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Abstract: Staphylococcus aureus infections are of growing concern given the increased incidence
of antibiotic resistant strains. Egypt, like several other countries, has seen alarming increases in
methicillin-resistant S. aureus (MRSA) infections. This species can rapidly acquire genes associated
with resistance, as well as virulence factors, through mobile genetic elements, including phages. Re-
cently, we sequenced 56 S. aureus genomes from Alexandria Main University Hospital in Alexandria,
Egypt, complementing 17 S. aureus genomes publicly available from other sites in Egypt. In the
current study, we found that the majority (73.6%) of these strains contain intact prophages, including
Biseptimaviruses, Phietaviruses, and Triaviruses. Further investigation of these prophages revealed
evidence of horizontal exchange of the integrase for two of the prophages. These Egyptian S. aureus
prophages are predicted to encode numerous virulence factors, including genes associated with
immune evasion and toxins, including the Panton–Valentine leukocidin (PVL)-associated genes
lukF-PV/lukS-PV. Thus, prophages are likely to be a major contributor to the virulence of S. aureus
strains in circulation in Egypt.

Keywords: prophages; Staphylococcus aureus; PVL; Egypt

1. Introduction

Staphylococcus aureus is found in the environment and on the skin and mucus mem-
branes of healthy individuals as a commensal bacterium [1]. However, these bacteria
have the potential to cause many forms of infection ranging from mild skin to serious
life-threatening infections—including septicemia, pneumonia, and endocarditis [2]. In
several countries throughout the world, antibiotic use in not regulated, which leads to
increased antibiotic resistance levels [3]. Community-acquired and hospital-acquired
S. aureus infections are common, and treatment is a major challenge [4,5]. S. aureus is
able to rapidly acquire antibiotic resistance leading to multi-drug resistant strains such as
MRSA (methicillin-resistant S. aureus). Of paramount concern is the increase of antibiotic
resistance and virulence factor acquisition through mobile genetic elements (MGEs), such
as plasmids, transposons, insertion sequences, and phages. Prior studies have identified
numerous S. aureus virulence factors encoded by MGEs (see review [6]).

Temperate phages that infect S. aureus have been intensely studied given their frequent
association with virulence [7]. Furthermore, associations between phage activity and
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pathogenicity have been observed [8]. Numerous S. aureus prophages have been identified
to date and analysis of their sequences has found genes encoding for Panton–Valentine
leukocidin (PVL), exfoliative toxin A (eta), and the immune evasion cluster (IEC), which
includes the enterotoxin S (sea), staphylokinase (sak), the chemotaxis inhibitory protein
(chp), and the staphylococcal complement inhibitor (scn) [9–14]. This is in addition to
several other virulence factors and genes conferring antibiotic resistance. Prior comparative
studies of S. aureus prophages have found that these phage genomes are highly mosaic [15].
Temperate S. aureus phages are generally grouped into one three serogroups (A, B, and
F) and one of 12 ‘types’ based upon their integrase gene sequence [16–18]. Association
between virulence factors, as well as localization of infection, and integrase types have
been previously noted [9,15,19–24].

In Egypt, antibiotic use is not regulated, and most antimicrobial agents are available
without the need for a prescription. Thus, antibiotic therapy is often ineffective, a problem
compounded by the use of the wrong antibiotic and both inappropriate dosage and dura-
tion. Consequently, Egypt has seen alarming increases in antibiotic resistance, including
MRSA and MRSH (methicillin-resistant S. haemolyticus) prevalence [25–28]. Recently, we
conducted a genomic study of S. aureus isolates from Egypt, contributing 56 new genome
sequences to public data repositories [29]. Here, we examined these S. aureus genome
sequences, as well as 17 publicly available genomes of S. aureus isolates also from Egypt.
Prophage sequences identified include three different phage genera of the family Siphoviri-
dae; more than half encode for one or more virulence factor. Exploring these prophage
sequences provides a better understanding of the reservoir of virulence- and antibiotic
resistance-associated genes in circulation within Egypt.

2. Materials and Methods
2.1. Prophage Prediction and Identification

Draft genome sequences isolated from Egypt were retrieved from NCBI. Table S1 lists
the accession numbers for these sequences. Each was uploaded to the webtool PHASTER
for prophage prediction [30]. PHASTER predictions include incomplete, questionable, and
intact prophage sequences. Our analyses focused on intact prophage sequences only. Each
intact prophage nucleotide sequence was queried against the viral nr/nt database (viruses
(taxid:10239)) via BLAST, and results were recorded.

2.2. Cluster Analysis

Homologous prophage sequences were identified using usearch v.11.0.667 [31]. A
50% nucleotide similarity threshold was used to perform clustering using the ‘cluster_fast’
method. Identified clusters were then aligned using the progressiveMauve algorithm [32]
and MAFFT v7.388 [33] through Geneious Prime v2019.1.1 (Biomatters Ltd., Auckland, New
Zealand). Phylogenetic trees were derived using FastTree v2.1.11 [34] through Geneious
Prime and visualized using iTOL v5 [35]. JSpeciesWS v3.4.8 [36] was used to calculate ANI
values between prophage sequences.

2.3. Pangenome Analysis

Intact prophage sequences were examined using anvi’o v6.2 [37]. A pangenome was
computed using the command anvi-pan-genome with the ncbi flag and an mcl inflation
of 10. Single copy genes were identified, resulting in a set of 43,152 genes from 496 gene
clusters. Pangenome images were generated using anvi’o. Next, results were parsed with
Python to create a wedge weighted edge list. This file was input into Cystoscope v3.8.1
(https://cytoscape.org/ (accessed on 1 January 2021)) for visualization.

2.4. Gene Annotation

To complement our anvi’o analysis, prophage sequences were also annotated using
RAST [38] and examined for antibiotic resistance genes using ResFinder [39]. Furthermore,
virulence factors were identified using VFanalyzer [40].

https://cytoscape.org/
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2.5. Phylogenetic Analyses

Amino acid sequences for integrase and large subunit terminase were identified in
each predicted prophage sequence as follows. Representatives of the Sa1int–Sa2int pro-
teins were retrieved from NCBI and predicted prophage sequences were locally blasted
against these sequences using BLAST+. Based on the BLAST results, the protein cod-
ing sequence was extracted from the RAST annotation file. These representative inte-
grase type sequences include: NP_510895.1 [Sa1int], NP_058467.1 [Sa2int], NP_803356.1
[Sa3int], YP_002332364.1 [Sa4int], YP_240491.1 [Sa5int], AAX91804.1 [Sa6int], YP_239679.1
[Sa7int], YP_002332477.1 [Sa8int], AAX91428.1 [Sa9int], AAX91273.1 [Sa10int], YP_240184.1
[Sa11int], and YP_001604091.1 [Sa12int]. These representative sequences were selected
based upon the strain classification of S. aureus prophages previously published by Go-
erke et al. (2009) [19]. Terminase genes were identified by the RAST annotation. Gene
sequences were aligned using MAFFT v7.388 [33] and the phylogenetic tree was derived
using FastTree v2.1.11 [34]. Trees were visualized using iTOL v5 [35].

3. Results

Seventy-three complete or draft S. aureus genomes from isolates collected in Egypt
were retrieved from NCBI. These include isolates from blood, aspirate, urine, pus, and
sputum [29]. Prophages are abundant within these Egyptian S. aureus strains. Fifty-three
of the 73 strains investigated harbored recognizable, intact prophages; all of the genomes
encoded for phage genes, suggestive of defective or defunct prophages (Table S1). However,
we focused on the 87 intact prophage sequences (Table 1). These intact prophages ranged
in size from 13kbp in strain S. aureus AA57 to 81kbp in strain S. aureus AA70. The average
intact prophage length was 41kbp.

Table 1. Summary statistics of Egyptian S. aureus genomes and their prophages.

Study No. Strains with
Intact Prophages

No. Intact
Prophages

Average No.
Prophages/Strain

Max No.
Prophages/Strain

Medical Microbiology Laboratory at
AMUH isolates (n = 56) 45 71 1.5 3

Other MRSA isolates from Egypt (n = 17) 8 16 2 3

Each predicted intact prophage sequence was then queried against the NCBI nr/nt
database. All of the predicted prophage sequences exhibited sequence homology to tailed
phages of the family Siphoviridae (Table S2). These siphoviruses include three genera—
Biseptimavirus, Phietavirus, and Triavirus. While 13 Egyptian S. aureus prophage sequences
were nearly identical (>90% query coverage and sequence identity) to previously character-
ized phages, several were distinct. Seven of the predicted prophage sequences shared less
than 50% sequence similarity (query coverage) with a characterized phage sequence. These
seven include phage_9 (carried by S. aureus AA51), phage_19 (S. aureus AA4), phage_37
(S. aureus AA87), phage_59 (S. aureus AA103), phage_61 (S. aureus AA78), phage_74 (S.
aureus 43), and phage_76 (S. aureus 23). Phage_19 exhibited greatest sequence similarity
(39% query coverage and 96.14% sequence identity) to the virulent phage SA97 [41]. The
other six new phages most closely resembled Staphylococcus phage SAP090B (Table S2),
which has yet to be isolated or characterized [42].

Our BLAST queries and pangenome analysis suggest that several of the Egyptian S.
aureus isolates harbor similar prophage sequences. We thus clustered the intact prophage
sequences based upon nucleotide sequence similarity, finding eight distinct prophage
clusters (Table S3). Phylogenetic trees were derived for each cluster, such as prophage
cluster A (Figure S1). Table 2 summarizes these prophage clusters. While prophage clusters
A and D (Biseptimaviruses) and prophage clusters B, C, G, and H (Phietaviruses) have
modules of sequence similarity, differences in lengths, gene acquisition, and reassortment
events lead to their assignment to separate clusters. Four prophages did not resemble any
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of the other prophage sequences: phage_8 (S. aureus AA93), phage_27 (S. aureus AA95),
phage_29 (S. aureus AA35), and phage_53 (S. aureus AA53). We refer to these four prophages
as ‘singletons’. Based upon their BLAST queries, we can assign phage_8, phage_27, and
phage_29 to Phietaviruses and phage_53 to Biseptimaviruses (Table S2).

Table 2. Prophage clusters amongst Egyptian S. aureus isolates.

Cluster ID Cluster Size ANI Score Range (%) Predicted Genus

A 17 87.93–100 Biseptimavirus
B 8 73.29–100 Phietavirus
C 8 82.92–99.86 Phietavirus
D 13 91.12–100 Biseptimavirus
E 13 96.09–100 Triavirus
F 9 88.39–100 a Triavirus
G 10 77.01–100 Phietavirus
H 5 92.72–97.19 Phietavirus

a Sequence divergence between phage_10 and phage_70 exceed the threshold for ANI calculations and their
pairwise comparison is not included in the reported range.

The 87 Egyptian S. aureus prophages were next examined for their genic content.
While no gene was common amongst all of the prophage sequences, every prophage
included at least one gene sequence found within another prophage (Figure 1). The
most common gene amongst these prophage sequences, found in 77 of the prophages,
is the transcriptional activator rinB, which is required for expression of the prophage
integrase [43]. As reflected in Figure 2 and Table S3, the prophages vary in the number of
genes encoded (minimum = 17; maximum = 94). Phage_38, from S. aureus AA45, contains
the most (n = 23) unique or ‘singleton’ phage genes.
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Figure 1. Prophage network of shared genes. Each node corresponds with a single predicted
prophage sequence. The shape and color of the node represents the identified prophage cluster for
the sequence. Two nodes are connected by an edge if they both share a common gene. The weight of
the edge represents the number of common genes between two prophages.
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Figure 2. Pangenome of Egyptian S. aureus prophages. Each ring in the graph represents an individual
S. aureus prophage sequence, color coded according to the assigned prophage cluster. Each ray in the
graph indicates the presence (darker coloration) or absence (lighter coloration) of a given homolog.
The number of gene clusters (no. of CDS) and singleton genes (unique genes, i.e., no homologs within
other prophage sequences) found within each prophage sequence are shown in the two bar charts.

Next, the prophage sequences were examined for antibiotic resistance genes and
virulence factors. Only three prophages were found to encode for an antibiotic resistance
gene: phage_35 (cluster E), phage_64 (cluster F), and phage_77 (cluster E) from S. aureus
AA80, AA70, and 14, respectively; they harbor the tetracycline resistance gene tet(M).
Forty-four of the 87 prophages encode for a virulence factor. While the individual virulence
factors are listed for each individual strain in Table S3, the results are summarized in
Table 3. The most frequently identified virulence factors were Staphylokinase and SCIN.
The majority of the prophages in Biseptimavirus prophage clusters A and D encoded both
of the related genes sak and scn, but one member of prophage cluster E (phage_4) and one
member of prophage cluster B (phage_7) encode for both genes. Enterotoxin A (sea) also
was frequently observed, but only within the prophages of clusters A and D. Furthermore,
11 prophages encode for the Panton–Valentine leukocidin (PVL)-associated genes lukF-
PV/lukS-PV (Table S3). These prophages belong to the genus Triavirus: prophage clusters E
(n = 9) and F (n = 2).
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Table 3. Virulence factors encoded by Egyptian S. aureus prophages.

VF Class Virulence Factors Related Genes No. Prophages

Enzyme Serine protease

splA 2
splB 2
splC 2
splD 1
splE 1
splF 1

Staphylokinase sak 30

Immune Evasion
CHIPS chp 1

SCIN scn 30

Toxin

Delta hemolysin hld 2

Enterotoxin A sea 17

Enterotoxin G seg 1

Enterotoxin I sei 1

Enterotoxin Yent1 yent1 1

Enterotoxin Yent2 yent2 1

Enterotoxin-like K selk 7

Enterotoxin-like M selm 1

Enterotoxin-like N seln 1

Enterotoxin-like O selo 1

Enterotoxin-like P selp 1

Enterotoxin-like Q selq 7

Gamma hemolysin hlgA 3

Leukotoxin D lukD 3

Leukotoxin E lukE 3

Panton-Valentine
leukocidin

lukF-PV 11

lukS-PV 11

Virulence factors have previously been associated with S. aureus phage integrase
groups. Thus, we identified the integrase coding regions (if present) in each of the 87
Egyptian S. aureus prophages. In total, 39 of the 87 prophages were found to include an
integrase. A phylogenetic tree was derived (Figure 3). These prophages include integrase
type Sa1int, Sa2int, Sa3int, and Sa7int. Sa3int prophages encode for sak and scn virulence
factor-associated genes, as well as several others. One Sa1int prophage, phage_53, also
encodes for sak and scn. PVL-associated genes lukF-PV and lukS-PV are encoded by some,
but not all, of the Sa2int prophages.

To further investigate the relatedness of these prophages, we compared the large
subunit of the terminase across all of the prophage sequences (Figure 4). Prophages from
the two Biseptimaviruses clusters, A and D, show similarities based upon this protein
sequence. Similarities are also shared between Triaviruses and Phietaviruses.
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4. Discussion

While most of the predicted intact prophages resembled previously characterized
staphylococcal phages belonging to the genera Biseptimaviruses, Phietaviruses, and Tri-
aviruses, 7 exhibited less than 50% sequence similarity to sequenced phage sequences
indicative of novel gene acquisition. All of the prophages encode for at least one gene
shared by another Egyptian S. aureus prophage (Figure 2). Genes essential to lysogeny of the
bacterial host were frequently identified within the predicted prophage sequences, includ-
ing integrases and rinB, which is found in the vast majority of S. aureus siphoviruses [44].
Nevertheless, our pangenome analysis uncovered several isolates encoding for genes
unique among the Egyptian S. aureus prophages (Figure 1). Prior research looking at
Staphylococcal phages found that horizontal gene transfer amongst these phages is fre-
quent [45].

As expected, prophages belonging to the same cluster have more genes in common
(Figure 1). Overall, the integrase groups align with the taxonomic family. Sa3int phages
belong to prophage clusters A and D, members of Biseptimavirus. Sa1int phages belong
to Phietavirus prophage clusters B and C and the Phietavirus singleton phage_29. Sa1int
also includes the singleton phage_53, which most closely resembled a Biseptimavirus (61%
query coverage, 99.98% sequence identity). The Sa2int group includes 15 Triaviruses
(prophage clusters E and F) and 1 Phietavirus, phage_19 from prophage cluster G. While the
BLAST analysis confirms the taxonomic grouping of phage_53 and phage_19 (Table S2), the
integrase gene analysis suggests that they exchanged integrase genes with a Phietavirus and
Triavirus, respectively, over their evolutionary history. Prior research found that temperate
phage within the same Int group are more likely to exchange genetic modules with each
other than with phage outside of their group [9]. The Egyptian S. aureus prophages concur
with this finding; genes are more commonly shared between prophages belonging to the
same Int group (Figure 2).

Prophage cluster H includes helper-phage sequences. This distinction is made based
upon their BLAST sequence homology to the well-studied S. aureus phages ϕ11 and ϕ80α.
The prophage sequences of cluster H are found in S. aureus strains AA30, AA32, AA45,
AA68, and AA77. Helper-phage, similar to ϕ11 and ϕ80α, have been observed within S.
aureus isolates, playing a key role in bacterial pathogenicity [7,46]. These helper-phages
interact with S. aureus pathogenicity islands (SaPIs), aiding in excision and replication after
a helper-phage is induced or a superinfection of helper-phage takes place [7]. Evidence
suggests that helper-phage and SaIPs coevolve, losing and gaining resistance rapidly [47].

The Egyptian S. aureus prophages carry few antibiotic resistance genes. Prior studies
of S. aureus genomes have similarly found that phages rarely carry antibiotic resistance
genes (see review [48]). The Egyptian S. aureus prophages do, however, encode for several
different virulence factor genes—including serine proteases, staphylokinases, chemotaxis
inhibitory proteins (CHIPS), Staphylococcal complement inhibitors (SCIN), and toxins.
The pattern of virulence factor presence/absence observed is indicative of acquisition via
horizontal gene transfer and/or recombination, as has previously been noted [49]. Most
frequently detected are the staphylokinase sak and SCIN scn genes, part of the IEC, and
enterotoxin S sea (also part of the IEC). Surveys of MRSA strains in Saudi Arabia and
Libya similarly found high prevalence of sak and scn among strains [50,51]. Previous
studies have found that the IEC is frequently found within Sa3int prophages [19], and
all of the Sa3int type prophages identified amongst the Egyptian isolates encode for sak
and scn (Figure 3). While the integrase sequences of the Sa3int Egyptian prophages are
nearly identical (>99.5% identical), half contain sea, selk, and selq, while the other half do
not. The distinction between these two ‘groups’ does not correspond with their cluster, as
members of both prophage clusters A and D encode for sea, selk, and selq. Furthermore, the
presence/absence does not correspond with the bacterial isolation site nor if the S. aureus
strain is hospital- or community-acquired [29]. Rather, this distinction corresponds with
the phylogenomic tree for the Egyptian S. aureus host [29].
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The most well studied phage-mediated virulence factor for S. aureus is PVL, which
targets human phagocytes [10,13]. PVL is a bacteriophage-encoded bi-component pore-
forming leukotoxin, lukS-PV and lukF-PV, which is secreted and assembled into a ring
shape complex that acts as a membrane pore [52]. PVL is typically carried by community-
associated MRSA strains [53–55]. Nine of the 11 PVL positive strains are mecA positive; S.
aureus AA68 and AA69, which harbor phage_16 and phage_11, respectively, do not encode
for mecA. Furthermore, 6 of the prophages encoding lukS-PV and lukF-PV have the SaInt2
type integrase (Figure 2). This concurs with that prior research finding that lukS-PV and
lukF-PV are typically carried by SaInt2 type prophages [19]. Integrase genes could not
be identified in the other five prophage sequences. It is worth noting, however, that only
13% of the intact prophages carried lukS-PV and lukF-PV. Similar studies of temporally
and geographically related S. aureus strains have found a low occurrence of PVL positive
strains [51,56].

5. Conclusions

Our examination of S. aureus strains within a single hospital and within a single region
reveals a diverse group of prophages in circulation. While these bacteria harbor prophages
belonging to three different genera of Siphoviridae, comparison of the prophage sequences
revealed numerous likely events of horizontal gene transfer. Prophages are abundant
among the Egyptian isolates and over half of these prophages encode for virulence fac-
tors, including PVL. This is particularly concerning given the rise of antibiotic resistant
pathogens, including S. aureus and MRSA strains, in Egypt and the region. We conclude
that prophages are likely to be a major contributor to the virulence of strains in circulation.
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