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A B S T R A C T   

Machine learning (ML) models provide fast and accurate predictions of material properties at a low computa-
tional cost. Herein, the mechanical properties of multiscale poly(3-hydroxybutyrate) (P3HB)-based nano-
composites reinforced with different concentrations of multiwalled carbon nanotubes (MWCNTs), WS2 
nanosheets and sepiolite (SEP) nanoclay have been predicted. The nanocomposites were prepared via solution 
casting. SEM images revealed that the three nanofillers were homogenously and randomly dispersed into the 
matrix. A synergistic reinforcement effect was attained, resulting in an unprecedented stiffness improvement of 
132% upon addition of 1:2:2 wt% SEP:MWCNTs:WS2. Conversely, the increments in strength were only mod-
erates (up to 13.4%). A beneficial effect in the matrix ductility was also found due to the presence of both 
nanofillers. Four ML approaches, Recurrent Neural Network (RNN), RNN with Levenberg’s algorithm (RNN-LV), 
decision tree (DT) and Random Forest (RF), were applied. The correlation coefficient (R2), mean absolute error 
(MAE) and mean square error (MSE) were used as statistical indicators to compare their performance. The best- 
performing model for the Young’s modulus was RNN-LV with 3 hidden layers and 50 neurons in each layer, 
while for the tensile strength was the RF model using a combination of 100 estimators and a maximum depth of 
100. An RNN model with 3 hidden layers was the most suitable to predict the elongation at break and impact 
strength, with 90 and 50 neurons in each layer, respectively. The highest correlation (R2 of 1 and 0.9203 for the 
training and test set, respectively) and the smallest errors (MSE of 0.13 and MAE of 0.31) were obtained for the 
prediction of the elongation at break. The developed models represent a powerful tool for the optimization of the 
mechanical properties in multiscale hybrid polymer nanocomposites, saving time and resources in the experi-
mental characterization process.   

1. Introduction 

Artificial Intelligence (AI) is one of the branches of computer science 
that has aroused most interest today, due to its potential application in 
numerous and diverse fields [1]. AI as a field of study, has its roots in the 
pioneering work of British mathematician Alan Turing in the 1950 [2]. 
Turing is best known for his influential paper entitled “Computing Ma-
chinery and Intelligence” published in 1950. In this article, Turing 
proposed the famous Turing Test, a test designed to assess the ability of a 
machine to exhibit intelligent behavior like or indistinguishable from 
human behaviour [3]. There are two main categories within AI, strong 
AI, and weak AI [4]. The former is an advanced form of AI regarded as 

conscious and intentional in a similar way to humans. This type of AI 
would be able to reason, have emotions and maintain self-perception 
[5]. However, so far, the existence of a fully developed strong AI is in 
the realm of speculation and has not yet been achieved. Weak AI, on the 
other hand, lacks consciousness and intentionality. It is designed to 
perform specific and limited tasks, based on predefined algorithms and 
rules. Although weak AI can be highly efficient and outperform humans 
in specific tasks, it lacks true understanding and awareness of its actions 
[6]. Both types of AI have important applications in various fields and 
are the subject of research and development. 

AI is constantly evolving and integrating more and more new de-
velopments. Machine Learning (ML) is one of the types of AI that is 
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currently on the rise. It allows machines to learn and improve auto-
matically through experience and data [7], and includes three main 
subtypes, as depicted in Fig. 1: a) Supervised Learning: The algorithm 
learns from labelled examples, where it is provided with a training data 
set with desired inputs and outputs. It can then be used to predict the 
outputs on new data. Two common techniques are regression and clas-
sification. b) Unsupervised Learning: The algorithm learns from unla-
beled data and looks for hidden patterns or structures in it. No desired 
outputs are provided, and the algorithm must discover for itself the re-
lationships and groupings in the data. Two prominent techniques are 
clustering and reduction [8]. c) Reinforcement Learning: This is a 
combination of supervised and unsupervised machine learning. The al-
gorithm learns through interaction with an environment. It is provided 
with feedback in the form of rewards or punishments based on its ac-
tions. The goal is to maximize the cumulative reward over time. 

ML can be used at various stages of the development and charac-
terization, from material design to property prediction. It contributes to 
the acceleration of the research and development process, as well as to 
the understanding and optimization of properties and processes related 
to polymer nanocomposites [8,9]. The use of ML to predict properties of 
polymer nanocomposites based on their composition and structure is a 
promising approach in materials science. Composition refers to the 
proportion and type of components present, such as the base polymer 
and nanomaterials. Structure refers to the organization and distribution 
of these components, as well as the morphological characteristics at 
different scales. Training ML models from data sets learns the relation-
ships between the composition, structure and properties of polymer 
nanocomposites. These datasets can include information on different 
combinations of polymers, nanomaterials, and associated properties 
[10,11]. By training ML algorithms with this data, different models can 
be developed that are able to accurately predict properties of new 
polymer nanocomposites. 

ML models can use different approaches, such as regression, classi-
fication, or deep learning, depending on the nature and the complexity 
of the data. These models can be used to predict mechanical, thermal, 
optical, electrical, or other properties, depending on the specific 
composition and structure of the polymer nanocomposite [12]. For 
instance, Özkan et al. [13] implemented artificial neural network 
(ANN), random forest (RF) and multiple linear regression (MLR) 

methods to predict mechanical properties of three-component nano-
composite films. They used mechanical properties of two-component 
nanocomposite films as input to the prediction system. The study 
showed that ANN had the best accuracy, closely followed by RF, while 
MLR had the lowest accuracy. Sahu et al. [14] explored the mechanical 
properties of high-density polyethylene (HDPE)-based nanodiamond 
nanocomposites using an ANN. The developed model predicted the 
Young’s modulus and hardness of the nanocomposite with a correlation 
coefficient higher than 0.99, indicating high accuracy in the predictions. 
Natrayan et al. [15] used an ANN for the prediction of the flexural 
strength and laminar shear strength of epoxy-based nanocomposites 
reinforced with graphene. They used a feed-forward training algorithm 
and were able to generate forecasts with a reliability rate of 95% and an 
absolute error rate of less than 1%. These results suggest that ANN is 
effective for estimating mechanical properties of polymeric nano-
composites. Khan et al. [16] used advanced machine learning ap-
proaches, such as ANN, to predict the effect of haloisite clay composition 
and temperature on the mechanical properties of polymer clay nano-
composites (PCNs). The ANN model developed showed an average 
relative error of 0.0701, indicating good prediction accuracy. This pre-
diction approach can reduce the need for numerous laboratory tests to 
develop PCNs with the desired properties. In another study by Adel et al. 
[17], the compressive and flexural strength of carbon nanotube 
(CNT)-reinforced cementitious nanocomposites were described using 
various machine learning techniques, including decision tree (DT). For 
compressive strength, this model was able to explain 98.2% of the 
variability in the training data and performed well in predicting new 
data with 86.9% accuracy. On the other hand, for bending strength, the 
model was able to explain 92.7% of the variability in the training data 
and performed acceptably in predicting new data with 78.2% accuracy. 
The abovementioned studies hint that ML methods, such as ANN, DT 
and RF, can be effective in predicting the mechanical properties of 
nanocomposites. However, studies on this topic are still scarce, and to 
the best of our knowledge, no previous work on the prediction of the 
mechanical properties of multiscale hybrid polymeric nanocomposites 
has been reported to date. 

Polyhydroxyalkanoates (PHAs) are biopolyesters, stored within cells 
as energy storage materials by various microorganisms. Owed to their 
biocompatibility and biodegradability, PHAs have a wide range of 

Fig. 1. Main types of Machine Learning: Supervised, Unsupervised and Reinforcement Learning and their most common techniques.  
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applications in food packaging [18] and the biomedical sector including 
tissue engineering, bio-implant patches, drug delivery, surgery and 
wound dressing. PHAs are green plastics and have positive social and 
environmental impact when compared with conventional plastics in 
terms of production and recycling [19]. The simplest and most investi-
gated PAH is poly(3-hydroxybutyrate) (P3HB), that possess properties 
comparable to those of conventional synthetic plastics like poly-
propylene (PP). However, PHB presents several weaknesses including 
low impact resistance, poor thermal stability and high water vapor 
permeability [20]. To address these problems, it can be reinforced with 
nanomaterials such as multiwalled-carbon nanotubes (MWCNTs) and 
inorganic nanoclays or nanoparticles [21,22]. 

Carbon nanotubes (CNTs) are an allotrope of carbon with a 1D 
nanotubular structure that can be classified as single-walled, double- 
walled, and multi-walled (SWCNT, DWCTN and MWCNT, respectively). 
The electrical conductivity of CNTs ranges from metallic to semi-
conducting based on the diameter and the rolling angle, which also 
impart chirality in the tubes. CNTs have excellent chemical, mechanical, 
and electronic properties that make them promising for various appli-
cations [23,24]. Both noncovalent and covalent functionalization of 
CNTs with aromatic molecules and π-conjugated polymers have been 
extensively investigated [25–27]. These modifications improve their 
dispersion and solution processability, rendering them suitable for de-
vice applications. 

On the other hand, nanoclays are nanoparticles of layered mineral 
silicates that possess outstanding mechanical properties. They provide 
composites with improved properties owed to their stability, swelling 
capacity, interlayer spacing, elevated hydration and high chemical 
reactivity. One of the most used is sepiolite (SEP), a one-dimensional 
fibrous silicate mineral with octahedral sheets in a continuous 
arrangement and an ideal formula of Mg8Si12O30(OH)4(OH2)4⋅8H2O 
[28]. SEP has a very high specific surface area (about 200 ~ 300 m2/g), 
and has been extensively used as reinforcement to improve the me-
chanical properties of polymer matrices [29]. 

2D Transition Metal Dichalcogenides (TMDCs) incorporating tran-
sition metals such as Ti, Mo, W etc. crystallize into layered structure, 
thereby offering diverse material properties from that of an insulator to a 
metal. The strong intra-layer covalent bond between the chalcogenides 
and weak inter-layer Van der Waal attraction between the layers facil-
itates the transition of these materials from 3D to 2D, analogous to 
graphene [30]. Among the semiconducting TMDCs, WS2 has brought a 
lot of attention owing to unique features such as higher stability and 
wider operational temperature. They have also been widely used as 
reinforcement of polymeric matrices, giving significantly enhanced 
properties, with an effect comparable to that of graphene or CNTs [31, 
32]. 

To further improve the properties of polymeric materials, different 
nanofillers can be incorporated. Hybridization involving the combina-
tion of two or more nanofillers in a polymer matrix results in reduction 
of water absorption properties and improved mechanical properties due 
to synergistic effects. For instance, P3HB/graphene/carbon nanofiber 
hybrids have already been developed as sustainable materials with 
enhanced mechanical properties [21]. In the present study, multiscale 
hybrid nanocomposites based on a P3HB matrix incorporating different 
amounts of MWCNTs, SEP and WS2 nanosheets have been developed by 
an easy, cheap, and ecological solvent casting method to enhance the 
mechanical properties of P3HB matrix. By tuning the percentages of 
both nanofillers, the stiffness and strength can be carefully tailored to 
attain specific mechanical properties for targeted applications. Further, 
three ML-based algorithms (RNN, DT and RF) have been applied to 
predict their mechanical properties. The basis of the models are 
described in detail in the next section, and their minimum squared errors 
(MSE), mean absolute errors (MAE) and coefficient of determination 
(R2) are compared to determine the optimum model for each of the 
studied properties. 

2. Methodology 

In this study, three types of regression models have been selected to 
predict the mechanical properties of the hybrid nanocomposites: RNN, 
DT and RF. These models are widely used in scientific research due to 
their ability to capture non-linear relationships between input and 
output variables, their flexibility, their high predictive accuracy, and 
their ability to learn complex patterns in the data. The main charac-
teristics of each model are detailed below. 

2.1. Artificial neural network (ANN) 

ANN is a type of computational model inspired by the structure and 
functioning of the human brain, with the purpose of establishing the 
underlying relationships in a data set [33]. A set of interconnected 
nodes, called artificial neurons, are constructed, and organized into 
layers that process information. Layers are structured in three types: the 
input layer, the output layer and one or more hidden layers. Each neuron 
has an activation function that introduces non-linearity into the model. 
Neurons in the input layer receive input data, those in the hidden layers 
perform computations and transformations, and those in the output 
layer generate the final outputs of the network [34,35]. The neurons are 
connected via weighted connections, which determine the relative 
importance of the corresponding input in calculating the output of a 
unit. These weights are adjusted during the training process to optimize 
the performance and predictions of the network [35,36]. The basic 
structure of a neural network can vary depending on the problem and 
the specific architecture used [37]. Some of the most common structures 
are: a) Perceptron, which consists of a single hidden layer of units, where 
each neuron is connected to the input layer and produces an output 
based on an activation function. It is suitable for linearly separable bi-
nary classification problems [38]. b) Neuronal networks Feedforward 
[39], also known as multilayer neural networks, wherein information 
flows in a single direction, from the input layer to the output layer, 
without cycles. They are suitable for complex classification and regres-
sion problems and can learn feature representations. c) Convolutional 
neural networks (CNN), which use convolutional layers to extract spatial 
features and reduce the dimensionality of the data. They are very 
powerful in image recognition and classification [40]. d) Recurrent 
Neural Networks (RNNs), which have recurrent connections, meaning 
that outputs from a layer can feed back to themselves or to previous 
layers, allowing previous layers to benefit from information generated in 
later layers and to hold such information over time. RNNs are highly 
suitable for processing sequence and time series data, such as text and 
audio [41]. 

In this study, input data representing the amount of each filler 
incorporated into the composite, and output data corresponding to the 
specific mechanical properties have been used. Each system is composed 
of three input variables, which are related to the weight percentage of 
each nanofiller (MWCNT, SEP and WS 2), and one output variable rep-
resenting a mechanical property, such as Young’s modulus, tensile 
strength, elongation at break, or impact strength. These mechanical 
properties have been studied in independent networks. The aim is to use 
ML to establish relationships and predict the mechanical properties of 
polymer nanocomposites as a function of their chemical composition. 

Two optimization techniques in the RNN are compared: optimization 
by stochastic gradient descent and the Levenberg-Marquard optimiza-
tion algorithm [42,43]. The former utilizes a standard backpropagation 
technique to compute the gradients and adjust the network parameters 
during the training process, whereas the Levenberg-Marquardg algo-
rithm (RNN-LV) employs the Gauss-Newton technique to minimize the 
error of the objective function, often used in nonlinear regression 
problems. It is important to note that, in this case, backpropagation is 
still an integral part of the process, as it is used to calculate the local 
gradients needed for the Levenberg-Marquardt algorithm. The main 
objective of this comparison is to evaluate the performance of each of 
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these approaches in terms of accuracy and training efficiency to predict 
the properties under study. This will allow us to determine which of the 
training methods best suits the objectives of our research and provide a 
deeper understanding of how they influence the results obtained. 

The network architecture used is a Feedforward neural network [44], 
which makes predictions based on the chemical composition of the 
nanocomposites. In this study, the neural network consists of an input 
layer with three neurons, which represent the three input variables, 
hidden layers whose number can vary depending on the problem being 
addressed, and finally an output layer with a single neuron for the 
output variable. The hidden layer uses the ReLU activation function, 
which is a non-linear function commonly used in ANN [45]. As for the 
parameters of the training algorithm, an initial learning rate of 0.01 for 
RNN and 0.09 for RNN-LV and a maximum number of iterations of 1000 
have been set. These values can be adjusted according to the problem 
and the network architecture. The maximum number of iterations is set 
to avoid over-fitting the model and to control the length of the training 
process. It is important to correctly tune the model parameters, which 
may require a trial-and-error approach for each specific problem. 

The data is divided into training and test sets to evaluate the accu-
racy and performance of the model. To implement the neural network, 
the TensorFlow functional API is used, which allows building complex 
and flexible models for regression tasks. The model implementation has 
been carried out in Python v.3.9.6 using the Keras v.2.10.0 and Ten-
sorFlow v.2.10.0 libraries. These tools provide an efficient and powerful 
environment for developing and training neural networks effectively. 

2.2. Decision tree (DT) 

DTs are a type of machine learning models that make decisions by 
following a set of rules. In DTs, these questions are based on features or 
attributes of the data. Each node in the tree represents a question, and 
the branches are the possible answers to that question [46]. You keep 
going through the tree until you reach a leaf that contains the prediction 
or result (Fig. 2). These DTs are easy to understand and visualise, which 
makes them useful in classification and prediction problems [47]. 

In regression DTs, data are split according to characteristic values to 
predict a target-continuous variable [48]. The regression DT follows the 
same structure as a conventional decision tree, where each internal node 
represents a feature, and each branch represents a possible choice or 
value of that feature. 

The construction of a regression DT involves selecting the best 
feature and the best split point to minimize the variance of the values of 
the target variable within each resulting subset. The goal is to obtain 
partitions that reduce variability and are as close as possible to the 
actual values of the target variable. Once the regression DT is con-
structed, it can be used to make predictions on new data instances. 
Following the decision paths based on the input features, one arrives at a 

sheet containing the predicted value for the target variable [49]. 
Hyperparameters are adjustable settings that control the behavior 

and structure of the tree during the training process. Among the most 
common are: a) Maximum tree depth, which controls the maximum 
number of splits the tree can have. Greater depth allows more complex 
relationships to be captured but may increase the risk of overfitting. b) 
Criterion, which specifies the metric used to measure the quality of a 
split in the tree nodes. The most common criterion is the mean squared 
error (MSE), which measures the discrepancy between predictions and 
actual values c) Partitioning criterion, which refers to the strategy used 
to choose how to split the nodes in a decision tree. d) Minimum samples 
to split, which indicates the minimum number of samples needed at a 
node for a split to be performed. e) Minimum samples per leaf, which 
establishes the minimum number of examples required for a node to be 
considered a leaf, i.e., a terminal in the decision tree. f) Maximum leaf 
nodes, which determine the maximum limit of leaf nodes that a decision 
tree can have. g) Maximum features, which represents the maximum 
number of prediction variables that are considered when performing a 
split at each node in the DT [50]. Hyperparameters are set prior to the 
training process and affect the structure and behavior of the tree [51]. It 
is important to properly tune the hyperparameters to optimize the per-
formance of a regression DT. 

2.3. Random forest (RF) 

It is an ensemble technique that combines the simplicity and inter-
pretability of DTs with the power of combining multiple models [52,53]. 
A set of independent DTs is constructed using different subsets of 
training data and random features [54]. Each tree is trained individu-
ally, dividing the data according to specific characteristics and creating 
a set of rules to make predictions (Fig. 3). 

When a prediction is made with the RF, each tree issues its own 
prediction and either takes most of the votes or averages the result, 
depending on whether it is a classification or regression problem, 
respectively. The key idea behind RFs is that by combining multiple TDs, 
bias and variance are reduced, which can improve the accuracy and 
generalizability of the model [52]. In addition, RFs have the advantage 
of being able to handle large datasets and correlated features. The most 
common hyperparameters in these algorithms are: a) n estimators, 
which indicates the number of decision trees to be used in the model 
assembly. b) minimum samples to split, which sets the minimum num-
ber of samples required for a node to be split during the construction of 
each decision tree. c) maximum tree depth, which sets the maximum 
depth allowed for each decision tree in the assembly. It refers to the 
maximum path length from the root to a leaf. d) Bootstrap, which de-
termines whether Bootstrap sampling is used when constructing the 
decision trees in the assembly. e) Warm start, which indicates whether to 
use the previously fitted trees in the model when refitting the estimator. 

Fig. 2. Representation of the regression decision tree model: Visualising decision making.  
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For both DT and RF, it is necessary to adjust the hyperparameters of 
the model to obtain optimal performance. Here is where search tech-
niques such as GridSearchCV and RandomSearchCV come into play 
[55]. These techniques are used to explore the hyperparameter space 
and find the optimal combination that maximizes model performance. 
GridSearchCV performs an exhaustive search in a predefined hyper-
parameter space. A grid of possible values is specified for each hyper-
parameter, and the performance of the model is evaluated for each 
combination. The former performs a cross validation on all possible 
combinations and returns the configuration with the best performance 
[56], while the other randomly selects a given set of combinations and 
evaluates their performance [57]. By randomly exploring the hyper-
parameter space, it is possible to find optimal configurations more 
efficiently [58], especially when the search space is large. Both search 
techniques allow to systematically explore the hyperparameter space of 
the regression DT and find the optimal combination that maximizes the 
model performance, thereby improving its predictive capability. Both 
DT and RF were implemented using the Python V.3.9.6 programming 
language and the Scikit-learn v.0.23.2 library. 

The mean absolute error (MAE), the mean square error (MSE), and 
the coefficient of determination (R2) were the statistical indicators used 
to assess the performance of the developed models. MSE is calculated as 
the mean of the squares of the differences between the predicted values 
and the actual values. It is defined as follows: 

MSE =
1
n
∑

(y′ − y)2  

where y’ is the predicted value, y is the corresponding value and n is the 
total number of samples in the data set. 

MSE penalizes large errors more than small errors due to the 
squaring operation, which can make the model more sensitive to outliers 
or grossly erroneous predictions. 

MAE is calculated as the average of the absolute differences between 
the predicted and actual values: 

MAE =
1
n
∑

|y′ − y|

MAE is less sensitive to outliers than MSE as it uses absolute values 
instead of squares. However, by not squaring errors, MAE may under-
estimate the impact of large errors. 

R2, is the proportion of the variation in the dependent variable that is 
predictable from the independent variable(s), and is calculated as: 

R2 =

⎛

⎜
⎝

n(
∑

yy′) − (
∑

y)(
∑

y′)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
n
∑

y2 − (
∑

y)2][n
∑

y′2 − (
∑

y′)2]
√

⎞

⎟
⎠

2  

R2 is a measure of goodness of fit that is commonly used to assess the 
accuracy of ML models. It represents the degree of correlation between 
the model prediction and the target values. The accuracy of a model 
improves as R2 approaches to 1.0. 

3. Experimental 

3.1. Materials 

Poly(3-hydroxybutyrate) (P3HB) with a MW ~ 80.000 g/moL; Tg ~ 
20 ◦C, Tm ~ 175 ◦C, d25 ◦C = 1.25 g/cm3 was purchased from Biomer Ltd. 
(Krailling, Germany) and dried in an oven at 80 ◦C overnight before use. 
Multiwalled carbon nanotubes (MWCNTs) were provided by Nanothinx 
(Rio Patras, Greece). Their outer average diameter was 20–40 nm, and 
length ranged between 0.5 and 2 μm, with a purity of 97%. WS2 nano-
sheets prepared by lithium intercalation were obtained from XFNANO 
Materials Tech Co., Ltd. (Nanjing, China). Sepiolite powder 
Mg2H2(SiO3)3.xH2O (95%, 220–270 m2/g) was provided by Sigma- 
Aldrich (Madrid, Spain). All chemicals and solvents were used as 
received. 

3.2. Nanocomposite preparation 

The nanocomposites were synthesized via solution casting, following 
a multi-step process, as depicted in Scheme 1. Initially, the necessary 
amount of MWCNTs were dispersed in chloroform via bath sonication 
for 20 min. Separately, the required amount of montmorillonite powder 
was dispersed in water by sonication for 10 min and then added to the 
MWCNT dispersion, which was sonicated for another 60 min. Then, the 
bulk WS2 nanosheets were added and sonicated once again for 30 min to 
attain an exfoliated mixture with few layered WS2 nanosheets. Sepa-
rately, the PHB powder was dissolved in chloroform at 60 ◦C and then 
added to the MWCNT/nanoclay/WS2 dispersion and the mixture was 
then sonicated for another 60 min at 25 ◦C. The hybrid mixture was then 
cast onto a glass Petri dish and finally dried under vacuum for 48 h. A 
schematic representation of the synthesis process and the potential in-
teractions among the nanocomposite components is shown in Scheme 1. 

Fig. 3. Representation of the Random Forest: an ensemble learning approach.  
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3.3. Characterization techniques 

All the samples were conditioned for 24 h before the measurements. 
Tensile tests were carried out following the ASTM D 638-03 standard on 
a servo-hydraulic testing machine (858 Mini Bionix, MTS Systems Cor-
poration, MN, US) at a crosshead speed of 1 mm/min and a load cell of 
100 kN, under 23 ◦C and 50% RH. 

Charpy impact strength tests were carried out according to the ASTM 
D 6110-10 standard under the same environmental conditions on a 
CEAST Fractovis dart impact tester (Instron, MA, US). Notched specimen 
bars and a hammer mass with an energy of 7.10 J were used. Five 
specimens for each type of nanocomposite were measured to check for 
repeatability, and average value is reported. 

The surface morphology of the nanocomposites was examined by 

scanning electron microscopy (SEM) using a scanning electron micro-
scope (Zeiss, SIGMA VP-500, Germany), at an acceleration voltage of 25 
kV. Samples were first cryo-fractured and then sputtered with a gold 
layer under vacuum to avoid charging during electron irradiation. 

4. Results and discussion 

4.1. Surface morphology of PHB/MWCNT/nanoclay/WS2 composites 

The morphology of the hybrid PHB-based nanocomposites was 
investigated by SEM, and typical images at different magnifications of 
the cross section of the sample with 2 wt% MWCNT, 1 wt% nanoclay and 
2 wt% WS2 are shown in Fig. 4. Similar micrographs were observed for 
the other hybrid composites. The nanocomposites show a 3D structure 

Scheme 1. Representation of the synthesis of the nanocomposites and the interactions between them.  

Fig. 4. SEM images from fractured surfaces of PHB/MWCNT(2 wt%)/nanoclay (1 wt%)/WS2 (2 wt%) nanocomposite at different magnifications. The red, blue and 
green arrows point towards the MWCNT, the nanoclay and the WS2, respectively. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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made of wrinkled WS2 nanoflakes, curled MWCNTs and sepiolite 
nanofibers embedded into the continuous semicrystalline phase of PHB. 
The three nanomaterials appear intercalated. The nanoclay fibers are 
commonly forming aggregates of tangled fibers with diameters in the 
range of 150–300 nm. On the other hand, WS2 nanosheets stacked 
compactly in the form of irregular plates can be observed, which are 
uniformly decorating the surface of sepiolite nanofibers and the 
MWCNTs, leading to a compact flower-like structure. The presence of 
sepiolite reduces the agglomeration of the WS2 nanosheet, leading to 
well exfoliated flakes with thicknesses in the range of 10–50 nm. 

In the images at lower magnification, the three nanofillers are found 
to be homogenously and randomly dispersed into the matrix, forming a 
dense and entangled network, like due to the hydrogen bonding in-
teractions between the three nanocomposite components (see Scheme 
1). Further, other interactions such as polar and hydrophobic can 
contribute to the formation of a reinforcement network strongly adhered 
to the matrix. 

4.2. Experimental mechanical properties of the nanocomposites 

Table 1 gathers the results of the tensile and Charpy notched impact 
strength tests while Fig. 5 plots the data as a function of the total 
nanofiller loading. 

The pure polymer has a stiffness of approximately 3.7 GPa (Young’s 
modulus, E). However, upon addition of 5 wt% nanofiller loading, such 
as SEP, MWCNT or WS2, the stiffness increases by about 80%, 100% and 
68% respectively (Fig. 5A). Proper dispersion of nanofillers in the 
polymer matrix is crucial to achieve a significant stiffening effect. In this 
case, the uniform dispersion of the nanoclay, CNT or WS2 in the polymer 
allows for efficient load transfer and reinforcement of the structure. As a 
result, a highly effective reinforcement effect is obtained in the binary 
nanocomposites, which is reflected in a linear increase of the stiffness 
within the range of nanofiller concentration studied. The improvements 

in mechanical properties found in this study are considerably larger than 
those previously reported for nanocomposites made of PHBV and 
organomodified nanoclay [59] or MWCNTs fabricated by the melt 
blending technique. This significant difference could be attributed to the 
partial degradation of the polymer that occurs during the fabrication 
process. It is worthy to note that for the same nanofiller loading, the 
strongest reinforcement effect is systematically attained for 1D MWCNTs 
compared to 1D fibrous SEP or 2D WS2 nanosheets. Given that both SEP 
and MWCNTs have fiber-like shape, the more effective reinforcement is 
attributed to the stronger E of MWCNTs [60] (i.e. 300–950 GPa) 
compared to that of SEP or WS2 (250 GPa) [61]. It is noticeable that the 
reinforcement effect of SEP is also ascribed to the formation of H-bonds 
between the surface silanol groups of the nanoclay and the ester groups 
of the matrix (Scheme 1). This combined with polar interactions leads to 
a more compact structure, thus restricting the movement of the poly-
meric chains, which in turn is reflected in enhanced rigidity, in agree-
ment with results reported previously for SEP-reinforced (alkyl) 
methacrylate-based composites [62]. 

Regarding the ternary nanocomposites, a significant increase in 
modulus can also be observed (Fig. 5A), clearly higher than that of the 
binary samples for the same total nanofiller loading. The strongest rise 
(~92%) is detected upon addition of 1 wt% SEP and 4 wt% MWCNTs. 
This extraordinary increase is again attributed to the high modulus of 
MWCNTs and their homogeneous dispersion within the matrix. Similar 
trend, even more pronounced is found in the quaternary nano-
composites (Table 4). Thus, the addition of 1 wt% of each nanofillers 
results in about 45% rise in stiffness. More importantly, upon addition of 
1:2:2 wt% SEP:MWCNTs:WS2, an increase of 132% is found, and the 
strongest increase (154%) is attained upon addition of 2:2:1 wt% of the 
indicated nanofillers. This suggests again the stronger reinforcement of 
fibrous 1D nanomaterials, irrespective of their nature, highlighting the 
significant contribution of CNTs in improving the mechanical properties 
of the matrix. Besides, this indicates a synergistic effect of the three 

Table 1 
Relationship between Mechanical Properties and Nanofiller Concentration in PHB/MWCNT/nanoclay/WS2 multiscale nanocomposites.  

Sample %Nanoclay %CNT %WS2 Young Modulus (Gpa) Tensile Strength (MPa) Strain at break (%) Impact strength (J m− 1) 

1 0 0 0 3.71 38.46 5.78 40.94 
2 1 0 0 4.29 39.67 5.25 44.34 
3 2 0 0 5.18 40.06 3.96 30.13 
4 3 0 0 5.99 40.25 3.48 26.83 
5 5 0 0 6.66 39.97 2.88 19.76 
6 0 1 0 4.13 38.72 5.47 39.03 
7 0 2 0 5.39 38.96 5.12 35.96 
8 0 3 0 6.48 37.11 3.89 28.65 
9 0 5 0 7.43 35.44 2.76 21.74 
10 0 0 1 4.06 38.72 5.22 37.26 
11 0 0 2 4.97 40.01 3.84 28.43 
12 0 0 3 5.76 40.11 3.51 25.83 
13 0 0 5 6.24 39.66 2.97 21.97 
14 1 1 0 4.72 39.89 4.16 30.11 
15 1 2 0 6.23 40.07 3.78 27.88 
16 1 4 0 7.11 37.76 3.16 22.13 
17 0 1 1 4.93 39.95 4.02 29.89 
18 0 1 2 5.98 39.86 3.98 29.41 
19 0 1 4 6.55 38.34 3.49 24.67 
20 1 0 1 4.45 40.19 5.66 42.05 
21 1 0 2 5.37 41.31 5.33 41.51 
22 1 0 4 6.28 41.12 4.99 37.98 
23 2 1 0 6.12 39.13 3.56 25.69 
24 4 1 0 6.79 38.78 3.89 25.17 
25 2 0 1 5.56 40.36 5.03 37.34 
26 4 0 1 6.09 41.34 4.88 37.15 
27 1 1 1 5.38 39.17 3.16 21.56 
28 2 1 1 7.23 36.84 2.43 17.86 
29 1 2 1 7.77 40.56 2.71 20 
30 1 1 2 6.82 37.65 2.81 19.66 
31 2 2 1 9.44 43.62 2.33 19.29 
32 2 1 2 8.36 38.01 2.22 15.55 
33 1 2 2 8.63 42.15 2.47 20.03  
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nanofillers, resulting in an unprecedented stiffness improvement. Thus, 
the combination of the three nanofillers has a positive and additive ef-
fect on enhancing the elastic modulus of the nanocomposite. 

Focusing on the tensile strength, the trend observed is similar to that 
described above, although the improvements are significantly smaller. 
Thus, the largest rise (13.4%) is again found for the nanocomposite with 
2:2:1 wt% of SEP:MWCNTs:WS2. The smaller strength enhancement 
compared to the modulus could also be related to the lower strength of 
the nanofillers (i.e. 10–60 GPa for MWCNTs [60], 3–7 GPa for WS2 [61], 
and 100–500 MPa for SEP). Further, the orientation and state of 
dispersion of the nanofillers have been reported to influence more the 
composite stiffness than the strength. However, different results were 
reported for multiscale epoxy nanocomposites filled with graphene and 
amine-functionalized MWCNTs, in which the increase in tensile strength 
(52%) was about double that of the modulus. The high strengthening 
efficiency found in that work was attributed to a synergistic behavior of 
both carbon nanomaterials well dispersed and embedded within the 
matrix [63]. This suggests that the main role of the nanofillers is a 
strengthening of the fiber-matrix interface rather than reinforcing the 
matrix itself. An opposite behavior is observed for the impact strength 
(Fig. 5b) and strain at break (Fig. 5c), that drop with increasing nano-
filler loading. This is the expected trend since the nanofillers restrict the 
ductile flow of the polymeric chains [17]. In addition, they can limit the 
shear deformation of the matrix, thus reducing the ductility. Interest-
ingly, for the same total nanofiller loading, the reduction in ductility 
found in the ternary nanocomposites is less pronounced than for the 

binary ones (Fig. 5c), indicating also a beneficial effect due to the 
presence of both nanofillers. Similar trend has been previously reported 
for nanocomposites reinforced with SWCNTs and WS2 [31]. The pres-
ence of both nanofillers could reduce the stress concentrations at the 
nanofiller-matrix interface, hence resulting in better ductility than in the 
binary composites. The highest impact strength is attained with 1 wt% 
SEP, suggesting that the fibrous clays can effectively reduce crack 
propagation. On the other hand, the impact strength is approximately 
preserved for ternary composites with SEP and WS2. It has been shown 
that numerous factors govern the impact strength of multiscale rein-
forced composites [63], including a lessening effect of the fillers due to a 
decrease in the elongation at break and stress concentrations formed 
around the filler ends. The impact strength is also dependent on the size, 
orientation and interfacial adhesion with the matrix. A beneficial effect 
is that the fillers decrease crack propagation and increase impact 
strength by energy dissipating mechanisms. The combination of fibrous 
clay and layered WS2 seems to be the more effective for hindering the 
growth of cracks. 

4.3. Mechanical properties predicted using ML regression models 

In this research, four different models, namely RNN, RNN-LV, DT and 
RF were applied to predict the mechanical properties of nano-
composites. These models were selected for their ability to handle non- 
linear data, generalize, identify patterns, and improve the accuracy of 
predictions. 

Fig. 5. Experimental mechanical properties of PHB/MWCNT/nanoclay/WS2 nanocomposite as a function of total nanofiller loading. Comparison of binary and 
ternary nanocomposites. 

E. Champa-Bujaico et al.                                                                                                                                                                                                                      



Composites Part B 269 (2024) 111099

9

The available dataset was split 75% for training and 25% for testing. 
During the training stage, it is of crucial to find the best hyperparameter 
configuration. In the case of neural networks, these hyperparameters are 
predefined values selected before running the model and have a signif-
icant impact on its performance. 

The fundamental tuning parameters in RNN and RNN-LV are: the 
number of hidden layers, the number of neurons in each intermediate 
layer, the learning rate, the activation function and the optimization 
algorithm. The number of hidden layers or number of intermediate 
layers determines the depth of the network. The number of neurons in 
each layer impacts the complexity and learning capacity of the network 
at each level. The learning rate adjusts the rate at which the network 
updates the weights during the training process, affecting the speed of 
convergence and the stability of the training process. The activation 
function defines the mathematical function of the neuron output from 
the input, which provides nonlinearity to the network so that it can learn 
and model complex relationships. Finally, the optimizer is the algorithm 
used to adjust the weights of the network during training, progressively 
approaching the optimal weights that minimize the loss function. For 
both RNN and RNN-LV, the activation function used in each layer is 
ReLU, and the learning rate used is equal to 0.09. For the key hyper-
parameters, the first step is to set the optimal number of hidden layers, 
and then the performance of the network is evaluated by varying the 
number of neurons in these layers. DT and RF models typically have 
more hyperparameters to tune compared to RNNs. GridSearchCV and 
RandomizedCV were used to find the optimal hyperparameter settings 
and maximize model performance. These techniques explore various 
predefined combinations of values for the hyperparameters in the DT 
and RF models. The aim is to find the ideal combination of hyper-
parameters that improves the performance of both models. 

The choice of the optimal combination of hyperparameters is based 
on evaluation metrics for predictive models, accuracy being one of the 
most used. In the following sections, the coefficient of determination 
obtained for several hyperparameter configurations in the different 
models will be presented. These metrics will allow to identify which 
hyperparameter configuration provides the best performance in terms of 
accuracy for each model. 

4.3.1. Young’s modulus 

4.3.1.1. RNN. Fig. 6A and B shows the performance of an RNN as a 
function of the number of hidden layers and the number of neurons in 
each layer, respectively. R2 of the training data increases with increasing 
the number of hidden layers, Fig. 6A. This means that the model can fit 
better the training data and capture more complex patterns as hidden 

layers are added. However, in the case of the test data, R2 peaks when 
three hidden layers are used, indicating that the model achieves good 
generalizability by capturing patterns that apply not only to training 
data, but also to new data. Interestingly, when a fourth hidden layer is 
added, the RNN performance on test data decreases, suggesting that the 
model becomes too complex and begins to over-fit the training data, 
which hampers its generalizability.Once the optimal performance was 
set to three hidden layers, further analysis was performed on the number 
of neurons in those layers. Fig. 6B shows the change in R2 of the training 
and test data with the number of neurons. Despite no clear trend is 
observed, the best performance is attained when 90 neurons are used in 
each of the three hidden layers, leading to a training and test R2 of 1 and 
0.9564, respectively. Additional neurons beyond this optimal point can 
lead to over-fitting and deterioration in the generalization ability of the 
model. Instead of capturing more relevant patterns, the model may be 
overfit to details and noise present in the training data, resulting in 
worse performance on unseen data. It is important to note that R2 values 
obtained herein are comparable or even higher than those reported by 
Ho et al. [64] for the prediction of E of polymer/carbon nanotube 
nanocomposites using an RNN model (0.986 and 0.978 for the training 
and testing sets, respectively). They are also better than those reported 
for low density polyethylene (LLDPE)/graphene nanocomposites [65], 
in which the highest R2 value for the training set was 0.933 when 13 
neurons were used in the hidden layer, and those found for ternary poly 
(ether ether ketone) PEEK/Ti/graphene nanocomposites, with R2 of this 
set equal to 0.96 [66] for 78 neurons. 

4.3.1.2. RNN-LV. In the case of an RNN-LV model, Fig. 7A, it is found 
that as the number of hidden layers in a neural network is changed, the 
performance of the training data remains almost constant and with high 
values. However, the performance on test data increases until the 
network has three hidden layers but decreases when a fourth layer is 
added. Therefore, a network with three hidden layers was selected. 
Fig. 7B analyses the effect of the number of neurons in these three 
hidden layers. The performance of the training data remains high and 
approximately constant as the number of neurons is increased. However, 
in the test data, a decrease in performance is noticed as the number of 
neurons in the hidden layers increases, ascribed to factors such as 
overfitting. Despite this overall decline, a sweet spot in network per-
formance is highlighted with 50 neurons in each of the three hidden 
layers. At this point, a balance is achieved between the model’s 
tunability and its generalizability, leading to a training and test R2 of 
0.9974 and 0.9710, respectively. The results obtained in this study are 
superior to those found in the study by Liu et al. [67], who used an 
RNN-LV to predict the Young’s modulus of graphene-reinforced 

Fig. 6. R2 of an RNN architecture for the prediction of the Young’s modulus as a function of: A) hidden layers and, B) number of neurons of those hidden layers in a 
functional API RNN. 
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aluminum nanocomposites, achieving a R2 coefficient of 0.951. 

4.3.1.3. DT. As mentioned earlier, to evaluate the performance of a DT- 
based regression model, two hyperparameter search techniques were 
used: GridSearchCV and RandomizedSearchCV. Before applying these 
techniques, the ranges of values for the common hyperparameters of the 
regression DTs were defined (Tables 2 and 3). 

The results of the DT using the two techniques are shown in Table 4, 
where all possible combinations of values of the specified hyper-
parameters are explored. In this case, the hyperparameters maximum 
depth and maximum leaf nodes have the strongest impact on the model 
performance. The values of minimum split samples, minimum leaf 
samples and maximum features were fixed at 2, 1 and “auto” respec-
tively. As the maximum tree depth increases, the performance on the 
training data improves. However, in the test data, the performance tends 
to decrease slightly as the tree depth increases. An optimal behavior is 
found for a maximum leaf node equal to 19 and values of maximum 
depth of 20 or 12, both in the training and test data. 

On the other hand, when using RandomizedSearchCV, the extreme 
values of both the minimum and maximum for maximum leaf nodes 
show superior performance on both training and test data, indicating 
that a very low or very high number of this parameter leads to better 
results. Furthermore, R2 equal to 1 is obtained for the highest values of 
the tree depth, indicating that the deeper the DT, the more complex 
relationships in the data can be captured, hence improved algorithm 
performance. These results are consistent with the conclusions reported 
by Qi et al. [68] for carbon fiber reinforced plastics. In such study, a tree 
depth of 7 was selected as optimal for the prediction of E. When the tree 
was deeper, over-fitting was observed, while for smaller depths, the 
model was less precise in describing the details of the training set. 
Therefore, in order to obtain an appropriate algorithm, experiments 
should be carried out on model trees with multiple depths. 

On the other hand, the comparison of both techniques indicates that 
RandomizedSearchCV leads to slightly better performance on this spe-
cific algorithm, with a R2 value of 1 and 0.7555 for the training and test 

data, respectively. This can be attributed to its randomised approach and 
the ability to explore a wider range of hyperparameter combinations in a 
shorter time compared to GridSearchCV. 

4.3.1.4. RF. The results of this model are collected in Table 5. It can be 
observed that increasing the number of estimators does not systemati-
cally improve the model performance on the test set. For example, the 
comparison of the combinations with 100 and 200 estimators in Grid-
SearchCV shows that the former combination yields a slightly higher R2 

Fig. 7. R2 of RNN-LV architecture for the prediction of the Young’s modulus as a function of A) hidden layers and, B) number of neurons of those hidden layers in an 
RNN-LV. 

Table 2 
Hyperparameter ranges for regression DT searching.  

Hyperparametres Values 

Maximum depth 0–100 
Minimum samples split 1–5 
Minimum samples leaf 1–60 
Maximum leaf nodes 1–80 
Maximum features Auto, Sqrt, log2 
Splitter Best, Random  

Table 3 
Hyperparameter ranges for regression RF searching.  

Hyperparametres Values 

Number of estimators 1–300 
Maximum depth 1–300 
Minimum samples split 2 
Bootstrap False 
Warm start True 
Maximum features sqrt  

Table 4 
R2 values for different hyperparameters and search techniques for the prediction 
of the Young’s Modulus with regression DT.  

Search techniques Maximum 
depth 

Maximum leaf 
nodes 

R2 

train 
R2 test 

GridSearchCV 25 23 1.0000 0.7308 
20 19 0.9916 0.7405 
12 19 0.9916 0.7405 

RandomizedSearchCV 26 79 1.0000 0.7555 
19 29 1.0000 0.7555 
5 45 0.9940 0.7307  

Table 5 
R2 values for different hyperparameters and search techniques for the prediction 
of the Young’s Modulus with regression RF.  

search techniques Number of 
estimators 

Maximum 
depth 

R2 

train 
R2 test 

GridSearchCV 100 200 1.0000 0.6277 
100 20 1.0000 0.6135 
200 20 1.0000 0.5923 

RandomizedSearchCV 42 71 1.0000 0.6153 
10 94 1.0000 0.5216 
102 94 1.0000 0.5897  
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(0.6277 vs. 0.5923). In addition, the combination with only 42 esti-
mators in RandomizedSearchCV yield slight better results than that with 
102 estimators (0.6153 vs. 0.5897). On the other hand, as the maximum 
depth of the trees decreases, the performance on the test set tends to 
decrease. For example, in GridSearchCV, the combination with a 
maximum depth of 200 yields a R2 value in the test set of 0.6277, while 
that with a maximum depth of 20 led to comparable R2 (0.6135) for the 
same number of estimators. The same occurs for RandomizedSearchCV, 
where the combination with a maximum depth of 71 yielded higher R2 

than that with 94 (0.6153 vs. 0.5897), suggesting that a higher 
maximum depth may allow the model to take more complex relation-
ships in the data and improve prediction performance. Overall, the 
highest R2 value in the train and test set (1 and 0.6277, respectively) are 
obtained for the combination with 100 estimators and a maximum depth 
of 200 in the GridSearchCV technique (see Table 6). 

It is worthy to note that, despite the models used in this study work 
well to fit the experimental Young’s modulus data, they present some 
limitations that could reduce the accuracy of the fitting. Indeed, it has 
been reported that the nanocomposite modulus is dependent on the 
particle size and shape, particle agglomeration and the particle/matrix 
interfacial adhesion, to mention the most important factors [69]. For the 
same nanofiller loading, and nanoparticle size below 100 nm, the 
modulus decreases with increasing size. This could be explained 
considering that smaller nanoparticles are usually better dispersed 
within the matrix, thus can more effectively restrict the deformation of 
the polymer chains. They also lead to a larger interphase, hence 
improved stress transfer. Further, the deformation mechanisms of 
nanoparticles, namely nanoparticle dislodging, shear-band formation, 
and cracking are strongly dependent on the size. For instance, with 
decreasing the particle size of SiO2 from 300 nm to 10 nm, their stiff-
ening effect was increased by 15-fold [69]. The modulus is also condi-
tioned by the filler-matrix interfacial bond strength. Enhanced 
interfacial adhesion leads to improved stress transfer across the nano-
filler–matrix interface, which is reflected in higher modulus. Further, 
nanoparticle agglomeration significantly reduces the effective elastic 
modulus of composites. The high surface area of nanoparticles results in 
the interaction between particles and aggregation/agglomeration. As a 
result, the nanofiller-matrix interfacial area is reduced and this weakens 
the performance. Further, the orientation of the nanofillers conditions 
the modulus. Nanofillers aligned parallel to the applied load result in 
higher composite stiffness. It should also be mentioned that the presence 
of defects in the nanofillers can significantly reduce their modulus, 
resulting in nanocomposites with decreased stiffness. 

4.3.2. Tensile strength 

4.3.2.1. RNN. Regarding the predictions of the tensile strength with 
RNN, R2 remains almost constant as the number of hidden layers in-
creases in the training data (Fig. S1 A). However, in the test data, R2 

peaks at two hidden layers and then decreases as additional layers are 
added, suggesting that this number is enough to capture the complexity 

of the data and avoid overfitting. Thus, the number of hidden layers was 
set to two, and the change in R2 with the number of neurons in those two 
layers was analyzed (Fig. S1 B). In the training data, R2 remains almost 
constant, while in the test data, maxima are observed at 50 and 80 
neurons, the optimal being 50 neurons, that yields R2 values of 0.9868 
and 0.6440 for the train and test data, respectively. Upon addition of 
more neurons, the performance decreases, likely due to over-fitting in 
the test data. Similar trend was reported for low density polyethylene 
(LLDPE)/graphene nanocomposites [64], in which the highest R2 value 
for the training set was 0.98 when 12 neurons were used in the hidden 
layer. Further addition of more neurons resulted in a noticeable reduc-
tion of R2, by more than 10%. Analogous behavior was also found for 
carbon-black filled rubber composites [70], in which the best perfor-
mance (0.999) was attained with 6 neurons, while more neurons led to 
data overfitting. It is worthy to note that the system studied herein is 
much complex than those reporter earlier, which accounts for the 
slighter lower R2 values obtained. 

4.3.2.2. RNN-LV. Regarding RNN-LV model (Fig. S2 A), R2 remains 
constant over almost the whole range studied in the training data, while 
in the test data, it shows a maximum at two hidden layers and then 
decreases as more layers are added. Performance was then analyzed as a 
function of the number of neurons in these two hidden layers (Fig. S2 B). 
An increasing trend is observed for both training and test data as the 
number of neurons is increased. However, the best performance is 
reached at around 60 neurons, yielding R2 for the training and test data 
of 1 and 0.6784, respectively. Beyond this point, the performance de-
creases, showing similar trend to that described above for the RNN 
model. 

4.3.2.3. DT. Table S1 shows R2 analysis as a function of the hyper-
parameters using the different search techniques for the DT model. In 
the case of GridSearchCV, this parameter remained almost constant for 
the training set, regardless of the maximum depth and maximum leaf 
nodes values considered. However, R2 of the test set dropped as the 
value of maximum leaf nodes decreased, ascribed to the fact that fewer 
leaf nodes limit the model’s ability to fit and generalize the data 
correctly. Regarding the test set, the decline was found to be less pro-
nounced at maximum depth values between 117 and 113, suggesting 
that the model reaches an optimal point of complexity in that range, 
where it can capture the structure of the data effectively. However, 
when the maximum depth was reduced to 108, an increase in test set 
performance was observed, likely because a lower maximum depth al-
lows for better regularisation, thus avoiding overfitting and improving 
the generalizability of the model. 

In the case of RandomizedSearchCV, three hyperparameters were 
explored: Splitter, maximum depth, and maximum leaf nodes. By using 
the value “Random” for Splitter, the performance of the training set 
remained constant. However, when “Best” option was chosen, a 
decrease in R2 was observed, indicating that a random selection pro-
vided a better fit to the training data. A model that is highly tuned to the 
training data may have difficulty generalising and fitting to new data. 
Therefore, using “Random” option for Splitter resulted in more balanced 
performance on both the training set and the test set. 

Regarding the test set, the performance increased as the maximum 
depth value was reduced. This can be explained considering that a lower 
maximum depth limits the complexity of the model, thus avoiding 
overfitting and improving its ability to generalize the test data. The best 
performance of the test set was attained for a maximum leaf nodes value 
of 40 in RandomizedSearchCV. However, as this parameter increased to 
85, the performance was worsened. This indicates that a moderate 
number of leaf nodes allows for a better capture of variability in the test 
data, while a higher number leads to a more complex model that is prone 
to overfitting. 

Overall, the results indicate that RandomizedSearchCV performed 

Table 6 
R2 for training set and test set in different predictive models for the studied 
mechanical properties.   

Determination 
coefficient 

RNN RNN- 
LV 

DT RF 

Young’s 
modulus 

R2 training 1.0000 0.9974 1.0000 1.0000 
R2 testing 0.9549 0.9710 0.7555 0.6277 

Tensile 
Strength 

R2 training 0.9868 1.0000 1.0000 1.0000 
R2 testing 0.6440 0.6784 0.6033 0.7400 

Elongation at 
break 

R2 training 1.0000 1.0000 1.0000 1.0000 
R2 testing 0.9203 0.9119 0.7737 0.7046 

Impact 
Strength 

R2 training 1.0000 1.0000 1.0000 1.0000 
R2 testing 0.9427 0.8820 0.7778 0.7877  
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better compared to GridSearchCV, yielding a higher R2 on both the 
training and test sets (1 and 0.6033, respectively, for the optimal com-
bination of a random splitter, a maximum depth of 35 and a maximum 
leaf node of 40). 

4.3.2.4. RF. The results obtained with the RF model are gathered in 
Table S2. Regarding GridSearchCV, increasing the number of estimators 
from 100 to 200 does not seem to have a significant impact on the model 
performance, as R2 in the test set decreases slightly from 0.7240 to 
0.7147 and 0.7118 for maximum depths of 20 and 200, respectively. For 
RandomizedSearchCV, the highest R2 (0.7400) in the test set is attained 
for the combination of 100 estimators and a maximum depth of 100. 
Fewer estimators [10,16] lead to lower R2 values (0.6473 and 0.5755, 
respectively), suggesting that a larger number of estimators has a posi-
tive impact on model performance. On the other hand, combinations 
with larger maximum depths (176 and 254) underperform. It is worthy 
to note that R2 in the train set was equal to 1 for all the combinations 
investigated. Overall, the combination that leads to the best perfor-
mance is found for RandomizedSearchCV, which leads to R2 values of 
the train and test of 1 and 0.74, respectively. The values obtained herein 
are significantly higher than those obtained by Gupta et al. [71], who 
used a RF model to predict the tensile strength of geopolymer compos-
ites reinforced with different amounts of fly ash and calcined clay. They 
achieved R2 of 0.88 and 0.57 for the training and test sets, respectively. 
They are also better than those reported for polypropylene filled with 
CaCO3 [72], in which the best performance (R2 of 0.9147 for the train 
set) was attained for the hyperparameter combination [1,15,55], cor-
responding to the number of DTs, maximum depth and minimum 
number of samples in a node, respectively. The authors also found that 
the optimal hyperparameter combination changed for the different 
physical properties (ie. modulus, strength, specific gravity, melting 
index), in agreement with the behavior found in this work. 

As mentioned earlier for the Young’s modulus, the strength of 
nanocomposites is influenced by several factors, including the nanofiller 
size, level of dispersion within the matrix and interfacial adhesion. 
These parameters are not considered by the ML models, hence can cause 
inaccurate fittings and deviations between experimental and theoretical 
values. Smaller nanoparticles and thicker interphases result in improved 
strength. Accordingly, the aggregated/agglomerated nanoparticles have 
lower tensile strength than the individual particles, and negatively affect 
the interfacial/interphase properties and tensile strength of polymer 
nanocomposites [69]. 

4.3.3. Elongation at break 

4.3.3.1. RNN. Similarly to the tensile strength, R2 of the training data 
for the prediction of the elongation at break with an RNN model in-
creases with increasing number of hidden layers Fig. S3A. However, for 
the test data, R2 shows a maximum at the third hidden layer and then 
drops when a fourth layer is added. Thus, addition of more layers does 
not improve the generalizability of the network and may lead to over-
fitting. Once the number of hidden layers was set to three, the perfor-
mance was evaluated as a function of the number of neurons in the 
hidden layers, Fig. S3B. For the training data, a constant trend is 
observed with increasing number of neurons. However, for the test data, 
R2 increases until 50 neurons are reached, then decreases for 60 neu-
rons, and gradually increases again from 60 to 90 neurons, peaking at 90 
neurons with R2 of the training and test set of 1 and 0.9203, respectively. 
However, for 100 neurons, performance starts to drop on a regular basis. 
The best R2 obtained for this model are higher than those found in the 
study by Palomba et al. to predict the elongation at break of a group of 
linear polymers, in which a maximum R2 of 0.88 was achieved [73]. 
Further, they are slightly better than those reported for 
organoclay-reinforced rubber [74] nanocomposites, in which the lowest 
error and higher accuracy (R2 of 0.9873 in the training set) was attained 

for 5 neurons in the hidden layer. 

4.3.3.2. RNN-LV. Regarding RNN-LV model, although the performance 
of the training data remains constant, a decrease in R2 is observed for the 
test data when only 2 hidden layers are selected (Fig. S4A). The best 
performance is attained with 3 hidden layers, hence it was selected as 
optimal and the change in R2 as a function of the number of neurons in 
these 3 hidden layers was investigated (Fig. S4B). Regarding the training 
values, the performance remained constant with increasing the number 
of neurons, indicating that the network was able to fit the training data 
well, regardless of the number of neurons used. However, for the test set, 
a gradual rise in R2 was observed, showing a maximum at 50 neurons 
(R2 of training and test of 1 and 0.9119 respectively), and then dropped 
slightly until 100 neurons were reached in the hidden layers. 

4.3.3.3. DT. The results obtained from DT model are collected in 
Table S3. The parameters minimum samples split, minimum samples 
leaf and maximum features were set to 2, 1 and “auto” respectively. In 
the case of GridSearchCV, R2 of the training data remains high and 
almost constant regardless of the maximum depth values, while for test 
data it increases as this parameter decreases, indicating that a smaller 
value of maximum depth allows to obtain a better performance in the 
generalization of the model. In addition, the best performance on the 
test data is obtained with a maximum leaf nodes value of 43, the highest 
among the values tested for GridSearchCV. These results suggest that 
properly tuning the values of maximum depth and maximum leaf nodes 
can have a significant impact on the model performance. 

Regarding RandomizedSearchCV, R2 of the training data increases 
upon decreasing the value of maximum depth, suggesting that reduced 
values of this parameter can avoid overfitting, hence the generalization 
of the model is improved. It is interesting to note that the minimum 
maximum depth value, 106, provides the best performance on the 
training data, suggesting that a model with less depth may fit the 
training data more effectively. This value of maximum depth also leads 
to the best R2 in the test set, 0.7670, for the highest value of maximum 
leaf nodes [37]. This implies that a larger number of nodes allowed for 
more complexity in the model, since it can capture more pinpoints 
patterns present in the test data, thus leading to a better fit. On the other 
hand, R2 of 1 on the training set and 0.7737 on the test set was attained 
using the GridSearchSv algorithm with a maximum depth of 54 and a 
maximum number of leaf nodes of 43 (Table S3). 

4.3.3.4. RF. The results obtained with the RF model for the prediction 
of the elongation at break are collected in Table S4. Regarding Grid-
SearchCV, the model performance drops both in the training test set as 
the number of estimators decreases. This can be clearly observed by 
comparing the three combinations with different values of number of 
estimators (200, 150, and 100), where R2 for the test set gradually 
decreased from 0.7005 to 0.7018 and then to 0.6687. On the other hand, 
no clear trend in the performance is found upon modifying the 
maximum depth. Combinations with the same maximum depth value 
(100) have similar results in both the training set and the test set, with R2 

hovering around 0.7. For RandomizedSearhCV, combinations with 
different values of number of estimators [14,21,28] do not show a clear 
trend in model performance. R2 of the test set changes slightly between 
combinations, being in the range of 0.6969–0.7085 for all of them. Also, 
hardly change in model performance is observed with increasing 
maximum depth. The combination with a maximum depth of 259 and 
the smallest number of estimators [14] shows the highest R2 for the test 
set (0.7046), while the combinations with lower maximum depths 
display just slightly lower values (R2 for the test set of 0.6969 and 
0.6959). Likely, a smaller number of estimators can avoid overfitting 
and improve the generalization of the model. It is significant that R2 of 
the training set was systematically 1 for all the combinations tested. 
These results are better than those reported by Khayyami [75] for 
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LLDPE/carbon black using RF, in which the maximum R2 value in the 
train set was 0.951. The authors concluded that this model did not 
generalize well, likely due to overfitting and to an artefact of random 
forest working with categorizations of data. Thus, the model requires a 
large number of data to provide reliable predictions. 

4.3.4. Impact strength 

4.3.4.1. RNN. Regarding the impact strength, results from the RNN 
model in Fig. S5 A show that R2 of the training data rise with increasing 
number of layers, indicating that the model is learning better and getting 
better results in the training phase. For the test data, the performance 
increases up to layer 3 and then starts to decrease, showing similar 
pattern to that described previously for the other properties. To further 
analyze the performance, the change in R2 with the number of neurons 
in the 3-layer model was investigated (Fig. S5B). In the training data, the 
performance is hardly influenced by the number of neurons, while in the 
test data, it rises as the number of neurons increases, showing a 
maximum for 50 neurons (R2 of 0.9427), and then gradually decreased. 

4.3.4.2. RNN-LV. Regarding the RNN-LV structure for the prediction of 
the impact strength (Fig. S6A), R2 of the training data remains constant 
as the number of layers increases, for the test data the performance 
improves as the number of layers increases. This means that increasing 
the depth of the neural network can help to improve the overall per-
formance. Based on this analysis, a four-layer network was selected, and 
the effect of the number of neurons in the 4 layers was investigated 
(Fig. S6B). In this case, the performance of the training data remains 
constant, regardless of the number of neurons in each layer, while in the 
test data, an increase in R2 is observed up to 50 neurons. At this point, 
the maximum performance of the neural network is reached (R2 of 1 and 
0.882 for the training and test set, respectively), similarly to the RNN-LV 
model for the prediction of the elongation at break and the two RNN 
models for the Young’s Modulus. 

4.3.4.3. DT. With regard to the DT model (Table S5), the performance 
in the training data remains constant with a value of 1 regardless of the 
hyperparameters set and the search technique used. However, in the test 
data, it increases as the maximum depth decreases. Regarding the 
maximum leaf nodes, the behavior is slightly different for each search 
technique. In the case of GridSearchCV, no clear trend is observed upon 
changing this parameter, while slightly better performance is found in 
the data test data for the lowest value of maximum leaf nodes. On the 
other hand, in the case of RandomizedSearchCV, as the maximum leaf 
nodes decrease, the performance of the test data increases. It is impor-
tant to note that the maximum throughput on the test data (1 and 
0.7778, for the training and test sets, respectively) is achieved when 
using a maximum depth value of 6 and a maximum leaf nodes value of 
38 in RandomizedSearchCV. 

4.3.4.4. RF. Results regarding RF for the prediction of the impact 
strength are collected in Table S6. In the case of GridSearchCV, com-
binations with different values of number of estimators (100 and 150) 
provide similar results in terms of performance on the test set, indicating 
that they do not cause overfitting. The combination with 100 estimators 
and a maximum depth of 20 shows slightly lower performance on the 
test set, likely, because a maximum depth of 20 limits the model’s ability 
to capture more complex relationships in the data. On the other hand, 
the combination with a maximum depth of 200 shows the best perfor-
mance in the test set. In the case of RandomizedSearchCV, no clear trend 
is found with the values of number of estimators [22], ]80]. It is 
important to note that performance may depend on other hyper-
parameters and dataset specifics. Furthermore, the combination with a 
maximum depth of 41 shows the best performance in the test set (R2 of 
0.7877). Combinations with lower maximum depths (22 and 83) may 

limit the model’s ability to capture more complex patterns or may be 
causing overfitting. Noticeably, R2 of the training set was systematically 
1 for all the combinations tested. 

It should be noted that the differences between theoretical and 
experimental data could be attributed to many factors that influence the 
nanocomposite performance and are not considered by the models. 
Indeed, the level of nanoparticle dispersion strongly influences the 
nanocomposite impact strength. Thus, agglomerated particles can act as 
stress concentration sites, consequently the impact strength is reduced 
[69]. 

4.4. Error assessment of predictive models. Measured vs. predicted values 

To choose the most effective prediction model for each of the 
analyzed mechanical properties, a comparison based on the coefficient 
of determination was carried out (table 6). This coefficient is used as a 
measure to assess the ability of a model to explain the data variability. It 
is important to note that a higher value of R2 indicates a better fitting for 
the model, since it can explain a greater proportion of the variability 
present in the data. 

Regarding the Young’s modulus, the most effective predictive model 
is the RNN-LV, with 3 hidden layers and 50 neurons in each layer, 
leading a R2 of 0.9710. For the tensile strength, the RF model stands out, 
yielding a R2 of 1 and 0.7400, respectively. With regard to the elonga-
tion at break, the best model is the RNN, with 3 hidden layers and 90 
neurons in each layer, giving a R2 of 0.9203. Finally, for the impact 
strength, the best model is the RNN with 3 layers and 50 neurons per 
layer, with a R2 of 0.9427. 

These findings indicate that the choice of the optimal ML model 
depends on the specific mechanical property to be predicted, rather than 
solely on the nature of the system itself. In our study, the nano-
composites present a complexity that implies the presence of four 
different components, and each mechanical property is influenced by 
several factors, as mentioned earlier, such as the adhesion between the 
matrix and the filler, the interactions between filler particles, the matrix 
modulus, strength, and ductility, as well as the nanofiller modulus, 
amongst others. This additional complexity makes it difficult to gener-
alize to a single model that works for all the investigated mechanical 
properties. 

Fig. 8 shows the correlation between the predicted values and the 
measured data for the four mechanical properties investigated. The 
regression model with the highest R2 for each particular property was 
plotted. The Young’s modulus was evaluated using RNN-LV, the tensile 
strength with the RF model, while the RNN model was used for the 
elongation at break and impact resistance. To assess the reproducibility 
of the models, ten simulations were performed under the same selected 
optimal conditions. 

The plots reveal a good correlation between the predicted values and 
the measured data, since the points are grouped close to the diagonal 
line, which indicates an optimal fit of the model. This is evidenced by the 
slope of the graphs, which is very close to 1.0 in all cases. The best fitting 
is obtained for the elongation at break (R2 = 0.964, Fig. 8C), followed by 
the impact strength (Fig. 8D), while the least accurate is found for the 
tensile strength. Similar results were reported for the prediction of the 
mechanical properties of polyamide 6-based composites using DT [76], 
in which the best correlation for the tensile strength (0.839) was 
significantly lower than that for the elongation at break (0.985). This 
authors attributed this different behavior to the anisotropy of the films. 
Indeed, the preferential orientation of the nanofillers in a certain di-
rection might induce an anisotropic behavior which would be more 
pronounced for the tensile strength, and this factor is not considered by 
the ML models. Despite in our study the three nanofillers seem to be 
randomly dispersed, the presence of small aggregates or higher degree of 
entanglement in certain regions could induce a certain level of anisot-
ropy, that could influence more the tensile strength than the elongation 
at break. Overall, results obtained herein demonstrate the good 
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agreement between the theoretical predictions and the experimental 
measurements. 

To further assess the accuracy of the ML models implemented herein, 
the minimum squared errors (MSE) and the mean absolute errors (MAE) 
were also compared, and the results are collected in Table 7. The MSE is 
widely considered as an important validation criterion for ML models. 
The lower MSE, the most accurate the predictions of the desired 
property. 

Regarding the Young’s modulus, the RNN-LV model shows the 
lowest MSE (0.0806), which indicates a higher accuracy in the predic-
tion of this property compared to the other models. However, in terms of 
MAE, the RNN model has a slightly lower value (0.2340), which implies 
a smaller average difference between the predictions and the experi-
mental values. Regarding the elongation at break, the RNN model shows 
the lowest MSE (0.1295) and MAE (0.3095), indicating a better general 
approximation to the experimental values. This model also shows the 
lowest MSE (5.5034) and MAE (1.9010) for the prediction of the impact 

strength, indicating better accuracy compared to the other models. 
RNNs are ML models that can capture complex, non-linear re-

lationships in data. The mechanical properties investigated herein are 
influenced by multiple intricate factors. Neural networks can learn and 
model these non-linear relationships, allowing them to provide more 
accurate predictions. Also, their hierarchical structure allows them to 
learn high-level features from input features, which contributes to better 
prediction. Neural networks are also adaptable to different data patterns 
and distributions and benefit from learning from large data sets. In 
summary, neural networks are powerful tools for tackling complex 
prediction problems in materials science and mechanics, as they can 
capture the complexity of mechanical properties and provide more ac-
curate results. The choice of the RNN training algorithm can influence 
the performance and fit of the model to the data. For the Young’s 
modulus, the RNN-LV seems to be more suitable to capture the non- 
linear relationships. This algorithm can fit the neuron weights and 
biases efficiently, which may allow a better fit of the model to the data 
and, consequently, a higher coefficient of determination. In contrast, for 
the elongation at break and impact resistance, it is possible that the 
relationships between the variables are less complex and more linear 
compared to Young’s modulus. In these cases, RNNs may be sufficient to 
capture and model the linear relationships present in the data, resulting 
in higher R2 compared to RNN-LVs. 

Table 7 compares the experimental and predicted values by the four 
predictive models for the investigated mechanical properties. In general, 
a good agreement between the experimental and predicted values is 
observed, although in some cases there are discrepancies, in particular 
for the results of the DT model, since it shows lower R2 and higher MSE 
and MAE values compared to RNN models. 

Fig. 8. Parity plots showing predicted values using the best regression models for each property vs. the measured values for: (A) Young’s modulus; (B) Tensile 
strength; (C) Elongation at break; (D) Impact Strength. 

Table 7 
Comparison of MSE and MAE for the four prediction models for the Young’s 
modulus, tensile strength, elongation at break and impact strength.   

Metrics RNN RNN-LV DT RF 

Young’s modulus MSE 0.1212 0.0806 0.4170 0.6560 
MAE 0.2340 0.2517 0.5822 0.7652 

Tensile Strength MSE 0.435228 0.3932 0.9812 0.6429 
MAE 0.544431 0.5517 0.7800 0.6860 

Elongation at break MSE 0.1295 0.1433 0.3020 0.3942 
MAE 0.3095 0.3307 0.4667 0.5690 

Impact Strength MSE 5.5034 11.3285 17.0465 16.2880 
MAE 1.9010 2.8248 3.6911 3.4261  
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5. Conclusions 

The development of hybrid polymer nanocomposites at different 
scales is a process that requires a large economic investment and takes a 
long time of experimental work. The behavior of these materials is 
strongly influenced by the composition used, making it difficult to 
accurately predict their properties. In this study, hybrid nanocomposites 
based on PHB as a matrix and reinforced with multi-walled carbon 
nanotubes (MWCNTs), sepiolite nanoclay, and WS2 nanosheets were 
developed. Experimental stress-strain and impact tests were performed 
to measure the Young’s modulus, tensile strength, elongation at break, 
and impact strength. Furthermore, the effectiveness of different ML- 
based regression models, namely RNN, RNN-LV, DT and RF, to predict 
these mechanical properties was evaluated, and the effect of different 
factors on the accuracy of the models was investigated. Regarding the 
prediction of the Young’s modulus, the best model is an artificial neural 
network with RNN-LV structure, comprising three hidden layers with 50 
neurons in each layer. This model shows R2 values of 0.997 and 0.971 
for the training and test sets, respectively. In addition, it presents low 
MSE values of 0.0806 and MAE of 0.2517. On the other hand, the most 
favorable model to predict the tensile strength is the RF model. Although 
its performance is worst compared to the other properties, it can 
adequately predict this property using a combination of 100 estimators 
and a maximum depth of 100, with R2 values of 1 and 0.74 for the 
training and test set, respectively, and values of MSE and MAE of 0.6429 
and 0.686, respectively. Regarding the prediction of the elongation at 
break, an RNN model with 3 hidden layers and 90 neurons in each layer 
gave the best results. This model fits accurately the data, with R2 of 1 
and 0.9203 for the training and test set. In addition, MSE values of 
0.1295 and MAE of 0.3095 were obtained. Concerning impact resis-
tance, an RNN model with 3 hidden layers and 50 neurons is effective for 
predicting this property. The model perfectly fits to the data, with R2 of 1 
and 0.9247 for the training and test set, and MSE and MAE values of 
5.5034 and 1.9010, respectively. The high correlation and small errors 
obtained in the models are strong indicators of their accuracy. This 
implies that the models can generalize and maintain a consistency in the 
results, reflected in the uniform values of the correlation coefficient and 
the mean square errors in the training and test data sets. It is important 
to note that despite the models used in this work fit very well the 
experimental data, they exhibit some limitations arising from the 
complexity that implies the presence of four different components, and 
each mechanical property is influenced by several factors, including the 
nanofiller shape, orientation and size, the nanofiller-matrix interfacial 
adhesion and the agglomeration/aggregation state of the nanoparticles, 
amongst others. These factors could account for the differences found 
between experimental and predicted data. 

Overall, results obtained herein confirm the reliability of the ML 
models to accurately estimate and predict the specific mechanical 
properties of multiscale hybrid nanocomposites. This approach offers a 
series of significant benefits, among them, the substantial reduction of 
experimental work in the laboratory and the consequent optimization of 
the time and costs associated with procuring materials and performing 
repetitive physical tests. This allows greater efficiency in the design and 
development of new hybrid polymeric nanocomposites, since virtual 
tests can be carried out to evaluate different combinations and varia-
tions of materials, saving time and resources in the research and 
development phase. 
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