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A B S T R A C T

Encouraging consumers to embrace renewable energies and energy-efficient technologies is at stake, and so the
energy players such as utilities and policy-makers are opening up a range of new value propositions towards
more sustainable communities. For instance, developments of turn-key demand response aggregation and
optimisation of distributed loads are rapidly emerging across the globe in a variety of business models focused
on maximising the inherent flexibility and diversity of the behind-the-meter assets. However, even though these
developments’ added value is understood and of wide interest, measurement of the desired levels of consumer
engagement is still on demonstration stages and assessment of technology readiness. In this paper, we analyse
the characteristics of the loads, the behaviour of parameters, and in a final extent, the behaviour of each
kind of consumer participating in aggregated demand scheduling. We apply both non-automatic and machine
learning methods to extract the relevant factors and to recognise the potential consumer behaviour on a series
of scenarios that are drawn using both synthetic data and living labs datasets. Our experimentation showcases a
number of three patterns in which factors like the community’s demand volume and the consumer’s flexibility
dominate and impact the performance of the tested development. The experimentation also makes current
limitations arise within the existing electricity consumption datasets and their potential for inference and
forecasting demand flexibility analytics.
1. Introduction

The Demand Response (DR) market is still encountering some bar-
riers throughout the world with some exceptions in the United States,
Australia and selected European markets (Munuera, 2020). Regulatory
uncertainty and strategic shifts on the part of the relevant market
players that reduce their investment activity, have dampened a coor-
dinated and collective introduction of the DR outlook. For instance,
less than 2% of the global potential for demand-side flexibility is cur-
rently being utilised (Gianfrate, Piccardo, Longo, & Giachetta, 2017).
Furthermore, despite being numerous and varied, the benefits of DR
have not reached yet to the consumers’ awareness. In US, for example,
it has been estimated that a 5% load reduction during the top 1% of
peak hours would bring about a net present value of $3 billion a year
in benefits (Bayer, 2015; Zhou, Balandat, & Tomlin, 2018). Electricity
pricing and financial incentives are the current strategy to encourage
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consumers to shift or reduce their electricity use (Soares, Gomes, &
Antunes, 2014). Time of Use (TOU) electricity tariffs are evolving
towards more sustainable behaviours by encouraging electricity use
when there is an abundance of supply from solar photovoltaic (PV) cells
in the middle of the day (Venizelou, Makrides, Efthymiou, & Georghiou,
2020). However, many consumers today simply do not know what
hours of the day are the most CO2 intensive, nor the times when
variable renewables are generating the most, or when prices are low
(and sometimes negative) in electricity wholesale markets (Qureshi,
Girault, Mauger, & Grijalva, 2017). To encounter these challenges,
utilities, authorities and policy-makers as well as the Internet-of-Things
(IoT) industry increasingly try to consolidate their service and product
offerings that focus on integrating and exploiting consumers’ flexibility
and consumption awareness (Afzalan & Jazizadeh, 2019). Demand side
flexibility can be scheduled as an energy resource, and can greatly
have an impact on the electricity system balancing and reliability.
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Nomenclature

 Duration in hours of appliance operation
 Number of consumers
𝐴𝑁𝑁 Artificial Neural Network
𝐷𝑅 Demand Response
𝐷𝑆𝑀 Demand Side Management
𝑓 Fixed demand
𝐻𝐶 Hierarchical Clustering
𝐻𝐶 Hierarchical clustering
𝐼𝐶𝑇 Information and Communication Technologies
𝐼𝑜𝑇 Internet of Things
𝐾𝑁𝑁 K-Nearest Neighbours
𝐿𝐷𝐴 Linear Discriminant Analysis
𝐿𝐺 Linear Regression
𝑀𝐴𝐸 Mean Absolute Error
𝑀𝐴𝑃𝐸 Mean Absolute Percentage Error
𝑀𝑆𝐸 Mean Square Error
𝑃𝐶𝐴 Principal Component Analysis
𝑅𝐹 Random Forest
𝑟𝑤 Twenty four hour supply vector from renew-

ables
𝑆𝑉 𝑅 Support vector machine regression
𝑡𝑏𝑒𝑔 Earliest start time appliance
𝑡𝑒𝑛𝑑 Latest final time appliance
𝑡𝑠𝑐ℎ𝑒𝑑 Scheduled start time of appliance
𝑣 Variable demand

Connected appliances such as heaters, air conditioners, washers or
electric vehicles can be aggregated together and their electricity use
controlled remotely to shift demand over time, for example, when
prices are lower and variable renewables are generating (D’hulst et al.,
2015). Consumers offering their flexibility by expressing and reschedul-
ing their processes are rewarded in exchange e.g. for lower prices or
other value added services such as points that can be cashed out via
Paypal (e.g. OhmConnect, 2020). Moreover, prosumers, i.e., producers
of their own (and other’s) energy, for example by using a rooftop solar
panel, storing energy in household or electric car batteries, and/or
selling the produced energy on their own premises, play an important
role for the success of local stakeholder interactions and local energy
balance (Gercek, Schram, Lampropoulos, van Sark, & Reinders, 2019;
Santiago, Lopez-Rodriguez, Trillo-Montero, Torriti, & Moreno-Munoz,
2014).

1.1. Engaging with demand response

Research and development of DR technology is being reactivated
on these days that prosumers at all levels, residential and tertiary
buildings, individually or through a demand aggregator, are able to
participate in energy system balancing and flexibility markets (Gelazan-
skas & Gamage, 2014; Hakimi et al., 2020). Developments of turn-key
aggregation and optimisation of distributed loads are rapidly emerging
across the globe on a variety of business models (Correa-Florez et al.,
2019). These are currently focused on the remote monitoring of individ-
ual customer loads, generation and storage, managing and optimising
the aggregated portfolio and maximising the inherent flexibility and
diversity of the behind-the-meter assets. Some aggregators develop the
same strategy of sending signals to their consumers to modify their
demand as a response to the System Operator requirements and/or
market price signal (– real-time locational pricing interface with a
distribution system operator – DSO). Ghorashi et al. (2020) add a
penalisation component in their DR proposal that can mitigate the
2

peak rebound and decrease the load deviation on a 13%, and throw
a 106% increase of revenue at the utilities’ side. Other business models
of electricity aggregation support consumer partnerships by creating a
platform for consumers to subscribe to distributed power plants (Awad
& Gül, 2018).

Consumer engagement in DR programmes and awareness of their
benefits have been promoted mostly on an individualised way
(Abapour et al., 2020; Ming et al., 2020). Electricity retailers’ mes-
saging emphasises individual preferences, which consist of individual
action and choice. Moreover, the reward scheme is commonly mon-
etary, individual and based on attributable performance rather than
contribution. A research survey to residential DR programme par-
ticipants in Australia (Arena, 2018) captured how an individualistic
design of the programme, specially the design of the rewarding scheme,
might cause people rationalise their participation as contributing to
broader goals (Guo et al., 2018). The survey also revealed that there
were several factors that limited or favoured household participation
in a RD event, i.e., the insulative quality of the house, efficient and
smart technologies, relationships of people in the house, and the desire
to act to shift a routine or comfort level. We believe that a critical
missing piece for understanding and optimising DR is the recognition
of the social and behavioural factors and their impact on the consumer
engagement as well as on the final aggregation service’s performance.
For example, Mamounakis et al. (2019) propose a real-time pricing
scheme for DR based on a clustering algorithm that allocates the gains
fairly (according to the algorithm’s reaction to the participants’ flexi-
bility) among consumers; it also promotes behavioural change towards
energy efficiency by achieving 30% of reduction in the cost of system
energy (in scenarios of highly flexible consumers) and greater welfare
of aggregated users. In addition, Moroni et al. (2019) enumerate a
set of four valuable instrumental advantages from organising energy
communities, i.e., direct investment and operation and maintenance
cost reduction, transaction cost reduction, risk reduction and electricity
self-consumption maximisation from the use of smart microgrids.

Fig. 1 illustrates the five main areas of actuation to which aggrega-
tion contributes when building DR capacity. We also include the main
machine learning (ML) techniques applied to these actuation areas, and
analyse the existing literature that addresses each of them in Table 1.
Being optimisation the most explored area, in this paper we analyse the
behavioural patterns that may arise out of the consumers/prosumers’
interaction and participation in day-ahead aggregation services, which
in turn empower energy forecasting, consumer segmentation and de-
mand optimisation of the community (neighbourhoods/districts) load
and its balance. Deployed on our laboratory, the ENEFF aggrega-
tor (Cruz et al., 2019) implements a day-ahead optimisation scheduler
that develops and integrates the ability of electricity consumers to
jointly change their pattern of demand in response to the available
renewable supply. The ENEFF aggregator is both efficient (< 20 sec-
onds for 8 households) and cost-effective (< 100 euros in hardware
components, no need of appliance renovation nor additional network
infrastructure) in scheduling the joint demand of a coalition of con-
sumers/prosumers which put their demand flexibility at its disposal. It
is also turn-key, controlling the functioning of the participants’ appli-
ances and domestic network-enabled devices according to the allocated
supply for each participating household. Our analysis covers the five
actuation areas by applying the most powerful ML techniques to the
problem domain and aiming at exploring the impact of adding the
consumer flexibility into the demand aggregation process. We describe
the methodology of our analysis and the main goals in Section 1.3.

1.2. Measuring demand response capacity

During its evaluation in controlled scenarios, the ENEFF demand
aggregator performs more efficiently in the presence of certain factors.
Recognition of these factors, on one hand, and the analysis of the

dominance of each factor on the generation of community patterns, on
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Fig. 1. Areas of actuation studied on our aggregated DR development and main machine learning techniques.
Table 1
Reviewed literature for specific DR application areas.

Areas of competence

Research Optimisation Control &
monitoring

Demand
forecasting

Consumption
patterns

Segmentation
& clustering

Renewables
integration

Gianfrate et al. (2017), Li, Ma, Robinson, and Ma (2018), Piscitelli,
Brandi, and Capozzoli (2019)

✓ ✓

Abapour, Mohammadi-Ivatloo, and Tarafdar Hagh (2020), Antonopoulos
et al. (2020), Awad and Gül (2018), Bayer (2015), Correa-Florez,
Michiorri, and Kariniotakis (2019), Cruz, Palomar, Bravo, and Gardel
(2019), Gelazanskas and Gamage (2014), Gercek et al. (2019), Ghorashi,
Rastegar, Senemmar, and Seifi (2020), Lucas, Jansen, Andreadou, Kotsakis,
and Masera (2019), Mamounakis et al. (2019), Moroni, Antoniucci, and
Bisello (2019), Usef Energy (2016), Venizelou et al. (2020), Wang et al.
(2020, 2020), Zhou et al. (2018)

✓

Afzalan and Jazizadeh (2019, 2019), Soares et al. (2014) ✓ ✓

D’hulst et al. (2015), Qureshi et al. (2017) ✓ ✓

Darby and McKenna (2012), Ghaemi and Brauner (2009), Guo et al.
(2018), Santiago et al. (2014), Satre-Meloy, Diakonova, and Grünewald
(2019), Sepehr, Eghtedaei, Toolabimoghadam, Noorollahi, and
Mohammadi (2018), Vallés, Bello, Reneses, and Frías (2018),

✓

Hakimi, Hasankhani, Shafie-khah, and Catalão (2020), Ming et al. (2020),
Shi et al. (2019)

✓ ✓

Gajowniczek and Zabkowski (2014), Ming et al. (2020) ✓ ✓

Li et al. (2018), Wen, Zhou, and Yang (2019) ✓

Walker, Khan, Katic, Maassen, and Zeiler (2020), Wijaya, Vasirani,
Humeau, and Aberer (2015)

✓

ENEFF Aggregator (Cruz et al., 2019) ✓ ✓ ✓ ✓ ✓ ✓
the other hand, are of utmost importance for the actual deployment
of a DR programme on a particular community. In particular, the
identification of consumer behaviours and community patterns could
help to determine which platforms, market rules, or incentives are most
effective in a certain community and how the community members
could respond in the future (Antonopoulos et al., 2020; Piscitelli et al.,
2019). Moreover, it can contribute to bridge both designed and actual
performance features expected aggregation and scheduling algorithms
for validation and refinement. To this regard, there are various meth-
ods for the classification of consumers and the construction of the
typical daily load curves. The study in Ghaemi and Brauner (2009),
for instance, analyses the electricity consumption for 51 households in
Austria finding a correlation between average annual consumption and
daily demand. Similarly, the method proposed in Sepehr et al. (2018)
serves to model the load profile of 149 residential subscribers in Iran by
3

classifying consumption profiles in terms of the number of household
occupants and defining the probability density function for the starting
time of each appliance. Households with kids and pets presented less
predictable behaviour. In Afzalan and Jazizadeh’s work (Afzalan &
Jazizadeh, 2019), a classification metric sorts the users with flexible
loads out in a community (300 households primarily located in Austin,
TX) according to their load shifting flexibility for deferrable loads. The
metric helps to identify suitable user segments with higher predictive
potential for demand reduction finding predictable behaviours in the
use of EV, AC and wet appliances. Authors defined temporal flexibility
of loads as a function of the time of the day so finding opportunities
for the integration of renewables, e.g., peaks around noon indicates
opportunities for solar power integration. Demand flexibility is defined
by Satre-Meloy et al. (2019) around the relationship between the type
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Fig. 2. Smart community: roles, structure, and communication flows.
of activity and its consumption at 1-minute timescale in the residen-
tial sector. A statistical analysis based on multiple linear regression
shows how activity-related factors that influence electricity consump-
tion vary from day to day. Their analytical results point to dwelling and
appliance-related variables, especially EV ownership, number of power
showers, living in a detached home, number of rooms, and number of
TVs/computers as well as cat ownership and number of occupants as
the strongest predictors of increased daily consumption. Furthermore,
to support targeted demand-side management and efficient operation of
smart grid, Wen et al. (2019) investigates the recognition of consump-
tion behaviours or clusters within daily electricity consumption profiles
(ECPs) from trials at Ireland and China using clustering methods such as
k-means and Principal Component Analysis (PCA). Their experiments
showed that similarities among ECPs in the same cluster in terms of
the total electricity consumption and the volatility of ECPs. Authors
made recommendation about the clusters and type of residents of more
significance to implement DSM and develop personalised DR strategies.
Their experimentation also showed that PCA almost has no influence
on the clustering results while improving efficiency of the algorithm
performance.

Utilities that understand communities’ consumption and production
patterns are leveraging their capacity and balancing services as well
as reducing the cost of integrating renewable energy sources into
existing energy systems (Li et al., 2018; Usef Energy, 2016). Shi et al.
(2019) shows how scheduling methods that neglect user comfort levels
may result in long load-shifting time periods for transferable loads
and high interruption power for interruptible loads. Their experiments
over a Particle Swam Optimisation algorithm also prove the inverse
proportional relationship between user energy costs and the coeffi-
cients of comfort levels. Strategies for optimising renewable energy
consumption rate are also discussed and their conclusions present some
doubtful incompatibilities between renewable energy generation and
community demands, and daily energy costs. Nevertheless, challenges
remain in load flexibility estimation (Darby & McKenna, 2012). Lucas
et al. (2019) present a structured way using Factorial Hidden Markov
model to calculate flexibility that can be extracted by one house,
which gives a valuable tool to aggregators as the first step to bring
demand response to the residential sector. Support Vector Machines
(SVM) and Multi-Layer Perceptrons (MLP) are the techniques applied
in Gajowniczek and Zabkowski (2014) to the forecasting of the day-
ahead consumption on an individual household in Poland. Predictions
resulted within acceptable levels of accuracy, but authors realised the
volatility of analysis on household level, as consumption habits can
4

vary significantly due to the many variables such as climate, ther-
mal system performance or occupancy patterns. Wang et al. (2020)
remark the importance for aggregators to comprehend the available
DR capacity of consumer participants before trading in the day-ahead
market. To encounter this challenge, the aggregated DR capacity is
estimated as the difference between the Customer Baseline Load (CBL)
and the actual load whereas the consumer’s responsiveness to the DR
signals is modelled to minimise the individual daily cost of electricity
consumption. The relevant factors which have significant impacts on
the aggregated DR capacity are extracted by PCA and then applied to
a SVM based forecasting model to predict the aggregated DR capacity
(with 80% accuracy for over 70% of the testing dataset). Their results
are, however, not exhaustive in analysing the impact of the behavioural
features (e.g. the uncertainties associated to human behaviour) that
may influence the large-scale implementation of their DR programme.
In Vallés et al. (2018), a probabilistic characterisation of residential
consumers flexibility based on Quantile Regression (QR) provides a
parametric representation of consumers that allows minimisation of the
uncertainty and variability of consumer responsiveness. The analysis
of a case study in Spain distinguishes a number of influential factors,
i.e., the number of occupants, the electricity consumption and the edu-
cation level of consumers, that have effect on demand responsiveness.
Results throw individual flexibility profiles that are not extrapolated
easily to aggregated settings. In fact, the relatively small loads and
numerous actors have hindered a more homogeneous introduction
of residential DR schemes across the globe, and similarly a wider
deployment of local micro generation of renewable energy.

As aforementioned, Table 1 compiles the relevant related work and
its contribution to the actuation areas when developing aggregation
and DR services. The suitability of different ML techniques has been
tested and measured on controlled environments or simulations with
datasets. Similarly, our study analyses the suitability of these tech-
niques on controlled scenarios finding, in some cases, improvement
of the technique accuracy in the automatic extraction of behavioural
factors and/or patterns, and even, in other cases, identifying a precise
number of patterns or clusters from real consumers’ consumption data.1
We also show how these clusters behave when being simulated as

1 We configure real scenarios by using the electricity demand profiles for
200 households randomly selected among the ones available in the 2009
Residential Energy Consumption Survey (RECS) dataset for the Midwest region
of US (Muratori, 2018).
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consumer communities interacting in aggregated demand scheduling.
Tested scenarios vary the aggregation setting (i.e., centralised, semi-
decentralised), the scheduling algorithm (which is also being developed
and validated on our laboratory) and the type of consumer data. For
the latter, a preliminary non-automatic analysis of the factors govern-
ing the optimised scheduling of the community’s demand identifies
those that dominate and rule the algorithm performance and objective
achievement. Our approach is novel and systematic (as explained in the
methodology) and, we believe, could be also inspirational for the scien-
tific community, utility companies and energy efficiency policy-makers
to leverage aggregated DR technology and services at community level.

1.3. Methodology of this work

We estimate the DR capacity of a community participating in the de-
mand aggregation and scheduling framework presented in our previous
work2 (Cruz et al., 2019) applying the methodology as follows:

1. We extract the determining factors and potential patterns of a
community behaviour by analysing the algorithm performance
and the influence of the factors on it. A number of three patterns
are extracted from a series of different consumer community
settings representing the user–appliance interactions and con-
sumption and their flexibility pattern. We use synthetic data for
this analysis.

2. We implement unsupervised ML methods, i.e., k-means, hier-
archical clustering and PCA, to automatise the analysis on the
same scenarios as well as on public datasets containing con-
sumption records. Patterns automatically recognised lead to the
same influential factors extracted on our previous analysis. Un-
fortunately, dataset could not provide insights into consumers’
flexibility features.3

3. We also evaluate the scenarios on supervised ML methods such
as linear discriminant analysis, k-nearest neighbours and fuzzy
logic. Training and testing samples are extracted from the same
datasets to validate previous results. Classification over the test-
ing data threw accuracy scores greater than 90%.

4. We include the analysis of profiling or predicting community
consumption to identify temporal variations of load-specific de-
mands. Models such as random forest, support vector machines
for regression and linear regression are evaluated and compared
in terms of their accuracy over the same datasets. Community
prediction scored 95% of accuracy.

We believe that the analysis and recognition of the behavioural
atterns and factors pointed out in our work can help to achieve
better estimate of the potential of demand-side response from a

onsumer community, not only prior to the programme deployment but
lso along the programme execution at the community. In particular, it
an serve (i) to estimate the level of engagement of the consumers in a
R event, (ii) to identify and target potential candidates for automated
R, (iii) to load targeting, (iv) to help the community predict its micro
eneration needs and also (v) customise the reward scheme according
o the recognised community pattern.

The reminder of the article is organised as follows. Section 2
verviews the DR system model and presents the analysis of community

2 The ENEFF framework is briefly described in Section 2 for the present
aper’s self-containedness.

3 An important limitation of the methodology is the difficulty of extracting
onsumer flexibility information from the dataset used for validation. The
ataset comprises the hourly consumption of a consumer community during a
ear. Some of our scenarios for validation will try to build margins of flexibility
s to simulate rigid/flexible demand behaviours. Pilot deployment in living lab
s also a limitation of our analysis since we have not yet put the aggregator
5

evelopment ENEFF through real validation.
behaviour based on the algorithm’s performance cost. The automated
analysis is fully described in Section 3. In Section 4, we explore the
prediction accuracy of community profiles from a number of regres-
sion models. Finally, Section 5 concludes and presents the immediate
research directions.

2. System overview and preliminary analysis

In our development for DR, consumers (also producers) of electric-
ity connect, form coalition, and collaborate pursuing common goals.
The following sections overview the system model, roles and proce-
dures, and identify a preliminary set of behavioural patterns within a
simulated community.

2.1. Roles and main procedures

Our approach to DR tends to stimulate consumer collaboration sup-
porting their energy behavioural change towards both, greater energy-
efficient and greener habits. To this end, consumers are provided with
an app for pre-allocating a 24 hour demand along with their time
preferences that could be as much elastic as the consumer opts for every
appliances to be scheduled. A home controller serves as a gateway
between the consumer and aggregator and acts as the manager of the
household’s appliance. Fig. 2 depicts the system architecture’s roles and
two settings, whereas Table 2 further illustrates the communication
flows and states terminology.

A new scheduling algorithm aggregates the electricity demand of
the participating consumers’ appliances. The scheduling optimises the
aggregation of the appliances’ time frame preferences in respect to
an objective function that takes the available energy supply from
renewables 𝑟𝑤 as parameter. The latter, i.e. a 24 hour vector containing
the expected(/stored) supply from green sources, is issued by the local
utility provider and received by the community aggregator for the daily
reallocation.

2.2. Two settings for DR

The working methodology adopted in this work involves the com-
parison of two main settings or algorithms as follows:

• Centralised setting: Consumers share their information with the
community aggregator for load reallocation (Fig. 2–a). This sce-
nario assumes that consumers are not against of profiling at the
aggregator, who implements a scheduling algorithm following a
Round Robin (RR) method. Basically, the aggregator attempts
to find in order or turns the optimised community allocation
of demand according to the received time preferences and the
available energy from renewables.

• Semi-Decentralised setting: For more privacy-aware scenarios, the
aggregation logic runs individually at and for every consumer as
a First In, First Out (FIFO) strategy, in which each participant
earlier-arriving to the 𝑟𝑤 vector accesses it, blocks it and allocates
his/her demand on the shared supply. For the sake of simplicity,
the aggregator role could co-exist on this setting but as a common
repository maintaining consistency on the shared copy of the
supply vector (Fig. 2–b).

2.3. Preliminary analysis of behaviours

We posed the algorithm at the aggregator to deal with a series
of scenarios and use cases in order to non-automatically extract and
identify potential community behaviours and the influential factors on

the aggregation and scheduling process and its performance. Table 3
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Table 2
Roles and exchanged messages’ structure.

𝐴𝑃𝑃 → 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟: m1: {𝑓, 𝑣,, 𝑡𝑏𝑒𝑔 , 𝑡𝑒𝑛𝑑 , 𝐼𝐷} ∀ appliance to be scheduled ∈ 𝐴𝑐
𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 → 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟: m1 × 𝐴𝑐 appliances ∀ consumer 𝑐 ∈  (+𝐵𝑐 ∀ prosumer 𝑐 ∈ )

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 → 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟: 𝑟𝑤 = [𝑠0 ,… , 𝑠23] (kW)
𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟: runs the scheduling for matrix 

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟 → 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟: [𝑑0 ,… , 𝑑23] (kW) ×𝐴𝑐 appls.
𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 → 𝐴𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒: (𝑂𝑁∕𝑂𝐹𝐹 ) ∀ [0,… , 23] ∀ appliance to be scheduled

where: the consumer 𝑐 introduces for his/her appliances ∈ 𝐴𝑐 , identified by 𝐼𝐷, its fixed and
shiftable load variable demand 𝑣 (kWh when the appliance is on), fixed demand 𝑓
(kWh when the appliance is off), the duration of its shiftable consumption 
(in number of hours of activation), and the preferred time period for this appliance’s
activation (𝑡𝑏𝑒𝑔 , 𝑡𝑒𝑛𝑑 ), which represents the time frames of flexibility and has to be no less
than L, for every smart appliance identified by IDi.; if 𝑐 is prosumer, 𝐵𝑐 is the accumulated
power (e.g. battery); 𝑠𝑡 is the supply (kW) expected in time slot 𝑡, whereas 𝑑𝑡
is the demand (kW) scheduled in time 𝑡 of the day.
Table 3
Factors for the different scenarios.

Factors Value/Label Description

Community size < 5/Small, > 30/Big The number of consumers is not a determining factor in the performance of the scheduling algorithm
but the total number of their appliances. Experiments conducted for small scenarios with less than 5
consumers and big scenarios of 30 consumers or more.

N. of appliances < 40/Small, > 1200/Big The number of appliances to be scheduled by the aggregator directly affects the algorithm
performance. Fig. 3 shows the linear tendency of the computational cost when the number of
appliances increases. The algorithm runs very fast for communities with less than 40 appliances.

Demand volume < 9 kWh/Low, > 18 kWh/High The volume of shiftable demand could impact on the performance and it depends on the volume and
flow of the renewable supply’s availability. Data was extracted from real datasets.

Demand flow 𝜎(𝑙𝑜𝑎𝑑) < 20%/Flat, > 20%/Peak Load is inherently variable; with this factor in Peak we represent the existence of 20% variability
along the day.

Consumer flexibility < 3 h/Rigid, 3 <> 6 h/Mixed, > 6 h/Flexible The elasticity of the consumers’ demand directly influences the efficiency of the scheduling
computation. Three types of scenarios were identified, which depict different consumer behaviours on
the establishment of their time preferences and flexibility of activation.

Supply 𝑟𝑤 flow 𝜎() < 20%/Flat, 𝜎() > 20%/Peak The availability of dispatchable and variable renewable power generators could affect the
performance of the community scheduling (our experiments will show the opposite though).
Fig. 3. Computing time relationship between the number of participants and appliances
under a centralised setting.

compiles the factors that the algorithm is considering for the com-
putation of the optimal4 community schedule; this computation cost
increases proportionally to the number of appliances and participants
as shown in Fig. 3. In particular, use cases are established according to:

4 The optimisation function outputs an array of 24 slots with the definitive
supply for every appliance given the operation time demanded , the prefer-
ence interval [𝑡𝑏𝑒𝑔 , 𝑡𝑒𝑛𝑑 ] and the available supply 𝑟𝑤. For instance, the function
is responsible of searching the optimum time slot 𝑡𝑠𝑐ℎ𝑒𝑑 for every appliance’s
start. The optimisation will determine how appropriate an adjustment is by
minimising the total overconsumption (in hours) of the community appliances
against the available renewable supply at a certain time slot.
6

• Demand volume: We allocate two cases on this factor, i.e., case
 for consumers that require high demand and case  for low
demanding consumers.

• Demand flow: We also evaluate the algorithm’s robustness against
two types of baseload. Thus, case  represents a flat flow of
demand along the day whereas case  illustrates demands con-
centrated on a specific time period of the day forming peaks of
load.

• Consumer flexibility: We identify three cases of consumer in
terms of the elasticity of his/her demand’s time preferences. This
elasticity depends on the duration of the appliances’ load and the
preferred time period set for all of them; hence, cases  ,  , and
 represent a rigid, mixed and flexible behaviour, respectively.

• Supply flow: We consider the supply flow as an important factor
in scheduling the flexible assets based on current supply from
renewables; case  is representing a supply that flows uniformly
along the day, and case  when peaks occur.

All scenarios possible combining the factors above are compiled in
Table 7 in Appendix. We generated communities of 5 consumers and
48 appliances per household using synthetic data. Hence, to evaluate
the impact of the demand volume and flow, we conducted experiments
under the different scenarios of consumer flexibility. As depicted in
Fig. 4, high and peak-based demand communities, and flexible (−)
communities represent upper bounds on the aggregation algorithm. In
particular, consumers’ flexibility parameters such as the duration of
appliances’ operation () can increase the difficulty of the optimisation
search (finding the optimal shared resource allocation). Our experi-
ments found that demand volume and consumer flexibility parameters,
specially when the latter are short time values, impact negatively on
the scheduling performance.

We now evaluate the impact of the consumer flexibility on the ag-
gregation result over different community sizes following a centralised
setting. The algorithm can reallocate 32.5% of the demand under a
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Fig. 4. Impact of the demand volume on the computational time in the different
scenarios of consumer flexibility and demand flow.

Fig. 5. Impact of the consumer flexibility on all combinations of factors, including the
supply flow, in terms of the computational cost.

flexible scenario, encountering a lower bound of 0.8% when consumers
cannot express flexibility (i.e., − scenarios). Moreover, we con-
ducted experiments combining all factors; finding are summarised in
Fig. 5 where communities displaying rigid flexibility allocate faster
the shared resource. High flexibility increases the search space of the
residential appliances’ load allocation, making the ENEFF aggregator
model to consume much more time searching the optimal schedule.

Furthermore, we analyse the influence of the supply flow (includ-
ing the case of insufficient supply) in Fig. 6, encountering peak-time
demand and high demand communities (−−) at the upper bounds
of computational cost. Flat demand communities have a chance on
absorbing any possible supply disruption or unbalance of (local) supply.

We also include comparison of all factors under the two settings
in Fig. 7 in terms of the computational cost of the relevant scenarios.
Flexible communities are costly in computation compared to more
rigid communities under the two settings. Counting on a centralised
processing algorithm that allocates the shared resource is generally
more efficient, with a few exceptions, e.g., in peak-time demanding
communities. In general terms, semi-centralised demand (aggregation
and) scheduling models run less efficiently and provoke ineffective use
of the shared resource as shown in Fig. 8. The semi-decentralised setting
generate a 46% waste of the available supply in flexible communi-
ties. Note that, in this setting, demand is managed and reallocated
7

Fig. 6. Impact of the supply flow on the computational time in the different scenarios
of demand volume and flow.

Fig. 7. Computational time comparison between centralised and semi-decentralised
settings under most relevant scenarios and factors.

Fig. 8. Use/Waste of the available supply in the semi-centralised setting and under
different communities’ flexibility scenarios.

individually without taking into account the preferences of the whole
community.

Hence, both, the performance cost and the degree of balancing
between demand and supply, distinguish a number of 6 main scenar-
ios, whose behaviours and influence on the community aggregation
algorithm are illustrated in Figs. 9–11. Graphs on the top plot the
aggregated demand prior to (in blue) and after (in red) running the
optimisation algorithm in response to the renewable supply that is
plotted at the bottom showing the available supply prior to (in green)
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Fig. 9. Busy communities demand high under rigid scenarios of flexibility, on a peak-time basis () and counting on a flat supply from renewables as in (a); or counting
on flat demand and sufficient renewable energy supply () as shown in (b). (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
Fig. 10. Concerned communities comprise flexible consumers, that may demand medium-low volume, on a peak-time basis () as in the scenario displayed in (a) with a flat
supply from renewables. Concerned behaviour is also distinguished in flexible, flat, low-demanding communities () where the supply from renewable is insufficient sometime
along the day as in (b). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 11. Demanding behaviours perform over mixed-flexible communities consuming mostly under a peak-time basis such as in (a) with high demanding consumers (); and
(b) with consumers demanding lower throughout the entire day (). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
and after (in yellow) the allocation to consumer fixed and shiftable
demand. The identified behaviours can be described as follows:

Busy behaviour: Busy consumers demand high and create an scenario
difficult to adjust when their flexibility is rigid and concentrated
on same time periods. Our aggregator has low margin to flatten
the demand along the day and barely manages to allocate the
available supply as depicted in Fig. 9. It is however the fastest
scenario counting on sufficient supply. Communities displaying
this pattern can unlock up to 3% of flexible demand volume.

Concerned behaviour: Communities displaying an energy-saving be-
haviour are defined by low demanding consumers that demon-
strate high demand flexibility through long preferences’ time
periods. We tested our aggregation algorithm against concerned
communities consuming on a peak-time basis and considering
different scenarios of supply volume. For instance, Fig. 10 shows
how our aggregator flattens the peak demand and matches elec-
tricity demand to periods when intermittent renewable energy is
available. Because of the participants’ flexibility, operation time
8

of variable loads can be shifted between periods of the day. Note
however that the aggregated scheduling takes longer (increasing
up to 2%). Communities displaying this pattern make available
up to 30% of flexibility in demand volume.

Demanding behaviour: Demanding communities display an hetero-
geneous dynamism of consumer flexibility as illustrated in
Fig. 11 for different supply scenarios. Our aggregator manages
to flatten peak-time consumption on an efficient way, even
counting on insufficient supply in some slots. Communities
displaying this pattern transform up to 15% of flexible demand
volume.

Taking into account our aggregator’s DR features, Concerned con-
sumers who demonstrate great flexibility through long preference pe-
riods can present high responsiveness to DR signals. As a result, re-
newable resources are efficiently managed with 30% of margin for
reallocation if compared to the 15% obtained for demanding communi-
ties or the 1% for Busy behaviours. Moreover, our results emphasise the
importance of defining the temporal flexibility of loads as a function of
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Fig. 12. Time series of the of energy consumption (blue curve) and 𝑟𝑤 vector provided
by the Utility (red curve) in the aggregated model. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

the time of the day to provide opportunities for maintaining the power
balance, for peak demand reduction as well as for the integration of
renewables.

3. Automated analysis

We now configure a series of ML methods for pattern recognition
that can help to identify new behaviours within our dataset as well as
to validate the ones established in previous section. We first describe
the methodology applied to this analysis.

3.1. Data/feature processing and methodology

We prepare the data at the aggregator’s side; in particular, we use
the NREL5 dataset (NREL, 2020) that consists of the electricity demand
profiles (residential power consumption, validated using metered data,
with a resolution of 10 min (Muratori, Roberts, Sioshansi, Marano, &
Rizzoni, 2013)) for 200 households randomly selected from the US
Midwest region. Households vary in size and number of occupants
and the profiles represent total electricity use, in watts. This dataset
also compiles synthetic solar PV power plant data points for the US
representing the year 2006. Fig. 12 depicts a partial time series of these
data for a household and the available renewables provisions.

We use the Scikit learning module (Pedregosa et al., 2011) to
process the dataset and analyse the extracted features. The process
of preparing the data for analysis comprises several steps, i.e., (i)
checking and handling of missing values; (ii) evaluation of data quality;
(iii) checking and handling of outliers and scaling. Hence, the final
dataframe is a ‘‘CSV’’ type file with two data types, namely, the times-
tamp and the energy consumption value (in watts) at that moment. It
is however not possible to identify consumer flexibility profiles.

We will first experiment with unsupervised learning methods, whose
main objective is to infer natural structures presented in a set of
training samples (extracted from the NREL database). Afterwards we
will apply previous analysis to supervised classification methods as to
compute accuracy of the estimations.

3.2. Unsupervised analysis

Our analysis with unsupervised methods opts for (i) k-means clus-
tering, which is very suitable for analysing large scale data sets, and
its indices, including Elbow and Silhouette Index, support the determi-
nation of a suitable cluster number; (ii) k-prototypes, an extension of

5 The National Residential Efficiency Measures Database https://data.
rel.gov/system/files/69/Residential-Profiles.xlsx is a publicly available, cen-
ralised resource of residential building retrofit measures and costs for the U.S.
uilding industry.
9

a

the k-means algorithm to categorical domains, allows clustering objects
to be described by mixed numeric and categorical attributes; (iii)
hierarchical clustering, though being a time-consuming algorithm, it
has been frequently employed to identify typical energy usage profiles
of buildings, to understand building energy consumption characteristics
so helping the development of effective strategies to improve building
energy efficiency; it provides a highly detailed separation of clusters;
and (iv) PCA helps us investigate data dimensionality reduction, which
is a very advantageous method when there is a lack of labelled data,
or when dealing with large scale smart meter data, thereby improving
the data mining efficiency.

K-means Algorithm: Fig. 13-a depicts the exploration conducted over
the NREL dataset with the electricity load profiles and averaged by
hour. A number of three groups or clusters were obtained by applying
the Elbow and average silhouette methods.6 Clusters show a common
dynamics in consumption but we can distinguish groups of consumers
demanding higher and more prominent peak-time load whereas others
displaying a flatter and lower consumption profile along the day. For
instance, Cluster 1 (in Fig. 13-red curve) presents similarities with the
Busy pattern (−) extracted from the non-automatic analysis in
terms of demand volume and flow. Cluster 2 (in blue) curve clearly
corresponds to the Concerned consumption scenario (i.e.,  − − com-
binations), whereas Cluster 3 (in green) displays a consumption be-
haviour fitting the Demanding pattern, i.e., it shows an heterogeneous
demand volume and flow ( −−).

K-prototypes Algorithm: Configured with the same number of clusters,
Fig. 13-b shows the consumption patterns extracted from the same
NREL dataset, in which we have included categorical features stating
the three types of behaviours identified in Section 2.3. To this regard,
demand volume and flow are the two factors analysed as to pair each
household’s dynamics with one of the behaviours. Though similarities
with k-means are visible in Fig. 13 and so both clustering methods
produce three clusters that are easily distinguishable, the classification
of the samples varies between the two algorithms, e.g. our categori-
sation of samples into the Cluster 3 deviates in 20 households that
are classified into Cluster 2, and 4 households considered as Busy
behaviours are classified into Cluster 3. We can see that k-prototypes
clusters are more equally distributed, though boundaries are difficult
to distinguish from this dataset.

Hierarchical Clustering (HC): This method computes a hierarchi-
cal representation or dendrogram of the data structures found within
the NREL dataset, which are organised into a tree for a meaningful
classification. The horizontal position of each branch relates to the
distance (dissimilarity) among clusters. Fig. 14 illustrates a number
of 3 sub-clusters of similar data that can be interpreted as follows:
cluster 1 (in red) with 52 points (households), cluster 2 (in blue)
comprises 58 points, and cluster 3 (in green) groups 90 points. This
algorithm searches factors of similarity/dissimilarity within the dataset;
two clusters namely Cluster 1 and 3 present more similarities (in both
dimensions demand volume and flow) since they belong to the same
branch. These sample populations lie within the scenario  . Data
in Cluster 2 also shares common dynamics with Cluster 3, which is the
most populated cluster compiling heterogeneous behaviours. Data and
dendrogram correlation let us infer that the patterns extracted in our
non-automatic analysis fit well the current HC clustering.

Principal Component Analysis (PCA): Aiming at minimising redun-
dant data and optimising the cluster centroids, we apply PCA to the
NREL dataset obtaining a visualisation (as in Fig. 15) of three different

6 The difficulty of determining the cluster number is due to the variability
f the data which is unknown. The optimal number of clusters is somehow
ubjective and depends on the method used for measuring similarities and,
he parameters used for partitioning: Elbow distortion is the sum of squared
istances from each point to its assigned centre, and the average silhouette

pproach measures the quality of a clustering.

https://data.nrel.gov/system/files/69/Residential-Profiles.xlsx
https://data.nrel.gov/system/files/69/Residential-Profiles.xlsx
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Fig. 13. K-means (a) and K-prototypes (b) analysis throw a number of three consumption patterns over a year: Cluster 1 displaying a similar pattern than the Busy behaviour (red
curve), Cluster 2 showing a flat and low-demand Concerned behaviour (blue curve) and Cluster 3 for a more heterogeneous Demanding consumer (green curve). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 14. The HC dendrogram computed over the dataset shows a number of 3 clusters;
the graph also indicates the quantity of points/individuals found in each branch. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

clusters on two principal components which make the cumulative
contribution rate reach 87%. The first and second components ex-
plain the highest possible variation (62% and 25% respectively). The
components obtained from PCA reveal the consumption behaviours
of different connection point types. Cluster 1 and 2 present a wider
dispersion with reference to their centroid; this is mainly due to the
different consumption trends among households in cluster. Note that
the NREL dataset is processed reserving a number of 24 principal
components (every hour of the day) and data were grouped into 3
clusters according to previous experiments and our experience.

On the ENEFF aggregator: We have considered the resultant clus-
ters as scenarios for new experiments on the ENEFF aggregation and
scheduling algorithm. The NREL dataset’s households’ consumption
data is configured as parameters on the algorithm over different hy-
pothesis of flexibility preference7 and renewable supply. Fig. 16-a

7 The NREL samples are clustered according to the ML method and man-
ually configured to generate scenarios of flexibility as follows: Household’s
minimum annual consumption sets the fixed demand whereas its difference
with the slot of maximum consumption sets the shiftable demand; we also
extract consumption peak’s period manually and its duration. Rigid scenarios
of flexibility stretch the start of the period a third of the peak duration;
same period on flexible scenarios adds half of the duration. Different supply
scenarios are tested being flat-based.
10
Fig. 15. Principal Component Analysis results in three classified patterns through
a number of 2 principal components (PC) that explain the 87% of the cumulative
variance.

depicts the gained flexibility on a rigid scenario, in which the aggre-
gator has little margin to shift households’ load. On this setting, the
coalition of clusters works well, being Clusters 2 and 3 (which could
represent the Concerned and Demanding behaviour respectively) the
coalition flexibilising the most, though it represents less than the 28%
of their total load. For instance, Cluster 2 manages to shift 41% of its
load to less busy slots, whereas Cluster 3 best performs individually
in terms of flexibility volume. The aggregated demand scheduler is
remarkably working well on peak-time and rigid demand settings.

Similar results appear on more flexible communities as depicted
in Fig. 16-b that displays greater volume of shiftable demand over
coalitions between Clusters 1 with 3, and Cluster 2 with 3 as well
as in Cluster 3 independently, shifting the 36%, 26% and 34% of
their respective loads. Moreover, Cluster 2 is again the community
flexibilising the most (42% of its demand). Busy communities like
in Cluster 1 (demanding high and peak-based) are, however, only
performing efficiently in conjunction with a different cluster type.

We have also conducted experiments with the resultant clusters
over the semi-decentralised framework setting in which the algorithm
assigns the renewable supply available upon consumer request. In our
experiments, supply is allocated in order by households’ enumerator on
the NREL dataset; the algorithm does not execute household preference
optimisation on this setting but it does shift the start point of the
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Fig. 16. Gained flexibility (kW) of the clusters extracted by k-means on the ENEFF aggregator: (a) on a rigid scenario of household flexibility, and (b) on a more flexible scenario.
allocation within each cluster to evaluate best and worst cases. For
instance, Clusters 2 and 3 get between the 32%–11% and the 33%–
16% of flexible demand from their respective load, though in coalitions
they do not perform as efficiently as in centralised settings. Cluster 1
improves its volume of flexible demand by joining Cluster 2; by contrast
it makes the coalition with Cluster 3 saturate the renewable supply
during the peak of load.

Remarks. Note that, even though the consumer flexibility could not
be analysed from the NREL dataset in our analysis using unsupervised
ML methods, the patterns automatically recognised fit our previous
analytical hypothesis. Besides, we calculated the standard deviation
(SD) and the average consumption for the three clusters identified
by k-means, k-prototypes and HC (shown in Table 4). The results
obtained differ form the initial centroids (k-means) and the categorical
households selected (k-prototypes). These values determine the degree
of homogeneity and volume of consumption throughout the year on
each cluster. For instance, on k-means, Cluster 1 (Busy pattern/scenario
 − −) represents the upper bound in both factors throwing fluc-
tuating and high demands. On HC, Cluster 2 (Concerned behaviour
 − −) throws the most uniform and lowest consumption. Moreover,
PCA revealed the low variability of the dataset.

3.3. Supervised analysis

We now implement and use supervised ML methods to validate
the clustering analysis and to determine most efficient classification
methods that can help assigning the profiles to a particular group of
consumers over the NREL dataset and our own dataset of synthetic
data. We have conducted (i) fuzzy logic analysis for studying fuzzy
similarity and fuzzy relations to increase the efficiency of consumer
classification into community patterns, (ii) linear discriminant analysis,
that has a good performance in classification of electricity consump-
tion behaviour and load forecasting, and (iii) k-nearest neighbours
classification, which is recently applied to daily energy consumption
prediction based on classification throwing high accuracy results.

Fuzzy logic: We now apply fuzzy logic to the dataset generated with
synthetic data in Section 2.3 for the computation of the algorithm’s per-
formance cost. Our dataset (populated with synthetic data) is structured
into a 24 fuzzy-variable set comprising all factors’ combinations as
shown in Table 7 and their computational time normalised as in Fig. 17.
For instance, the visualisation of all factors’ combination in terms of
the normalised cost throws an interesting result of the factor impact
on consumer coalitions and their behaviour, e.g., rigid communities
( − −−) run fast when scheduling. We then classify (to some degree)
11
Fig. 17. Data preparation for fuzzy analysis: Normalised average values of the
computational cost for the 24 combinations regulated in Table 7.

Fig. 18. Matrix confusion for the fuzzy classification on our dataset with synthetic data.
A number of 3 classes are set as fuzzy rules; only 8 combinations (rule corresponding
to Busy pattern) and 10 (matching with Demanding pattern) have been classified with
0.79 of accuracy. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

the input data into one of the following three fuzzy rules or classes: (1)
rigid demand, peak-based, (2) flexible demand, low volume, and (3)
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Table 4
Mean consumption and standard deviation (in watts) along the year for each of the identified patterns.

K-means HC K-prototypes

Mean SD Mean SD Mean SD

Cluster1 16265 3237 12506 2733 14180 2810
Cluster2 5640 1799 5054 1532 5402 1677
Cluster3 8481 2445 7368 2328 7916 2433
Fig. 19. Linear Discriminant Analysis classification on our dataset for the three classes
throws an accuracy of 90%.

mixed and flat demand. Fig. 18 depicts the confusion matrix achieved
for fuzzy logic classification into these three classes with an accuracy8

of 0.79. We can see that Class 1, which matches the Busy pattern,
classify correctly the 33.3% of the combinations, whereas the 42% of
the cases lies within Class 3 that represents the Demanding pattern (the
mixed behaviour scenario). Class 3 also throws several false positives
classifying combinations that belong to Class 2, which correlates to the
Concerned behaviour. The classification is not good and barely discrim-
inates the flexible behaviour. Thus, we add the fuzzy classifier as input
to an evolutionary method to refine the membership functions. We
introduce our dataset containing the 24-factor combinations classified
as described above to a Genetic Algorithm (GA) and a Particle Swarm
Optimisation (PSO) algorithm (Mälardalen, 2011). Each algorithm is
executed 30 times and the implementation of fuzzy classifier achieves
an accuracy of 0.93 under both experiments. Both evolutionary al-
gorithms manage to minimise the classification error, and notify the
percentage of the number of samples that were misclassified.

Linear Discriminant Analysis (LDA): Fig. 19 plots9 the results of an
LDA classifier generated by fitting the class-conditional probability
density function to the NREL dataset using Bayesian rule. Feature set
is defined by the 200 households’ hourly consumption. The classifier
looks for the linear separability of the classes. The accuracy value
obtained (testing over a 20% out of the 200-samples training set) from
the LDA classifier is 0.9. As to reduce dimensionality, LDA has thrown
similar results than PCA.

8 Colour intensity reflects the classification accuracy for the combinations
on each class.

9 LDA reduces the number of dimension from original to 𝑐 − 1 number
of features where 𝑐 is the number of classes. In our experiment, we have 3
classes and 24 features; LDA then reduces from 24 features to only 2 features,
so letting us plot over these most significant components after the linear
transformation.
12
Fig. 20. Matrix confusion of the KNN classification of 60 samples from the NREL
dataset considering the clusters identified in Section 3.2.

K-Nearest Neighbours (KNN): Fig. 20 depicts the confusion matrix of
the KNN classification over a number of 60 samples/households from
the NREL dataset. Despite a few false positives, samples on dataset
are correctly classified with accuracy of 94%. For instance, Table 5
compiles true-quality classification indices, obtaining a macro average
of 0.94 for the three patterns and 0.93 on both F1 Score and recall
parameters; support is the number of samples true positives that lie
within each class. In particular, the KNN classifier is 100% precise
identifying Cluster 2 (Concerned) behaviours as well as being the most
exhaustive. Cluster 3, the one compiling mixed and heterogeneous
behaviours, throws lower values for these indices, though the number
samples for training/learning is the lowest. Cluster 1’s rule, however,
incorrectly classifies a few samples from Cluster 2, throwing some
doubts around the suitability of the dataset used for our analysis.

On the ENEFF aggregator: We have considered the classification
of KNN over the NREL dataset’s households’ consumption data to
configure new scenarios for the ENEFF aggregation and scheduling
algorithm. We establish two different scenarios of flexibility prefer-
ence, i.e., rigid and flexible, and renewable supply. Fig. 21-a depicts
the gained flexibility on a rigid scenario, and shows similar results
than the experiments with the unsupervised ML methods in terms of
flexibility volume gained. In fact, coalitions of clusters gain bigger
volume of flexible demand, e.g., 34% of the load between clusters
2 and 3. Behaviour of clusters is remarkably flattened by the KNN
classification, though Cluster 1’s ratio of flexibility remains the poorest
(23%). Flexible scenarios depicted in Fig. 21-b show a more balanced
dynamics of clusters, that flexibilise around the 30% of their total load;
cluster 2 reaches a 38% of flexible demand.

KNN clusters were also applied to the semi-decentralised version
of the aggregated demand scheduler. Findings on the gained flexibility
in the different scenarios10 emphasise the need of more heterogeneous
samples of consumer behaviours. Classifications established over the
NREL samples by KNN present a similar ratio of both the volume
of flexible demand gained after the cluster scheduling as well as its
ratio over the total volume of demand. The best scenarios performing
flexibility are Cluster 3 (between 32% and 26% of best and worst

10 We configured new scenarios of flexibility over the NREL samples as
described in Section 3.2.
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Table 5
Quality and precision parameters for KNN classification over 60/140-sample dataset tested.

Precision Recall F1-score Support

Cluster 1 0.91/0.89 1/0.93 0.95/0.91 21/60
Cluster 2 1/1 0.91/0.97 0.91/0.99 20/35
Cluster 3 0.88/0.91 0.91/0.87 0.94/0.89 15/45

Accuracy

macro avg 0.93/0.93 0.94/0.92 0.93/0.93 60/140
weighted avg 0.94/0.92 0.93/0.92 0.93/0.92 60/140
Table 6
Accuracy and computational time of the classification techniques used on our automated analysis.
Dataset ML method Score Time (ms)

Supervised algorithms

NREL K-nearest neighbours 0.93 4.25
Linear discriminant analysis 0.9 5.10

Synthetic Fuzzy logic 0.79 134.2
Fuzzy logic with PSO 0.9 26300

Unsupervised algorithms

NREL Principal component analysis 0.87 6.0

K-means Elbow: K = 3/Distortion = 0.29
Silhouette: K = 3/Average = 0.22

750
1070

K-prototypes Elbow: K = 3/Cost = 20.5 493

Hierarchical clustering Threshold: 1 2.09
Fig. 21. Gained flexibility (kW) of the clusters extracted by KNN on the ENEFF aggregator: (a) in a rigid scenario of household flexibility, and (b) in a more flexible scenario.
scheduling respectively) and the coalition between clusters 2 and 3
(31% on average). Moreover, Cluster 1 improves its ratio of flexible
demand gained in the KNN semi-decentralised scenario with a best case
of 22%; the mixed of behavioural patterns within the KNN classification
provokes this increasing.

3.4. Discussion

Electricity suppliers, market regulators, and the consumers them-
selves, all need to understand how consumer communities respond to
the aggregated version of DR developments. Our results of analysing
the patterns that may emerged from a community of consumers coop-
erating towards a better use of both, their flexibility and the renewable
sources (locally generated or not) have significant implications for
those market players.

The electricity supplier can improve the decision making at dif-
ferent levels by the application of ML methods to an aggregated DR
development like ENEFF. Unsupervised methods such as k-means can
assist in the extraction of not only demand/load profiles (and the
13
appropriate number of them) but also the variability and flexibility
dynamics within a community. Moreover, as showed by the super-
vised methods, the analysis of patterns and their responsiveness to
the scheduling algorithm in terms of the computational cost can help
to classify the consumption behaviour, and this, in turn, enhances
the shared resource (the available renewable supply) allocation and
the community (joint) demand. For instance, the experiments shown
how the ENEFF aggregator is able to classify different behavioural
patterns with an accuracy up to 90% by supervised or unsupervised
ML techniques. We compare the accuracy score and the computational
cost for each experiment on the aggregator extracting patterns from
a 200-household dataset. Table 6 compiles these measures for each
technique showing best performance on KNN method and the worst
on fuzzy Logic. Unsupervised algorithms perform faster achieving the
same accuracy scores, what is making them very suitable for real-
time classification of demand/load profiles. There are, however, some
difficulties for the automatic analysis such as the measurement of accu-
racy in k-means, k-prototypes or HC techniques or the computational
needs of the fuzzy classifiers. Also, when in conjunction with k-means
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or HC, PCA can improve consistency of clustering, so more accurate
electricity consumption forecasting can be made. Our implementation
of k-means is very efficient if compared to HC’s results and the related
work such as Wen et al. (2019). Our computational time is 78% faster
with a similar silhouette value. Their experiments with PCA and 38
components reach a cumulative percentage of 99%, whereas we obtain
a correlation of 87% with only two components due to a smaller
disparity of consumption profiles. Experiments in Piscitelli et al. (2019)
compare HC with an evolutionary learning algorithm and 17 con-
sumption categories. Their analysis computed an 80% of accuracy rate
and requires a large customer database to adequately represent each
cluster. Li et al. (2018) experimentation also requires high machine
resources (1367s) to classify 40 buildings in 9 clusters; their dataset was
complex. Nevertheless, their findings on these experiments are close to
our results: HC generally doubles the computational cost of k-means.
Mälardalen (2011) offers a supervised fuzzy classification up to 90%
accuracy in a different context. Our study also provides a high precision
under a larger database by using the same technique.

Our experiments also show how flexible consumers could be moti-
vated by the benefits from deploying DR technology at their households
as, for example, how a joint turn-key scheduler would empowers the
whole community of consumers coordinately target energy renewable
sources. In fact, our development enhances 46% the management of
the shared sources within a flexible community. Besides, note that
all methods used for our analysis have been implemented on the
aggregator hardware itself, running on the same Raspberry board, so
assuring the realisation of pattern extraction and regression with the
same machine resources than the aggregation and scheduling processes.

The system is also able to define consumer’s responsiveness to
DR signals. With the analysis of mean and SD of the hourly (or any
other scale) electricity consumption, we can group and supply con-
sumers displaying a similar pattern and accordingly. Cluster 1 (the
Busy pattern) may display the worse reaction capability if compared
to Cluster 3 as it has a higher and fluctuating consumption that make
our aggregator DR has a difficult management of renewable resources.
Global projections suggest that it will take time for consumers to fully
respond, which implies that consumer behaviour may depend upon a
suitable, friendly and cost-efficient implantation of the DR technology,
comprising aggregated demand schedulers and turn-key community
controllers.

4. Added value of demand forecasting

In this section, we discuss the inclusion of prediction models within
the logic of our ENEFF aggregator of demand with the aim at minimis-
ing the impact of non-cooperative consumers on the DR framework.
We address this challenge with Random Forest (RF), Support Vector
Machines for Regression (SVR), and Linear Regression (LG) as follows.
The former has gained enormous popularity within the techniques for
predictive modelling and behaviour analysis due to its scalability and
ease of use. The best solution takes the shape of a set of decision trees
that is selected by means of a voting procedure. SVR displays excellent
performance in the nonlinear regression estimation problems of small
sample size; whereas LR, the most commonly used predictive modelling
technique. We therefore apply these techniques to find an optimal path
that characterises the trend or dynamics (forecast for the next hour load
demand) of a community consumption within a tolerance.

Methodology. We define training and testing periods rather than ran-
om sporadic data points. Any given X vector/Y target pair in the

training data (1151 points) should provide the current hour’s electricity
consumption (Y value, or target) with the previous hour’s. We take a
number of 1151/456 h observations per household for training/testing
out of a dataset with 2470 h observations. The aggregator first cleans
the data of irregularities, by averaging the data that is available. It then
undergoes a normalisation phase, which will ensure that a convergence
14
problem does not have a large variation, and making optimisation
feasible. SVR and RF techniques depend on several hyper parameters
(C, 𝛾 and 𝑛𝑡𝑟𝑒𝑒𝑠 𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠) and their configuration is an important task,
as it will result in a more robust model.11 In addition, we explore
three settings in which to model a consumer community prediction,
as follows:

(1) The aggregator models individual households. It requires one
model for each household (200 households in our dataset). This ap-
proach enables a better understanding of the demand accuracy for
individual predictions.

(2) The aggregator gathers energy demand within the three clus-
ers/groups by looking at the average hourly demand.

(3) The aggregator aggregates the households’ consumption before
eveloping a unique aggregated prediction model of the community

behaviour. Utilities would benefit from this approach improving their
balancing services as well as the reliability of renewable estimation and
provision for the community.

Evaluation. We subject these techniques to a scoring mechanism to
evaluate their performance and accuracy on a series of metrics. For
instance, the determination coefficient (R∧2) (as depicted in Fig. 22-
a) is an assessment metric for training and test accuracy that gives
a statistical measure of the accuracy of the data given by the actual
adjusted regression curve. The Mean Absolute Percentage Error (MAPE)
throws the prediction accuracy of a forecasting method. The Mean
Absolute Error (MAE) is an useful metric when large errors could
cause consequences; whereas the Mean Square Error (MSE) computes
the mean of the difference between the actual demand value and the
expected demand value. The latter is used as the loss function during
the training phase to minimise errors.

Fig. 22 shows the evaluation results of the three techniques on
the aforementioned scoring criteria and for each of the settings. On
one hand, the ENEFF aggregator dedicates more computational time
in the individual setting for all techniques, due to the need of re-
sources to extrapolate data in an individualised study. On the other
hand, the aggregated setting threw greater precision in the prediction
according to the R∧2 factor (i.e. LR scored 0.41/0.92 at the house-
hold/aggregated level respectively). SVR, LG and RF provide successful
forecasts in all cluster settings. The application of RF to prediction
shows impressive results and stable performance in all the different
approaches adopted, specially in the aggregated setting (R∧2 0,93; MAE
.2e−3; MSE 0,8e−6; MAPE 3.6%). SVR accuracy is surprisingly low
R∧2 0,3 in the individual setting); however, this could be due to the
mission of a comprehensive hyper-parametric search. The aggregated
etting displays a tiny improvement if compared to the cluster-based
ettings. Similar tendencies are shown for all metrics within the three
stablished clusters, except for the SVR regression within cluster 2.

The achievable accuracy in terms of MAPE indicator is surprisingly
ow, ranging between 16 and 105% for the individual setting, and
etween 2 and 41% for the aggregated settings. More specifically,
APE presents poor accuracy in SVR technique as predicted demand

igh errors are likely to have a significant impact in prediction accu-
acy. MSE score also shows the same tendency, which gives a worse
erformance for individual case. Therefore, the choice of the DR model
ith forecasting at cluster level provides an increase of 57%, in terms
f demand prediction accuracy.

11 Using the same hyper parameters values for all different households might
not be optimal. We have optimised the selection of the hyper parameters values
by a cross-validated grid-search as in Wijaya et al. (2015) to compare the
results obtained for both, the computation time and the SVR accuracy. We
select [C, 𝛾] = [1e6, 0.001] for SVM and 𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 1e3 for RF. C values < 1e-3
reduce accuracy 50%; and higher values for 𝛾 and C increase computation time
by 28% percentage. We have also implemented the LR algorithm as it is rather
independent of the choice of hyper parameters; therefore the computational
time is significantly reduced.
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Fig. 22. Scoring metrics for SVR, LR and RF models: (a) R∧2; (b) MAPE; (c) MAE; and (d) MSE under the three different settings: individual, clusters and the aggregated prediction
model.
Fig. 23. (a) Time series of the current and predicted level of energy consumption in the aggregated setting. (b) Scatter plot of expected energy consumption in the test suite.
Individualised demand forecasting presents greater instability and
the existing variability of electricity consumption complicates the es-
tablishment of higher levels of accuracy in this setting. SVR emphasises
this drawback, which is shown by the MAPE factor with higher percent-
age of error in the individual setting (up to 105%) compared to the
aggregated setting (26%). Furthermore, Fig. 23-a illustrates the time
series of the actual and predicted electricity demand over the testing
period in the aggregated SVR model, whereas Fig. 23-b presents its
scatter plot. Overall, the RF model appears as the technique that better
predicts within the aggregated setting (with an R∧2 of 0.94), though it
needs more computational time. The technique that performs worst in
terms of accuracy is SVR at the individual setting with an R∧2 of 0.3.
Besides, the MSE value is calculated high by all the techniques in the
training of individual setting.

Remarks. The effectiveness of demand forecasting relies on the number
of customers at the aggregator. Predictions based on disaggregated
consumption data could improve our analysis as well as the inclusion
of different datasets for training. Our aggregator can be used for gener-
ating accurate consumption profiles and demand forecasts but require
good parametric adjustment when applying SVM or RF. From our
experiments, SVR is accurate and fast profiling consumer behaviours
15
collectively. LR and RF performs well in all scenarios. Moreover, our
aggregator system can predict future demand with 94% accuracy if
compared to a single household residence, which provides a 40%
of accuracy for energy demand forecast (with RF model). Structural
impact decision from the utilities’ side would be further founded.

Our results when compared to related work throw interesting find-
ings; Walker et al. (2020) proposed an individual and cluster-based
aggregate residential demand forecasting, being the latter 74% accurate
using LR in a single cluster. They also applied SVR to the aggregated
model enhancing the efficiency for 1000 customers grouped in clus-
ters. On other hand, our model is based in a unique cluster without
modifying hyper-parameter values for 200 households, which does not
offer the best accuracy using SVR. However, we improve up to 82% the
forecast in the aggregated model (LR) due to the fact that the effect of
unpredictable individually patterns were alleviated considering them as
a single group. Wijaya et al. (2015) also performed a prediction analysis
at both, aggregated and individual level, in commercial buildings by
applying techniques such as SVM or RF, among others. In particular,
and as a consequence of he inconsistency of the collected data patterns
of some buildings, their findings with RF presented lower error accu-
racy. Walker et al. (2020) observed that individual prediction models
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Table 7
Simulation assumptions: Scenarios from combining the different factors values.

Demand
volume

Consumer
flexibility

Demand flow Description Supply
flow

Scenario Cluster Graph

Rigid
 = 𝑡𝑒𝑛𝑑 − 𝑡𝑏𝑒𝑔

High (> 5 h)

Flat House members with a high activity
and occupancy. Loads are distributed
along the day in a random way.

Flat
Peak




Cluster 1 Fig. 9a

Peak
8 a.m.–11 p.m.

Loads are distributed along the
day, specially focused from early time
in advance.

Flat
Peak




Low (< 5 h)

Flat House members with a low activity
and occupancy. Loads are distributed
during spare time.

Flat
Peak




Cluster 1 Fig. 9b

Peaks
8 a.m.–11 p.m.
10 a.m., 14 p.m., 22 p.m.

Loads are distributed
at early hours and spare time.

Flat
Peak




Mixed
 > 𝑡𝑒𝑛𝑑 − 𝑡𝑏𝑒𝑔

High

Flat House members with a high activity
and occupancy. Loads are distributed
throughout the day.

Flat
Peak




Peak
10 a.m.–11 p.m.

Loads are
distributed throughout the day.

Flat
Peak




Cluster 3 Fig. 11a

Low

Flat House members with a low activity
and occupancy. Activities focuses
in the morning and in the afternoon.

Flat
Peak




Peaks
10 a.m.–11 a.m.
15 p.m., 18 p.m.

Activities focuses in the
afternoon. Loads are also distributed
throughout spare time.

Flat
Peak




Cluster 3 Fig. 11b

Flexible
 = 24

High

Flat House members with
a high activity and occupancy.

Flat
Peak




Peak
6 a.m.–10 a.m.

House members whose
average daily energy consumption
is distributed at noon.

Flat
Peak




Cluster 2 Fig. 10a

Low

Flat House members with a low activity
and occupancy. Loads are distributed
in the morning.

Flat
Peak




Peak
5 a.m.-11 a.m.

Loads are distributed throughout
the day and demand peak at early time.

Flat
Peak




Cluster 2 Fig. 10b
are not satisfactory (R∧2 0.45; MAPE 28%). These findings are similar
to those we have obtained on the individual model using RF, but we
have improved the error (R∧2 0.41; MAPE 15.72%). Their prediction in
ggregated settings improved notably (R∧2 0.96; MAPE 2.5%), which is

similar to our results under RF (R∧2 0.94%; MAPE 3.6%). On the whole,
we can state that this is due to the selection of trained-models for
demand prediction. All these studies found that the prediction accuracy
depends on the number of clusters and the cluster size.

5. Conclusions

This paper contributes to the analysis of the consumers’ consump-
tion patterns participating in electricity demand response and aggrega-
tion services and how the consumer profiles and consumption drivers
within a community could impact the acceptance (in terms of volume
of flexible kW, number of consumers enrolled and % decrease of
fossil energy consumption) of such services. The analysis assumes a
cooperative demand response programme in place, which, centralised
on an aggregation player, aggregates all the participants’ (day-ahead)
demand and schedules it according to the available supply from the
local renewable sources.

The performance of the proposed scheduling algorithm under differ-
ent scenarios threw interesting results of its efficiency in the presence
of certain factors such as the volume of demand and the flexibility of
the consumer participants. Hence, we first conducted a non-automated
analysis of all the factors, their impact on the allocation optimisation
provided by real datasets as to extract a preliminary battery of poten-
tial behavioural patterns. The flexibility factor (how much flexible a
16

consumer is when defining time ranges for his/her day-ahead demand)
dominates the algorithm performance; though highly flexible commu-
nities are computationally more costly (less than 35 s for 5-consumers
with 48 appliances each), the allocation of the community load much
better optimises the available green supply. Moreover, the peak load
and peak–valley difference of the community load profile can be re-
duced without altering participants’ routines. The algorithm efficiently
recognises inelastic communities where non-flexible consumers in busy
communities makes the supply allocation more rigid among them. We
have identified three consumption patterns governed by the discussed
factors at this preliminary analysis.

To validate the analysed patterns, we applied most commonly
used supervised and unsupervised machine learning techniques for
pattern recognition such as k-nearest neighbour, discriminant analysis,
k-means, hierarchical clustering and fuzzy modelling, amongst others,
to the same datasets. Clustering performs fast recognising 3 clusters
out of the datasets that group consumers according to the demand
volume and flow. Flexibility features could not be recognised from
the dataset though. Supervised classifications with k-nearest neigh-
bours and LDA are also fast and accurate (>0.9 precision score). The
former algorithm can distinguish a series of three behaviours over a
total of 140 households on the NREL dataset with 93% of accuracy;
in particular, a Busy pattern is recognised in 49% of the samples,
25% corresponds to the Concerned pattern and 32% to Demanding
behaviours. Similarly, the application of fuzzy logic over the analy-
sis of the factors with impact on the scheduling process is able to
identify the same patterns with an accuracy of 79%. Scenarios with
Busy behaviours compile the 33%, whereas the other two patterns in
coalition make 45% of demand flexible for reallocation with only 47%
of participation (i.e., 42% corresponds to Demanding consumers and

5% from Concerned behaviours).
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The ENEFF aggregation and scheduling algorithm reaches an upper
bound of flexibility (i.e., 42% out of the community demand) within
coalitions of clusters (or consumer patterns) that display concerned
and low-middle demanding behaviours. Indeed, the inclusion of flexible
preferences implies a high responsiveness of the whole community to
DR signals even under peak-demand conditions. Demanding behaviours
get 15% of the whole demand flexible for reallocation. By contrast, we
can find the lower bound on more busy scenarios where the volume of
demand is high, and peak-based; communities under rigid conditions
barely reallocate 1% of shiftable demand, even on flat-demand flow.
The centralised framework, in which the aggregator makes arrange-
ments for the community scheduling, gains 20% of additional flexibility
when compared to the semi-decentralised version of the algorithm, that
manages households’ demand on a more individualised way.

Furthermore, we have included discussion on the suitability of
regression techniques such as Support Vector Regression, Random For-
est and Linear Regression to forecast consumption behaviour at the
aggregator. We found high accuracy (>0.94) in the estimations and fast
profiling of consumer behaviours at community and cluster approxi-
mations. Immediate future work focuses on the industry validation of
the algorithm and the estimations on living labs; for instance to mea-
sure system’s scalability we will include the local prosumers’ sources.
Moreover, a survey benchmark is being published online for measuring
potential consumers’ response to the programme and its capability for
refinement.
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Appendix

We include as an Appendix a more detailed explanation of the
simulation assumptions of the scheduling process. Table 7 shows for
the factors defined all the possible combinations or scenarios.
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