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ABSTRACT Streptococcus anginosus is a prevalent member of the human flora. While it
has been found in the microbiota of “healthy” asymptomatic individuals, it has also been
associated with genitourinary tract infections and bacteremia. Based upon multilocus
sequence analysis, two subspecies and two genomosubspecies have been characterized
for the species. We previously conducted whole-genome sequencing of 85 S. anginosus
isolates from the urinary tract. Here, we present genomic analysis of this species, including
isolates from the urinary tract as well as gut and fecal, vaginal, oral, respiratory, and blood
and heart samples. Average nucleotide identity and core genome analysis revealed that
these strains form two distinct groups. Group 1 is comprised of the S. anginosus type strain
and other previously identified S. anginosus subspecies and genomosubspecies, including
isolates from throughout the human body. In contrast, group 2 consists of predominantly
urinary streptococci (n = 77; 85.6%). Both of these S. anginosus groups are distinct from
other members of the Streptococcus anginosus group (SAG) species S. intermedius and
S. constellatus. Genes conserved among all strains of one group but not in any strains
in the other group were next identified. Group 1 strains included genes found in S. interme-
dius and S. constellatus, suggesting that they were lost within the ancestor of the group
2 strains. In contrast, genes unique to the group 2 strains were homologous to more dis-
tant streptococci, indicative of acquisition via horizontal gene transfer. These genes are ideal
candidates for use as marker genes to distinguish between the two groups in the human
microbiota.

IMPORTANCE Whole-genome analysis of S. anginosus strains provides greater insight
into the diversity of this species than from marker genes alone. Our investigation of 166
publicly available S. anginosus genomes via average nucleotide identity and core genome
analysis revealed two phylogenomically distinct groups of this species, with one group
almost exclusively consisting of isolates from the urinary tract. In contrast, only 8 urinary
strains were identified within the other group, which contained the S. anginosus type
strain, as well as all identified subspecies and genomosubspecies. While genomic analysis
suggested that this urinary group of S. anginosus is genomically different from the previ-
ously characterized S. anginosus subspecies, phenotypic characterization is still needed.
Given prior reports of the prevalence of S. anginosus in the urinary tract of both continent
and incontinent females, future studies are needed to investigate if the symptom state of
the urinary tract is associated with these two different groups.

KEYWORDS Streptococcus, Streptococcus anginosus, urinary tract, urobiome

S treptococcus anginosus is a prevalent member of the human flora, colonizing the oral
cavity, upper respiratory tract, gastrointestinal tract, and female urogenital tract (1, 2).

While long thought to be a commensal species, reports of S. anginous bacterial infections
have increased over the last few decades (3–5). In most cases, these infections resulted in
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hospitalizations. A recent study found that S. anginosus was more abundant in the vaginal
microbiota of postpartum females, and it has been associated with placental inflammation
and chorioamnionitis (6, 7). Our prior studies of the female bladder microbiota found S.
anginosus associated with urge urinary incontinence (8, 9), although it has also been rou-
tinely detected in continent controls (10). It also has been associated with genitourinary
tract infections and bacteremia (for review, see reference 11). Genome analyses of S. angi-
nosus isolates have found Streptococcus pyogenes virulence factor genes (12).

Earlier genomic analysis was instrumental in distinguishing the three species of the
Streptococcus anginosus group (SAG): S. anginosus, S. constellatus, and S. intermedius (13).
Complementing this genomic work, multilocus sequence analysis (MLSA) of S. anginosus
strains has provided greater resolution of this species. Based on MLSA, two subspecies
and two genomosubspecies have been identified: S. anginosus subsp. whileyi, S. anginosus
subsp. anginosus, S. anginosus genomosubsp. AJ1, and S. anginosus genomosubsp. vellorensis
(12, 14). While a previous pangenome analysis of the SAG genomes (n = 18, including 6 repre-
sentatives of S. anginosus) has been reported (13), a large-scale pangenome analysis of just
S. anginosus strains has yet to be conducted.

All publicly available S. anginosus strains were retrieved from NCBI’s Assembly database
and assessed for completeness and contamination using checkM (15). In total, 166 genome
assemblies were considered further; their isolation source was retrieved from BioSample
metadata and/or associated literature (see Table S1 in the supplemental material). Anvi’o
v. 7.2 was used to annotate and identify the pangenome (16). The core genome of single-
copy genes was identified (n = 532), and the aligned amino acid sequences of this core
were retrieved from the Anvi’o pangenome database. A phylogenetic tree was derived using
FastTree v.2.1.11 (17) through Geneious Prime v.2022.2.1 and visualized with iTOL v. 6.5.8
(18) (Fig. 1). Two distinct groups were identified, one containing the S. anginosus type strain
and other previously identified S. anginosus subspecies (hereafter referred to as S. anginosus
group 1) and the other containing predominantly urinary streptococci (S. anginosus group 2).

As Fig. 1 shows, 77 of the 90 strains in S. anginosus group 2 were isolated from the urinary
tract. Three were isolated from vaginal samples, and 10 were isolated from fecal or gut
samples. Two of the vaginal isolates were from vaginal swabs from females with no clinical
genitourinary symptoms (19); the other vaginal strain was isolated from vaginal fluid col-
lected from a pregnant woman diagnosed with bacterial vaginosis (20). With regard to the
fecal and gut samples, three of the genomes were metagenome-assembled genomes (21–23).
The others were isolates from stool samples (24, 25). Only 8 isolates from urine were found in
S. anginosus group 1, which also includes strains isolated from blood, heart, respiratory, oral,
and fecal samples.

Because average nucleotide identity (ANI) is the commonly used metric to delineate
species, we next computed the ANI using PyANI v.0.2.11 (26). For this calculation, we also
included publicly available strains of other members of SAG: S. intermedius (n = 51) and
S. constellatus (n = 30) (Table S2). ANI analysis confirmed that both S. anginosus groups
were distinct from S. intermedius and S. constellatus (Fig. 2; Table S3). Furthermore, the ANI
values enabled us to associate additional strains with S. anginosus subsp. whileyi and the
two genomosubspecies, which are listed in Table S1. This analysis also showed that group
2 genomes were more similar to the genomes of the S. anginosus genomosubsp. AJ1 and
S. anginosus genomosubsp. vellorensis strains than they were to the S. anginosus subsp.
whileyi and S. anginosus subsp. anginosus strains (Table S3). When compared to strains
assigned to these two genomosubspecies, the group 2 strains had an ANI value of 95.66%.
This slightly exceeded the 95% threshold commonly used to distinguish species (27). In con-
trast, none of the group 2 strains had an ANI value greater than the 95% threshold to any of
the examined group 1 S. anginosus subsp. whileyi or S. anginosus subsp. anginosus isolates.
The ANI-based clustering of the strains examined identified four main branches (Fig. 2).
From left to right, the group 2 S. anginosus strains, the group 1 S. anginosus strains (including
S. anginosus subsp. anginosus, S. anginosus subsp. whileyi, S. anginosus genomosubsp. vellor-
ensis, and S. anginosus genomosubsp. AJ1), the S. intermedius strains, and the S. constellatus
strains are shown.
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To further explore the genetic differences between the S. anginosus group 1 and group
2 strains, we next identified genes conserved among all strains of one group but not in any
strains in the other group. Group 1 included 1,040 genes conserved among all 76 of its
strains. Only 10 of these genes, however, were unique to this group (i.e., they were not
present in any of the assemblies from group 2). Querying the amino acid sequences of
these 10 genes against the complete nr database revealed these genes to be conserved
among S. constellatus and S. intermedius strains (Table S4). The first seven proteins listed in
Table S4 are contiguous, suggesting possible horizontal gene transfer from other species
of SAG, namely, S. constellatus and/or S. intermedius, to the common ancestor of the group
1 strains or loss in the common ancestor of the group 2 strains. Group 2 strains had 1,393
genes conserved among all 90 strains. Ten of these genes were not found in any of the
group 1 strains. When queried against the complete nr database, 3 of these sequences
did not have significant sequence similarity to any records. The other protein sequences,
however, had homologs in Streptococcus gallolyticus and Streptococcus pantholopis strains
and/or strains from the S. mitis/oralis group (Table S5). The first six genes listed in Table S5
are contiguous. The contiguous group-specific genes were likely acquired via horizontal

FIG 1 Phylogenetic tree of the S. anginosus core genome. The inner ring corresponds to the isolation source. The outer ring
corresponds to the grouping defined here. Isolates associated with one of the S. anginosus genomosubspecies or subspecies are
indicated by a colored branch as well as the dotted line connecting the branch to the isolation source and group ring. These designations
were determined by referring to Babbar et al. (12).
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gene transfer. Prior studies have shown that the genus is naturally competent (28), and
gene exchange occurs between Streptococcus species (29); this supports the hypothesis
that the contiguous group 1- or group 2-specific genes may have been acquired via hori-
zontal gene transfer. Further investigation into the genes unique to group 2 is needed to
ascertain if they benefit the bacterium in the urinary tract environment.

The majority (91%) of the urinary isolate genomes were assigned to group 2. The group 2
strains have ANI values of,95% with all strains of both S. anginosus subspecies (n = 42), and
the core genome analysis further supported the distinction between the group 1 and group 2
genomes. However, the group 2 genomes had ANI values of.95%with the two genomosub-
species (n = 34). Distinct phenotypic characteristics for both of these genomosubspecies have
yet to be identified or investigated (12, 14). Phenotypic characterization of the group 2 strains
also is needed to ascertain if this is a new species or subspecies within the SAG. Given prior
reports of the prevalence of S. anginosus in the urinary tract of both continent and incontinent
females (8–10), it would be interesting to see if continence and incontinence are associated
with these two different groups. Among the 85 S. anginosus isolates from our own collec-
tion, we note that isolates from females without lower urinary tract symptoms are only rep-
resented in the group 2 strains (n = 10) (Table S1). However, group 2 strains also include
isolates from females with urinary tract infection, recurrent urinary tract infection, and incon-
tinence. Thus, further isolation of S. anginosus strains from females without lower urinary
tract symptoms is needed. The unique genes identified here could serve as marker genes
to distinguish between the two groups.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
TABLE S1, XLSX file, 0.01 MB.
TABLE S2, XLSX file, 0.01 MB.

FIG 2 ANI analysis of publicly available genome assemblies of members of S. anginosus strains and S. constellatus
and S. intermedius. The bar on the right indicates the species, group, and genomosubspecies or subspecies. ANI
values of .95% are shown in red hues; ANIs of ,95% are shown in blue hues. The tree at the top of the heatmap
indicates the ANI-based relationship of the sequences examined, colored by species or group.
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TABLE S3, DOCX file, 0.01 MB.
TABLE S4, DOCX file, 0.01 MB.
TABLE S5, DOCX file, 0.01 MB.
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