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a b s t r a c t

Hepatocellular carcinoma (HCC) is a very deadly disease. HCC initiation and progression involve multiple
genetic events, including the activation of proto-oncogenes and disruption of the function of specific
tumor suppressor genes. Activation of oncogenes stimulates cell growth and survival, while loss-of-
function mutations of tumor suppressor genes result in unrestrained cell growth. In this review, we
summarize the new findings that identified novel proto-oncogenes and tumor suppressors in HCC over
the past five years. These findings may inspire the development of novel therapeutic strategies to
improve the outcome of HCC patients.
© 2021 The Third Affiliated Hospital of Sun Yat-sen University. Publishing services by Elsevier B. V. on
behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Hepatocellular carcinoma (HCC) is one of the deadliest cancers
worldwide.1 There are many risk factors for HCC, such as infections
with hepatitis B virus or hepatitis C virus, chronic alcohol use,
aflatoxin, autoimmune hepatitis, obesity, and diabetes.2 Current
therapies provide limited clinical benefit for these patients.2 A
better understanding of the molecular mechanisms of HCC devel-
opment is critical for developing new effective therapeutic strate-
gies for treating it.3 HCC initiation and progression involve multiple
genetic events, such as the activation of proto-oncogenes and
disruption of the functions of specific tumor suppressor genes.
Oncoproteins encoded by oncogenes stimulate or enhance the di-
vision and viability of cells.4 In contrast, tumor suppressor genes
can directly or indirectly prevent cell proliferation or result in cell
death. Tumor protein p53 (P53), phosphatase and tensin homolog
(PTEN), axin 1 (AXIN 1), and retinoblastoma transcriptional core-
pressor 1 (RB1) arewell-known tumor suppressor genes in HCC. For
example, P53 is mutated or silenced in 30e60% of HCC, while PTEN
is lost in over 40% of HCC.5,6 In 2015, Kanda et al.7 summarized the

functions of putative oncogenes and tumor suppressors in HCC.
Also, in a recent special issue of Liver Research, several diagnosis
markers, such as Golgi protein 73, Glypican-3, Galectin-1 and
Galectin-3, Yes-associated protein-1 for HCC were discussed.8e10

However, these biomarkers do not necessarily functionally
contribute to HCC initiation and progression. This review provides
an updated overview of recently published articles from the past
five years addressing HCC-related oncogenes (30 genes) and tumor
suppressor genes (12 genes), which functionally contribute to HCC
initiation and progression. These genes are introduced because the
studies on functions of these genes in HCC have potentially sig-
nificant influences on the discovery, pathogenesis, or treatment of
liver cancer. These findings may stimulate the development of
novel therapeutic strategies for the treatment of HCC.

2. Novel oncogenes in HCC

2.1. Abelson murine leukemia viral oncogene homolog 1 (ABL1)

ABL proto-oncogene 1, non-receptor tyrosine kinase (ABL1) was
first discovered as an oncogene in human leukemia more than 30
years ago. ABL inhibitors have been very successfully used for the
treatment of breakpoint cluster region (BCR)-ABL1-positive leuke-
mia. Recently, activation of ABL1 has been detected in many solid
tumors.11 However, for a long time, the role of ABL1 in the
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development of HCC was not known. Recently, we found that ABL1
is overexpressed and activated in human HCC tissues, and its
overexpression correlates with poor survival in HCC patients.12,13

Functional inhibition of ABL1 impairs HCC growth and extends
the overall survival of mice with HCC.13 Mechanistically, we found
that inhibition of ABL1 decreases the expression of c-MYC and
notch receptor 1 (NOTCH1) and suppresses HCC cell growth.13 We
also found a strong correlation between ABL1, c-MYC, and NOTCH1
in human HCC specimens.13 Significantly, ABL1 inhibitors sup-
pressed HCC growth in xenograft and oncogene-driven HCC
models.13 Overall, these results suggest that ABL1 plays a crucial
role in promoting HCC development.

2.2. Annexin A protein family

Annexins are Ca2þ-regulated phospholipid-binding proteins
that play vital roles in cell proliferation, exocytosis, and cell death.14

Twelve annexin proteins (A1e12) have been identified in
humans.15,16 Several Annexin proteins have been shown to function
as putative oncoproteins in HCC development. Annexin A3
(ANXA3) expression is substantially elevated in HCC tissues in
comparison to adjacent normal tissues.17,18 ANXA3 expression is
positively correlated with the number, size, stage of the tumor, and
poor prognosis.17 ANXA3 overexpression promotes cell growth and
metastasis in HCC cell lines.17 In contrast, the knockdown of ANXA3
inhibits these processes. Its blockade with an anti-ANXA3 antibody
results in a significant reduction in tumor growth.19 Additionally,
overexpression of ANXA3 in HCC cells enhances resistance to
treatment with sorafenib and regorafenib.20 Mechanistically,
upregulated ANXA3 suppresses protein kinase C delta (PKCd)/p38-
associated apoptosis and activates autophagy in sorafenib-resistant
HCC cells.20 Significantly, anti-ANXA3 monoclonal antibody ther-
apy enhances the efficiency of sorafenib/regorafenib in suppressing
HCC tumor growth in vivo.20

ANXA4, another member of the Annexin A family, is another
putative proto-oncogene in HCC. Serum ANXA4 levels are sub-
stantially greater in HCC patients than patients with cirrhosis of the
liver and healthy controls.21 Overexpression of ANXA4 promotes
HCC cell proliferation, and the downregulated expression of ANXA4
inhibits HCC cell growth and tumorigenesis.22 Similarly, high
expression of ANXA2 promotes the progression of HCC and predicts
poor prognosis.23 Mechanistically, ANXA2 enhances HCC progres-
sion via the remodeling of cell motility-associated structures and
interaction with engulfment and cell motility protein 1.24,25

2.3. Focal adhesion kinase (FAK)

FAK, a non-receptor tyrosine kinase, promotes tumor growth
and progression by kinase-dependent and -independent path-
ways.26 Although FAK functions in other types of cancer have been
intensively studied, and it was known that FAK is overexpressed in
HCC specimens,27,28 FAK's precise role in HCC remained elusive in
the past. Our lab generated hepatocyte-specific FAK-knockout
mice.29 We found that loss of FAK dramatically stifles cellular-
mesenchymal epithelial transition factor (c-MET)/b-catenin-
induced tumor growth and prolongs animals' survival in this
model. Mechanistically, we found that c-MET activates FAK, which
is critical for the activation of protein kinase B (AKT) and extra-
cellular signal-regulated kinase (ERK) in HCC cells.29 b-catenin does
not directly activate FAK; instead, it enhances the activation of FAK
by c-MET.29 Further, we demonstrated that FAK promotes c-MET/b-
catenin-induced HCC via its kinase activity.30 Consistently, the FAK
kinase inhibitor PF-562271 suppresses the progression of HCC in
mouse models.30 FAK can also regulate enhancer of zeste homolog

2 (EZH2), which modulates transcription of p53, E2F2/3, and
NOTHC2 to promote HCC cell growth.31

Our lab recently discovered that FAK overexpression alone is
insufficient to induce HCC; instead, FAK cooperates with b-catenin
to induce HCC.32 Consistent with this, one-third of human HCC
samples with FAK amplification are coincidental with b-catenin
mutations.32 Mechanistically, increased expression of FAK increases
androgen receptor (AR) expression by enhancing the binding of b-
catenin to AR's promoter. Importantly, inhibition of AR suppresses
FAK/b-catenin-induced HCC development.32

2.4. Human forkhead box (FOX) family

FOX proteins are transcription factors that play a significant role
in cell proliferation, differentiation, embryogenesis, and senes-
cence.33,34 The expression of FOXK1 is upregulated in human HCC
tissues, and its high expression correlates with poor outcomes and
regulates the stemness of HCC cells.35,36 FOXK1 knockdown impairs
the proliferation, migration, and invasion of HCC cells and reduces
the growth of tumors in xenograft mouse models, which might be
explained by the downregulation of b-catenin and its downstream
targets c-Myc and cyclin D1.35 Recently, long non-coding RNA
(lncRNA) TMPO antisense RNA 1 (TMPO-AS1), has been shown to
FOXK1-mediated AKT/mTOR signaling pathway and contribute to
HCC progression by sponging miR-329e3p.37

FOXR2, another FOX protein, is upregulated in HCC specimens
compared to neighboring non-cancerous tissues.38 FOXR2 over-
expression promotes HCC cell and tumor growth, while silencing of
FOXR2 inhibits HCC cell growth.38 FOXR2 promotes HCC malig-
nancy by regulating its potential downstream targets such as b-
catenin, S-phase kinase associated protein 2 (Skp2), c-Myc, and Gli-
1.38

FOXA3, another FOX protein, in the combination of hepatocyte
nuclear factor (HNF) 1A and HNF4A, reprograms HCC cells to
hepatocyte-like cells. These cells lose the malignant phenotypes of
cancer cells and retrieve hepatocyte-specific characteristics.
Consistently, intratumoral injection of these three factors sup-
presses tumor growth in patient-derived tumor xenografts in vivo.
Mechanistically, exogenous expression of FOXA3, HNF1A, and
HNF4A in HCC cells restored the endogenous expression of
numerous hepatocyte nuclear factors, which promoted the
conversion.39

2.5. Kinesin superfamily protein (KIF)

KIFs are motor proteins that transport membranous organelles
and protein complexes.40,41 KIF15, a KIF familymember, shows high
expression in tumor samples from HCC patients.42 Higher expres-
sion of KIF15 predicts poor prognosis in HCC patients.43 KIF15
overexpression enhances HCC cell growth.42,44 Mechanistically,
KIF15 interacts with phosphoglycerate dehydrogenase (PHGDH),
which inhibits proteasomal degradation of the latter and leads to
the imbalance of reactive oxygen species (ROS), thereby promoting
HCC malignancy.44

KIF2C expression is also substantially higher in tumor tissues
than in adjacent normal tissues.42 Overexpression of KIF2C predicts
poor prognosis, promotes HCC cell proliferation, and impedes
apoptosis.45 KIF2C interacts with various cell cycle-related proteins
and upregulates proliferating cell nuclear antigen (PCNA) and
CDC20 expression.46

A higher expression level of KIFC1 correlates with a poor
prognosis for HCC patients and promotes HCC cell proliferation.47,48

Mechanistically, the silencing of KIFC1 decreases the expression of
the apoptosis-related protein B-cell lymphoma-2 (Bcl-2) and in-
creases the levels of p53 and Bcl-2-associated X protein. Moreover,
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KIFC1 knockdown decreases phosphoinositide 3-kinase (PI3K)/AKT
signaling in HCC cells.48 KIFC1 is downregulated by miR-532e3p
but is activated by TCF-4 in HCC.49,50

2.6. Non-structural maintenance of chromosomes (SMC) condensin
I complex (NCAP) family

SMC and non-SMC proteins build NCAP and control chromo-
some condensation and segregation during cell division, thus
playing key roles in cell proliferation.51,52 Genome-wide CRISPR-
knockout screening identifies non-structural maintenance of
chromosomes condensin I complex subunit G (NCAPG) as an
essential oncogene for HCC tumor growth.53 NCAPG silencing in
HCC cells leads to abnormal mitosis, mitochondrial fragmentation,
and apoptosis.53,54 Mechanistically, NCAPG promotes HCC prolif-
eration via the PI3K/AKT signaling pathway, further supported by
the observation that LY294002, a PI3K inhibitor, could abolish the
role of NCAPG in promoting HCC cell growth.

NCAPG2, a member of the NCAP family, is often highly expressed
and is positively correlated with poor prognosis in HCC pa-
tients.53,55 Overexpression of NCAPG2 promotes HCC cell growth
and metastasis by activating the PI3K/AKT, nuclear factor-kappaB
(NF-kB), and signal transducers and activators of transcription-3
(STAT3) signaling pathways.55,56 Both miR-188-3p and miR-181c
suppress HCC growth and metastasis through modulation of
NCAPG2.55,57 Excessive expression of non-structural maintenance
of chromosomes condensin I complex subunit H (NCAPH), another
NCAP family member, predicts poor prognosis in HCC patients.58,59

Similar to NCAPG2, NCAPH also promotes HCC tumor growth and
metastasis.59 However, the action mechanisms of NCAPH remain
unknown and to be determined.

2.7. Never-in-mitosis A (NIMA)-related kinase (NEK) family

NEKs play essential roles in the mitosis entry of cells.60 A
number of family members, including NEK2, NEK6, NEK7, and
NEK9, play roles in establishing the microtubule-based mitotic
spindle, while some other members, such as NEK1, NEK10, and
NEK11, play roles during DNA damage.61 NEK2 is highly expressed
in HCC tissues, which correlates with a poor prognosis for the
disease.62e65 Increased NEK2 promotes HCC progression by
enhancing PP1/AKT activation, WNT signaling, and epithelial-
mesenchymal transition (EMT).66,67 Besides, NEK2 augments sor-
afenib resistance by regulating the ubiquitination and localization
of b-catenin in HCC.68

NEK7 is also significantly overexpressed in HCC, and its exces-
sive expression is positively associated with numbers, size grades,
and stages of HCC tumors.69 The silencing of NEK7 using lentivirus-
mediated Nek7 interference approach suppresses HCC growth
in vitro and a xenograft mouse model.69 Mechanistically, inhibition
of NEK7 suppresses HCC growth by decreasing the expression of
cyclin B1 both in vitro and in vivo.69

2.8. Protein arginine methyltransferase (PRMT) family

PRMTs methylate numerous nuclear and cytoplasmic substrates
and play critical roles in apoptosis, cell proliferation, and RNA
processing.70 Excessive expression of PRMT1 is correlatedwith poor
survival for HCC patients.71 Overexpression of PRMT1 promotes
HCC growth and metastasis by activating the STAT3 signaling
pathway.72 PRMT1 regulates the production of IL-6 in macro-
phages, thereby promoting alcohol-induced HCC progression.73

Moreover, miR-503 suppresses HCC metastasis by targeting
PRMT1.74

Similar to PRMT1, higher PRMT2 expression in HCC specimens
associates with shorter survival in HCC patients.75 PRMT2 knock-
down inhibits cell growth and survival by regulating H3R8 asym-
metric methylation (H3R8me2a), which promotes Bcl2 gene
expression.75 Elevated levels of PRMT5 in HCC tissues predict poor
prognosis.76 The inhibition of PRMT5 expression dramatically in-
hibits the severity of HCC by increasing the expression of HNF4a.77

A novel PRMT5 inhibitor, DW14800, suppresses HCC tumor growth
in cell cultures and xenograft mouse models.77

2.9. Sirtuin (SIRT) family

SIRT family of proteins acts predominantly as nicotinamide-
adenine dinucleotide (NAD)-dependent deacetylases.78 Sirtuin
family members play diverse roles in different kinds of cancer.79

SIRT1 plays a vital role in cancer development, including
HCC.7,80,81 Recently, SIRT1 was shown to facilitate HCC metastasis
through facilitating peroxisome proliferator-activated receptor-
gamma co-activator-1alpha (PGC-1a)-mediated mitochondrial
biogenesis.82 In addition, SIRT1 overexpression promotes HCC
growth through enhancing YAP- and mitogen-activated protein
kinase kinase 3 (MKK3)-dependent p38 phosphorylation.83

Increased SIRT5 expression is associated with poor prognosis in
HCC patients.84 Mechanistic studies revealed that SIRT5 promotes
HCC growth and metastasis through decreasing the expression of
E2F1.84 Additionally, SIRT5 knockdown increases HCC cellular
apoptosis by regulating the mitochondrial pathway.85 However, a
recent study reported that SIRT5 suppresses HCC development by
suppressing peroxisomal acyl-CoA oxidase 1 (ACOX1) and oxidative
stress.86 These conflicting results suggest that SIRT5 has multiple
functions and the full range of its biological features needs to be
further investigated.

SIRT7 expression is often increased in HCC specimens, and its
higher expression predicts poor prognosis.87,88 SIRT7 promotes
HCC development by deacetylation of USP39.89 In addition, SIRT7
promotes HCC growth and cell survival by deacetylating and
inhibiting p53.87 A recent study further showed that disruption of
SIRT7 increases checkpoint inhibition efficacy via myocyte
enhancer factor 2D (MEF2D)-mediated regulation of programmed
cell death 1 ligand 1 in treating HCC.90

2.10. Tripartite motif (TRIM) family

TRIM family proteins are RING-type E3 ubiquitin ligases
involved in many diseases, including cancer and autoimmune dis-
ease.91 TRIM31 expression is significantly upregulated in HCC tis-
sues, and its overexpression is significantly associated with
advanced disease status.92 TRIM31 promotes the malignancy of
HCC cells by directly associating with the tuberous sclerosis com-
plex (TSC) 1 and TSC2, and promoting the E3 ligase-mediated K48-
linked ubiquitination and degradation of this complex.92 In addi-
tion, TRIM31 promotes resistance anoikis of HCC cells by degrading
p53 and activating the adenosine monophosphate-activated pro-
tein kinase (AMPK) pathway.93

TRIM32 expression is also elevated in HCC specimens, and its
expression is associated with tumor grades and sizes as well as
HBsAg in HCC patients.94 TRIM32 accelerates the G1eS phase
transition, promotes cellular proliferative rates, and induces HCC
patients' resistance to oxaliplatin.94 TRIM44 also functions as an
oncogene in HCC. Excessive expression of TRIM44 in HCC is asso-
ciated with shorter overall survival.95 TRIM44 overexpression
promotes cell growth and metastasis, and enhances resistance to
doxorubicin via accelerating the activation of NF-kB in HCC cells.95
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2.11. Ubiquitin-specific proteases (USPs) family

USPs are a family of unique hydrolases that precisely remove
polypeptides covalently linked via peptide or isopeptide bonds to
the C-terminal glycine of ubiquitin.96 Several USP family members
play essential roles in cancer.97 USP5, a USP family member, is
significantly elevated in HCC specimens.98 USP5 promotes tumor-
igenesis in HCC through the inactivation of p14ARF-p53 signaling.98

Additionally, USP5 stabilizes SLUG and promotes EMT in HCC
cells.99

USP7 expression is also significantly upregulated in HCC tumors
and is correlated with its progression.100 Disruption of the USP7
function induces HCC cell death and inhibits cell proliferation and
migration, which might be due to BCL2 associated X (BAX) activa-
tion.100 A recent study indicated that USP7 stabilizes the Hippo
pathway by deubiquitinating the transcriptional coactivator Yorkie,
promoting HCC growth.101 Further, USP7 participates in
lipogenesis-associated HCC progression by promoting stabilization
and transcription of zinc-finger protein 638.102

USP11 is upregulated in HCC and is correlated with shorter
survival in HCC patients.103,104 USP11 promotes HCC cell survival,
invasion, and metastatic potency in vitro and in vivo.103,104 Mecha-
nistically, USP11 interacts with nuclear factor 90 (NF90) and pro-
motes its deubiquitination, thereby stabilizing it in HCC cells.103

Consistent with this, USP11 expression positively correlates with
NF90 expression in human HCC tissues.103 Similar to USP11,
elevated USP13 in HCC patients is associated with a poor prog-
nosis.105 The knockdown of USP13 by short hairpin RNAs (shRNAs)
markedly decreases cell growth in HCC by reducing c-Myc
expression.105

USP14 also functions as an oncogene in HCC. USP14 expression
is increased in HCC specimens compared to adjacent normal liver
tissues.106 The knockdown of USP14 in HCC cells impairs cell
growth and results in cell death.106 Mechanistically, USP14 deubi-
quitinates and activates PI3K/AKT in HCC cells.107 USP14 is a direct
target of miR-4782-3p, and decreased expression of miR-4782
might contribute to increased expression of USP14 in HCC
tissues.108

3. Novel tumor suppressor genes in HCC

3.1. Suppressors related to the MEK/ERK pathway

The mitogen-activated protein kinase (MEK)/ERK pathway plays
critical roles in tumor growth and progression in numerous types of
cancer, including HCC.109 Some suppressors which regulate the
MEK/ERK signaling pathway have been identified as regulators of
HCC development. Hippocalcin-like 1 (HPCAL1), a calcium sensor
protein, was recently identified as a novel HCC suppressor. HPCAL1
expression decreases in tissues and plasma of HCC patients, which
is correlated with a worse prognosis for these patients.110 HPCAL1
overexpression inhibits HCC cell growth while HPCAL1 silencing
promotes cell proliferation by stabilizing p21 in an ERK-dependent
manner.110

Mitogen-activated protein kinase phosphatases-4 (MKP-4) was
identified as a binding partner with ERK1/2.111 Decreased expres-
sion of MKP-4 predicted a better prognosis in HCC specimens.112

Knockdown of MKP-4 in HCC cells increases cell proliferation,
while ERK1/2 inhibition reverses the effect.111 Mechanistically,
MKP-4 negatively regulates the phosphorylation of ERK1/2, thereby
reducing the expression of Cyclin D1 and c-Myc. Consistently, the
expression of MKP-4 negatively correlates with p-ERK in clinical
analyses of HCC patients.111

The RBP sorbin and SH3 domain-containing 2 (SORBS2), also
known as Arg/c-Abl kinase binding protein 2, is amember of a small
family of adaptor proteins with sorbin homology (SOHO) do-
mains.113 SORBS2 functions as a tumor suppressor in HCC. SORBS2
expression is substantially lower in HCC tissues than normal liver
tissues, and low expression of SORBS2 is correlated with poor
prognosis in HCC patients.114 SORBS2 overexpression suppresses
cell migration, invasion, and EMT in HCC cells, whereas SORBS2
inhibition yields the opposite results. Mechanistically, SORBS2
suppresses HCC by inhibiting the c-Abl/ERK signaling pathway and
stabilizing retinoic acid receptor-related orphan receptor alpha
(RORA) mRNA.114,115 Myocyte-specific enhancer factor 2D binds to
the promoter of SORBS2 and reduces its expression in HCC cells.114

3.2. Suppressors related to the PI3K/AKT pathway

The PI3K/AKT pathway plays a critical role in the development
of HCC.116 A number of tumor suppressor genes inhibit HCC
development by regulating the PI3K/AKT pathway. Protocadherin-
10 (PCDH10), a member of the non-clustered protocadherin family,
is one such gene. The expression of PCDH10 is noticeably down-
regulated in HCC due to the aberrant methylation status of the
PCDH10 promoter. Low expression of PCDH10 in HCC is associated
with shorter survival in HCC patients.117 The upregulation of
PCDH10 inhibits cell growth and results in cell death in HCC cells by
inhibiting the PI3K/AKT signaling.118

Placenta-specific 8 (PLAC8), a cysteine-rich protein, is notably
decreased in HCC specimens compared with adjacent normal
samples.119 Lower expression of the PLAC8 gene is associated with
poorer prognosis in HCC patients.120 The silencing of PLAC8 in HCC
promotes cell viability, growth, and tumor formation through
enhancing the PI3K/AKT/GSK3b and Wnt/b-catenin signaling
pathways.119

Tat-interacting protein (30 kDa) (TIP30) is another tumor sup-
pressor gene that regulates PI3K/AKT. Decreased TIP30 expression
is inversely associated with prognosis in HCC patients with HBV
infection.121 The loss of TIP30 increases EMTand tumor initiation in
HCC through the regulation of SNAIL.122 It was also reported that
decreased expression of TIP30 activates the AKT/mTOR signaling
pathway, which increases SREBP1 expression and leads to
increased fatty acid synthesis in HCC cells.123

Triggering receptor expressed on myeloid cells 2 (TREM2), a cell
surface receptor, was identified as a novel tumor suppressor in HCC.
Expression of TREM2 is downregulated in HCC cells and tissues.124

MiR-31-5p downregulates the expression of TREM2 in HCC
cells.124 Reduced TREM2 expression correlates with shorter survival
and aggressive pathological features in HCC patients.124,125 TREM2
knockdown promotes cell growth, migration, and invasiveness,
while TREM2 overexpression produces the opposite effect in HCC
cells by targeting the PI3K/AKT/b-catenin pathway.124 Consistently,
Trem2�/� mice develop more liver tumors after diethylnitrosamine
(DEN) administration and in fibrosis-associated HCC models.125

3.3. Suppressors related to the transforming growth factor-beta
(TGF-b) pathway

The TGF-b signaling pathway plays critical roles in cell prolif-
eration, differentiation, and survival.126 Despite the complicated
functioning of TGF-b in HCC,126,127 several tumor suppressor genes
related to the TGF-b pathway have been identified. CXXC finger
protein 5 (CXXC5) was recently discovered as a novel TGF-b target
gene in HCC cells.128 Expression of CXXC5 is substantially reduced in
HCC specimens compared to adjacent normal tissues.128
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Knockdown of CXXC5 suppresses cell proliferation and invasiveness
and reverses TGF-b-induced growth suppression and cell death in
HCC cells.128,129 Mechanistically, CXXC5 interacts with the histone
deacetylase 1 (HDAC1) and competes for this association with
Smad2/3, thus abolishing the inhibitory effect of HDAC1 on TGF-b
signaling.128

Forkhead box P3 (FOXP3) is a master regulator of the regulatory
pathway in the development and function of regulatory T cells.130

Elevated FOXP3 expression is correlated with a better prognosis.
Overexpression of FOXP3 potently suppresses HCC tumor growth
and metastatic ability via enhancing the TGF-b signaling
pathway.131

3.4. Tripartite motif (TRIM) family

The TRIM gene family, characterized by the tripartite motif, is
involved in pathogen recognition and regulation of transcriptional
pathways in host defenses.132 Recent studies have shown thatmany
TRIM superfamily members play essential roles in the development
of HCC. TRIM26 is significantly decreased in HCC tissues, and low
expression of TRIM26 is associated with poor prognosis in HCC
patients.133 TRIM26 silencing promotes HCC cell growth and tumor
metastasis and regulates sets of genes related to metabolism in
cancer cells.133

Similarly, TRIM50 expression is also significantly lower in HCC
tumors than adjacent normal tissues, and its lower expression as-
sociates with poorer survival in HCC patients.134 Overexpression of
TRIM50 suppresses cell growth and metastasis, while TRIM50
knockdown promotes these malignant behaviors. Mechanistically,
TRIM50 directly binds to SNAIL and induces K-48 linked poly-
ubiquitous degradation of SNAIL protein, thereby decreasing EMT
in HCC cells.134

TRIM7 also acts as a tumor suppressor in HCC development.
TRIM7 directly interacts with SRC and induces Lys48-linked poly-
ubiquitination of the latter, and the subsequent degradation of SRC
protein in HCC cells.135 Consistent with this observation, TRIM7
protein expression is negatively associated with SRC protein
expression in clinical HCC specimens.135 However, another study
indicated that TRIM7 promotes HCC cell proliferation via the
DUSP6/p38 pathway.136 These controversial results warrant further
studies to more precisely specify the role of TRIM7 in HCC.

4. Conclusion

HCC remains one of the most lethal malignancies worldwide
because of the immense challenges in preventing, diagnosing, and
treating the disease.2 HCC demonstrates a high degree of hetero-
geneity, including multiple induced factors, genetic background,
and spatio-temporal molecular diversity.137 Despite decades of
advancements in targeted therapy, the currently approved medi-
cations for advanced HCC provide patients with limited clinical
benefits.2,138 A major barrier to drug development has been a lack
of understanding of the critical drivers of oncogenesis and tumor
progression.138 Although no primary drivers have been identified in
HCC progression, many oncogenes and tumor suppressor genes
have been discovered to be important in HCC.139 This review
summarized newly-identified putative oncogenes (Table 1) and
tumor suppressor genes (Table 2) applicable to HCC from an anal-
ysis of the most recent five years of scientific study (Fig. 1). We hope
that these findings may inspire the development of novel thera-
peutic strategies to improve HCC patient treatment outcomes going
forward.

Table 1
Oncogenes in hepatocellular carcinoma (HCC).

Gene symbolsa Gene names Did function validate using knockout mouse models? References

ABL1 ABL proto-oncogene 1, non-receptor tyrosine kinase Yes 12,13

ANXA3 Annexin A3 20

ANXA4 Annexin A4 21,22

ANXA2 Annexin A2 23e25

FAK Focal adhesion kinase Yes 29e32

FOXK1 Forkhead box k1 35e37

FOXR2 Forkhead box R2 38

FOXA3 Forkhead box A3 39

KIF15 Kinesin family member 15 42e44

KIF2C Kinesin family member 2C 45,46

KIFC1 Kinesin family member C1 47e50

NCAPG Non-SMC condensin I complex, subunit G 53,54

NCAPG2 Non-SMC condensin I complex, subunit G 2 55,56

NCAPH Non-SMC condensing I complex subunit H 58,59

NEK2 Never-in-mitosis A-related kinase 2 66,67

NEK7 Never-in-mitosis A-related kinase 7 69

PRMT1 Protein arginine methyltransferase 1 Yes 71e74

PRMT2 Protein arginine methyltransferase 2 75

PRMT5 Protein arginine methyltransferase 5 76,77

SIRT1 Sirtuin 1 82,83

SIRT5 Sirtuin 5 84,85

SIRT7 Sirtuin 7 Yes 87e90

TRIM31 Tripartite motif containing 31 92,93

TRIM32 Tripartite motif containing 32 94

TRIM44 Tripartite motif containing 44 95

USP5 Ubiquitin-specific protease 5 98,99

USP7 Ubiquitin-specific protease 7 100e102

USP11 Ubiquitin-specific protease 11 103,104

USP13 Ubiquitin-specific peptidase 13 105

USP14 Ubiquitin-specific peptidase 14 Yes 106e108

a All these genes have been validated as essential for HCC tumor initiation and/or progression using in vitro models and/or knockout animal models.
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