
1

H. Koruk and A. N. Pouliopoulos, “Investigation of the Motion of a Spherical Object Located at Soft Elastic and Viscoelastic Material 
Interface for Identification of Material Properties.”

Applied Science and Engineering Progress, Vol. 17, No. 4 (Special Issue), 2024, 7277

Investigation of the Motion of a Spherical Object Located at Soft Elastic and Viscoelastic 
Material Interface for Identification of Material Properties

Hasan Koruk*
Faculty of Engineering, MEF University, Istanbul, Turkey
Department of Surgical and Interventional Engineering, School of Biomedical Engineering and Imaging  
Sciences, King’s College London, London, United Kingdom

Antonios N. Pouliopoulos
Department of Surgical and Interventional Engineering, School of Biomedical Engineering and Imaging  
Sciences, King’s College London, London, United Kingdom

* Corresponding author. E-mail: korukh@mef.edu.tr         DOI: 10.14416/j.asep.2023.12.002
Received: 15 June 2023; Revised: 26 September 2023; Accepted: 30 October 2023; Published online: 12 December 2023
© 2023 King Mongkut’s University of Technology North Bangkok. All Rights Reserved.

Abstract
Measuring the properties of soft viscoelastic materials is challenging. Here, the motion of a spherical object 
located at the soft elastic and viscoelastic material interface for the identification of material properties is  
thoroughly investigated. Formulations for different loading cases were derived. First, the theoretical models 
for a spherical object located at an elastic medium interface were derived, ignoring the medium viscosity. After 
summarizing the model for the force reducing to zero following the initial loading, we developed mathematical 
models for the force reducing to a lower non-zero value or increasing to a higher non-zero value, following 
the initial loading. Second, a similar derivation process was followed to evaluate the response of a spherical 
object located at a viscoelastic medium interface. Third, by performing systematic analyses, the theoretical 
models obtained via different approaches were compared and evaluated. Fourth, the measured and predicted 
responses of a spherical object located at a gelatin phantom interface were compared and the viscoelastic material  
properties were identified. It was seen that the frequency of oscillations of a spherical object located at the 
sample interface during loading was 10–15% different from that during unloading in the experimental studies  
here. The results showed that different loading cases have immense practical value and the formulations 
for different loading cases can provide an accurate determination of material properties in a multitude of  
biomedical and industrial applications. 

Keywords: Dynamic Hertz model, Material properties, Shear modulus, Soft material, Sphere, Viscoelastic 
properties, Viscosity
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1 Introduction

The dynamic response of a spherical object, such as a 
bubble and a sphere, placed inside a medium [1]–[7] 
and located at a medium interface [8]–[14] has been  
investigated to identify material properties and  
understand the dynamics of soft structures. Creating or 
placing a spherical object inside a medium is difficult  
and can change the medium material properties. 

Thus, the experimental setup using a spherical object 
located at a medium interface is more convenient for 
the determination of material properties in practical 
applications [15]. Furthermore, as bubbles are not 
stable and their manipulation during experiments is 
difficult, a non-deformable spherical object located 
at a medium interface is more practical for evaluating 
material properties [14]. It should be noted that, unlike 
other parameters such as shear modulus, the accurate 
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modeling and experimentally identification of damping 
or viscosity for almost any type of material is always 
challenging, as many parameters affect the damping  
of a system [11], [16]–[19]. Therefore, measuring 
the properties of soft viscoelastic materials that  
exhibit both viscous and elastic characteristics when  
undergoing deformation is challenging.  
 There are some research studies on the  
identification of material properties based on the  
displacement of a sphere located at the material  
interface. Many of these studies are for static loading, 
and they only provide material elastic properties, such as  
the shear modulus or Young’s modulus [20]–[24]. 
Some studies focus on the steady-state deformation  
of the sphere or relaxation, rather than on the  
measurement of vibrations of the spherical object 
located at the sample interface [25]–[27]. The models 
for an object located at a viscoelastic medium interface 
in the literature are complicated and may not provide 
the correct viscoelastic properties of the test sample. 
For example, Mizukami et al. [28] designed a test 
rig to determine the elastic and viscous parameters 
of the contact interface based on resonance shear  
measurement. In their setup, they placed a hard sphere 
on a hydrogel. The sphere was connected to a four-
sectored piezo tube and hung by a pair of vertical 
springs. The hydrogel was mounted on a plate, which 
was connected to a horizontal double-cantilever spring. 
This complicated system contains the parameters of 
many other components, and the elastic and viscous 
parameters of the contact interface were determined, 
not the viscosity of the hydrogel.
 There are some attempts to obtain mathematical  
models for the oscillations of a sphere placed  
on a half-space [29]–[31]. However, in these studies, 
the medium viscosity of the medium is not considered 
[29], the excitation is assumed to be a rectangular 
pulse with zero amplitude at the start and end of the 
function [30], [31]  and the period of oscillations is 
assumed to be the same in the loading and relaxation  
phases [30]–[32]. Therefore, there is a need to  
establish a practical test rig and develop an accurate 
mathematical model for the dynamic response of 
a spherical object located at a medium interface  
exposed to an external force. This model should work 
for different loading cases encountered in practical 
applications, as explained in more detail in the next 
two paragraphs.

 The excitation as a rectangular pulse is common  
in practice [2], [7]. In this approach, a force is  
applied for a duration of time, and after that the force 
is removed as seen in Figure 1(a) (i.e., 1 > 0 for  
0 ≤ t ≤ τ and 2 = 0 for t > τ). It should be noted 
that mathematical models for a sphere located at the  
interface of an elastic medium [30] and placed at 
the interface of a viscoelastic medium [31] exposed 
to a rectangular pulse seen in Figure 1(a) have  
recently been proposed. It should be noted that the  
mathematical model in [31] has recently been updated 
for a trapezoidal pulsed force in [32]. However, in  
practical applications, due to the mass of the spherical  
object, the force in the second phase is not zero as  
depicted in Figure 1(b) (i.e., 1 > 0 for 0 ≤ t ≤ τ  
and 1 > 2 ≠ 0 for t > τ). Furthermore, the medium is 
first deformed by the weight of the spherical object, 
and then the external force is applied in practice as 
illustrated in Figure 1(c) (i.e., 1 > 0 for 0 ≤ t ≤ τ 
and 2 > 1 ≠ 0 for t > τ). A practical loading case is 
the combination of Figures 1(b) and (c) in which the 
external force is applied following the initial static 
loading and the external force is removed in the next 
step as shown in Figure 1(d). Therefore, in addition 
to the force applied to the spherical object, the weight 
of the spherical object (or any other forces in the 
system) should be considered in the mathematical 
model. Especially for soft materials, the weight of the 
spherical object cannot be ignored. The weight of the 
spherical object can be even greater than the applied 
force in practical applications, hence it should be 
taken into consideration. Furthermore, the frequency 
of oscillations is assumed to be the same in the loading  
and relaxation phases in the previous proposed  
mathematical models [30]–[32]. However, the stiffness 
of the system consisting of a spherical object located at 
a medium interface depends on the external force and 
the inertia of the medium involved in motion changes 
with the sphere displacement (or the external force). 
As a result, the frequency of oscillation is expected to 
change when there is a change in the external force. 
Therefore, mathematical models for a spherical object 
located at the medium interface for the practical loading  
cases given in Figure 1(b) and (c) were developed in this 
study. Furthermore, the proposed mathematical models 
in this paper simulate the change in the frequency  
of oscillations due to the change in the external force. 
We believe that these mathematical models can be 
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widely used for the identification of material properties 
and for understanding the dynamics of soft structures  
in practical applications. Here, in addition to  
presenting mathematical models for different practical 
loading cases and evaluating their performance, the 
mathematical model for a spherical object located at 
a viscoelastic medium interface was evaluated using 
an experimental study.
 Because the weight of the spherical object is not 
negligible for soft material applications, the formulations  
for the loading case in Figure 1(b) provide an accurate 
determination of material properties. The force during 
unloading should be greater than zero or large enough 
to maintain contact between the sphere and medium. 
Therefore, the loading depicted in Figure 1(c) is a  
desired loading case in practical applications. It should be 
noted that the practical loading case in Figure 1(d) is the 
combination of the loading cases in Figure 1(b) and (c).  

Although only the loading phase was considered in 
the previous studies [14], [15], [32], both loading  
and unloading phases were used to identify  
material properties and/or to further confirm the 
identified material properties in this study. To 
our best knowledge, this is the first study that  
experimentally and theoretically evaluates the 
characteristics of the vibration of a spherical object 
located at a soft material interface and shows that its 
frequencies of oscillations are different in the loading 
and unloading phases. In addition, the mathematical 
model proposed in this study considers the radiation 
damping due to the change in the external force and 
the inertia of the medium involved in motion.
 The structure of this paper is as follows. By 
ignoring the medium viscosity, the theoretical  
models for a spherical object located at an elastic  
medium interface are presented in Section 2. Here, after  

Figure 1: Different loading cases: (a) The case in which a force is applied for a time duration τ and then  
removed. (b) The case in which the force in the second phase is not zero. (c) The case in which the medium 
is first deformed by the weight of the spherical object and then the external force is applied. (d) A practical 
loading case in which the external force is applied following the initial static loading and the external force is 
removed in the next step.

(a)

(c)

(b)

(d)
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summarizing the model for the force reducing to zero 
following the initial loading [Figure 1(a)], the models  
for the force reducing to a lower non-zero value  
[Figure 1(b)] or increasing to a higher non-zero 
value [Figure 1(c)] following the initial loading were  
developed. A similar derivation process was  
followed to evaluate the response of a spherical object 
located at a viscoelastic medium interface in Section 3.  
By performing systematic analyses, the theoretical  
models obtained via different approaches were  
compared and evaluated in Section 4. Some experiments  
were performed using a spherical object located at 
a soft material (gelatin phantom) interface. Here, 
an electromagnet was used to apply the force to the  
spherical object and a high-speed camera was used 
to track the movement of the spherical object. The 
measured and predicted responses of the spherical 
object located at the gelatin phantom were compared  
and the viscoelastic material properties were  
identified in Section 5. The main outcomes of this 
study are summarized in Section 6.

2 Theoretical Models for Spherical Object Lo-
cated at Elastic Medium Interface

2.1  Force reducing to zero following initial loading 
( 1 > 0, 2 = 0, Figure 1(a))
 
An analytical model for the dynamic response of a 
non-deformable sphere located at an elastic medium 
interface was proposed in 2021 [30]. In addition to 
considering the elastic properties of the medium and 
the size of the sphere, this model considers the density 
of the medium (i.e., the inertia of the medium involved 
in motion), the mass of the sphere (the inertia of the 
sphere), and the radiation damping due to shear waves. 
This model can be used for both small and large sphere 
displacements. The model in [30] was corrected for the 
Poisson’s ratio of the medium of v = 0.45. Later, based 
on a number of finite element analyses, a mathematical 
model for all practical Poisson’s ratios of the medium 
was suggested in 2022 [31]. Hence, for the loading 
in Figure 1(a), using the references [30] and [31], the 
response of the spherical object located at the elastic 
medium interface for the initial loading (first phase,  

1  =  > 0 for 0 ≤ t ≤ τ) and the relaxation (second 
phase, 2 = 0 for t > τ) can be written as following 
Equations (1) and (2):

 for 0 ≤ t ≤ τ   
 (1)

for t > τ (2)

where the subscripts 1 and 2 denote the first (loading) 
and second (unloading) phases, respectively, f is the 
effective force, k is the equivalent stiffness coefficient, 
ζ is the equivalent damping ratio due to radiation 
damping, ωn is the undamped natural frequency, ωd is 
the damped natural frequency, and φ is the phase angle. 
The expressions needed in Equations (1) and (2) are 
given in Equations (3)–(15) [30], [31]:

 (3)

 (4)

 (5)

 (6)

 (7)

 (8)

where

 (9)

 (10)
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 (11)

α = v – 0.35  (12)

β = 0.5 (13)

 
 (14)

 (15)

where a = 4 for a sphere and a = 2 for a hemisphere. 
Here,  is the static displacement of the spherical 
object,  and τ are the amplitude and excitation  
duration of the applied force, G, E, ρ, and v are 
the shear modulus, Young’s modulus, density, and  
Poisson’s ratio of the medium material, R and ρs are 
the radius and density of the spherical object, E* is 
the reduced Young’s modulus of the spherical object 
located at the medium interface, c is the equivalent 
damping coefficient due to radiation damping, ccr is 
the corresponding critical damping coefficient, and m 
is the effective mass of the system including the mass 
of the spherical object and the mass of the sample 
involved in motion. In this study, the magnitude of 
the applied force  is the sum of the magnitude of 
the applied magnetic force ( m) and the weight of the 
spherical object ( w) given in Equation (16): 

 = m + w (16) 

 It should be noted that the frequency of  
oscillations is assumed to be the same in the loading 
and relaxation phases in this model.

2.2  Force reducing to a lower non-zero value  
following initial loading ( 1 > 2 ≠ 0, Figure 1(b))

The model summarized in Section 2.1 is extended for a 
non-zero force lower than the initial load (i.e., 2 < 1,  
see Figure 1(b)) in this study. For the initial loading 
phase, the response will be the same as in Equation (1) 
and can be written as following Equation (17):

  

for 0 ≤ t ≤ τ (17)

 Using  = 1 = m + w, all parameters needed in 
Equation (17) can be calculated using the expressions 
presented in Section 2.1. As stated before, the subscript 
1 denotes the first (loading) phase.
 In contrast to Section 2.1, where the amplitude of 
the force in the relaxation phase is zero, the magnitude 
of the force is  = 2 in the second phase this time. The 
external force is equal to the weight of the spherical  
object, i.e., 2 = w, in this study. The response of the 
spherical located at the sample interface in the second 
phase is determined by exploiting the free vibrations 
of a system. Here, the response of the spherical object 
at t = τ predicted using Equation (17) is used as an 
initial condition. Hence, the response of the spherical 
object at the sample interface in the second phase can 
be determined using (Equation (18)): 

 for t > τ
 (18)

where 2 is the static displacement of the spherical 
object due to 2, and A and φ2 are some constants 
to be determined from the initial conditions using  
the following using Equations (19) and (20) [33]:

 (19)

 (20)

 Here, X0 and V0 are the displacement and  
velocity of the spherical object at t = τ. It should be 
noted that X0 = –( 1 – 2) and V0 = 0 at the steady-
state position ( 1 and 2 can be calculated using  

 = 1 and  = 2 in Equation (11), respectively). 
All other parameters needed in Equations (18)–(20) 
can be calculated using  = 2 in the expressions 
presented in Section 2.1.
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2.3  Force increasing to a higher non-zero value 
following initial loading ( 1 < 2, Figure 1(c))

The formulation for the force increasing to a 
higher non-zero value following initial loading  
(i.e., 1 < 2) is the same as the formulation  
presented in Section 2.2. However, different 
from Section 2.2, 1 is equal to the weight of the  
spherical object and 2 equals the sum of the weight 
of the spherical object and external force this time. 
It should be noted that this system has high practical  
significance.

3 Theoretical Models for Spherical Object Located 
at Viscoelastic Medium Interface

3.1  Force reducing to zero following initial loading 
( 1 > 0, 2 = 0, Figure 1(a))

A comprehensive mathematical model for the dynamic 
response of a sphere located at a viscoelastic medium 
interface was proposed in 2022 [31]. Hence, for the 
loading in Figure 1(a) (i.e., 1 =  > 0 for 0 ≤ t ≤ τ and  

2 = 0 for t > τ), the dynamic response of a sphere 
and hemisphere located at the viscoelastic interface is 
found using the inverse Fourier transform and can be 
rewritten as Equation (21) [31]: 

where η is the viscosity of the medium, a = 4 for a 
sphere and a = 2 for a hemisphere, ω is the angular 
frequency, and the reduced Young’s modulus for a 
viscous sample is given in Equation (22):

 (22)

 The response of the spherical object for the loading  
and relaxation phases are u1 (t) = u(t = 0 → τ) and  
u2 (t) = u(t > τ). The expressions for α and  and the 
values for β are given in Section 2.1. The frequency of 
oscillations is assumed to be the same in the loading 
and relaxation phases in this model.

3.2  Force reducing to a lower non-zero value  
following initial loading ( 1 > 2≠0, Figure 1(b))

The model summarized in Section 3.1 was extended for 
a non-zero force lower than the initial load (i.e., 2 < 1,  
see Figure 1(b)) in this study. For the loading 
phase,  = 1 and  = 1 are used for t = 0 → τ in  
Equation (21) as given in Equation (23). 
 By considering  = 2 and the change in 
force in the relaxation phase for  t  > τ  in  
Equation (21), the response of the spherical  
object in the second phase can be written as given in  
Equation (24).

for 0 ≤ t ≤ τ (23)

for t > τ (24)

 (21)
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where ∆  = 1 – 2. The external force in the second 
phase is equal to the weight of the spherical object, 
i.e., 2 = w, in this study.

3.3  Force increasing to a higher non-zero value 
following initial loading ( 1 < 2, Figure 1(c)) 

The formulation for the force increasing to a higher 
non-zero value following initial loading (i.e., 1 < 2)  
is the same as the formulation presented in Section 
3.2. However, in contrast to Section 3.2, 1 is equal to 
the weight of the spherical object while 2 equals the 
sum of the weight of the spherical object and external 
force this time. As stated before, this system has high 
practical significance.

4 Evaluation of the Theoretical Models

The response of a spherical object located at an elastic 
medium interface with no viscosity was modeled by 
exploiting the forced vibrations of a system in the 
loading phase and the free vibrations of a system in 
the relaxation phase in Section 2. The response of a  
spherical object located at a viscoelastic medium 
interface was determined by solving the equation of  
motion written in the frequency domain using the 
inverse Fourier transform in Section 3. These two  
different approaches were compared by taking the 
medium viscosity as zero in the models for the  
viscoelastic medium presented in Section 3. 
 The two approaches for the force reducing to 
zero following the initial loading ( 1 = 2 mN for  
0 ≤ t ≤ τ = 100 ms and 2 = 0 for τ > 100 ms) are  
compared in Figure 2 for the sample input parameters  
that are similar to the ones used in practical  
applications [2], [11], [20], [34]. It is seen that both 
approaches produce the same results for the loading 
phase, while there are some small differences in the 
amplitudes after the load is removed in the relaxation 
phase. The period of oscillations is 9.95 ms (or the 
frequency of oscillations is 100.50 Hz) for the loading 
and relaxation phases for both approaches.  
 The two approaches for the force reduced to a 
lower non-zero value following the initial loading  
( 1 = 2.0 mN for 0 ≤ t ≤ τ = 100 ms and 2 = 1.5 mN 
for τ > 100 ms) are compared in Figure 3(a) using 
the same parameters used in Figure 2. It is seen that 
both approaches produce the same results for the first 

loading phase, while there are some small differences 
in the amplitudes, especially after the load is removed 
in the second phase. The effect of discontinuity of the 
force is clearly seen, just after the force is decreased. 
The period of oscillations is 9.95 ms (or the frequency 
of oscillations is 100.50 Hz) for the loading phase. 
However, the period of oscillations is estimated to be 
10.40 ms (or the frequency of oscillations is 96.20 Hz) 
by both approaches in the second phase. The frequency 
of oscillations decreases from 100.50 to 96.20 Hz when 
the load is reduced from 2.0 to 1.5 mN. As the stiff-
ness of the system decreases with decreasing load, the  
frequency of oscillations is decreased when the load 
is reduced from 2 to 1.5 mN, as expected. 
 Similarly, the two approaches for the force  
increasing to a higher non-zero value following the 
initial loading ( 1 = 2 mN for 0 ≤ t ≤ τ = 100 ms 
and 2 = 2.5 mN for τ > 100 ms) are compared in  
Figure 3(b) using the same parameters used in Figure 2  
[or Figure 3(a)]. It is seen that, as the stiffness of the 
system increases with increasing load, the frequency of 

Figure 2: Comparison of the two approaches for the 
force reducing to zero following the initial loading  
( 1 = 2 mN for 0 ≤ t ≤ τ = 100 ms and 2 = 0  
for τ > 100 ms). Blue dash-dot curve: The response 
of a spherical object located at an elastic medium 
interface predicted by the model exploiting the forced 
vibrations of a system in the loading phase and 
free vibrations of a system in the relaxation phase  
[Equations (1) and (2)]. Black dashed curve: The  
response of a spherical object located at a viscoelastic 
medium interface determined by solving the equation 
of motion written in the frequency domain using the 
inverse Fourier transform [Equation (21)]. Medium 
and sphere properties: G = 2000 Pa, ρ = 1500 kg/m3, 
η = 0, ν = 0.49, R = 1 mm and ρs = 5000 kg/m3.
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oscillations is increased from 100.50 to 103.09 Hz (or  
the period of oscillations decreases from 9.95 to 9.70 ms)  
when the load is increased from 2.0 to 2.5 mN. 
 It is seen in Figures 2 and 3 that the steady-state 
displacement of the sphere is 0.34 mm in the initial 
phase for a force 1 = 2.0 mN. As seen in Figure 2, 
the steady-state displacement of the sphere reduces to 
zero in the relaxation phase at the end, as the load is 
completely removed (i.e., 2 = 0). However, as seen 
in Figure 3(a), the steady-state displacement of the 
sphere in the second phase reduces to 0.27 mm, as the 
load is not completely removed, it is reduced to a lower 
value (i.e., 2 = 1.5 mN). Similarly, as can be seen in 
Figure 3(b), the steady-state displacement of the sphere 
in the second phase increases to 0.39 mm, as the load 
is increased to a higher value (i.e., 2 = 2.5 mN). 
 It should be noted that the viscosity of the sample 
is assumed to be zero (i.e., no material damping) in 
the results presented in Figures 2 and 3. The decay of 
the response in Figures 2 and 3 is due to the radiation 
damping. The results show that the effect of radiation 
damping can be significant and should be considered 
in practical applications. In contrast to the approach 
based on the forced vibrations of a system in the first 
phase and the free vibrations of a system in the second 
phase to model elastic samples, the approach based on 
the inverse Fourier transform to model viscoelastic 

samples can simulate practical applications. Overall, 
the approach based on the forced vibrations of a system 
in the first phase and the free vibrations of a system 
in the second phase validated the other model, at least 
for the special case of no sample viscosity. Based on 
the literature on the dynamic response of damped  
systems [35]–[39], the amplitudes of oscillations 
should decrease, the steady-state displacement should 
not change, the frequency of oscillations should slightly  
decrease, and the reaction time should increase with 
increasing damping or viscosity of the system. In the 
following, the proposed mathematical model for the 
response of a spherical object located at the interface 
of a viscoelastic medium was assessed, by taking into 
account these facts. The response of a spherical object 
located at the interface of a viscoelastic sample with 
different viscosities determined by solving the equation 
of motion written in the frequency domain using the 
inverse Fourier transform [Equations (17) and (18)] 
is plotted in Figure 4. As more energy is dissipated 
during the oscillation of the spherical object located 
at the interface of the medium with higher viscosity, 
the amplitudes of oscillations of the sphere decrease 
with increasing medium viscosity both in the first and 
second phases.  On the other hand, as the applied force 
and the internal stiffness force balance each other at 
the steady state, the medium viscosity does not change 

Figure 3: Comparison of the two approaches (a) for the force reducing to a lower non-zero value following the 
initial loading ( 1  = 2.0 mN for 0 ≤ t ≤ τ = 100 ms and 2 = 1.5 mN for τ > 100 ms) and (b) for the force increasing 
to a higher non-zero value following the initial loading ( 1  = 2.0 mN for 0 ≤ t ≤ τ = 100 ms and 2 = 2.5 mN for τ 
> 100 ms). Blue dash-dot curve: The response of a spherical object located at an elastic medium interface predicted 
by the model exploiting the forced vibrations of a system in the loading phase and the free vibrations of a system in 
the relaxation phase [Equations (17) and (18)]. Black dashed curve: The response of a spherical object located at the  
viscoelastic medium interface determined by solving the equation of motion written in the frequency domain 
using the inverse Fourier transform [Equations (23) and (24)]. Medium and sphere properties: G = 2000 Pa,  
ρ = 1500 kg/m3, η = 0, ν = 0.49, R = 1 mm and ρs = 5000 kg/m3.

(a) (b)
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the steady-state displacement of the sphere both in 
the first and second phases. The period of oscillations  
is 9.95, 10.15 and 10.35 ms (or the frequency of  
oscillations is 100.50, 98.52, and 96.62 Hz) in the first 
phase when the medium viscosity is η = 0, 1, and 2 Pa∙s,  
respectively. Similarly, the period of oscillations 
is 10.40, 10.55, and 10.75 ms (or the frequency of  
oscillations is 96.15, 94.79, and 93.02 Hz) in the  
second phase when the medium viscosity is η = 0, 1, 
and 2 Pa∙s, respectively. Regarding reaction time, the 
first maximum peak occurs at 5.00, 5.08 and 5.20 ms 
in the first phase when the medium viscosity is η = 0, 
1 and 2 Pa∙s, respectively. Similarly, the first maximum 
peak occurs at 110.38, 110.55 and 110.75 ms in the 
second phase when the medium viscosity is η = 0, 
1 and 2 Pa∙s, respectively. The period of oscillations 
and the reaction time increase with increasing medium 
viscosity. Overall, the results predicted by the proposed 
mathematical model here comply with the expected 
behaviors based on the literature [28], [35]–[38].

5 Experimental Validation

5.1  Experimental study

A hemisphere with a radius R located at the interface 
of the gelatin sample having a uniform shear modulus 

G, density ρ, viscosity η and Poisson’s ratio v was 
pushed using a magnetic force (f) and the displacement  
of the hemisphere u(t) was tracked using a high-speed 
camera. The gelatin sample was placed on a plate 
located on the load cell. The sensitivity of the load 
cell used to measure the force amplitude was 0.1 mN. 
A small cylindrical magnet was assembled to the 
top surface of the hemisphere to apply a force by an 
electromagnet (KK-P50/30 DC12V, Yueqing Kaka 
Electric Co. Ltd., China) to the hemisphere located at 
the sample interface. A power supply (GPS-3303, GW 
Instek, Taiwan) was used to operate the electromagnet 
in the experiments. The electromagnet was fixed to the 
frame using the electromagnet holder. The hemisphere 
holder fixed to the frame was used to eliminate the 
undesired rotation of the hemisphere. The schematic 
picture for the experimental setup and the picture of 
the test setup are shown in Figure 5. The videos were 
captured at 240 fps and the resolution was 0.06 mm/
pixel. The displacement of the hemisphere from the 
videos as a function of time (t) was tracked using 
Matlab (MathWorks, Natick, MA, USA).
  The radius and mass of the hemisphere were 
12.15 mm and 4.06 g, respectively. The mass of the 
magnet was 10.97 g. Hence, the equivalent density of 
the spherical object was calculated to be ρs =  2000.51 
kg/m3. The total weight of the hemisphere and magnet 
was w =  147.4 mN. A gelatin sample was prepared 
by using 200 g gelatin and 600 g hot water (100 °C) 
and stored in the fridge at 4 °C for 4 h. The dimensions 
of the test sample were 37.7 × 155 × 210 mm3. The 
density of the sample based on its measured mass and 
volume was ρ =  1105.16 kg/m3. A second sample was 
prepared using 250 g gelatin and 600 g water (100 °C) 

Figure 4: The response of a spherical object located 
at the interface of a viscoelastic sample with different  
viscosities determined by solving the equation of  
motion written in the frequency domain using the 
inverse Fourier transform [Equations (23) and (24)]. 
Loading: 1 = 2.0 mN for 0 ≤ t ≤ τ = 100 ms and  

2 = 1.5 mN for τ > 100 ms. Medium and sphere 
properties: G = 2000 Pa, ρ = 1500 kg/m3, ν = 0.49,  
R = 1 mm and ρs = 5000 kg/m3.

Figure 5: The schematic picture for the experimental 
setup (left panel) and the picture of the test setup (right 
panel).
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to further confirm the results. This sample was stored 
in stored in the fridge at 4 °C for 23 h. The dimensions 
and the density of this sample were 32.0 × 84.9 × 138.5 
mm3 and ρ = 1133.43 kg/m3, respectively. 
 The displacement of the hemisphere placed at 
the interfaces of the first and second gelatin samples 
due to the weight of the hemisphere and magnet (i.e., 
147.4 mN) was determined to be 2.2 and 1.2 mm,  
respectively. After the hemisphere at the sample  
surface was displaced by the initial loading, the  
electromagnet was operated for τ = 420 ms for both 
gelatin samples. The external force applied to the  
hemisphere by the electromagnet was m = 138.1±0.9 
and 151.1 ± 0.4 mN for the first and second gelatin 
samples, respectively. All the experiments were  
performed at room temperature (24.6 °C). Four  
experiments were repeated for each test sample.
 The four repeated experiments for each sample 
are presented in Figure 6. The experiments were highly 
repeatable, having a low standard deviation across 
measurements. The average deviation was 0.02 and 
0.03 mm for the first and second gelatin samples, 
respectively. As the second sample was prepared  
using more gelatin powder and stored in the fridge for 
a longer duration, the second sample was expected to 
have higher shear modulus and viscosity. The results 
in Figure 6 show that the displacements were lower, 
and the oscillations decayed faster (in other words, 
the viscosity was higher) for the second sample. As 
the frequency of oscillations increases with stiffness 
(or shear modulus), the frequency of oscillations is 
higher (or the period of oscillations is lower) for the 
second sample.
 As expected, once the electromagnet was  
operated, the hemisphere located at the sample  

interface (u = 2.2 and 1.2 mm for the first and second 
samples, respectively) first went down and reached 
the maximum displacement (u = 3.8 and 2.3 mm for 
the first and second samples, respectively), then its 
displacement decreased in time, and ultimately the 
hemisphere approached the steady-state condition  
(u = 3.4 and 2.1 mm for the first and second samples, 
respectively). Similarly, once the electromagnet 
stopped running, the hemisphere located at the sample  
interface went up and oscillated around its initial 
position (u = 2.2 and 1.2 mm for the first and second 
samples, respectively). The frequency of oscillations 
of the hemisphere placed at the interface of the first  
sample for the loading and unloading phases were 14.4 
and 13.1 Hz, respectively. The corresponding values 
were 19.0 and 16.7 Hz, respectively, for the second 
sample. These experimental results show that the  
frequencies of oscillations of the hemisphere located 
at the medium interface are different in the loading 
and unloading phases. The weight of the sphere was 
large enough to maintain contact between the sphere 
and sample, hence it enabled measuring the response 
of the sphere during the relaxation phase.

5.2  Comparison of the experimental data and  
mathematical model and discussion

By minimizing the difference between the  
experimentally identified steady-state displacement in 
the loading phase and the steady-state displacement in 
the loading phase predicted by varying the value of the 
shear modulus of the material in the analytical model, 
the shear modulus was determined to be G = 3000 and 
6800 Pa for the first and second samples, respectively. 
By minimizing the error between experimentally 

Figure 6: The four repeated experiments for (a) the first sample (ρ = 105.16 kg/m3) and (b) the second sample 
(ρ = 1133.43 kg/m3).

(a) (b)
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identified amplitudes of oscillations in the loading 
phase and the amplitudes of oscillations in the loading 
phase predicted by varying the value of the viscosity 
of the material in the analytical model, the viscosity 
was determined to be η = 1.5 and 6.0 Pa∙s for the 
first and second samples, respectively. The estimated 
response of the hemisphere placed at the interface of 
the sample using the identified shear modulus and 
viscosity and the other properties of the sample and  
hemisphere given before are compared with the  
average experimental response for both samples in 
Figure 7. The measured and predicted responses 
seem to fit well in the loading phase as well as in the  
relaxation phase for both samples. 
 The predicted frequency of oscillations was 14.4 Hz 
in the loading phase (being the same as the experimental  
one) and the predicted frequency of oscillations in 
the unloading phase was 12.9 Hz, which was close to 
the experimental one (13.1 Hz) for the first sample. 
The predicted frequencies of oscillations were 19.0 
and 16.7 Hz in the loading and unloading phases,  
respectively, for the second sample. These frequencies  
were the same as the experimental ones. It is shown 
that the frequency of oscillations decreases as the 
external load decreases (in the unloading phase) and 
the mathematical model proposed here is able to 
simulate this.
 Although the predicted amplitude of the first 
peak is higher than the measured one, the experimental 
and predicted amplitudes of oscillations are in general 
close to each other for both samples. For example, the 
experimental amplitudes of oscillations for the first 
four peaks and the steady-state displacement in the 
loading phase are 3.83, 3.62, 3.54, 3.47, and 3.37 mm, 
respectively for the first sample. The corresponding 

results for the same sample predicted by the model are 
4.39, 3.78, 3.53, 3.43, and 3.37 mm, respectively. In 
general, the difference between the amplitudes of the 
measured and predicted first peaks is 10–15%, and the 
difference between all other measured and predicted 
peaks is less than 5% in the loading and relaxation 
phases.
 It has been shown that the friction coefficient 
between a soft hydrogel and a hard sphere is negligible,  
even for high loads or sphere displacements, the  
corresponding viscosity is equal to or less than 0.1 Pa·s  
[28]. However, in our system, there were other sources 
of damping such as air friction, magnetic damping 
and the friction between the magnet and hemisphere 
holder. These sources of damping can be eliminated 
in future applications. The sharp changes at the time 
when the force is increased or decreased are seen 
in the results predicted by the mathematical model, 
though there are no sharp changes in the experimental 
results. First, the friction in the system can minimize 
these sharp changes in the experiments. Second,  
although an ideal rectangular pulse was assumed in 
the mathematical model, such an ideal pulse cannot be 
obtained in practice. Therefore, it is more appropriate 
to describe the temporal evolution of the magnetic 
force by a trapezoidal pulse with a finite ramp or rise 
time [32]. It is well known that the amplitude of the 
first peak decreases and the peak shifts to the right as 
the slope of the ramp decreases, compared to the ideal 
function with an infinity slope at the beginning, though 
the other peaks are slightly affected, and the steady-
state displacement is not affected [32]. Some potential 
smoothing functions for the force can be included, or 
the mathematical models presented in this study can be 
easily updated using the expression of the trapezoidal 

Figure 7: The experimental and predicted responses of the hemisphere placed at the interface of (a) the first 
sample (ρ = 1105.16 kg/m3) and (b) the second sample (ρ = 1133.43 kg/m3).

(a) (b)
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pulse used in [32] in future models. It is worth noting 
that, unlike other parameters such as shear modulus, the 
accurate modeling and experimentally identification  
of damping for almost any type of material is always 
challenging, as many parameters affect the damping 
of a system [11], [16], [17].
 Overall, the measured and predicted natural 
frequencies and steady-state displacements for the 
loading and unloading phases and the identified  
material properties of the two gelatin phantoms are 
listed Table 1. Once again, it is seen that there is a 
negligible deviation between the experimental and 
predicted results in both the loading and the unloading  
phases. Additionally, the gelatin phantom with a 
higher gelatin ratio has a higher shear modulus and 
viscosity, and the natural frequency decreases as the 
external load decreases. The frequency of oscillations 
during loading is 10–15% higher than that during  
unloading. 
 It should be noted that measuring the properties of 
viscoelastic materials is challenging. Different loading 
cases have high practical value and the formulations 
for different loading cases can provide an accurate 
determination of material properties in a multitude of 
biomedical and industrial applications. For example, 
the procedure presented here can be used to accurately 
identify the shear modulus and viscosity of tissues and 
tissue-mimicking materials in practical applications 
[11], [40]. The procedure can even be exploited to 
identify the shear or Young’s modulus and damping 
of green natural fiber samples that are needed in the 
prediction of their acoustic properties [41]–[43]. 

6 Conclusions

The motion of a spherical object located at the soft 
elastic and viscoelastic material interface for the 
identification of material properties was thoroughly 
investigated in this paper. Formulations for different 
loading practical cases were derived. The response 
of a spherical object located at elastic (no viscosity)  
medium interface was modeled by exploiting the 
forced vibrations of a system in the loading phase 
and the free vibrations of a system in the relaxation 
phase. The response of a spherical object located at 
a viscoelastic medium interface was determined by  
solving the equation of motion in the frequency 
domain, using the inverse Fourier transform. The 
measured and predicted responses of a spherical object 
located at a viscoelastic medium were compared and 
the viscoelastic material properties were identified in 
an experimental study. The experimental setup and 
the corresponding mathematical model presented here 
have wide practical applications. The mathematical 
model considers the weight of the spherical object, 
noting that the weight of the spherical object is  
typically not ignorable. The mathematical model 
takes into consideration the non-zero force during the  
unloading phase that is desired to maintain the contact  
between the sphere and medium, providing the  
measurement of the response of the spherical object 
at the interface during unloading. The mathematical  
model simulates the change in the frequency of  
oscillations of the spherical object located at the  
medium interface with the applied load.

Table 1: The measured and predicted natural frequencies and steady-state displacements for the loading and 
unloading phases and the identified material properties of the first (ρ = 1105.16 kg/m3) and second (ρ =  1133.43 
kg/m3) gelatin phantoms

Experimental Data Mathematical Model Identified Material Properties
Natural 

Frequency 
(Hz)

Steady-State 
Displacement 

(mm)

Natural 
Frequency 

(Hz)

Steady-State 
Displacement 

(mm)

Shear Modulus 
(Pa)

Viscosity 
(Pa·s)

First Sample 
(Loading) 14.4 3.4 14.4 3.4

3000 1.5
First Sample 
(Unloading) 13.1 2.2 12.9 2.2

Second Sample 
(Loading) 19.0 2.1 19.0 2.0

6800 6.0
Second Sample 
(Unloading) 16.7 1.2 16.7 1.3
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 The results predicted by the approach based on 
the forced vibrations of a system in the first phase and 
the free vibrations of a system in the second phase 
were similar to the results predicted by the approach 
based on solving the equation of motion written in 
the frequency domain, using the inverse Fourier 
transform, for the special case of zero viscosity. The 
analyses performed using a spherical object located at  
a viscoelastic medium interface showed that the  
amplitudes of oscillations decreased, the steady-state  
displacement did not change, the frequency of  
oscillations slightly decreased, and the reaction time 
increased with the increasing damping or viscosity 
of the sample, being in agreement with well-known 
behaviors of other damped systems in the literature. 
 By matching the experimental and predicted 
steady-state displacements and the amplitudes of  
oscillations of the spherical object located at the  
sample interface in the loading phase, the shear  
modulus and viscosity of the gelatin phantoms with a 
density of 1105.2 and 1133.4 kg/m3 were determined to 
be 3000 and 6800 Pa and 1.5 and 6.0 Pa·s, respectively. 
As expected, the shear modulus and viscosity of the 
gelatin phantom with a higher gelatin ratio were higher. 
By comparing the experimental and predicted dynamic 
responses of the spherical object located at the sample 
interface using the identified material properties, we 
found that the experimental and predicted frequencies  
of oscillations in both the loading and unloading 
phases were the same or close to each other. Although 
there were some differences in the experimental and  
predicted amplitudes of the first peak, the amplitudes of 
oscillations in the loading and unloading phases were 
in general close to each other. Both the experimental  
and predicted results showed that the frequencies 
of oscillations were different in the loading and  
unloading phases, and the frequency of oscillations 
decreased with decreasing external load. 
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