fourier series, i.e.

x(t) = (x1(t), . . . , xn(t)), (1)

where

xi(t) =

mi∑
k=0

[a
(i)
k cos(kt) + b

(i)
k sin(kt)], t ∈ [0, 2π], i = 1, . . . , n. (2)

We refer to a parametrization of this kind as a trigonometric parametriza-
tion. A trigonometric parametrization x(t) is simple if it is injective except for
finitely many values of the parameter t; for instance, (sin(t), cos(t)) is a sim-
ple parametrization of a circle, while (sin(2t), cos(2t)) is not. Furthermore, a
trigonometric parametrization x̂(t) is a simplification of another trigonometric
parametrization x(t), if x̂(t) is simple and both x(t), x̂(t) parametrize a same
curve C ⊂ Rn; we also say that x̂(t) is the result of simplifying x(t). In [14] it
is shown (see Theorem 2.1 in [14]) that any trigonometric curve admits either
a simple, or a polynomial parametrization. Furthermore, algorithms for simpli-
fying, implicitizing and parametrizing trigonometric curves are also provided in
[14]. In our case, we will assume that the parametrizations we work with are
simple. Moreover, we will assume that C is not contained in a hyperplane of Rn.

Any trigonometric curve admits infinitely many simplifications. However,
the following result, which is a reformulation of Theorem 2.5 in [14], shows
that all simplifications of a same trigonometric curve are related by very precise
transformations.

Lemma 1. Let x1(t),x2(t) be two simple trigonometric parametrizations of a
same trigonometric curve C ⊂ Rn. Then x2 = x1 ◦ ψ, where ψ(t) = α± t.

When dealing with trigonometric curves, a common technique is to use a
rational parametrization of the curves by means of the change z = eit, where
i2 = −1 and z belongs to the unit circle S1 (see for instance [13, 14, 24]). Since
eit = cos t + i sin t, and taking into account that for z ∈ S1 the conjugate z
satisfies that z = 1

z , we deduce that

cos t =
z2 + 1

2z
, sin t =

z2 − 1

2iz
, cos(Mt) =

z2M + 1

2zM
, sin(Mt) =

z2M − 1

2izM
,

(3)
where M ∈ Z. Substituting these relationships into Eq. (2), we get a ratio-
nal parametrization (i.e. a parametrization whose components are quotients of
polynomials)

x̃(z) = (x̃1(z), . . . , x̃n(z)), (4)

where each component satisfies that

x̃i(z) =
Pi(z)

zmi
, i = 1, . . . , n, (5)
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with Pi(z) a complex polynomial of degree 2mi, and z ∈ S1. We refer to
x̃(z) as the rational complex parametrization associated with x(t). Denoting
N = max{mi|i = 1, . . . , n}, we say that the degree of x̃(z) is 2N . Observe that
not every Pi(z) has degree 2N , but there always exists i ∈ {1, . . . , n} such that
the degree of Pi(z) is 2N .

Remark 1. One can easily see that

Pi(z) =
1

2

mi∑
k=0

[Akz
mi+k +Bkz

mi−k]

where Ak = a
(i)
k − ib

(i)
k , Bk = a

(i)
k + ib

(i)
k . In particular, since ami

, bmi
are real

and nonzero, then Bmi
6= 0, so no cancellation in x̃i(z) = Pi(z)

zmi
is possible.

Remark 2. An alternative possibility to work with trigonometric curves is to
apply the classical rational change of variables

(cos(t), sin(t))→
(

1− s2

1 + s2
,

2s

1 + s2

)
. (6)

However, this produces parametrizations with more terms, and higher coeffi-
cients. For instance, consider the function

f(t) = cos(t) + 3 cos(2t)− 2 cos(3t) + 4 cos(5t)− cos(8t).

While the change in Eq. (6) produces

−s16 − 74s14 + 1758s12 − 8306s10 + 12780s8 − 7838s6 + 1842s4 − 166s2 + 5

s16 + 8s14 + 28s12 + 56s10 + 70s8 + 56s6 + 28s4 + 8s2 + 1
,

the change in Eq. (3) yields

4z16 + z14 + 2z12 − 2z10 + 4z6 − 1

z16
,

which is a simpler expression, with smaller coefficients and fewer terms.

Since for t ∈ [0, 2π] the mapping z = eit : [0, 2π]→ S1 is invertible, and since
we are assuming that Eq. (1) is a simple trigonometric parametrization, we get
that Eq. (4), seen as mapping from S1 to C, is injective for almost all points
of S1. In other words, for z ∈ S1 Eq. (4) defines a birational mapping, i.e.
a rational mapping with a rational inverse. Furthermore, we get the following
result as a corollary of Lemma 1.

Corollary 2. Let x̃1(z), x̃2(z) be two rational parametrizations of a same trigono-
metric curve C ⊂ Rn, associated with two simple trigometric parametrizations
x1(t),x2(t) of C. Then x̃2 = x̃1 ◦ξ, where ξ(z) = kz or ξ(z) = k

z , and k, z ∈ S1.
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Proof. From Lemma 1, x2 = x1 ◦ (α ± t). Since xj = x̃j ◦ eit for j = 1, 2, we
get x̃2 ◦ eit = x̃1 ◦ eit ◦ (α± t). Thus,

x̃2 ◦ eit = x̃1 ◦ (eiα · e±it).

Calling k = eiα and since z = eit, the result follows.

Notice that ϕ(z) = kz and ϕ(z) = k
z are, in particular, Möbius transforma-

tions of S1. Moreover, we also have the following corollary of Lemma 1, which
follows from Corollary 2.

Corollary 3. Let x̃1(z), x̃2(z) be two rational parametrizations of a same trigono-
metric curve C ⊂ Rn, associated with two simple trigometric parametrizations
x1(t),x2(t) of C. Then the degrees of both x̃1(z), x̃2(z) are the same.

3. Affine equivalence of trigonometric curves

Given two curves C,D ⊂ Rn, the curves C,D are said to be affinely equivalent
if there exists a nonsingular affine mapping f : Rn −→ Rn,

f(x) = Ax + b, x ∈ Rn, (7)

with b ∈ Rn and A ∈ Rn×n a nonsingular square matrix, such that f(C) = D.
We say that f is an affine equivalence between C,D, or that C,D are affinely
equivalent. If A is an orthogonal matrix, i.e. ATA = I, where I denotes
the n × n identity matrix, we say that f defines an isometry between C,D. If
A = λQ where Q is orthogonal and λ 6= 0, we say that f defines a similarity
between C,D. Furthermore, if C = D and f defines a non-trivial isometry of C
onto itself, we say that f is a symmetry of C.

Additionally, we say that f : Rn −→ Rn is an involution if f ◦f = idRn . Invo-
lutions are particularly interesting when C = D and we consider the symmetries
of C, since notable symmetries like reflections on a plane, axial symmetries (i.e.
symmetries with respect to a line, or equivalently rotations of angle π about
a line) and central symmetries (i.e. symmetries with respect to a point) are
involutions.

In the rest of the paper, we assume that C,D are trigonometric curves defined
by simple parametrizations

x(t) = (x1(t), . . . , xn(t)), y(t) = (y1(t), . . . , yn(t)) (8)

where xi(t), yi(t) are as in Eq. (2). We denote by x̃(z), ỹ(z), with z ∈ S1,
the rational parametrizations associated with x(t),y(t), so the components of
x̃(z), ỹ(z) are as in Eq. (5). Our goal is to detect whether C and D are affinely
equivalent, i.e. to check whether they are related by a mapping like Eq. (7),
and in the affirmative case to find the affine equivalences between C and D. We
first need the following lemma.
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Lemma 4. Let x(t) be a simple trigonometric parametrization as in Eq. (1),
let x̃(z) be its associated rational parametrization, and let 2N be the degree of
x̃(z). Let f(x) = Ax + b, x ∈ Rn, with b ∈ Rn and A ∈ Rn×n a nonsingular
square matrix.

(1) x?(t) = Ax(t) + b is a simple trigonometric parametrization, with associ-
ated rational complex parametrization x̃?(z) = Ax̃(z) + b.

(2) The degrees of x̃(z) and x̃?(z) are the same.

Proof. Let us see (1). Since the components of x?(t) are linear combinations
of the components of x(t), it is clear that x?(t) is trigonometric. Furthermore,
since A is regular, f is an injective mapping. Thus, x?(t) is simple because it
is the composition of a simple trigonometric parametrization with an injective
mapping. Finally, since x̃? = x? ◦ eit, we easily deduce that x̃?(z) = Ax̃(z) +b.

Now let us see (2). It is clear that the degree of x̃?(z) cannot be greater than
2N ; so let us see that the degree of x̃?(z) cannot be less than 2N . Following

the notation in Eq. (2), for i = 1, . . . , n let a
(i)
N , b

(i)
N denote the coefficients of

cos(Nt), sin(Nt) in the i-th component of x(t), xi(t). Of course a
(i)
N , b

(i)
N are zero

when mi < N . Notice, however, that since the degree of x̃(z) is 2N , not all the

a
(i)
N , b

(i)
N can vanish. The coefficients of cos(Nt), sin(Nt) in the i-th component

of x?(t) are

Ai1a
(1)
N + Ai2a

(2)
N + · · ·+ Aina

(n)
N ,

Ai1b
(1)
N + Ai2b

(2)
N + · · ·+ Ainb

(n)
N

Now if the degree of x̃?(z) is less than 2N , then the above expressions must

vanish for all j = 1, . . . , n. Since not all the a
(i)
N , b

(i)
N are zero, this implies that

there exists v ∈ Rn, v 6= 0, such that A · v = 0. But this is impossible because
A is a regular matrix.

Then we have the following result.

Theorem 5. Let C,D ⊂ Rn be two trigonometric curves, defined by ratio-
nal complex parametrizations x̃(z), ỹ(z), with z ∈ S1, associated with simple
trigonometric parametrizations x(t),y(t). Let f : C → D be an affine mapping
f(x) = Ax + b, where x ∈ Rn, with b ∈ Rn and A ∈ Rn×n a nonsingular
square matrix, such that f(C) = D. Then there exists k ∈ S1 and ϕ(z) = kz or
ϕ(z) = k

z , such that the diagram

C
f
// D

S1

x̃

OO

ϕ
// S1

ỹ

OO (9)

is commutative, i.e. for z ∈ S1 we get that f ◦ x̃ = ỹ ◦ ϕ, or equivalently

Ax̃(z) + b = ỹ(ϕ(z)). (10)
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Furthermore, the degrees of x̃(z) and ỹ(z) are the same.

Proof. Since f(C) = D and by statement (1) of Lemma 4, x?(t) = Ax̃(t) + b is
also a simple trigonometric parametrization of D. Furthermore, also by state-
ment (1) of Lemma 4, the rational complex parametrization x̃?(z) associated
with x?(t) is x̃?(z) = Ax̃(z) + b. Then the results follow from Corollary 2,
Corollary 3 and the statement (2) of Lemma 4.

Theorem 5 provides the following corollary on the involutional symmetries
of a trigonometric curve C.

Corollary 6. In the hypotheses of Theorem 5, if C = D and f is a nontrivial
involutional symmetry (i.e. different from the identity) then ϕ(z) = −z or
ϕ(z) = k

z with k ∈ S1.

Proof. From Theorem 5, assuming C = D we get ϕ = x̃−1 ◦ f ◦ x. Thus, if
f ◦ f = idRn then ϕ ◦ ϕ = idRn as well, so ϕ is an involution of S1. Now
from Lemma 2, ϕ(z) = kz or ϕ(z) = k

z . The mapping ϕ(z) = k
z is always

an involution. However, ϕ(z) = kz is an involution only when k = ±1. Since
ϕ(z) = z implies that f is the identity, the result follows.

Theorem 5 can be exploited in order to find the affine equivalences between
C and D. The general idea is to write first the entries Aij of the matrix A and
the components of the vector b as rational functions of k by using Eq. (10),
and then finding, if any, the values k ∈ S1 such that Eq. (10) is satisfied. In
particular, we get polynomial conditions

g1(k), . . . , gr(k) (11)

that must have a common root k ∈ S1 for C,D to be affinely equivalent.
The next result shows that under our hypotheses, in particular by excluding

that C lies in a hyperplane, this is always possible.

Lemma 7. If C is not contained in a hyperplane, Eq. (10) allows to write the
Aij and b in terms of k.

Proof. We focus on proving that the entries Aij of A can be written as rational
functions of k. Once this is done, from Eq. (10) we get b = ỹ(ϕ(a)) −Ax̃(a)
for any a ∈ S1.

A possibility to write A in terms of k is to choose n + 1 distinct complex
numbers z0, z1, . . . , zn ∈ S1, and then consider the matrix equations Ax̃(zi) +
b = ỹ(ϕ(zi)), i = 0, 1, . . . , n. By subtracting the first equation from the last n
equations, we get n matrix equations of the form

A(x̃(zi)− x̃(z0)) = ỹ(ϕ(zi))− ỹ(ϕ(z0)). (12)

Let W be the n× n matrix whose columns are the vectors vi = x̃(zi)− x̃(z0),
for i = 1, . . . , n, and let Z be the matrix whose columns are the vectors wi =
ỹ(ϕ(zi))− ỹ(ϕ(z0)). From Eq. (12), we get the matrix equation A ·W = Z. If
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the vi are linearly independent, then W−1 exists, and A = Z ·W−1; thus, all
the Aij can be written as rational functions of k.

So the only possibility for not succeeding in writing the Aij in terms of k,
is that we fail to find n vectors vi which are linearly independent. In this case,
for any choosing of distinct complex numbers z0, z1, . . . , zn−1 ∈ S1, the vector
x̃(z)−x̃(z0) is linearly dependent with the vi = x̃(zi)−x̃(z0), for i = 1, . . . , n−1.
In turn, this implies that there exist functions λ1(z), . . . , λn(z) such that

λ1(z)v1 + . . .+ λn−1(z)vn−1 + λn(z)(x̃(z)− x̃(z0)) = 0

for z ∈ S1. But then x̃(z) belongs to the hyperplane through x̃(z0), spanned
by v1, . . . ,vn−1, i.e. C is contained in a hyperplane.

The proof of Lemma 7 suggests a strategy to write A, and then b, in terms
of k by substituting random values z ∈ S1 in Eq. (10). However, in order to
write A, b in terms of k we can proceed directly from Eq. (10). In order to
make the process more clear, let us write

x̃(z) =

(
P̂1(z)

zN
, . . . ,

P̂n(z)

zN

)
. (13)

The P̂k(z) are polynomials of degree at most 2N , although there is some k for

which the degree of P̂k(z) is exactly 2N . Because of this, some of the P̂k(z),
but not all of them, can have z as a factor, with some multiplicity. Also, let us
write

ỹ(z) =

(
Q̂1(z)

zN
, . . . ,

Q̂n(z)

zN

)
. (14)

Again, the Q̂k(z) are polynomials of degree at most 2N and not all of them can
have z as a factor with some multiplicity. Furthermore, by Theorem 5 we have
ϕ(z) = kz or ϕ(z) = k

z . Thus, we get

ỹ(ϕ(z)) =

(
Q1(k, z)

zN
, . . . ,

Qn(k, z)

zN

)
, (15)

where the Qj(k, z) are polynomials in z, of degree 2N , with coefficients polyno-
mially depending on k, regardless of whether ϕ(z) = kz or ϕ(z) = k

z . Also, for
i = 1, . . . , n let us write

P̂i(z) = α
(i)
0 + α

(i)
1 z + . . .+ α

(i)
N zN + · · ·+ α

(i)
2Nz

2N ,

Qi(k, z) = β
(i)
0 (k) + β

(i)
1 (k)z + . . .+ β

(i)
N (k)zN + · · ·+ β

(i)
2N (k)z2N ,

(16)

where the coefficients of Qi(k, z), seen as a polynomial in z, are polynomials in
k of degree at most 2N .

Now Eq. (10) can be written as

A ·

(
P̂1(z)

zN
, . . . ,

P̂n(z)

zN

)T
+ b =

(
Q1(k, z)

zN
, . . . ,

Qn(k, z)

zN

)T
. (17)
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Multiplying by zN , we get

A ·
(
P̂1(z), . . . , P̂n(z)

)T
+ zNb = (Q1(k, z), . . . , Qn(k, z))

T
. (18)

From Eq. (18), equaling the coefficients of the terms in z`, ` 6= N , at both
sides of the equation, we get linear equations

Ai1α
(1)
` + · · ·+ Ainα

(n)
` = β

(i)
` (k) (19)

where i = 1, . . . , n, ` = 0, 1, . . . , N − 1, N + 1, . . . , 2N . Thus, we get 2Nn linear
equations of this type. Additionally, also from Eq. (18), equaling the coefficients
of the terms in zN at both sides of the equation, we get linear equations

Ai1α
(1)
N + · · ·+ Ainα

(n)
N + bi = β

(i)
N (k) (20)

where i = 1, . . . , n. Thus, we get n linear equations of this type. Putting
together the equations Eq. (19) and Eq. (20), we get a linear system S, whose
unknowns are the n2 entries Aij of the matrix A, and the n coordinates of the
vector b, that must be consistent for some values k ∈ S1 in the event that the
curves C,D are affinely equivalent. We refer to S as the linear system associated
with Eq. (10). Moreover, the coefficient matrix A of the system S has the
following block structure:

A =

[
B1 0
B2 1

]
(21)

The block B1 is block diagonal, and consists of n copies of the 2N × n
submatrix 

α
(1)
0 · · · α

(n)
0

...
. . .

...

α
(1)
2N · · · α

(n)
2N

 (22)

where the row corresponding to the subindex N is missing. The block B2 is also
block diagonal, and consists of n copies of the row matrix[

α
(1)
N · · · α

(n)
N

]
. (23)

The block 0 is corresponds to a 2Nn × n null matrix, and the block 1 is the
identity matrix of dimension n.

In particular, notice that the number of linear equations we get is 2Nn+n =
(2N + 1)n, and the number of unknowns is n2 + n, so A ∈M(2N+1)n×(n2+n).

Lemma 8. If C is not contained in a hyperplane, then 2N ≥ n.

Proof. The vector x̃(z) is parallel to the vector

x̃?(z) = zN x̃(z) = (P̂1(z), . . . , P̂n(z)).
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In turn, we can write x̃?(z) as

x̃?(z) = a0 + a1z + · · ·+ a2Nz
2N ,

where aj ∈ R2N for j = 0, . . . , 2N . If 2N < n, then x̃?(z), and therefore, for
every z ∈ S1, x̃(z) belongs to a subspace of Rn of dimension less or equal than
n− 1. Thus, C is contained in a hyperplane.

Proposition 9. Assume that C ⊂ Rn is not contained in a hyperplane. The
linear system S associated with Eq. (5) provides 0 ≤ r ≤ (2N − n)n nonzero
polynomial conditions in k as in Eq. (11), of degree bounded by 2N .

Proof. From Lemma 7, the system S is solvable. Since S has n2 + n unknowns
(the Aij and the components of b), we need n2 + n equations of S to write the
Aij and the components of b in terms of k. Substituting these expressions for
the entries of A and b in the remaining equations of S, we get at most (2N +
1)n−(n2+n) = (2N−n)n nonzero polynomial conditions on k, g1(k), . . . , gr(k),
where 2N − n ≥ 0 because of Lemma 8. Since the constant terms of S, i.e. the

β
(i)
` (k) (see Eq. (19) and Eq. (20)), are polynomials in k of degree ≤ 2N , by

Cramer’s rule the Aij and the components of b are polynomials of degree ≤ 2N .
Thus, when substituted in the remaining equations of S, we get polynomials in
k of degree ≤ 2N .

Remark 3. If the number r of polynomial conditions in k in Proposition 9 is
r = 0, then the curves are related by infinitely many affine transformations.
Indeed, in this case after using the equations of S to write A and b in terms
of k, we get that Eq. (10) is satisfied for all values of k. Hence, every affinity
f(x) = Ax + b, with A = A(k) and b = b(k), maps C onto D.

Corollary 10. Any two trigonometric curves C,D in Rn defined by rational
complex parametrizations of degree N with 2N = n, are related by infinitely
many affine equivalences.

Proof. Since 2N = n, by Proposition 9 the number r of polynomial conditions
is r = 0. Then the result follows from Remark 3.

The preceding ideas are summarized in Algorithm Affine-Trigonometric,
and illustrated in Example 1.
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Algorithm 1 Affine-Trigonometric

Require: Two trigonometric curves C,D ⊂ Rn, defined by simple parametriza-
tions x(t),y(t), of the same degree 2N .

Ensure: The affine equivalences f(x) = Ax + b between C,D.
1: Compute the rational complex parametrizations x̃(z), ỹ(z) associated with

the curves.
2: Set ϕ(z) = kz
3: Write A, b in terms of k using Eq. (10), i.e. solving the corresponding n2+n

equations of the system S stemming from Eq. (10).
4: Substitute A, b in terms of k into the remaining equations of S, to compute

the polynomial conditions g1(k) = 0, . . . , gr(k) = 0
5: Compute the complex roots k ∈ S1 of the greatest common divisor of
g1(k), . . . , gr(k).

6: return, if any, the affine equivalences corresponding to the k found in the
step before

7: Set ϕ(z) = k
z , and repeat steps (3-6)

8: if no value k ∈ S1 is found then
9: return C and D are not affinely equivalent.

10: end if

The complexity of Algorithm Affine-Trigonometric is provided in the fol-
lowing proposition. Here we use the standard Big O notation O for the time
complexity analysis, and the Soft O notation Õ to ignore logarithmic factors.

Proposition 11. Let C,D ⊂ Rn be two trigonometric curves of degree N , not
contained in a hyperplane. The complexity of Algorithm Affine-Trigonometric

is Õ(N3).

Proof. Writing A, b in terms of k implies solving the linear system S stemming
from Eq. (10). This can be done by applying Gaussian Elimination to the
system S. The coefficient matrix of this system is A ∈M(2N+1)n×(n2+n). Since
2N ≥ n because of Lemma 8, the rank of A is bounded by (2N + 1)n and thus
the complexity of Gaussian Elimination on S is O(N3n3) (see for instance [4]).
Computing the polynomials g1(k), . . . , gr(k) does not increase the complexity.
The degrees of the gi(k) are bounded by 2N , and thus computing the gcd of the
gi(k) can be done in Õ(N) time (see Corollary 11.6 in [23]). The roots of the
gcd can be computed in Õ(N3) time (see [6]), so we get an overall complexity
of Õ(N3).

Example 1. Let C and D be the plane trigonometric curves parametrized by

11



x(t),y(t) respectively, with t ∈ [0, 2π], where

x1(t) = −1

3
sin(3t) +

2

3
cos(t),

x2(t) = − sin(5t)− 2 sin(t)− 1

3
cos(t),

y1(t) = −1

6
sin(5t) +

1

4
sin(3t)− 1

3
sin(t)− 5

9
cos(t) + 4,

y2(t) = −
√

3

2
sin(5t) +

2

15
sin(3t)−

√
3 sin(t)− 8 + 5

√
3

30
cos(t)− 2.

The associated rational commplex parametrizations are

x̃(z) =

(
iz6 + 2z4 + 2z2 − i

6z3
,

3iz10 − (1− 6i)z6 − (1 + 6i)z4 − 3i

6z5

)
,

ỹ(z) = (ỹ1(z), ỹ2(z)),

ỹ1(z) =
6iz10 − 9iz8 − (20− 12i)z6 + 288z5 − (20 + 12i)z4 + 9iz2 − 6i

72z5
,

ỹ2(z) =
15i
√
3z10 − 4iz8 − (5

√
3 + 8− 30

√
3i)z6 − 120z5 − (5

√
3 + 8 + 30

√
3i)z4 + 4iz2 − 15

√
3i

60z5
.

We consider first the case ϕ(z) = kz. Step 4 of Algorithm 1 provides 12
polynomials; we show 4 of them below:

−(18 + 168i)k10 + (27 + 54i)k8 − (156− 12i)k6 + (156 + 12i)k4 − (27− 54i)k2 + 18 + 36i,

(−54 + 6i)k10 + (81 + 315i)k8 − (128 + 168i)k6 + (128− 168i)k4 − (81− 9i)k2 + 54 + 6i,

(−36 + 174i)k10 + (54− 45i)k8 + (28− 180i)k6 − (28 + 180i)k4 − (54− 261i)k2 + 36− 30i,

(36 + 30i)k10 − (54 + 261i)k8 − (28− 180i)k6 + (28 + 180i)k4 + (54 + 45i)k2 − 36− 174i.

The gcd of all of the 12 polynomials is k2 − 1. Thus, we get k = ±1, i.e.

ϕ1(z) = z, ϕ2(z) = −z.

The mapping ϕ1(z) corresponds to the affine mapping f1(x) = A1x + b1, where

A1 =

 −
3

4

1

6

−2

5

√
3

2

 , b1 =

(
4
−2

)
. (24)

The mapping ϕ2(z) corresponds to the affine mapping f2(x) = A2x + b2,
where

A2 =


3

4
−1

6
2

5
−
√

3

2

 , b2 =

(
4
−2

)
. (25)
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Figure 1: C (left) and D (right).

When ϕ(z) =
k

z
we obtain no solution. Therefore, we conclude that C,D

are related by two affine mappings f1, f2. The total computation time was 2.714
seconds, in an Intel(R) Core(TM) i5-7500, CPU 3.40 GHz and 32 Gb RAM.
Notice that both C,D have a nontrivial symmetry τ with respect to a point, which
is the reason why we get two affine equivalences.

4. Approximate affine equivalences.

In this section we consider the case when the curves C and D are defined by
means of simple trigonometric parametrizations xxx(t), yyy(t) as in Eq. (1) and Eq.
(2), but where the coefficients of xxx(t) and yyy(t) are given with finite precision,
i.e. as floating point numbers. In this case, and even if the curves C and D
are very close to being related by an affinity, applying the same procedure as
in the exact case yields polynomial conditions g1(k), . . . , gr(k) with a constant
gcd, so, even though these polynomials have some roots which are very close to
each other, no common root of g1(k), . . . , gr(k) is computed.

Thus, in this case we focus not on the affine equivalences between C and
D, but on approximate affine equivalences. In order to do it, we proceed as in
the exact case to compute g1(k), . . . , gr(k), and then we find the approximate
common roots of g1(k), . . . , gr(k).

A first possibility to do this is to compute an approximate gcd, also called ε-
gcd of g1(k), . . . , gr(k). Although there is a wide variety of methods to compute
an approximate gcd (see, among others, [5, 16, 18, 17, 26]), we could not find a
public implementation for our case, where the polynomials gi(k) have complex
coefficients. Because of this, we have used another method, based on the SVD
decomposition.

Our method proceeds as follows. Given the polynomials g1(k), . . . , gr(k), we
can write the univariate polynomial system consisting of the gi(k) as a matrix

13



system
M · (1 k k2 · · · k2N )T = 0, (26)

where M ∈ Mr×(2N+1) is a rectangular numeric matrix whose entries are the
coefficients of the gi(k).

Now, in the exact case the dimension of the kernel of the matrix M equals
the number of zero singular values of M. Additionally, in the exact case, a com-
mon root k0 ∈ C of the gi(k) corresponds to a vector v = (1; k0; k20; · · · ; k2N0 ) ∈
Ker(M). Thus, if dim(Ker(M)) = 1, i.e. if M has exactly one zero singular
value, and the gi(k) have a common root k0, then we can compute k0 by de-
termining the element of Ker(M) whose first coordinate is 1. Furthermore, let
M = U · S · V ? be the SVD decomposition of M, where ? denotes conjugate
transposition and S is a r × (2N + 1) matrix with the singular values in the
main diagonal (the remaining elements of S are zero). If the singular value 0
is the last entry of the q-th column of S, then the q-th column of V provides a
generator for Ker(M).

If the gi(k) have several common roots, which corresponds to the case when
there are several affine equivalences relating the curves C and D, the problem is
more complicated: in this case, dim(Ker(M)) = p > 1 and the common roots
kj of the gi(k) must be determined by first computing a basis for Ker(M), and
then computing the vectors (1; ki; k

2
i ; · · · ; k2Ni ) ∈ Ker(M). This amounts to

imposing that there exist λ1, . . . , λp ∈ C such that

λ1~v1 + · · ·+ λp~vp = (1 kj · · · k2Nj )T , (27)

where ~v1, . . . , ~vp form a basis of Ker(M). In turn, this yields to polynomial con-
ditions on the kj . In the exact case, this is perfectly feasible; in the approximate
case, though, in practice this case is more complicated. Thus, we will focus on
the first case, where dim(Ker(M)) = 1, corresponding to the situation where
there is at most one affine equivalence relating the curves.

In order to perform the translation of the above ideas to the approximate
case, a first observation is that singular values behave well in presence of pertur-
bations (see for instance [22]). Thus, if we introduce a small perturbation in a
matrix, we will get small perturbations in the singular values of the matrix too.
Hence, in practice we build the matrix M, and compute the smallest singular
value. Assuming there is just one singular value really close to zero, and there-
fore that dim(Ker(M)) is “almost” 1, proceed as before computing the column
of the matrix V corresponding to the smallest singular value, and finding k0
from there. The idea is illustrated in the following example.

Example 2. Let us consider the curves C,D ⊂ R3, parametrized by

xxx(t) = (9 cos(t)−5 sin(t), sin(3t)+15 cos(2t)−cos(t)−8 sin(t),−2 sin(4t)+cos(3t))

and yyy(t) = (y1(t), y2(t), y3(t)), with t ∈ [0, 2π], where

y1(t) = 6 sin(4t)− 3 cos(3t) + 5 sin(3t) + 75 cos(2t)− 59 cos(t)− 10 sin(t) + 1,
y2(t) = −8 sin(4t) + 4 cos(3t)− 9 cos(t) + 5 sin(t),
y3(t) = −2 sin(3t)− 30 cos(2t) + 11 cos(t) + 11 sin(t) + 1.

14



The curves C,D are related by one affine equivalence f(x) = Ax+b correspond-
ing to ϕ1(z) = z, where

A =

 −6 5 −3

−1 0 4
1 −2 0

 , b1 =

 1
0
1

 .

Now, we apply a random perturbation of order 10−2 to all the coefficients of the
parameterizations xxx(t), yyy(t). Consider now xxx∗(t) given by

x∗
1(t) = 9.0018 cos(t)− 4.998 sin(t),

x∗
2(t) = 0.0001 cos(3t) + 1.002 sin(3t) + 15.0014 cos(2t) + 0.00009 sin(2t)

−0.9995 cos(t)− 7.9988 sin(t),

x∗
3(t) = 0.0009 cos(4t)− 1.999 sin(4t) + 0.999 cos(3t) + 0.0009 sin(3t) + 0.0009 cos(2t)

−0.0002 sin(2t) + 0.0005 cos(t)− 0.001 sin(t).

and yyy∗(t) given by

y∗
1(t) = 0.0009 cos(4t) + 6.0021 sin(4t)− 2.9982 cos(3t) + 5.0022 sin(3t)

+75.0014 cos(2t)− 0.00005 sin(2t)− 58.9981 cos(t)− 9.9979 sin(t) + 1.0015,

y∗
2(t) = 0.0017 cos(4t)− 7.9984 sin(4t) + 4.0008 cos(3t) + 0.0014 sin(3t)

+0.0003 cos(2t) + 0.0016 sin(2t)− 9.00006 cos(t) + 5.0005 sin(t),

y∗
3(t) = −0.00003 cos(3t)− 1.9999 sin(3t)− 29.9982 cos(2t) + 0.0015 sin(2t)

+11.0006 cos(t) + 11.0021 sin(t) + 0.9999.

For ϕ(z) = kz, applying Algorithm 1 we get the 8 polynomial equations
in k of degree 8. Thus, we get a system as in Eq. (26) where M ∈ M8×9.
The smallest singular value is, approximately, 8.6235 · 10−4, and the remaining
singular values are not close to zero.

Hence, writing M = U · S · V ∗, the eighth column of V is a good candidate
to be the multiple of a solution. From here, we get k = 0.999798 + 0.000032i,
which gives rise to f̃(x) = Ãx + b̃, where

Ã ≈

 −5.9895− 0.0099i 4.9987 + 0.0194i −3.0013− 0.0137i

−1.0004− 0.0052i 0.00501 + 0.0016i 3.9994 + 0.0169i

0.9967 + 0.0022i −2.00002− 0.0067i 0

 ,

b̃ ≈

 1.0014889643716584632926469566883
0

0.99994267059320696144908424685127

 .

The relative errors are
‖b− b̃‖
‖b‖

≈ 0.00083 and
‖A− Ã‖2
‖A‖2

≈ 0.00063, where

‖ · ‖ is the Euclidean norm of vectors and ‖ · ‖2 is the spectral norm (the largest
singular value) of matrices.
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With ϕ(z) =
k

z
, the smallest singular value is 1.2876. In this case, we

conclude that there is no approximate solution.

We have implemented the method described above with the help of the com-
puter algebra systems MATLAB R2019a and Maple 18. In Fig. 2 we show the
CPU time, in seconds, run in the machine of Example 1, for some representa-
tive examples of growing degrees. One can observe that for these data the cubic
polynomial p(x) = −0.0023x3 + 0.2094x2− 0.6193x+ 6.6161 fits very well, with
a coefficient of determination (R2) equal to 98.04 %.

Figure 2: CPU time versus degree

The features of some of the examples used in Fig. 2 are provided in Table
1. In all these examples we considered two curves C,D where D was the result
of applying to C the affine transformation f(x) = Ax + b, where

A =

 2 1/5 −3

−1 0 −4

3 5
√

3

 , b =

 3
1
−2

 ,

and introducing afterwards a perturbation of order 10−2. The transformation
computed by our method is denoted by f̃(x) = Ãx + b̃. In Table 1 we can see

the degree N of each example, and the values of
‖A− Ã‖2
‖A‖2

and
‖b− b̃‖
‖b‖

for

each example, where ‖ • ‖2 represents the 2-norm, which measure the relative
error in each case.
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Degree N
‖A− Ã‖2
‖A‖2

‖b− b̃‖
‖b‖

CPU time (secs.)

3 0.00065 0.00636 6.0837

5 0.00081 0.00921 8.6786

8 0.00209 0.00975 13.6119

9 0.00042 0.00624 15.0914

10 0.00019 0.00294 17.8637

12 0.00060 0.00789 25.4754

14 0.00018 0.00299 35.0920

15 0.00022 0.00287 40.9761

17 0.00063 0.00918 45.1100

20 0.00009 0.00173 65.1659

Table 1
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5. Conclusion.

In this paper we have presented algorithms, both exact and approximate,
to solve the affine equivalence problem for curves parametrized by truncated
Fourier series. In the exact case, the algorithm boils down to linear system
solving and univariate gcd computation, and is efficient and fast, with cubic
complexity in the degree of the curves. In the approximate case, univariate gcd
computation is replaced by the singular value decomposition of an appropriate
matrix; again, in this case the practical results are good.

One can wonder what the generalization could be for computing not affine
equivalence, but projective equivalence. We conjecture that two trigonometric
curves are projectively equivalent iff they are affinely equivalent, although a
proof for this fact seems elusive. An argument in favour of the conjecture
is the fact that while the affine mapping of a trigonometric curve is another
trigonometric curve, this is no longer true for a projective mapping. In the case
of projective transformations, one can also prove that a Möbius transformation
of the unit circle is also involved. However, we could not find a proof that this
transformation must be of the type kz or k/z; in fact, one can prove that if
this is the case, the projective transformation is an affinity. Thus, we leave this
question here as an open problem.
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[3] Alcázar J.G., Hermoso C., Muntingh G. (2015), Symmetry detection of
rational space curves from their curvature and torsion, Computer Aided
Geometric Design Vol. 33, pp. 51–65.

[4] Basu S., Pollack R., Roy M.F. (2003), Algorithms in real algebraic geometry,
Springer.

[5] Batselier K., Dreesen P., De Moor B. (2013), A geometrical approach to
finding multivariate approximate LCMs and GCDs, Linear Algebra and its
Applications, Vol. 438, Issue 9, pp. 3618-3628.

[6] Becker R., Sagraloff M., Sharma V., Yap C. (2018), A near-optimal sub-
division algorithm for complex root isolation based on the Pellet test and
Newton iteration, Journal of Symbolic Computation Vol. 86, pp. 51–96.

[7] Boutin M. (2000), Numerically Invariant Signature Curves, International
Journal of Computer Vision Vol. 40, pp. 235–248.

18



[8] Crimmins T. (1982), A complete set of Fourier descriptors for two-
dimensional shapes, IEE Transactions on Systems, Man and Cybernetics
Vol. 12, pp. 848–855.

[9] Dalitz C., Brandt C., Goebbels S., Kolanus D. (2013), Fourier descriptors
for broken shapes, Journal on Advances in Signal Processing Vol. 161.

[10] Feng S., Kogan I., Krim H. (2010), Classification of Curves in 2D and 3D
via Affine Integral Signatures, Acta Applicandae Mathematicae Vol. 109,
pp. 903–937.
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