
Loyola University Chicago Loyola University Chicago 

Loyola eCommons Loyola eCommons 

Biology: Faculty Publications and Other Works Faculty Publications and Other Works by 
Department 

6-1-2021 

Discriminating between jcpyv and bkpyv in urinary virome data Discriminating between jcpyv and bkpyv in urinary virome data 

sets sets 

Rita Mormando 
Loyola University Chicago 

Alan J. Wolfe 
Loyola University Chicago 

Catherine Putonti 
Loyola University Chicago 

Follow this and additional works at: https://ecommons.luc.edu/biology_facpubs 

Recommended Citation Recommended Citation 
Mormando, Rita; Wolfe, Alan J.; and Putonti, Catherine. Discriminating between jcpyv and bkpyv in urinary 
virome data sets. Viruses, 13, 6: 1-6, 2021. Retrieved from Loyola eCommons, Biology: Faculty 
Publications and Other Works, http://dx.doi.org/10.3390/v13061041 

This Article is brought to you for free and open access by the Faculty Publications and Other Works by Department 
at Loyola eCommons. It has been accepted for inclusion in Biology: Faculty Publications and Other Works by an 
authorized administrator of Loyola eCommons. For more information, please contact ecommons@luc.edu. 

This work is licensed under a Creative Commons Attribution 4.0 International License. 

https://ecommons.luc.edu/
https://ecommons.luc.edu/biology_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/biology_facpubs?utm_source=ecommons.luc.edu%2Fbiology_facpubs%2F168&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.3390/v13061041
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


viruses

Communication

Discriminating between JCPyV and BKPyV in Urinary Virome
Data Sets

Rita Mormando 1, Alan J. Wolfe 2 and Catherine Putonti 1,2,3,*

����������
�������

Citation: Mormando, R.; Wolfe, A.J.;

Putonti, C. Discriminating between

JCPyV and BKPyV in Urinary Virome

Data Sets. Viruses 2021, 13, 1041.

https://doi.org/10.3390/v13061041

Academic Editors: Jennifer R. Brum

and Simon Roux

Received: 11 April 2021

Accepted: 27 May 2021

Published: 31 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Bioinformatics Program, Loyola University Chicago, Chicago, IL 60660, USA; rmormando@luc.edu
2 Department of Microbiology and Immunology, Stitch School of Medicine, Loyola University Chicago,

Maywood, IL 60153, USA; awolfe@luc.edu
3 Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
* Correspondence: cputonti@luc.edu

Abstract: Polyomaviruses are abundant in the human body. The polyomaviruses JC virus (JCPyV)
and BK virus (BKPyV) are common viruses in the human urinary tract. Prior studies have estimated
that JCPyV infects between 20 and 80% of adults and that BKPyV infects between 65 and 90%
of individuals by age 10. However, these two viruses encode for the same six genes and share
75% nucleotide sequence identity across their genomes. While prior urinary virome studies have
repeatedly reported the presence of JCPyV, we were interested in seeing how JCPyV prevalence
compares to BKPyV. We retrieved all publicly available shotgun metagenomic sequencing reads from
urinary microbiome and virome studies (n = 165). While one third of the data sets produced hits to
JCPyV, upon further investigation were we able to determine that the majority of these were in fact
BKPyV. This distinction was made by specifically mining for JCPyV and BKPyV and considering
uniform coverage across the genome. This approach provides confidence in taxon calls, even between
closely related viruses with significant sequence similarity.

Keywords: JCPyV; BKPyV; polyomaviruses; urinary virome; urinary microbiome

1. Introduction

High-throughput sequencing technologies have allowed us to discover the complex
communities of bacteria and viruses that inhabit the human body: the human microbiota.
In contrast to many organ systems, the urinary tract of asymptomatic individuals was once
thought to be “sterile.” This belief was primarily based on the observed absence of bacterial
species and was recently debunked using high-throughput sequencing (see review [1]). In
the past, the urinary tract was referred to as sterile despite the well-accepted knowledge
that viruses are shed into urine. It has been 50 years since polyomaviruses were reported
within the urinary tract [2].

Polyomaviruses are the smallest known double-stranded DNA viruses and are abun-
dant in the human microbiota [3]. Within the urinary tract, two polyomaviruses have been
identified: JC virus (JCPyV) and BK virus (BKPyV). The genomes of these two viruses
are 75% similar, encoding for the same six proteins. In most cases, JCPyV and BKPyV are
considered benign members of the urinary microbiota, producing persistent, asymptomatic
infections of the kidneys [4].

Estimates of JCPyV prevalence within the population range from 20 to 80% [5–7].
Studies have found that the incidence of JCPyV is low in younger populations and high in
the elderly [5,8]. The estimates of prevalence are based upon amplification-based surveys,
and numerous assays/protocols have been designed to detect JCPyV and BKPyV, including
distinguishing between the two [9–32]. Although currently there are just a handful of
metagenomic and viromic studies of the urinary microbiome, JCPyV and/or BKPyV have
frequently been reported [33–37]. Previously, we were able to assemble the complete JCPyV
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genome from the urinary microbiomes of five different women [35]. This prompted our
investigation of JCPyV in the urinary microbiome data sets.

2. Materials and Methods

Publicly available raw reads from metagenomic sequencing of the urinary microbiome
were identified from the literature [33,36] and retrieved from NCBI’s Short Read Archive
(SRA) and iMicrobe (summarized in Table 1, full details in Table S1). We also included 4
samples sequenced from portable urinals. These publicly available data sets, as well as
the urinary microbiome generated as part of this study, were processed as follows: each
data set was mapped to a reference genome using Bowtie2 [38] through either Geneious
Prime (v2.3.2; Biomatters, Ltd., Auckland, NZ) or from the stand-alone application (v.2.3.5).
Reference genomes included the JCPyV RefSeq (accession no. NC_001699.1) and the BKPyV
RefSeq (accession no. NC_001538.1).

Table 1. Summary of raw read data sets evaluated in this study.

Study Accession No. # Samples # Reads Total

Kidney Transplant Virome [34] PRJEB28510 1 27 157.5 M 3

Pulmonary Tuberculosis Urinary
Microbiome (unpublished) PRJNA431965 1 3 9.5 M 4

Microbial Metagenome of UTI [36] PRJNA385350 1 49 532.0 M 4

Virome in Healthy and BK Disease
of Kidney Transplant (unpublished) PRJNA587166 1 62 70.0 M 3

Virome in Association with UTI [33] cobian9680 2 20 14.5 M 3

Portable Urinal Microbiome
(unpublished) PRJNA399057 1 4 228.3 M 4

1 Accession number for NCBI BioProject (https://www.ncbi.nlm.nih.gov/bioproject); 2 Accession number for
iMicrobe (https://www.imicrobe.us); 3 Sequencing performed for viral community only; 4 Sequencing performed
for bacterial and viral community.

Additionally, we sequenced the urinary microbiome of one urine sample in our
collection, which was confirmed to be PCR-positive for JCPyV. This urine was collected via
transurethral catheterization from a woman with overactive bladder as part of a previous
IRB-approved study [39]. DNA was extracted using a phenol–chloroform protocol with a
starting volume of 500 uL urine. The extracted DNA was sent to the Microbial Genome
Sequencing Center (Pittsburgh, PA, USA). Libraries were prepared using a method based
upon the Illumina Nextera kit (Illumina, Inc., San Diego, CA, USA) and sequenced on the
Illumina NextSeq 550 platform. Sequencing produced 93.5 M reads of read length 150
nucleotides. Raw reads have been deposited in SRA; accession number SRR13199001.

3. Results

In an effort to ascertain the frequency at which JCPyV is detectable within the urinary
microbiome, we retrieved all publicly available urinary metagenomic data sets (Table S1).
Included in these data sets were samples in which the corresponding published paper
indicated that JCPyV was present based upon microbiome sequencing data alone [33,36].
Of the 165 data sets processed, raw reads mapped to the JCPyV RefSeq sequence (5130 base
pairs (bp)) for 59 of the samples (minimum number of reads mapped: 1; maximum number
of reads mapped: 336,004; average number of reads mapped: 36,734). Further investigation
of the mapped reads, however, revealed that the genome coverage of these reads was
unequal; particular genes were mapped with significantly high coverage, whereas others
had few or no reads mapped to them (Figure 1A). In stipulating that mapped reads must
be uniformly distributed across the JCPyV genome (Figure 1B), we conclude that with
high confidence JCPyV is present in only three samples: accession nos. ERR2798125,
ERR2798126, and SRR6519218. The first two samples are from the Kidney Transplant
Virome data set [34] and the third is from the Pulmonary Tuberculosis Urinary Microbiome

https://www.ncbi.nlm.nih.gov/bioproject
https://www.imicrobe.us
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data set. For the 56 data sets failing this uniformity test, we mapped the raw reads against
the BKPyV RefSeq sequence (5153 bp), finding uniform coverage (Figure 1C). Thus, we can
conclude that JCPyV is present in only 2% of the samples tested.
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Next, we conducted shotgun sequencing for one PCR-positive urine sample to confirm
that JCPyV could be detected in the urinary metagenome. One pair of reads (of the
46.7 million pairs) was mapped to the JCPyV RefSeq. These reads were then queried
against the nr/nt database via blastn and had 100% query coverage (length 150 bp) and
100% sequence identity to JCPyV sequences. Both reads map to the large t-antigen coding
region. These reads were also compared to BKPyV sequences (Human Polyomavirus 1,
taxid: 1891762) via discontiguous blast. The two reads had 99% query coverage and 75%
sequence identity and 60% query coverage and 80.22% sequence identity, respectively. This
suggests that these reads are in fact representative of JCPyV and not BKPyV.

4. Discussion

This study provides insight into the challenges of definitively identifying JCPyV in
urinary microbiomes/viromes amidst other polyomaviruses, namely BKPyV. Making this
distinction is paramount if we are to accurately determine the prevalence of JCPyV in the
population and begin to explore what role (if any) JCPyV plays in urinary health.

Metagenomic studies of urine samples have repeatedly suggested that JCPyV and
BKPyV are both present [33–37]. However, our analysis of 165 publicly available urinary
data sets suggests that BKPyV may be mistakenly reported as JCPyV. It is important to note
that the data sets examined here (Table 1) were not explicitly looking for JCPyV. Similarly,
in our own prior urinary microbiome study [35], we were not focused on identifying JCPyV.
The current estimates of JCPyV vary widely, from 20 to 80% [5–7]. This estimate comes
from PCR-based or serotype-based assays and the variation reported is largely due to
differences in the populations sampled (e.g., age, sex). It is important to note that the
metagenomic data sets examined here cannot provide any insight into JCPyV prevalence
as they also differ in the populations sampled, as well as in methods of sample collection
(e.g., catheterized urine, voided urine, pooled urine samples) and DNA extraction.

Bioinformatic tools designed for analysis of large high-throughput studies often lack
the sensitivity required to differentiate between closely related species, a trade-off made
in favor of speed. Tools designed to recognize viral sequences in metagenomic data
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sets often rely on the presence of hallmark genes or best BLAST hits to make taxonomic
calls [40–45]. Given the high sequence homology between BKPyV and JCPyV, miscalls of
the two polyomaviruses are not surprising. Here, we have shown that these distinctions
can only be reliably made by considering each species independently, examining the
evenness of read coverage as well as coverage of and homology to unique regions. For rare
members of the virome, analysis at the read level may even be necessary. For instance, the
urinary metagenome produced as part of this study, which was PCR positive for JCpyV,
included two reads to JCPyV. These reads exhibit greater homology to JCPyV than to
BKPyV sequences.

Thus, while metagenomic sequencing has significant potential for virus detection,
rigorous bioinformatic interrogation is necessary to correctly identify closely related species.
Similar to our approach, others have specifically mined metagenomes/viromes in an effort
to distinguish between closely related species of interest, e.g., HPV [46,47]. Based upon our
study here, we advocate that evenness of read coverage should be considered as a finishing
step in any virome analysis, as it provides confidence in taxon calls.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/v13061041/s1, Table S1: Publicly available metagenomes mined for JCPyV.
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