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Abstract
Intracranial hemorrhage (ICH) refers to a type of bleeding that occurs within the skull. ICH may be

caused by a wide range of pathology, including, trauma, hypertension, cerebral amyloid angiopa-

thy, and cerebral aneurysms. Different subtypes of ICH exist based on their location in the brain,

including epidural hemorrhage (EDH), subdural hemorrhage (SDH), subarachnoid hemorrhage

(SAH), intraventricular hemorrhage (IVH), and intraparenchymal hemorrhage (IPH). Prompt de-

tection and management of ICH are crucial as it is a life-threatening medical emergency with high

morbidity and mortality rates. Despite accounting for only 10-15% of all strokes, ICH is respon-

sible for over 50% of stroke-related deaths. Therefore, the presence, type, and location of an ICH

must be immediately diagnosed so that the patients can receive medical intervention. However,

accurately identifying ICH in CT slices can be challenging due to the brain’s complex anatomy

and the variability in hemorrhage appearance.

Recent advancements in deep learning models have demonstrated their effectiveness in inter-

preting medical images, often surpassing the performance of trained medical specialists. This

research presents an efficient deep learning approach that combines a 2-D convolutional neural

network (CNN) with a bidirectional long-short-term memory (Bi-LSTM) module to achieve ac-

curate ICH detection and subtype classification. Notably, this study introduces the integration of

a multi-head attention mechanism into the CNN-BiLSTM design, which improves performance

for this task. The experimental results on three publicly available benchmark datasets demon-

strate the system’s high performance and strong generalizability. The inclusion of the multi-head

attention mechanism within the proposed CNN-BiLSTM effectively reduces the weighted multi-

label binary cross-entropy with logits loss score, from 0.0501 to 0.0482 on the RSNA dataset.

Moreover, the proposed solution exhibits competitive results on the CQ500 dataset, yielding an
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accuracy of 0.959, sensitivity of 0.974, specificity of 0.958, and precision of 0.977. It achieves

AUC scores of 0.9869, 0.9797, and 0.9778 on the RSNA, CQ500, and PhysioNet datasets, respec-

tively. The proposed solution holds the potential to be deployed as an intelligent assistive tool for

radiologists, aiding them in accurately and efficiently diagnosing ICH. However, it is imperative

to recognize the potential challenges associated with deploying the proposed solution in a clinical

setting. Clinical environments often feature variations in CT scanner acquisition parameters and

patient demographics that may differ from the data used for model training. Consequently, there

is a possibility that our solution’s performance may experience some degradation when applied in

these real-world clinical scenarios.
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Chapter 1

Introduction

1.1 Background of Intracranial Hemorrhage

Intracranial hemorrhage (ICH) is a serious medical condition characterized by bleeding within

the brain. It is a medical emergency that necessitates immediate attention due to its potential to

cause severe neurological complications and even death if not treated promptly [5, 6]. ICH is

life-threatening because blood accumulation within the skull increases pressure on the brain. This

elevated pressure can compress brain tissue and interfere with its normal function which can cause

various neurological deficits. Furthermore, the bleeding associated with ICH disrupts the deliv-

ery of essential oxygen and nutrients to brain cells, leading to tissue damage or cell death. The

consequences of this deprivation can have lasting effects on a person’s cognitive, motor, and sen-

sory abilities. ICH can be caused by multiple factors, including head injuries, hypertension (high

blood pressure), blood clotting disorders, and ruptured aneurysms [6]. Certain risk factors increase

the likelihood of experiencing ICH, such as advanced age, high blood pressure, smoking, alcohol

or drug abuse, and blood clotting disorders [7]. The symptoms of ICH can vary depending on

the location and severity of the bleeding. Common signs include a severe headache, confusion,

nausea, vomiting, seizures, weakness or numbness in the limbs, difficulty speaking or understand-

ing speech, and loss of consciousness [8]. Diagnosing ICH typically involves a comprehensive

approach. It includes evaluating the patient’s medical history, conducting a thorough physical
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examination, and utilizing advanced imaging tests such as computed tomography (CT) scans or

magnetic resonance imaging (MRI) of the brain. These diagnostic techniques enable healthcare

professionals to visualize the extent and location of the bleeding to assist in the development of an

appropriate treatment plan [6]. Treatment for ICH often requires surgical intervention aimed at

removing the blood clot, repairing damaged blood vessels, or alleviating pressure on the brain [9].

It is crucial to emphasize the importance of prompt diagnosis and treatment of ICH. Rapid medi-

cal intervention can help limit the extent of bleeding, relieve pressure on the brain, and minimize

subsequent neurological impairments [10]. Early treatment significantly reduces the risk of per-

manent brain damage or death. Rehabilitation and supportive care are often essential components

of the recovery process for individuals with ICH. These measures assist patients in regaining lost

functions and adapting to any ongoing difficulties resulting from the initial bleeding [9].

1.2 Motivation

Radiology is currently facing a critical need for the development of deep learning (DL) algorithms

specifically designed to detect ICH. A DL algorithm for detecting ICH can serve as an Intelli-

gent Assistive Tool (IAT) that augments a radiologist’s abilities to diagnose ICH with improved

accuracy and efficiency. The consequences of misdiagnosing ICH and failing to provide imme-

diate medical intervention can be severe for patients. Studies have revealed that although ICH

represents only 10-15% of all strokes, it is responsible for more than 50% of stroke-related deaths

overall [2, 11]. Moreover, the mortality rate within 30 days of an ICH event ranges from 35% to

52%, with only 20% of survivors experiencing a complete recovery within six months of symp-

tom onset [12, 13]. In fact, more than one-third of survivors are left with severe disabilities three

months after their diagnosis [14]. These alarming statistics emphasize the need for an IAT that can

enhance diagnostic accuracy and ultimately improve the chances of a successful recovery.

DL algorithms have the potential to analyze extensive medical data and uncover complex pat-

terns and correlations that may not be readily apparent to trained medical professionals. Timely

and accurate diagnosis of ICH has significant implications for patient outcomes and healthcare re-
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source utilization. DL algorithms can rapidly analyze and prioritize CT scans, flagging cases with

suspected hemorrhages for immediate attention. Before the advent of deep learning, traditional im-

ages preprocessing techniques were used for medical imaging analysis. These methods involved

applying filters, edge detection, morphological operations, and region-growing approaches (refer

to Chapter 2 for more details). However, traditional images preprocessing techniques generally

are not as flexible and generalizable as DL approaches in detecting complex, irregularly shaped

hemorrhagic regions. The rapid identification of ICH empowers healthcare professionals to make

informed decisions regarding surgical evacuation and interventions aimed at preventing further

complications. Through streamlining the diagnostic process, an IAT has the potential to elevate

patient care, reduce healthcare costs, and ultimately improve patient outcomes for individuals af-

fected by ICH [15].

Additionally, the development of an IAT for diagnosing ICH can alleviate the growing burden

on radiologists, who are faced with increasingly demanding workloads. As CT scanners continue

to advance in sophistication, they generate higher-resolution CT scans, resulting in a larger number

of images per scan. Moreover, there has been a consistent annual growth in the number of patients

receiving CT scans. Consequently, radiologists are tasked with the challenge of analyzing larger

volumes of data, which can lead to fatigue and an increased likelihood of misdiagnoses. To meet

the rising demand, it has been estimated that a radiologist would need to examine each CT slice

within approximately 3 seconds while working an 8-hour shift. Such an overwhelming workload

can result in fatigue and interpretation errors, including misdiagnosis or missed diagnosis. From

this perspective, an IAT can provide invaluable assistance to radiologists by initially flagging po-

tential abnormalities in CT scans and prioritizing critical cases that require immediate attention

[14].

Once developed, DL algorithms for detecting ICH have the potential to be scaled and deployed

across different healthcare facilities. This scalability allows for the widespread implementation

of advanced diagnostic tools, including in remote regions where access to specialized medical

resources may be limited. By providing healthcare facilities with access to DL algorithms, patients

in remote regions can benefit from an increased level of diagnostic accuracy as those in more
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developed areas. This equitable access to radiology diagnostic tests empowers healthcare providers

to make informed decisions regarding the diagnosis and treatment of patients with suspected ICH,

regardless of their geographical location [16].

1.3 CT Scans

Figure 1.1: Illustration of a patient undergoing a head CT scan [1].

Radiologists rely on CT scans as a primary diagnostic tool for detecting ICH. The procedure

begins with the patient lying on a doughnut-shaped machine known as a CT scanner, as depicted

in Fig. 1.1. This advanced technology utilizes X-ray beams projected through the patient’s head at

various angles, with detectors measuring the amount of radiation that passes through the tissues.

The collected data is then processed by a computer, which reconstructs the information into de-

tailed cross-sectional images of the brain [17]. Radiologists use specialized software to enhance

the contrast of the CT scans and then review the resulting CT images. They meticulously examine

the entire series of images, also referred to as CT scan slices, in order to identify any abnormal

findings. Specifically, radiologists focus on detecting areas of abnormal density, as blood appears

hyperdense in comparison to the surrounding brain tissue on CT scans. By carefully evaluating the

density and characteristics of the images, radiologists can distinguish between different subtypes

of hemorrhages, aiding in accurate diagnosis and appropriate treatment planning.
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Additionally, radiologists assess the CT images for associated findings beyond the hemorrhage

itself. These may include midline shift, which refers to the displacement of brain structures due

to the accumulating blood. They also look for signs of mass effect, which involves the compres-

sion of surrounding structures caused by the hemorrhage. Furthermore, radiologists evaluate the

images for signs of increased intracranial pressure, skull fractures, or other secondary complica-

tions related to the bleeding. This comprehensive evaluation allows them to provide a thorough

assessment of the patient’s condition [18, 19].

Hounsfield Units (HU) are a measurement scale used in CT scans to quantify the radiodensity of

tissues and structures within the body. When X-rays pass through different tissues and structures,

they are attenuated based on their interaction with the materials encountered. The attenuation is

determined by the atomic composition and density of the tissue or structure. HUs represent this

attenuation and are derived from the linear attenuation coefficient, which measures the reduction in

X-ray intensity as it passes through a particular material. Water, having a density of 1 g/cm3, was

assigned a HU value of 0. HUs are calculated relative to this reference point, with positive values

assigned to denser materials and negative values assigned to less dense materials. Air, for example,

has a HU value of around -1000 due to its low density, while dense bones can have values greater

than +1000. HU values are also important in identifying pathologies and abnormalities [17, 20].

For instance, ICH can typically be identified by a narrow range of HU values between 60 to 100

[21].

CT scans play a crucial role in assisting medical professionals with diagnosing ICH due to

their high sensitivity, accessibility, rapid results, detailed imaging capabilities, and relative safety.

Firstly, they are highly sensitive to the presence of blood and can accurately detect even small

hemorrhages. Blood appears as hyperdense regions on CT scans, allowing radiologists to iden-

tify ICH. Furthermore, radiologists can utilize the visual information obtained from CT scans to

determine the subtype of the hemorrhage. Another advantage of CT scanning is its widespread

availability in hospitals, along with the relatively quick procedure it entails. This accessibility

and efficiency ensure that CT scans provide rapid results, facilitating prompt decision-making for

further intervention when necessary. In terms of imaging capabilities, CT scans provide detailed
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cross-sectional images of the brain and surrounding structures, including the different lobes, ven-

tricles, and structures within the skull. This comprehensive coverage is crucial for accurately

detecting and evaluating the precise location and extent of the hemorrhage. CT scans are generally

considered safe, as they do not involve the use of ionizing radiation during the imaging process.

This characteristic makes them suitable for a wide range of demographics, including children and

pregnant women, when necessary [22].

1.4 ICH Subtypes

IPH IVH SAH SDH EPH

Figure 1.2: ICH subtypes: intraparenchymal (IPH), intraventricular (IVH), subarachnoid (SAH),

subdural (SDH), and epidural hemorrhage (EDH). The locations of these subtypes are as follows.

IPH - inside the brain, IVH - inside the ventricle, SAH - between the arachnoid and the pia mater,

SDH - between the dura and the arachnoid, and EDH - between the dura and the skull [2].

Depending on the specific location where the bleeding occurs, ICH can be classified into five

distinct subtypes: intraparenchymal hemorrhage (IPH), intraventricular hemorrhage (IVH), sub-

arachnoid hemorrhage (SAH), subdural hematoma (SDH), and epidural hematoma (EDH). Each

subtype presents unique characteristics in terms of location. In this section, a broad overview of

the subtypes of ICH is provided. Fig. 1.2 provides a depiction of each ICH subtype.

1.4.1 IPH

IPH is a bleed that occurs within the brain parenchyma, the functional tissue in the brain con-

sisting of neurons and glial cells. There are various factors that can contribute to this type of
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hemorrhage, including but not limited to hypertension, arteriovenous malformation, amyloid an-

giopathy, aneurysm rupture, tumor, coagulopathy, infection, vasculitis, and trauma. IPH refers to

bleeding that occurs within the actual brain tissue [23].

1.4.2 IVH

IVH is a condition characterized by bleeding that occurs inside or around the ventricles of the

brain, which are fluid-filled spaces containing cerebrospinal fluid. IVH can have various causes,

but it is often secondary to other underlying conditions such as trauma, aneurysms, vascular mal-

formations, or tumors. In many cases, IVH occurs as a result of the expansion of an existing IPH

or SAH, where bleeding extends into the ventricles.

IVH is more commonly observed in premature babies or those with very low birth weight. In

infants, the bleeding typically takes place in a region called the germinal matrix, while in full-

term babies, it originates from the choroid plexus. The occurrence of IVH in premature infants

is generally not attributed to physical injury but rather to changes in blood flow and the delicate

structures of the developing brain. The immature circulatory system of the brain in premature

babies is more susceptible to oxygen deprivation, which contributes to the development of IVH.

Reduced blood flow can lead to cell death in the brain and rupture of blood vessel walls, resulting

in bleeding [24].

1.4.3 SAH

SAH is the most frequently encountered type of ICH resulting from trauma. SAH refers to bleed-

ing into the space between the brain’s surface and the thin membrane covering it, called the sub-

arachnoid space. Subarachnoid hemorrhages are frequently caused by the rupture of an aneurysm

(a weakened and bulging blood vessel) or an arteriovenous malformation (an abnormal tangle of

blood vessels). SAH can be further classified as aneurysmal and non-aneurysmal SAH. Aneurys-

mal SAH happens when a cerebral aneurysm ruptures, causing bleeding into the subarachnoid

space. On the other hand, non-aneurysmal subarachnoid hemorrhage refers to bleeding into the
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subarachnoid space without any identifiable aneurysms. Non-aneurysmal subarachnoid hemor-

rhage is most frequently associated with trauma, specifically blunt head injuries, with or without

penetrating trauma, or sudden acceleration changes to the head.

The primary cause of SAH is typically trauma, which results in injury to the blood vessels

on the surface of the brain, leading to bleeding into the subarachnoid space. On the other hand,

non-traumatic SAH most commonly occurs due to the rupture of a cerebral aneurysm. When an

aneurysm ruptures, blood is able to flow into the subarachnoid space. Additionally, SAH can be

caused by other factors such as arteriovenous malformations (AVMs), the use of blood thinners,

trauma, or idiopathic reasons [24].

1.4.4 SDH

SDH involves bleeding between the pia and the arachnoid membrane, which is the middle layer

covering the brain. SDH happen beneath the protective layer called the dura mater, so their size is

not restricted by the skull sutures. This means that SDH can extend across the lines where the bones

of the skull connect, which can help differentiate them from EDH. In terms of their dimensions,

SDH are contained between the falx cerebri (a membrane in the middle of the brain) from the center

towards the sides and the tentorium cerebri (a membrane that separates the cerebrum from the

cerebellum) from top to bottom. These SDH often spread along the same side as these structures

without any opposing force. It often occurs due to trauma that causes tearing of the veins bridging

the brain surface and the dura mater. When SDH is small in size, they can be difficult to identify

on a CT scan due to blending with nearby bones [25].

The main cause of SDH is typically damage to the veins that are located deep beneath the

dura mater. Unlike EDH, SDH are less likely to be accompanied by skull fractures [25–27]. Due

to the slower rate of growth caused by venous injury and the larger lateral space available in the

subdural area, SDH is often not immediately symptomatic compared to EDH. However, when

SDHs become large, they can exert significant pressure on the nearby brain, potentially leading to

midline or transtentorial herniation. In such cases, emergency evacuation of the hematoma may be

necessary [25].
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1.4.5 EDH

This type of hemorrhage occurs when blood accumulates between the skull and the outermost

protective layer of the brain called the dura mater [25]. EDH can originate either from an artery or

a vein. The classical arterial EDH arises as a result of blunt trauma to the head, often affecting the

temporal region. It can also manifest following a penetrating injury to the head. In these cases, a

fracture of the skull is typically observed, which leads to damage in the middle meningeal artery

and subsequent arterial bleeding into the potential epidural space. In the case of a venous EDH,

it occurs when there is a fracture in the skull, and the bleeding from this fracture fills the space

between the skull and the dura mater. Venous EDH is frequently observed in pediatric patients

[24].

In severe cases, the blood spreads along the inner part of the skull until it reaches the closest line

where the skull bones are connected, called a suture. When the bleeding reaches this point, it starts

to expand sideways along the suture line. At the same time, the bleeding also becomes thicker from

the surface towards the deeper part, creating a shape that looks like a curved or rounded crescent.

This is why we call these types of bleeding inside the head ”crescentic” or ”biconvex” EDH [24].

EDH can be identified clinically by a period of time called a ”lucid interval,” during which

the patient may not show severe symptoms or be critically ill. This interval occurs between the

traumatic injury and the buildup of bleeding in the epidural space, before it starts to put pressure

on the nearby brain. However, as the EDH grows larger, it can exert significant pressure on the

surrounding brain, leading to midline, subfalcine, or trans-tentorial herniation. This can cause a

rapid decline in the patient’s level of consciousness or even result in death [24, 25].

1.5 Challenges

The difficulty for radiologists to detect ICH in CT scans can be attributed to several factors.

• Varying appearance: The appearance of ICH can vary significantly in terms of morphology,

including shape, size, and location. In some cases, ICH may coexist with other intracranial
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pathologies, such as tumors, abscesses, or ischemic strokes. This variability in ICH appear-

ance can complicate the interpretation of CT scans and make it more challenging to isolate

and identify the hemorrhage accurately [28].

• Low contrast difference: Calcifications, artifacts, and normal anatomical structures can

create similar shades of gray on CT scans, making it harder to differentiate ICHs from these

confounding factors. Radiologists must carefully examine each image and consider multiple

features, such as density, shape, location, and surrounding edema, to distinguish ICH from

other structures accurately [18].

• Image artifacts and noise: CT images can be affected by various artifacts and noise, such as

motion artifacts, beam hardening artifacts, and metal artifacts. These can obscure or mimic

the appearance of ICH, leading to diagnostic challenges [25].

• Varying clinical settings: Different hospitals may employ various CT scanner types and

imaging protocols, leading to variations in image quality and acquisition techniques.

• Time constraints: In emergency situations, prompt and accurate identification of ICH is

crucial for initiating appropriate interventions. However, the limited time available for im-

age interpretation and the pressure to make rapid decisions can increase the likelihood of

overlooking or misinterpreting subtle signs of hemorrhage [14].

1.6 Objectives

This study seeks to develop a sophisticated DL solution for the identification and classification of

ICH that emulates the interpretation process of expert radiologists. The primary objective is to

create a highly accurate and efficient model capable of detecting ICH and classifying its subtypes.

Ultimately, this DL solution aims to serve as an IAT for radiologists. The integration of this model

as an IAT can empower radiologists with improved diagnostics capabilities, thereby enabling faster

and more accurate decisions in patient management.
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1.7 Deep Learning for Medical Imaging

Medical imaging plays a crucial role in healthcare by providing valuable information for the di-

agnosis, treatment, and monitoring of various medical conditions. It encompasses a wide range

of imaging modalities such as X-ray, computed tomography, magnetic resonance imaging, ultra-

sound, and positron emission tomography (PET). These imaging techniques allow healthcare pro-

fessionals to visualize internal structures, organs, tissues, and physiological processes. Through

medical imaging, medical experts can identify abnormalities, make accurate diagnoses and plan

appropriate treatments.

DL has emerged as a powerful approach for automatically extracting meaningful features from

complex data, including medical images. Traditionally, medical imaging analysis required metic-

ulous manual effort and expertise from medical specialists to examine images and identify intri-

cate patterns to make accurate diagnoses. However, medical specialists are susceptible to fatigue,

distractions, and cognitive biases that can contribute to misdiagnoses or missed diagnoses. How-

ever, DL algorithms have revolutionized this approach. By training on extensive labeled medical

imaging datasets, these algorithms can discern complex patterns and relationships inherent in the

images. Consequently, they are capable of automatically detecting and classifying abnormalities

with remarkable speed and accuracy. DL algorithms offer a consistent and objective analysis of

medical images that minimize discrepancies in diagnoses.

DL algorithms have shown exceptional performance in several key areas of medical imag-

ing, including classification, segmentation, and radiomics. Classification is an important task in

medical imaging where DL algorithms categorize images into specific classes. For example, DL

algorithms can classify an image as normal or abnormal. Segmentation involves the delineation

of structures or regions of interest within medical images. DL algorithms excel at segmenting or-

gans, tissues, lesions, and other anatomical structures from complex imaging data. For instance,

DL-based segmentation methods can accurately outline tumors in radiological images, aiding in

treatment planning and monitoring. By precisely delineating regions of interest, DL algorithms fa-

cilitate quantitative analysis and assist clinicians in making informed decisions. Radiomics refers

11



to the extraction and analysis of a large number of quantitative features from medical images. DL

algorithms can automatically extract intricate features from images, such as texture, shape, and

intensity, which may be challenging for human observers. These features can then be used to build

predictive models or identify imaging biomarkers associated with specific diseases or treatment

outcomes. DL-powered radiomics has the potential to enhance precision medicine by providing

personalized insights into disease progression [29, 30].

Several key factors have contributed to the rapid rise of DL in the field of medical imaging.

Large datasets are generally required for the successful training of DL models. In recent years,

there has been a significant increase in the availability of annotated medical image datasets due

to advancements in digital storage, improved data-sharing practices, and collaborative efforts by

researchers and medical institutions. These large datasets enable DL models to learn complex

patterns and generalize well. In addition, the availability of high-performance Graphics Processing

Units (GPUs) and parallel computing architectures has made it feasible to train DL models on

large-scale medical image datasets. The improved computing power reduces the training time and

allows researchers to develop and optimize models more efficiently. Advances in computational

power have enabled researchers to explore increasingly sophisticated DL models to extract intricate

patterns from medical images.

1.8 Technical approach

To address the objectives mentioned above, a DL solution is designed to automatically identify

ICH. In Chapter 4, a DL model is employed that utilizes a windowing technique as an image

preprocessing step. This technique enhances the contrast of each CT scan slice, allowing for

better detection of subtle abnormalities associated with ICH. By applying an extensive set of data

augmentations to the CT scan slices, we aim to increase the diversity and variability of the training

data. This augmentation process improves the generalization and robustness of the trained models.

To learn distinct feature representations of ICH, a 2-D Convolutional Neural Network (CNN)

model is trained. Subsequently, a bidirectional Long Short-Term Memory (BiLSTM) network is
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utilized to capture sequential patterns among the CT scan slices. The BiLSTM network takes the

feature embeddings generated by the CNN and leverages them to extract temporal dependencies

and long-range interactions. This integration of a CNN and BiLSTM allows the model to effec-

tively analyze the sequential nature of CT scan data, leading to improved predictive accuracy.

For evaluation purposes, the trained model generates multi-label predictions for each sample

in the RSNA-ICH test set, CQ500, and PhysioNet-ICH datasets. We measure the performance

of the model using key metrics such as sensitivity, specificity, precision, and the Area Under the

Curve (AUC) score. These metrics provide a comprehensive assessment of the model’s ability to

correctly identify instances of ICH.

In Chapter 5, a multi-head attention mechanism is introduced into the model to learn global

dependencies and capture long-range interactions within the sequential feature embeddings. This

attention mechanism enables the model to focus on relevant features and emphasize the most in-

formative regions within the CT scan slices. By attending to these important regions, the proposed

model can better discern patterns associated with ICH, leading to enhanced predictive accuracy

and performance.

1.9 Thesis contribution

This study’s primary contributions are as follows:

• It proposes an efficient CNN-BiLSTM model harnessing a pre-trained EfficientNetV2-Small

for primitive feature detection and a shallow sequence learning model for capturing the CT

scan’s slice-dependent cues (Chapter 4).

• It applies pragmatic regularization measures to address the overfitting problem in which a

model begins to memorize the training dataset instead of learning underlying patterns. An

extensive set of data augmentations is applied to each CT scan slice in the training dataset.

This effectively increases the diversity and variability of the training data, thereby improving

generalization ability (Section 4.1.1 - Data Preprocessing).
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• It incorporates countermeasures to address the class imbalance problem in the benchmark

datasets. To accomplish this, the vanilla binary cross-entropy loss function described in

Section 4.1.4 is modified to place more emphasis on identifying ICH subtypes since they

are underrepresented in the datasets. Precision and the area under a Receiver Operating

Characteristic (ROC) curve are employed for evaluation metrics to ensure that the proposed

model is effective at classifying samples from minority classes (Section 4.2.2 - Evaluation

Metrics).

• It introduces the integration of a multi-head attention mechanism into the CNN-BiLSTM de-

sign, which improves the predictive accuracy of the model while incurring a trivial increase

in inference time (Section 5.2 - Proposed Solution).
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Chapter 2

Related Works

The related works section offers a thorough examination of existing research and literature that

are pertinent to the topic. It delves into common image processing techniques that were used to

enhance the quality of CT scan slices and eliminate unwanted noise. Furthermore, it offers an

analysis of various studies used for the classification and segmentation of ICH and its subtypes.

This section aims to present a balanced assessment of the strengths and limitations inherent in

existing research approaches. Additionally, it puts forth potential improvements to address the

identified limitations. The insights gained from this review have the potential to support future

research endeavors and foster the development of precise and efficient diagnostic tools for detecting

ICH. Ultimately, these advancements contribute to the enhancement of patient care and outcomes.
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2.1 Preprocessing

Preprocessing is an essential step in improving the quality of CT scan slices by eliminating po-

tentially unnecessary elements, including the skull, CT scan rest, edema, and background. This

information is typically irrelevant and may hinder image analysis algorithms from being able to

focus on the pertinent features required for identifying ICH [31].

Thresholding is a common image preprocessing technique that has been used for detecting

ICH that converts a grayscale CT scan slice into a binary format. Image thresholding separates

an image into two classes by determining a threshold value, where pixels above the threshold

are considered the intracranial region. By highlighting the intracranial region, subsequent image

analysis algorithms may be able to identify intracranial bleeding more accurately and efficiently

[32–39].

CT scans often contain noise due to factors like equipment limitations, patient movement, and

small metallic objects. Noise can interfere with the accuracy of detecting hemorrhagic regions.

To reduce noise, Chan used a median filter to replace each pixel’s value with the median value

of its neighboring pixels. This technique helps to preserve edges and details while smoothing out

random noise [37].

Although CT scans are typically acquired in anisotropic resolution, they can be transformed

into isotropic resolution to improve spatial coherency. A CT scan with anisotropic resolution has

a non-uniform spatial resolution with varying voxel dimensions between CT slices. In contrast,

isotropic resolution refers to a uniform spatial resolution. Anisotropic resolution can result in

varying voxel dimensions between CT slices, which can hinder the ability of a model to learn

spatial relationships. Converting to isotropic resolution ensures consistent voxel size throughout

the entire CT scan and enables models to better understand spatial relationships [34, 40].

Morphological operations, namely erosion and dilation, have been used for refining and en-

hancing the ICH regions. Erosion is beneficial in ICH detection for removing small artifacts and

fine structures while leaving behind the larger and more prominent ICH regions. In contrast, di-

latation is used to bridge the small breaks in hemorrhagic regions to ensure the completeness and

16



continuity of the ICH. These small breaks may lead to a fragmented detection and inaccurate rep-

resentation of the ICH size and shape if left unaddressed [32, 37, 41–44].

Inspired by the conventional radiology workflow, windowing has been used as a preprocessing

technique to enhance the contrast levels of the CT scan. The process involves manipulating the

grayscale values of pixels within a specified range of interest to enhance the visibility of specific

anatomical structures or pathologies. This is achieved by assigning lower and upper thresholds,

known as window levels and window widths, which determine the range of pixel values to be

mapped to new display values. This approach highlights subtle discrepancies in pixel intensity

between ICH and surrounding tissues, which makes it easier to identify ICH [19, 45–50].

Data augmentations have been used by various studies to artificially increase the size and diver-

sity of the training dataset for detecting ICH. This is accomplished by applying geometric image

transformations to introduce variations into the training data without the need for additional data

collection. This process ensures that the model learns more representative ICH features from the

training dataset. For example, rotation can be used to help the model learn to recognize ICH from

different orientations. As a result, the models become more adept at handling variations in CT scan

slices [34, 35, 38, 39, 51].

2.2 Classification

This section examines classification models used to accurately classify ICH and their subtypes. By

training on labeled examples, classification models learn patterns from CT scan slices to effectively

assign the correct label to each instance.

2.2.1 Traditional Methods

Alawad et al. extracted a comprehensive set of 17 features from the region of interest (ROI), such

as the size of the ROI, centroid of the ROI, perimeter of the ROI, and the distance between the

ROI and the skull. To enhance performance, they employed a genetic algorithm (GA)-based fea-

ture selection technique to identify the most relevant features. The selected features were then
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utilized to train a stacking-based ML framework, comprising Support Vector Machine (SVM),

Random Decision Forest (RDF), Extra Tree (ET), K-Nearest Neighbors (KNN), Bagging (BAG),

and Logistic Regression(LR). Among these classifiers, the SVM model using a radial basis func-

tion (RBF) demonstrated the best performance. To evaluate the effectiveness of the model, 10-fold

cross-validation was employed, yielding results with an accuracy of 0.995, precision of 0.99, re-

call of 0.989, and F1 score of 0.989. However, it is worth noting that the study did not include

an independent test to assess the model’s performance on unseen data. It is crucial to validate the

model on an independent test to avoid potential bias in the training data and provide a more reliable

assessment of the model’s effectiveness and generalizability [32].

Raghavendra et al. generated texture features using Gray Level Occurrence Matrix (GLCM),

Gray Level Run Length Matrix (GLRLM), and Hu moments. In addition, pixel-intensity features

are extracted using first-order statistics, such as kurtosis, skewness, and variance. Nature-inspired

meta-heuristics algorithms, including the Bat Algorithm (BA), Grey Wolf Optimization (GWO),

and Whale Optimization Algorithm (WOA), are used to select the best set of features. To address

the class imbalance, Adaptive Synthetic Sampling (ADASYN) is used to create synthetic ICH

samples since ICH is underrepresented in the training dataset. The selected features were then

used to train a KNN classifier for ICH subtype classification. Overall, the findings demonstrate the

effectiveness of meta-heuristics algorithms for feature selection in the application of ICH [52].

After obtaining the ROI using Otsu’s thresholding method, Al-Ayoob et al. extracted discrim-

inating features about the ROI, including, its size, centroid, perimeter, distance between the ROI

and the skull, and the eccentricity of an ellipse having the same second-moments as the ROI. These

features were used for training a multinomial LR classifier to distinguish between EDH, SDH, and

IPH. However, their study only includes a limited dataset of 76 CT scans. Due to the relatively

low sample size, their model may not be generalizable to account for variations in other clinical

settings. In comparison, the CNN-BiLSTM used in this thesis was trained on a large scale dataset

and was then tested on two external datasets to demonstrate its generalizability [33].

Zaki et al. employed multi-level FCM to extract the intracranial region from the background

and skull. Then, a two-level Otsu multithresholding method is employed to segment the intracra-
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nial structure into cerebrospinal fluid, brain matter, and other homogeneous areas. By using the

symmetrical properties within the intracranial structures, a quantitative comparison is performed

between the segmented left-half and right-half regions with respect to the intracranial midline. This

analysis is valuable for identifying normal and abnormal structures within the intracranial region,

as any detected asymmetry suggests a high likelihood of abnormalities. Additional information

derived from the pixel intensities, such as the standard deviation and maximum value within the

segmented regions, is used to differentiate between ICH and normal cases [53].

2.2.2 Deep Learning Methods

Recently, CNNs have emerged as the predominant approach for detecting ICH in CT scans. CNNs

can learn to recognize complex patterns in visual data by training on a large number of annotated

samples and are excellent in handling variability in contrast, rotation, and lighting conditions [54,

55].

Several studies have employed pre-trained CNN architectures for detecting ICH and have ap-

plied transfer learning. Transfer learning is a powerful technique that allows the knowledge ac-

quired during training for one task (source task) to be utilized for a different, but related task

(target task). In the context of ICH detection, transfer learning enables the model to benefit from

prior learning on general image recognition tasks, leading to quicker convergence and potentially

improved generalization. The model can understand essential image features, edges, textures, and

patterns, which are transferable and useful for ICH detection.

Chilkamurthy et al. proposed using the ResNet18 architecture with five parallel fully connected

layers as the output layers. The output from these layers for each slice was fed to a Random Forest

(RF) model for classification. The model underwent training using an extensive dataset consisting

of 290,000 CT scan slices. Additionally, a subset of 21,000 CT scan slices was used specifically for

the validation process. The training and validation CT scans were labeled using a natural language

processing (NLP) algorithm, with the clinical radiology reports serving as the trusted reference

standard. While the model achieved an average sensitivity of 92%, it only obtained a specificity

of 70%. The model performance can potentially be improved by incorporating data augmentations
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to help the CNN with learning different representations of ICH. In comparison, this thesis uses an

extensive set of eleven different augmentations to help prevent the model from overfitting to noise

in the training set [19].

Kumaravel et al. has exploited AlexNet to extract high-level features from CT scan slices. To

address the class imbalance problem, the number of CT scan slices without ICH was undersampled

to match the number of CT scan slices with ICH. Principal Component Analysis (PCA) is applied

to reduce the dimensionality of the feature space. Finally, the reduced features are fed into an

Support Vector Machine (SVM) classifier, which learns to identify ICH based on the extracted

features. While their model achieves a binary classification accuracy of 0.9986 in detecting ICH,

their model was not designed for multiple ICH subtype classifications, which may limit its clinical

utility. In clinical practice, ICH subtype diagnosis is important for determining appropriate medical

intervention strategies [36].

Ngo et al et al. implemented a CNN using the ResNet-50 architecture with a two-stage process.

During training, each slice is sampled with three axial slices before and after it to generate output

descriptors. In the second stage, the output descriptors are used as input into a 3-layer CNN,

containing only two convolutional layers and one FC layer, for generating confidence scores for

the center slice. However, sampling only the three axial slices before and after each slice during

training may limit the model’s ability to understand long-term sequential dependencies among CT

scan slices. ICH can exhibit complex patterns and variations that may extend beyond the immediate

neighboring slices. In addition, this process is more computationally expensive than a conventional

2-D CNN model as it involves extracting features from seven adjacent CT scan slices to generate

a confidence score for the center slice.

Ensemble models are beneficial because they combine the predictions of multiple models, re-

sulting in improved accuracy and robustness. For example, He et al. developed an ensemble

of 2-D CNN models built using the SE-ResNeXt50 and EfficientNet-B3 architectures for detect-

ing ICH. This study includes random cropping and label smoothing to improve model robustness

[56]. Lee et al. presented an ensemble model that combines VGG16, ResNet-50, Inception-v3,

and Inception-ResNet-v2. Their approach involves using attention maps to enhance the reliability
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of the localization process and a prediction basis that provides a comprehensive explanation for

the model’s predictions [46]. By leveraging the strengths of different models and reducing biases,

ensembles provide more reliable predictions and handle complex problems more effectively. On

the other hand, ensemble models have increased complexity and require additional computational

resources.

CT scans are inherently volumetric and can be represented by a stack of a series of 2-D axial

slices. Studies have explored using 3-D CNNs to learn features across the entire volume and

learn complex spatiotemporal patterns among adjacent slices. Ker et al. apply pixel-intensity

thresholding to improve the performance of their 3-D CNN model for classifying SAH, IPH, SDH,

and brain polytrauma hemorrhage (BPH). A dataset containing 399 CT scans with approximately

12,000 CT slices from the National Neuroscience Institute at Tan Tock Seng Hospital was used

for training and evaluating the model. A Gaussian distribution was used to initialize the 3-D

convolutional kernels, while parameter tuning was performed using SGD and a cross-entropy loss

function. Without any thresholding, The F1 scores for different pairs of medical diagnoses in a

2-class classification scenario varied between 0.706 and 0.902. Upon applying thresholding, the

F1 scores improved and ranged from 0.919 to 0.952 [35].

Likewise, Titano developed a 3-D CNN based on the ResNet-50 architecture for the purpose of

triaging patients exhibiting acute neurological events. Remarkably, in a simulated clinical setting,

the model performs inference about 150 times faster for a CT scan compared to a radiologist (1.2

seconds versus 177 seconds). A potential performance improvement would be to apply windowing

to enhance the contrast of the CT scans before being fed into the model. In this thesis, a combi-

nation of brain, subdural, and soft tissue windows were used to help the model identify potential

abnormalities [40].

Researchers have also investigated the fusion of 2-D CNN models with a sequential learning

model. This approach is less computationally burdensome than a 3-D CNN while still enabling the

model to learn complex spatiotemporal patterns among adjacent slices.

For instance, Alis et al. developed a joint CNN-RNN model with an interspersed attention layer

to capture the most relevant data. A large-scale dataset of 55,179 head CT scans was retrospec-
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tively collected from five different centers. After development, the DL model was integrated into

a center’s Picture Archiving and Communication System (PACS) environment for performance

assessment in a clinical setting. During the prospective implementation, the model yielded an

accuracy of 96.02% on 452 head CT scans with an average accuracy of 45 ± 8 s. The study pro-

posed their novel NormGrad technique to generate saliency maps. NormGrad aims to highlight

the decision-making process of a model by calculating the outer product between vectorized com-

ponents of activation maps and gradients using the Frobenius Norm. Using the Mann-Whitney-U

test, Norm-Grad was shown to produce higher-quality saliency maps than the Gradient-weighted

Class Activation Mapping (Grad-CAM) method [47].

Yeo et al. also used a CNN-RNN approach for ICH detection and subtype classification. The

model was trained on the Radiological Society of North America (RSNA) Brain CT Hemorrhage

dataset which contains 752,803 CT scan slices. The CQ500 dataset was used as an independent

dataset for testing and verifying the generalizability and robustness of the trained model in han-

dling variations of different clinical settings. Two different image pre-processing pipelines were

considered. In the first approach, each CT scan slice was converted into three contrast-enhanced

channels using brain subdural, and soft tissue windows. The second approach involved a slice con-

catenation technique where each CT slice was concatenated with the CT slice immediately before

and after it to also create a three-channel input. Each image preprocessing technique was used

for training a separate CNN-RNN model and the results were ensembled. To improve the inter-

pretability of their model, Grad-Cam visualizations were produced that show which regions in a

CT scan slice were most relevant in generating the final predictions. A fixed learning rate was used

for training the model. To further improve performance, a learning rate scheduler can be used to

help the model converge faster and help prevent the model from becoming stuck on a suboptimal

solution [50].

However, it is worth noting that RNNs face difficulty with capturing long-term dependencies

due to the vanishing gradient problem. During training, the gradients can diminish or explode

as they propagate through many time steps, making it challenging for the network to effectively
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capture and remember information from distant past inputs. This limitation can hinder the RNN’s

ability to model sequences with long-term dependencies accurately.

Kadam et al. developed a framework consisting of three different models: Xception, Xception-

LSTM, and Xception-GRU. Their comparative analysis reports that the Xception-GRU achieves

the lowest log loss score while being marginally more computationally efficient than the Xception-

LSTM. The model achieved a specificity of 0.9915 but only obtained a sensitivity of 0.7317. To

reduce this discrepancy in sensitivity and specificity performance, the underrepresented ICH sub-

type classes can be oversampled so that the model is better able to learn discriminative features of

ICH [12].

In an early DL-based study, Grewal et al. created a baseline network that employed a modified

40-layer DenseNet architecture with three dense blocks. By adding three auxiliary tasks to the

network to focus on hemorrhagic regions, Grewal et al. was able to improve the classification

performance. The auxiliary task branches were implemented after the final concatenation layer

in each dense block, where each branch was made up of a single module comprising a 1 × 1

convolutional layer followed by a deconvolution layer. This design enabled the feature maps to be

upsampled to their original image size. The upsampled output is used as input into a global pooling

layer, passed through a BiLSTM, and then sent to an FC layer for generating final predictions. The

proposed model achieved higher recall than two of the three radiologists [34].

Nguyen et al. have also developed a CNN-BiLSTM for ICH classification. Although our

approach has some similarities, it differs from their method in the following aspects. This thesis

incorporates dropout ratios in the sequential learning subnetwork to mitigate overfitting issues

during training. In addition, the architecture used in this thesis is more efficient as it only uses 21.5

million trainable parameters in comparison to the SE-ResNeXt-50 implemented by Nguyen et al.,

which requires 27.6 million. Their work uses brain, subdural, and bone windows, whereas this

work uses brain, subdural, and soft tissue windows. Our approach explores incorporating a multi-

head attention mechanism into the CNN-BiLSTM design to improve its performance.

On the other hand, Barhoumi and Ghulam propose a hybrid architecture called Scopeformer,

which combines multiple CNNs and a multi-encoder vision transformer (ViT) with self-attention
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mechanisms. Each CT scan slice is concurrently analyzed by multiple CNN models to extract

representative feature maps. These feature maps are then subjected to a patch extraction module,

which converts them into vectors. The resultant vectors serve as the input for the multi-encoder

ViT to learn rich global feature correlations. An ablation study is conducted to assess how varying

the number of CNN modules, convolutional layers, and attention heads impacts the accuracy and

computational complexity. However, their best model achieves a weighted multi-label logarithmic

loss score of 0.0705, which is comparably lower performance than the state-of-the-art studies [49].

2.3 Segmentation

This section examines segmentation models used to identify and delineate the boundaries of ICH

in CT scans by learning patterns from labelled examples.

2.3.1 Traditional Methods

Traditional approaches use handcrafted features, such as intensity-based or texture-based features,

to identify ICH in CT scans.

For instance, Chan proposed using thresholding and morphological operations to segment in-

tracranial contents, followed by denoising and adjustment for cupping artifacts. The intracranial

region is then automatically aligned into a conventional position based on the midsagittal plane.

High attenuation components were then identified as candidate ICH regions using a top-hat trans-

formation and determining the intensity difference between the two contralateral anatomical re-

gions. To provide anatomical context, the potential AIH regions are aligned with a standardized

coordinate system. Finally, a knowledge-based classification system is applied that uses quantified

imaging features and anatomical information [37]. However, it should be noted that the effec-

tiveness of the symmetry analysis heavily relies on the assumption that axial slices are perfectly

parallel to the axial plane [57].

Fuzzy C-Means clustering (FCM) has commonly been applied to create an initial contour to

extract the ROI. Unlike traditional clustering methods, it allows for soft assignments, meaning each

24



data point can belong to multiple clusters with varying degrees of membership. The algorithm

calculates the membership values for each data point based on the similarity to cluster centroids

and updates the centroids iteratively until convergence.

For instance, Bhadauria et al. designed an integrated approach combining FCM and region-

based active contour methods, where FCM clustering is used to initialize the contour and estimate

propagation controlling parameters adaptively. In this approach, FCM is used to initialize a con-

tour surrounding the hemorrhagic region. It then employed a region-based active contour method

to propagate the initial contour toward the boundaries of the hemorrhage. Additionally, FCM clus-

tering is employed to dynamically estimate the contour propagation parameters based on the given

Ct scan slice. Unlike traditional methods, this approach utilizes local intensity information rather

than global information to guide the contour motion [41].

In contrast, Gautam et al. proposed a novel variant of FCM termed modified robust fuzzy c-

means clustering (MRFCM). A hyper tangent function is used as the kernel for fuzzy clustering

while distance regularized level set evolution (DRLSE) is the edge-based active contour method for

the segmentation of brain hemorrhagic lesions from CT scans. In addition, Lagrange’s multiplier

is used to calculate the final objective function of the method. The experimental results indicated

better performance compared to standard FCM, spatial FCM, robust kernel-based fuzzy clustering

(RFCM), and DRLSE algorithms [42].

Kumar et al. proposed using FCM to divide each CT scan slice into three different clusters that

have similar types of membership values. An automatic selection process is employed to choose a

cluster from the three clusters by comparing the skull histogram of the CT scan slice with the FCM

clustered images. The method incorporates entropy-based thresholding to further segment the ROI

and removes spurious blobs using morphological operations. Then, DRLSE is used by placing an

initial contour within the hemorrhagic region for further refinement [58].

Li et al. developed a supervised learning approach for segmenting SAH by using the probability

of distance features from five anatomical landmarks: brain boundary, midsagittal plane, anterior

and posterior intersection points of brain boundary with the midsaggital plane, and superior point of

the brain. After extracting landmarks from CT scan slices, the distances to these landmarks for each
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pixel in the CT scan slice were calculated. The prior probabilities of distances for pixels considered

SAH and non-SAH were computed. Based on the distance features, a Bayesian framework was

used to delineate SAH. In contrast to elastic registration that relies on grayscale information, their

approach demonstrated reduced susceptibility to grayscale discrepancies observed between normal

individuals and patients [43].

Farzaneh et al. developed a sophisticated RF model for the binary segmentation of SDH using

an extensive set of handcrafted features and DL-derived features. Since the most severe case of

SDH were not deeper than 3.2 cm from the skull, the ROI was defined as the intracranial region

within 3.2 cm of the inner skull. A level-set method was employed to further segment the ROI

enclosed by the skull in case there were any openings in the skull boundary. Once the ROI was

established, superpixels were generated using the simple linear iterative clustering (SLIC) algo-

rithm to reduce redundant information. An extensive set of feature extraction was performed to

derive patterns about the superpixels. This process included extracting location-based features,

histogram-based features, and filtering-based pixels by convolving Gabor and Laplacian of Gaus-

sian filters with the images. A U-Net architecture was employed to obtain data-driven deep fea-

tures. The obtained features for each superpixel were classified as hematoma or non-hematoma

using an RF forest model. Post-processing involved using a 3-D Gaussian smoothing kernel to

smooth jagged contours and increase spatial coherency [57].

Yao et al. also employed the SLIC algorithm to produce superpixels and then extracted a com-

prehensive set of features based on pixel-intensity statistics, Gabor filters, saliency, GLCM, and

wavelet packet transformation. To address the limited annotated data, an active learning strategy

was used to select the most informative unlabeled data for annotation, which was then used to

train a SVM classifier. The coarse segmentation from the classifier was further enhanced by in-

corporating it into an active contour model, resulting in improved segmentation accuracy. The

proposed ICH segmentation system proved to be robust in handling patient cases from multiple

health centers and multiple levels of injury [59].
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2.3.2 Deep Learning Methods

Deep learning approaches have commonly employed variations of a U-Net architecture for the seg-

mentation of ICH [44, 60–62]. It consists of a contracting path to capture context and a symmetric

expansive path for precise localization. The contracting path performs downsampling using con-

volution and pooling layers. The expansive path upsamples the features and combines them with

the contracting path’s corresponding feature maps through skip connections to produce pixel-level

segmentation masks [63].

Barros et al. developed a shallow CNN model for detecting SAH in a collection of CT scans

which was then further evaluated on rebleed patients. Image thresholding was used to segment

the bone and then morphological dilation was applied to close all openings in the skull except for

the foramen magnum. The centroid of the segmented bone is then used as a seed for the region

growing within the skull. Once the ROI was obtained, the preprocessed data was used as input into

a primitive 2D U-Net model with two convolutional and two FC layers. The model was also trained

based on randomly sampled background patches. Despite the frequent occurrence of severe metal

artifacts in the scans of rebleed patients caused by coiling, the CNN-based segmentation method

seems to be appropriate for accurately segmenting rebleeds as well, with similar accuracy. On

average, the CNN detection and segmentation process requires 30 seconds per CT scan [60].

Hssayeni et al. developed a fully automated U-Net model for the segmentation of ICH from

82 CT scans. However, the authors report a Dice coefficient score of 0.31, which is comparatively

low to state-of-the-art methods. The authors note that the model is biased towards false positive

segmentation, especially in regions near the bones where the intensity in grayscale values is similar

to that of ICH regions. To alleviate this issue, pixel intensity thresholding can be explored to

remove the bone regions from the CT scans and mitigate this bias. Alternatively, the U-Net can

be modified by incorporating an attention mechanism to help it focus on relevant regions during

the encoding and decoding stages. The main contribution of their work is that they made their

PhysioNet-ICH dataset publicly available with 82 CT scans to enable further research studies [44].

In contrast, Wang et al. developed a semi-supervised, attention-based U-Net. An inverse

sigmoid-based curriculum learning training strategy was employed to stabilize the training process.
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Their model significantly outperforms the conventional U-Net described in [44] as it achieves

a Dice coefficient of 0.67 while also using the PhysioNet-ICH dataset. However, their model

suffered from the class imbalance problem as it was less effective at segmenting smaller ICH

regions compared to larger ones. To mitigate this issue, a different loss function, such as Tversky

loss, could be used that places additional emphasis on identifying regions with ICH [61].

Yao et al. introduced dilated convolutions into their modified U-Net model and removed down-

sampling layers. The addition of dilated convolutions allowed the model to effectively capture and

analyze information from a broader range of spatial scales. This is particularly advantageous for

the task of segmenting ICH as they tend to vary considerably in both size and shape. To improve

generalization capabilities, an L2 weight decay regularization of 4 × 10−4 was used. The model

was very effective in segmenting very large hematomas with a Dice coefficient score of 0.80 but

only obtained a Dice coefficient score of 0.59 at classifying small hematoma [64].

Kuo et al. introduced PatchFCN, a fully convolutional network (FCN) that utilizes a patch-

based approach to achieve accurate segmentation and categorization of hematomas. An FCN is

trained on random small patches cropped from whole images centered in the foreground. Using

small patches of a CT scan slice instead of the entire CT scan slice enabled higher batch sizes that

better represent the diversity of the dataset. However, their model does not consider the spatial

relationships between adjacent CT scan slices. To address this limitation, future studies may con-

sider incorporating a sequential model, such as an LSTM, to learn these spatial dependencies and

enhance predictive accuracy [39].

Cho suggested utilizing a deep learning model composed of two CNNs and two fully convo-

lutional networks in a cascade format for the segmentation and classification of SAH, EDH, and

SDH. Their large-scale training dataset included 135,974 CT scan slices The two CNNs are em-

ployed to categorize the existence of ICH. In case ICH is detected, the two FCN models are utilized

for subtype classification and segmentation. Each of the CNN/FCN models underwent separate

training, utilizing two distinct window settings, namely the default CT scan window setting and a

stroke window. An overall segmentation performance of 80.19% precision and 82.15% recall for
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delineating bleeding lesions, demonstrating a 3.44% improvement compared to the utilization of a

single FCN model [65].

Chang et al. proposed a custom hybrid 3D/2D mask R-CNN architecture for ICH evaluation.

A preconfigured distribution of bounding boxes with distinct resolutions and shapes is initially

used. Based on the scores assigned to each bounding box, high-ranking ones were selected for

generating focused region proposals. Non-maximal suppression was used to prune the composite

region proposals before being used as input into a classifier to ascertain hemorrhage absence or

presence. In cases where the classification result is positive, a binary mask was produced by the

final segmentation network branch [38].

Ertugrul and Akil employed a YOLO-V4 network that creates a bounding box to segment the

ICH and then perform classification. Class label smoothing was used as a regularization technique

to reduce overconfidence by distributing probability mass across incorrect labels. While a bound-

ing box may provide a rough approximation of an ICH’s location and shape, it cannot accurately

capture the precise contours, orientations, and scale of an ICH. As a result, the use of bounding

boxes may lead to inaccuracies in localization and decrease model performance [51].
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Chapter 3

Overview of Neural Networks and Attention

This chapter focuses on providing a foundational understanding of four DL models: Artificial Neu-

ral Network (ANN), Convolutional Neural Network (CNN), Long Short Term Memory (LSTM)

network, and Attention. The knowledge presented in this chapter forms the basis for Chapters

4 and 5, where the DL techniques will be applied and evaluated for their effectiveness in ICH

detection and classification.

The chapter begins with an overview of ANNs, which serve as the building blocks for many

DL architectures, such as CNNs and LSTMs. It discusses the basic principles underlying ANNs,

including multi-layer perceptron networks, activation functions, and the training process. Next, the

chapter delves into CNNs, which are designed to extract spatial and hierarchical representations

from input data. This portion explains the intricate architecture of CNNs, including convolu-

tional layers, pooling layers, and fully connected layers. The subsequent section explores LSTM

networks, a type of RNN known for their ability to capture temporal dependencies in sequential

data. Lastly, attention mechanisms are introduced as a mechanism to enhance the performance of

deep learning models by focusing on relevant regions or features within an image. The section

introduces self-attention, a mechanism that allows a model to weigh the importance of different

elements in a sequence based on their relevance. Furthermore, it explores multi-head attention, an

extension of self-attention that enables the model to attend to multiple subspaces simultaneously.
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3.1 Artificial Neural Network

3.1.1 Overview

ANNs are a computational model inspired by the structure and functioning of biological neural

networks, such as the human brain. Fig. 3.1 presents a simple illustration of the structure of a bio-

logical neuron. The structure and function of a neuron in an ANN closely resemble that of a neuron

in a biological neural network. Both types of neurons have a similar organization, consisting of

input connections, a processing unit, and an output connection. In biological neurons, signals are

received through dendrites which are akin to the input connections in artificial neurons. The cell

body integrates these signals, and if a threshold is exceeded, an action potential is generated. This

is similar to the output signal or activation in an artificial neuron. Both types of neurons use an

activation function to determine their output. This function depends on factors such as membrane

potential and synaptic strength in biological neurons. In both cases, synaptic connections are vital

for information transfer. Biological networks can change connection strengths through synaptic

plasticities, such as long-term potentiation or depression. In contrast, artificial networks adjust in-

put importance using weights and learning algorithms like backpropagation. Although ANNs are

simplified models inspired by biological networks, they aim to approximate their behavior [3, 66].

Figure 3.1: A visual depiction of a biological neuron [3].
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3.1.2 Multi-Layer Perceptron

Figure 3.2: A general illustration of an MLP network that consists of interconnected layers of

neurons. The network contains an input layer denoted by i, one or more hidden layers denoted by

m, and an output layer denoted by o. n represents a neuron. The number of neurons in the input,

hidden, and output layers is denoted by x, j, y, and z, respectively.

A multi-layer perceptron (MLP) neural network is a type of ANN that consists of multiple

layers of interconnected artificial neurons, also known as perceptrons. Fig. 3.2 presents a general

illustration of the structure of an MLP network. An MLP is a feedforward neural network as the

information flows in one direction from the input layer through the hidden layers to the output

layer. The input layer consists of artificial neurons, each representing a feature of the input data.

The number of neurons in the input layer is equal to the number of input features. MLPs can have

one or more hidden layers, which are layers between the input and output layers. Each hidden

layer contains artificial neurons that transform the input using weighted connections and activation

functions. The output layer consists of artificial neurons that generate the final predictions or out-

puts. Each artificial neuron in one layer is connected to every neuron in the subsequent layer. Each

connection between two neurons has a weight associated with it, which determines the strength or

importance of the connection.
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The fundamental component of an ANN is the artificial neuron. The artificial neuron takes

multiple input signals, each of which is multiplied by a corresponding weight value. The weighted

inputs are summed together. The weights are iteratively adjusted during the training process to

enhance the network’s performance. The weighted summation operation for an artificial neuron is

computed as follows in (3.1).

z =
N∑
i=1

(xi · wi) + b, (3.1)

where z represents the output value, N is the number of elements in the input vector x and weights

vector w, b is a bias term, and i is the index.

The weighted sum is then passed through an activation function, which introduces non-linearities

into the neuron’s response. The activation function determines whether the neuron should ”fire”

or activate, based on the aggregated input. The output of an artificial neuron is the result of the

activation function applied to the weighted sum [67].

3.1.3 Activation Functions

Figure 3.3: Common activations functions employed in ANNs.
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Activation functions are a crucial component of ANNs as they introduce non-linearity into the

network. Non-linearity is crucial in ANNs because it enables the network to capture complex

relationships and patterns within the data that would be otherwise impossible to represent using

only linear transformations. In an MLP, activation functions are commonly employed to learn

and model complex relationships between inputs and outputs. Some commonly used activation

functions used in MLPs include sigmoid, ReLU, tanh, and softmax. Fig. 3.3 shows the graphs of

common activation functions.

Sigmoid: The sigmoid function is a classic activation function that maps any input value to a

value between 0 and 1. The sigmoid function is mathematically expressed as (3.2):

h(x) =
1

1 + e−x
, (3.2)

where x is the input to the function. It has a smooth and continuous curve that gradually transitions

from 0 to 1 as the input value increases.

Tanh: The hyperbolic tangent (tanh) function maps the input value to a range between -1 and

1. This property makes it suitable for tasks that require symmetric activation around zero. The

tanh function is mathematically expressed as (3.3):

tanh(x) =
ex − e−x

ex + e−x
=

1− e−2x

1 + e−2x
, (3.3)

where x is the input to the function.

ReLU: The Rectified Linear Unit (ReLU) function has gained popularity in recent years due to

its simplicity and effectiveness in deep learning models. ReLU is a piecewise linear function which

only activates when the input value is positive, which allows for faster learning in deep networks.

ReLU helps mitigates the vanishing gradient problem by maintaining a constant input of 1 for

positive inputs. This issue tends to arise in traditional activation functions like sigmoid or tanh

when gradients become very small for extreme input values. ReLU’s mathematical simplicity and

mitigation of the vanishing gradient problem translate to accelerated convergence and consequently

reduced training times. Mathematically, the ReLU function can be represented as (3.4):

F (x) = max(0, x), (3.4)
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where x is the input to the function.

Softmax: The softmax function is a popular activation function used in the output layer of

neural networks for multi-class classification problems. It converts a vector of real numbers into a

probability distribution over multiple classes, with each class representing a distinct category and

receiving a probability value between 0 and 1. The softmax function is defined as (3.5):

σ(zi) =
ezi∑K
j=1 e

zj
for i = 1, 2, . . . , K (3.5)

where zi denotes the output of the i-th neuron, K is the number of classes, and j represents each

element of the input vector.

The softmax function exponentiates the input values and normalizes them by dividing each

exponentiated value by the sum of all exponentiated values. This normalization ensures that the

output probabilities add up to 1, enabling them to represent the likelihood of the input belonging

to each class [67].

3.1.4 Training Strategy

Training ANNs involves the process of adjusting the weights of the connections between artificial

neurons to optimize the network’s performance. During training, a dataset consisting of input

samples and their corresponding desired outputs is provided to the neural network. In forward

propagation, the input samples are propagated through the network, layer by layer, until the output

layer is reached. The output generated by the network is compared to the desired output using a loss

function. For example, cross-entropy loss is a commonly employed loss function for classification

tasks. The operation for cross-entropy loss is computed as follows in (3.6).

E = −
C∑
c=1

yc log(pc), (3.6)

where E represents the cross entropy loss, yc is the true probability or label for class c, and pc is

the predicted probability for class c. The sum is taken over all classes C.
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The goal of training is to minimize the error between the network’s output and the desired

output. This is achieved by iteratively adjusting the weights in the network based on the calculated

error, which is referred to as backpropagation. The key idea behind backpropagation is to propagate

this error backward through the network, layer by layer, and update the weights accordingly.

Gradient descent is an iterative optimization algorithm used for updating the weights of a neu-

ral network during the training process. The fundamental concept underlying gradient descent

involves calculating the gradient of the loss function concerning the weights and subsequently

adjusting the weights in a manner that minimizes the loss. The gradient descent algorithm for

updating the weights of the network is summarized as follows:

Step 1 - Initialize Weights: All weights in the network are initialized with random values.

Step 2 - Forward Propagation: The input data is fed into the neural network, and the acti-

vations of each layer are computed sequentially through weighted sums and activation functions.

The activations of one layer serve as the input to the next layer, and this process continues until the

final layer, which produces the network’s output.

Step 3 - Loss Calculation: The error between the network’s output and the desired output is

calculated using a suitable loss function.

Step 4 - Gradients Calculation: The gradient of the loss function with respect to each param-

eter is calculated. The gradient represents the direction and magnitude of the steepest ascent of the

function. It indicates how much the loss function will change if we change the parameters.

Step 5 - Weight Update: The weights and biases are updated using the gradient information

and the learning rate. The new weights are calculated by subtracting the product of the learning

rate and the gradient from the current weights. This operation for updating the weights can be

mathematically expressed as in (3.7).

wnew
ij = wold

ij − η
∂L

∂wij

, (3.7)

where wnew
ij represents the updated weight connecting neuron j in layer l − 1 to neuron i in layer

l, wold
ij is the previous weight, η denotes the learning rate, ∂L

∂wij
is the partial derivative of the loss

function L with respect to the weight wij .
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By iteratively updating the parameters in the opposite direction of the gradient, the algorithm

gradually moves closer to the minimum until convergence. The learning rate is a hyperparameter

that determines the size of the steps taken in the parameter space during each iteration of the

algorithm. It controls the speed at which the algorithm converges to the minimum. If the learning

rate is too high, the algorithm may overshoot the minimum, bouncing back and forth across it or

even diverging altogether. This can prevent the algorithm from converging and lead to unstable

and inaccurate results. On the other hand, if the learning rate is too low, the algorithm will take

very small steps and converge very slowly. This can result in long training times and a delayed

convergence to the optimal solution. Finding an appropriate learning rate is crucial for the gradient

descent algorithm to work effectively.

Step 6 - Repeat: Steps 2-5 are iteratively repeated for multiple epochs until the network’s

performance converges or reaches a satisfactory level [67].

3.2 Convolutional Neural Network

3.2.1 Overview

A CNN is a type of deep learning model that is primarily designed for processing and analyzing

structured grid-like data, such as images or time series. It is widely used in computer vision tasks

such as image classification, object detection, and image segmentation. The foundational work in

CNNs can be attributed to LeCun and his colleagues, who developed the LeNet-5 architecture in

1998. LeNet-5 was primarily designed for handwritten digit recognition and served as a break-

through in the field of deep learning.

They excel at automatically learning and extracting meaningful features from raw data without

manual feature engineering. While modern CNNs are quite complex, they contain three main

components: convolutional layers, pooling layers, and fully connected layers. Overall, CNNs are

essential in computer vision and deep learning due to their flexibility, effectiveness, and capacity

to learn hierarchical representations from visual data. Fig. 3.4 presents a visual example of a CNN

[3].
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Figure 3.4: An illustration of a 2-D CNN employed for image classification. In this example, the

CNN comprises five sets of convolutional and max pooling layers, followed by three fully

connected layers.

3.2.2 Convolutional Layers

Convolutional layers are an essential component of CNNs and are primarily designed to extract

meaningful features from input data. Convolutional layers are inspired by the concept of con-

volution from mathematics and signal processing. The convolutional layer operates on a multi-

dimensional input, typically a 2D image or a 3D volume, and applies a set of learnable filters to

the input. These filters, also known as convolutional kernels or feature detectors, are small-sized

matrices with learnable weights. The convolution operation described by (3.8) involves sliding

a kernel K with dimensions P × Q across the input signal I with dimensions M × N . In this

context, Y (i, j) denotes the value at position (i, j) in the output feature map. The double summa-

tion involves iterating over all possible values of m and n in the kernel. For each relative position

(m,n), the input signal value I(i+m, j+n) is multiplied with the kernel value K(m,n) and these
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products are accumulated over all possible relative positions. The final result of this accumulation

is the value at position (i, j) in the output signal Y . The resulting feature map dimensions are

(P −M + 1)× (Q−N + 1).

Y (i, j) = (I ∗K)(i, j) =
P−1∑
m=0

Q−1∑
n=0

I(i+m, j + n)K(m,n). (3.8)

Each element in the feature map captures a local pattern or characteristic that the kernel is

designed to detect. The early convolutional layers in a CNN capture low-level features like edges

and textures. As the information flows through the network, subsequent layers capture more so-

phisticated features like shapes and objects. An illustration of the convolution operation is shown

in Fig. 3.5.

Figure 3.5: Illustration of a convolution operation. In this depiction, a kernel traverses the input

data and computes dot products to generate a feature map. The red rectangular boxes highlight

the computations performed for one such element in the feature map.

After convolution, a non-linear activation function, such as ReLU, is often applied element-

wise to introduce non-linearity and capture complex relationships between features. The activation

function helps in enhancing the expressive power of the model. Convolutional layers commonly

incorporate a bias term added to the output of each filter. This bias term allows the model to learn

an additional offset, providing greater flexibility in representing features [3, 67].
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3.2.3 Pooling Layers

Pooling layers play a crucial role in downsampling the spatial dimensions of feature maps, which

refers to reducing the spatial dimensions of input data while preserving information. Pooling is

often done to make computation more efficient and manageable. Pooling layers operate on each

feature map independently and divide them into regions that can be non-overlapping or overlap-

ping. Each pooling layer uses a pooling window that slides over the input feature map to define

regions to be downsampled. The pooling operation then aggregates the information within the

pooling window to produce a single output value. Stride refers to the step size used to move the

pooling window across a feature map. Overall, pooling layers help the network become less sen-

sitive to small spatial variations in the input, which is known as translational invariance. Average

pooling and max pooling are two commonly used types of pooling layers.

Average pooling: Average pooling computes the average value of a region within the input

feature map. Average pooling provides a smoothing effect and can help reduce variations and

noise in the feature map. The mathematical formulation for average pooling is provided by (3.9),

where Fin denotes the input feature map, R× S represents the dimensions of the pooling window,

and vertical and horizontal strides are indicated by P and Q, respectively. By summing the values

within the pooling window and subsequently averaging them over the total number of elements in

the window, R× S, the resulting average value for position (i, j) in the output feature map Fout is

obtained. A visual representation of the average pooling process is depicted in Fig. 3.6.

Fout(i, j) =
1

R× S

R∑
r=1

S∑
s=1

Fin((i− 1)× P + r, (j − 1)×Q+ s). (3.9)

Max pooling: Max pooling takes the maximum value within each pooling region and discards

the rest of the information. It also divides the feature map into non-overlapping regions and selects

the maximum value from each region. As a result, it tends to create sparse feature representations

that capture the most important features in a feature map. The operation is defined by (3.10),

where Fin represents the input feature map, R× S denotes the dimensions of the pooling window,

and P and Q represent the vertical and horizontal strides respectively. The max pooling operation
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Figure 3.6: An illustration of average pooling.

aggregates the maximum value from the pooling window’s elements to produce the resulting max-

imum value for position (i, j) in the output feature map Fout. An illustrative representation of max

pooling is provided in Fig. 3.7.

Fout(i, j) = max {Fin((i− 1)× P + r, (j − 1)×Q+ s) | 1 ≤ r ≤ R, 1 ≤ s ≤ S} . (3.10)

Figure 3.7: An illustration of maximum pooling.

3.2.4 Fully Connected Layers

FC layers, also referred to as dense layers, transform the output of previous layers into the final

output predictions. These layers are designed to capture complex relationships between features

and enable the network to learn high-level abstractions from the input data. Fully connected layers

aid in generalization by capturing abstract representations, allowing the network to recognize sim-

ilar patterns across different contexts. This improves its ability to generate predictions for unseen
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data. FC layers exhibit an identical structure and perform the same computations as those found in

an MLP network. In an FC layer, each neuron is connected to every neuron in the previous layer,

forming a fully connected graph. This means that the outputs of all neurons in the previous layer

serve as inputs to each neuron in the fully connected layer. The connections are represented by

weights, which determine the strength and impact of the input signals on the neuron’s activation

[67].

3.3 LSTM

3.3.1 Overview

A traditional LSTM network is a type of RNN architecture that is widely used in the field of deep

learning for sequence modeling and time series analysis. It was introduced by Hochreiter and

Schmidhuber in 1997 to mitigate the vanishing gradient problem that affects traditional RNNs.

The vanishing gradient problem refers to the issue where gradients during backpropagation dimin-

ish exponentially as they propagate backward through layers, which may cause stalled learning in

deep neural networks. The key idea behind an LSTM is to introduce a memory cell that can store

information over long periods of time, which allows the network to capture and learn dependen-

cies in sequences more effectively. The memory cell is responsible for remembering or forgetting

information based on its relevance and importance. By selectively updating and forgetting infor-

mation through the gates, the LSTM can learn long-term dependencies in sequences and make

predictions based on the relevant context. This makes it particularly effective for tasks such as

speech recognition, language translation, sentiment analysis, and time series forecasting.

3.3.2 Traditional LSTM

The LSTM architecture effectively processes sequential data by using multiple interconnected

components. As illustrated in Fig. 3.8, LSTMs employ three gating functions: the input gate,
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forget gate, and output gate. These gates control the flow of information into and out of the cell

state, allowing the network to decide what to remember and what to discard.

Figure 3.8: A visual representation illustrating a typical LSTM cell that contains three gates

responsible for regulating the flow of information. In this depiction, xt, Ct, and Ht represent the

input data from a time series, the cell state, and the hidden state respectively, at a specific

timestamp t.

The input gate it determines the relevance of the current input xt and the previous hidden state

Ht−1 in updating the cell state at a specific time step t. The input gate performs linear transforma-

tions on both the current input and the previous hidden state. This entails using two distinct weight

matrices: Wxi is responsible for the current input, and Whi is responsible for the hidden state from

the previous time step. The ∗ symbol denotes the Hadamard product operation which facilitates

element-wise multiplication between two matrices of the same dimensions. Additionally, a bias

term bi represents a scalar value that gets added to the weighted summation of the input data and

the previous hidden state. The sigmoid activation function defined in (3.2) is used to calculate the

extent to which different components of the input should influence the cell state. The gate output

is a value between 0 and 1, where 0 would indicate that the output has no influence on the cell state
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update, and 1 would indicate full influence. The equation representing the input gate is defined

in (3.11).

it = σ(Wxi ∗ xt +Whi ∗Ht−1 + bi). (3.11)

Conversely, the forget gate ft decides which information from the previous cell state Ct−1

should be retained and what should be discarded. The forget gate performs linear transformations

on both the current input and the previous hidden state. To accomplish this, two weight matrices

are employed: Wxf manages the impact of the current input, and Whf manages the influence of

the hidden state from the previous time step. Additionally, a bias term bf is added to the weighted

summation of the input data and the previous hidden state. It employs the sigmoid function to

generate a forget vector, determining the degree of information to be discarded. The equation

describing the forget gate is defined in (3.12).

ft = σ(Wxf ∗ xt +Whf ∗Ht−1 + bf ), (3.12)

The output gate ot contributes to the capability of the LSTM cell to selectively expose or hide

information from the current cell state Ct and the hidden state Ht. The output gate also performs

linear transformations on both the current input and the previous hidden state. This is achieved by

using two weight matrices: Wxo determines the impact of the current input, and Who determines the

impact of the hidden state from the previous time step. Additionally, a bias term bo is added to the

weighted summation of the input data and the previous hidden state. To quantitatively determine

the extent of information to be transmitted from the present time step to the final hidden and cell

states, the output gate leverages the sigmoid function. The equation describing the output gate is

defined in (3.13).

ot = σ(Wxo ∗ xt +Who ∗Ht−1 + bo), (3.13)

The cell state Ct serves as a memory unit that retains information over long sequences. Its

computation is governed by the expression given in (3.14). A pointwise multiplication operation
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is performed between the forget gate ft and the previous cell state Ct−1. This operation modulates

how much of the previous cell state should be carried forward to the current time step.

Similarly, a pointwise multiplication is performed between the input gate it and the candidate

values. The candidate values are computed by combining the current input xt with the previous

hidden state Ht−1, both of which are transformed using weight matrices Wxc and Whc, along with

a bias term bc. To ensure appropriate scaling and regulation, a tanh operation is applied to these

candidate values. The scaled candidate values undergo an element-wise multiplication with the

input gate it. The outcomes from both element-wise multiplication processes are amalgamated

using an element-wise addition operation, resulting in the generation of the current cell state Ct.

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ xt +Whc ∗Ht−1 + bc), (3.14)

The hidden state Ht carries information about the network’s understanding of the sequence up

to the current time step, as computed in (3.15). The new hidden state Ht is computed using an

element-wise multiplication between ot and tanh(Ct).

Ht = ot ◦ tanh(Ct). (3.15)

3.3.3 Bidrectional LSTM

In a standard LSTM, the information flows from the past to the future. However, in many tasks,

such as speech recognition and language translation, the context of a particular sequence element

depends not only on the preceding elements but also on the subsequent elements. Bidirectional

LSTMs address this limitation by running two separate LSTM networks simultaneously, one pro-

cessing the sequence in the forward direction and the other in the backward direction, as depicted

in Fig. 3.9. The forward LSTM computes hidden states h(f)
t for each time step t from 1 to T , where

T represents the number of hidden cells. On the other hand, the backward LSTM computes hidden

states h(b)
t from T to 1. The final bidirectional LSTM hidden state h(bi)

t at each time step is obtained

by concatenating the forward and backward hidden states [67].

45



Figure 3.9: A general illustration of a Bi-LSTM. In this depiction,
−→
h represents a hidden state in

the Forward LSTM network whereas
←−
h represents a hidden state in the Backward LSTM

network.

3.4 Attention

3.4.1 Overview

Attention has revolutionized the field of DL. Attention allows models to focus on relevant parts of

the input, selectively attending to the most informative features or regions. This ability to priori-

tize relevant information is crucial when dealing with complex data, as it enables models to extract

salient patterns and discard irrelevant or noisy elements. By assigning higher weights to important

components, attention mechanisms effectively enhance the model’s discriminative power, leading

to improved performance on various tasks. In addition, attention mechanisms facilitate the han-

dling of long-range dependencies in sequential or spatially distributed data. Traditional RNNs

may struggle with capturing dependencies that span long distances, leading to information loss or

limited modeling capabilities. Attention provides a solution by allowing the model to dynamically

attend to different parts of the input, regardless of their temporal or spatial separation. This enables

the model to effectively capture dependencies across long sequences or capture the global context

in spatially distributed data.
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Attention mechanisms can be incorporated into various DL architectures, including recurrent

RNNs, CNNs, and transformer models. Attention has played a pivotal role in achieving state-of-

the-art performance in the domains of computer vision and NLP. For example, attention mecha-

nisms have been successfully employed in NLP for tasks in language translation [68], sentimental

analysis [69], and text summarization [70]. This flexibility allows attention to be seamlessly inte-

grated into existing architectures or customized to suit specific task requirements [67].

3.4.2 Self-Attention

Self-attention, also known as scaled dot-product attention, allows a model to focus on different

parts of the input sequence to capture both local and global dependencies. The input sequence

is typically represented as a set of vectors, where each vector corresponds to an element in the

sequence. The sequence of input vectors are denoted by X = [x1,x2, . . . ,xn], where xi represents

the i-th input vector.

The process of self-attention involves computing three key components: query, key, and value.

The query, key, and value matrices are denoted as Q, K, and V, respectively. These components

are learned during the training process and are linear projections of the input vectors, as mathe-

matically expressed in (3.16) to (3.18).

Q = WQX, (3.16)

K = WKX, (3.17)

V = WVX, (3.18)

where WQ, WK , and WV are learnable weight matrices that project the input vectors into the

query, key, and value spaces, respectively.

The attention score between the i-th position and the j-th position in the sequence is obtained

by taking the dot product between the query vector of the i-th position and the key vector of the

j-th position. The division by
√
dk is introduced to prevent the attention scores from becoming too

large, which could lead to instability during the training process. The attention scores represent
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the relevance or similarity between different positions in the sequence. To obtain the attention

weights, which indicate the importance of each position with respect to the current position, the

softmax function described in Section 3.1.3 is applied to the attention scores. The softmax function

normalizes the attention scores which produces a probability distribution that sums to 1.

Figure 3.10: A flow diagram illustrating the operations performed for computing self-attention

[4].

Using the attention weights, a weighted sum of the value vectors is computed to obtain the out-

put representation at each position. The value vectors capture the information associated with each

position in the input sequence. The weighted sum combines the values from different positions

based on their corresponding attention weights, allowing the model to focus more on important

positions and less on irrelevant ones. Fig. 3.10 presents a flow diagram showing the computa-

tional steps needed to perform self-attention. Mathematically, computing the self-attention for a

sequence of input vectors is expressed in (3.19).

Attention(Q,K, V ) = softmax(
Qi ·Kj√

dk
)V. (3.19)

3.4.3 Multi-head Attention

Multi-head attention is an extension of the self-attention mechanism that enhances the ability

of self-attention to capture dependencies within a sequence but incorporating multiple attention
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Figure 3.11: A flow diagram illustrating the operations performed for computing multi-head

attention [4].

heads. Each attention head can focus on different parts of the input sequence, attending to differ-

ent patterns or relationships. By allowing the model to jointly attend to different aspects of the

input, multi-head attention facilitates richer and more expressive representations.

In multi-head attention, a sequence containing dmodel input vectors is used as input. The self-

attention mechanism is applied h times in parallel, each with its own set of the learned query, key,

and value weight matrices with dk, dk, and dv dimensions, respectively. These matrices are usually

smaller in dimension compared to single-head attention. Next, each attention head computes its

own attention scores and attention weights following the self-attention mechanism, as described

previously. The output of each attention head is concatenated together to form a single vector and

is passed through a linear projection layer to reduce its dimensionality, as defined in (3.20). This

projection helps the model aggregate the information from different attention heads effectively

[4, 67].
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MultiHead(Q,K,V) = Concat(head1, ...headout
2 , . . . , headout

h )WO, (3.20)

where headi = Attention(QWQ
i , KWK

i , V W V
i ). The projections denote parameter matrices where

WQi
∈ Rdmodel×dk , WKi

∈ Rdmodel×dk , WVi
∈ Rdmodel×dv , and WO ∈ Rh×dv×dmodel .
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Chapter 4

An Efficient CNN-BiLSTM Model for

Multi-class Intracranial Hemorrhage

Classification

A deep learning solution has been developed with the purpose of automatically identifying ICH.

The model uses windowing as a preprocessing step for the input CT scan images. This technique

enhances the contrast of each CT scan slice, enabling better detection of subtle abnormalities

associated with ICH. By applying an extensive set of data augmentations to the CT scan slices,

the aim is to increase the diversity and variability of the training data.

In order to learn distinct feature representations of ICH, a 2-D CNN model is used. Subse-

quently, a BiLSTM network is utilized to capture sequential patterns among the CT scan slices.

The LSTM network takes the feature embeddings generated by the CNN and leverages them to

extract temporal dependencies and long-range interactions. This integration of CNN and LSTM

allows the model to effectively analyze the sequential nature of CT scan data, leading to improved

predictive accuracy.

For evaluation purposes, the trained model generates multi-label predictions for each sample

in the RSNA-ICH test set, CQ500, and PhysioNet-ICH datasets. The performance of the model is

measured using key metrics, such as sensitivity, specificity, precision, and the AUC score. These
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metrics provide a comprehensive assessment of the model’s ability to correctly identify instances

of ICH.

4.1 Proposed Solution

An elaborate functional flow diagram depicting the CNN-BiLSTM CT scan classification frame-

work is presented in Fig. 4.1. The framework encompasses three key phases: Phase 1 involves

data preprocessing, Phase 2 focuses on model development and training, and Phase 3 includes

model testing and evaluation.

Figure 4.1: Detailed functional flow diagram of the proposed CNN-BiLSTM CT scan

classification framework. It consists of three abstract phases – Phase 1: Data preprocessing,

Phase 2: Model development and training, and Phase 3: Model testing and evaluation.

In Phase 1, extensive data preprocessing is performed to enhance the model’s ability to capture

relevant features and improve its generalization capabilities. The RSNA 2019 Brain CT Hemor-

rhage Challenge dataset is partitioned into a training set and a test set. Drawing inspiration from

52



established radiology workflows, one of the key image preprocessing steps we apply is known

as windowing. This technique aims to enhance the contrast of each CT scan slice and highlights

subtle differences between healthy and abnormal tissues. More specifically, three commonly used

window settings are used: brain, subdural, and soft tissue. Each window configuration emphasizes

specific features and improves the visibility of specific anatomical structures and pathological fea-

tures. Data augmentations are then introduced to further enhance the robustness and diversity of

the training.

In Phase 2, the proposed model learns from the preprocessed data to extract meaningful pat-

terns and optimize its parameters to make accurate ICH predictions. Initially, a Vision Network is

employed that comprises a 2-D CNN to effectively capture spatial information and local patterns.

The Bi-LSTM network takes advantage of the feature embeddings produced by the Vision Network

to learn slice-temporal dependencies and long-range interactions. The training process involves it-

erative epochs, where the model adjusts its parameters to become more accurate at detecting and

classifying ICH.

In Phase 3, testing and evaluation are performed to assess the performance, reliability, and

generalization capabilities of the proposed model. Initially, the trained model generates multi-

label predictions for each sample in the RSNA-ICH test set, CQ500, and PhysioNet-ICH datasets.

The performance of the model is quantitatively measured using metrics of sensitivity, specificity,

precision, and AUC. These metrics offer a thorough evaluation of the model’s capacity to accu-

rately detect different subtypes of ICH. Grad-cam visualizations provide a qualitative assessment

by highlighting the regions in CT scan slices that influenced the model’s decision. This may assist

radiologists in better understanding the predictions of the proposed solution.

4.1.1 Data Preprocessing

Dataset Curation– In this study, three publicly available benchmark datasets are used: RSNA,

CQ500, and PhysioNet. The RSNA dataset was used for both training and testing while the CQ500

and PhysioNet datasets were used for independent testing. A detailed description of each dataset
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is provided below. The scan and slice subtype distribution is tabulated in Table 4.1 and visualized

in Fig. 4.4 to Fig. 4.6

This study uses a large collection of non-contrast head CT scans collected by the RSNA asso-

ciation for model training, validation, and testing. Each CT scan slice has a resolution of 512×512

pixels. The dataset consists of over 25,000 scans, with each scan containing 20 to 60 slices, re-

sulting in a total of 874,034 slices. The samples were annotated by over sixty experienced neuro-

radiologists to produce ground truth labels. More specifically, each slice was assigned a series of

binary labels for each of the six classes: EDH, SDH, SAH, IPH, IVH, or ANY [2]. In this case, the

ANY class has a positive prediction label if any of the other five classes have a positive prediction

label. For example, the slice ID d81ea8751 has a multi-hot1 encoded target label of [1, 0, 0, 0, 0, 1]

indicating that IPH and ANY are present, respectively. Moreover, a slice can contain multiple dif-

ferent ICH subtypes. For example, the slice ID 6be2c702e has a multi-hot encoded target label

of [1, 0, 1, 0, 1, 1] indicating that IPH, SAH, SDH, and ANY are present, respectively. The dataset

is heavily imbalanced, with the majority of samples (86%) belonging to the non-ICH class, while

only a small percentage of samples (14%) are part of ICH.

The RSNA dataset was specifically selected for training the model because it offers the largest

and most diverse set of CT scans among the three benchmark datasets. This selection ensures a

wealth of rich and comprehensive data, facilitating the robust training of our model. The training

dataset contains 21,744 CT scans and the test set contains 3,518 CT scans. The training dataset is

further partitioned into two subsets: a training set, which accounts for 80% of the CT scans, and a

validation set, containing the remaining 20%. This division results in 17,395 CT scans allocated to

the training set and 4,349 CT scans allocated to the validation set. The training set is used to train

the model’s parameters, while the validation set helps to assess the training progression by provid-

ing an independent dataset for measuring performance. This separation aids in preventing overfit-

ting and ensures the model’s effectiveness on unseen data. This work removes low-quality/empty

CT scan slices from the training set when all pixel values are less than −150 HU before being

used as input into the proposed model.

1It encodes each type in the input slice into a single array of size ICH types, containing a 1 for each type presents
in the sample.
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The CQ500 dataset consists of a total of 491 CT scans, including 205 with ICHs, 40 fractures,

65 middle shifts, 127 mass effect, and 54 normal controls. The 205 ICH scans contain all five

subtypes, including 28 IVHs, 134 IPHs, 60 SAHs, 13 EDHs, and 53 SDHs. The involvement

of multiple radiology centers in New Delhi, India, further enhances the dataset’s diversity and

representation of cases from different clinical settings. The annotation of each ICH subtype was

manually performed by three senior radiologists [19].

The PhysioNet-ICH dataset consists of 75 patients, including 36 with ICH and 39 without

ICH, comprising a total of 2,814 slices. The dataset source is from the Al-Hilla Teaching Hospital

in Iraq and obtained using a Siemens/SOMATOM Definition AS CT Scanner with a 5 mm slice

thickness. The average age of the patients in the dataset is 27.8±19.5. Two radiologists conducted

the annotation of non-contrast CT scans and classified the ICH subtypes through simultaneous

review and consensus on the diagnosis [44].
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Exploratory Data Analysis–

Figure 4.2: A visualization of all 35 CT scan slices for the CT scan, ID ec0310f506, from the

RSNA dataset. The CT scan does not contain any slices with ICH. The corresponding image ID

and multi-hot target labels are provided above each CT scan slice. The multi-hot target labels are

denoted in the following order: [EDH, IPH, IVH, SAH, SDH, ANY].
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Figure 4.3: A visualization of all 35 CT scan slices for the CT scan, ID ec0310f506, from the

RSNA dataset. The corresponding image ID and multi-hot target labels are provided above each

CT scan slice. The multi-hot target labels are denoted in the following order: [EDH, IPH, IVH,

SAH, SDH, ANY]. CT scan slices with ICH are highlighted with red labels.
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Figure 4.4: The scan and slice distribution for the RSNA-train set. Note that ground truth labels

have not been provided for the test set.

Figure 4.5: The scan and slice distribution for the CQ500 dataset.
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Figure 4.6: The scan and slice distribution for the PhysioNet-ICH dataset.

Table 4.1: Data distribution characteristics of the utilized benchmark datasets.

RSNA-train PhysioNet-ICH CQ500
Scans Slices Scans Slices Scans Slices

ICH 8,882 107,933 205 18,774 36 318
EDH 354 3,145 13 131 21 173
IPH 5,321 36,118 134 6,323 16 73
IVH 3,692 26,205 28 2,348 5 24
SAH 3,932 35,675 60 9,590 7 18
SDH 3,814 47,166 53 6,391 4 56
None 12,862 644,870 286 152,616 39 2,496
Total 21,744 752,803 491 171,390 75 2,814
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Contrast Enhancement via Windowing– Each pixel in a CT scan represents a specific value

that corresponds to the density of the tissue being scanned. In the case of CT scans, this value

is measured in HU. To represent the range of densities, each pixel is assigned a 16-bit value,

allowing for 65,536 different grayscale values. However, due to the limitations of the human eye

in perceiving subtle differences in grayscale, radiologists employ a technique called windowing to

enhance the contrast of CT scan slices. Windowing involves mapping the grayscale values to a

different range that highlights specific structures or abnormalities, making them easier to detect.

A window is defined by two parameters: the window center (WC) and the window width (WW)

[25]. The WC determines the midpoint of the grayscale range that will be mapped, while the WW

defines the width of the range. By adjusting these parameters, radiologists can create different

window configurations to help visualize specific anatomical regions or pathologies.

In this work, three commonly used window settings are employed to mimic the radiology

workflow: the brain window (WC = 40, WW = 80), the subdural window (WC = 80, WW = 200),

and the soft tissue window (WC = 40, WW = 380). This creates a three-channel contrast-enhanced

image that will be the input to the feature extractor of the proposed model (cf. Section 4.1.2 - The

Vision Subnetwork).

Fig. 4.7 and Fig. 4.8 illustrate the windowing process used in this work. These figures demon-

strate the application of windowing to an actual CT scan sample, one showing an ICH and the

other without ICH.
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Figure 4.7: An example of the windowing process using an ICH CT scan, SeriesInstanceUID:

ID 4ac84839aa having 28 slices. For visual clarity, five axial slices in positions 1, 8, 15, 21, and

28 are shown. BW, SW, TW, stand for the windowing operation on each slice using windows of

the brain, subdural and soft tissue. ls - total # of slices in the CT Scan,
⊗

- Concatenation to form

a 3-channel representation (like RGB) for each slice.

Figure 4.8: An example of the windowing process using a non-ICH CT scan, SeriesInstanceUID:

ID d6ba679446 having 44 slices. For visual clarity, five axial slices in positions 1, 12, 23, 33, and

44 are shown. BW, SW, TW, stand for the windowing operation on each slice using windows of

the brain, subdural and soft tissue. ls - total # of slices in the CT Scan,
⊗

- Concatenation to form

a 3-channel representation (like RGB) for each slice.
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Figure 4.9: An example of the application of various data augmentation strategies used in this

work.
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Data Augmentation– This is a data regularization process that refers to a set of techniques

that apply geometric image transformations to the original 2D slices of the CT scans. By synthet-

ically creating more diverse training data, data augmentations can help to prevent the model from

overfitting as it will allow the model to learn generalized representations of the ICH. In this study,

an extensive set of eleven data augmentations are applied: horizontal flipping, vertical flipping,

transposing, random brightness and contrast adjustments, shift, scale, rotations, motion blur, me-

dian blur, Gaussian blur, Gaussian noise, optical distortion, grid distortion, and coarse dropout as

an example shown in Fig. 4.9.

4.1.2 The Vision Subnetwork

A pre-trained vision network, EfficientNetV2-Small, serves as a CNN model that learns to extract

features after being fine-tuned on the RSNA dataset [71].

EfficientNet is a family of CNN architectures designed to achieve a balance between model

size and accuracy, making it suitable for a wide range of applications. The EfficientNet models

have achieved state-of-the-art performance on various computer vision tasks while being compu-

tationally efficient.

The EfficientNet architecture has been derived based on the MobileNetV2 architecture. The

key idea behind EfficientNet is compound scaling, which involves scaling the dimensions of the

network in a principled manner. Instead of manually adjusting individual hyperparameters such as

depth, width, and resolution, EfficientNet uses a single scaling parameter. This scaling parameter

is applied to depth, width, and resolution simultaneously to obtain the optimal network architecture

[72].

One noteworthy aspect of the EfficientNetV2 architecture is its default pooling configuration,

which employs adaptive average pooling. However, in this case, the pooling configuration was

modified to use max pooling instead. Max pooling is particularly well-suited for the task at hand,

as it enhances the network’s ability to detect abnormalities, specifically ICH in this context [71].

The output of the vision network is a feature map with dimensions of bs × ls × 1280. Here,

bs represents the batch size of CT scans, ls denotes the input sequence length of CT scan slices,
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and 1280 corresponds to the dimensionality of the feature representation for each CT scan slice.

This feature map consists of a sequence of feature vectors, with each vector capturing the salient

information extracted from a particular CT scan slice. The sequence of feature vectors obtained

from the vision network is then fed as input to the learner subnetwork.

4.1.3 Learner Subnetwork

(a) Training progress of the vision network (b) Training progress of the integrated model–CNN-BiLSTM

Figure 4.10: Training progress of the proposed ICH classification model. During the training of

the CNN-BiLSTM, the vision network’s parameters are not updated, i.e., kept frozen.

The learner subnetwork in the proposed methodology, illustrated in Fig. 4.1 - Phase 2, consists

of two main components: the sequence learning module and the classification module. The se-

quence learning module is designed as a two-layer sequence-to-sequence BiLSTM network. Each

layer of the BiLSTM contains 1024 neurons, resulting in a total of 1,084,576 connections. The

purpose of this module is to capture and learn the sequential correlations that exist among adjacent

axial CT scan slices. By leveraging the features extracted by the vision subnetwork, the sequence

learning module can understand the temporal dependencies and patterns present in the input data.

To ensure consistency and compatibility with the RSNA dataset, the input sequence length is set

to 60, which corresponds to the maximum number of slices in a CT scan. However, if a particular

CT scan contains fewer than 60 slices, zero-based padding is applied to the end of the sequence.

This padding strategy ensures that the input sequence length remains consistent across all samples.

During the validation process, the model predictions and target labels for the padded images are
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removed. This prevents the model from becoming biased toward empty images and ensures a fair

evaluation of its performance.

The classification module is implemented as a two-layer fully connected (FC) network. This

module receives the learned sequential information from the Bi-LSTM and performs further pro-

cessing to classify the input into specific subtypes of ICH. The FC network projects the sequential

information onto a lower-dimensional space and synthesizes it to make accurate subtype predic-

tions. In order to enhance the training process and improve generalization, several techniques are

applied within the classification module. Batch normalization is utilized to normalize the output

of the FC layers. This normalization step helps stabilize the training process by reducing the in-

ternal covariate shift and allowing the network to learn more effectively. To mitigate overfitting,

a dropout mechanism is employed. Dropout randomly sets a fraction of input units to zero dur-

ing training, which helps prevent the network from relying too heavily on specific features and

encourages the learning of more robust representations. By reducing overfitting, dropout enables

the model to generalize better and perform well on unseen data. Additionally, the Leaky Rectified

Linear Unit (Leaky ReLU) activation function defined in (4.1) is employed in the first layer of

the FC network. The Leaky ReLU function introduces non-linearity into the classifier, allowing

the network to model complex relationships between features. It also helps address the vanishing

gradient problem, which can hinder the training process in deep neural networks.

f(x) =


x, if x > 0

α · x, otherwise
, (4.1)

where x is the input to the function, and α is a small positive slope for negative input values that

helps to prevent dead neurons.

As illustrated in Fig. 4.11, the second FC layer is linear and contains six neurons that produce

class confidence scores. This layer does not contain any activation functions as the objective

function defined in (4.2) inherently performs a Sigmoid operation that outputs confidence scores

between 0 and 1. During inference, a Sigmoid operation is performed after the 2nd FC layer for

predicting the multi-hot classification label as shown in Fig. 4.11-(b). The sequence learning and
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the classification modules use a dropout rate of 0.2 and 0.3, respectively during training to reach a

generalized solution.

Figure 4.11: The top layer of the CNN-BiLSTM. It behaves differently during training and

testing.

4.1.4 Training Strategy

Loss function– During training, the optimizer minimizes the weighted multi-label binary cross

entropy with logits loss (BCE log) defined in (4.2). This loss function also served as the evaluution

metric in the RSNA competition. This loss function was used to ensure that the model’s training

process is directly aligned with the competition’s main objective. The loss function minimizes

any discrepancy between what the model optimizes for during training and what it’s evaluated on

during testing. It is widely used in binary classification tasks as it results in stable gradients during

optimization. This is especially important when using gradient-based optimization algorithms,

like the AdamW optimizer. Stable gradients contribute to faster convergence during training. In

addition, weighted multi-label binary cross entropy with logits loss accommodates adjusting class

weights. This is valuable when dealing with imbalanced datasets where one class has significantly

more samples than the other. By assigning appropriate weights to each class, the loss function can

give more importance to underrepresented classes, aiding in better model generalization.

BCE log = − 1

N

1

C

N∑
i=1

C∑
j=1

(wjyi,j log(ŷi,j)) + (1− yi,j) log(1− ŷi,j)) (4.2)
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where N , and C represent the total number of observations, and the total number of classes, re-

spectively. Hence, ŷi,j is a binary indicator (0 or 1) for whether an observation i belongs to class j,

and yi,j is the predicted probability that observation i belongs to class j. Each target yi,j may have

multiple positive values since a CT slice may contain multiple ICH subtypes. The weight assigned

to each class is denoted by wj , with a weight of 2 assigned to the ANY class, and a weight of 1

assigned to all other classes [14].

However, given the imbalanced nature of the data due to the significant rarity of ICH subtypes

across all three datasets, we propose modifying the weighting scheme to place additional emphasis

on successfully classifying ICH subtypes. Specifically, a weight of 30 is assigned to positive

samples of the EDH class and 6 to all other classes. Since EDH is very rare across all three

datasets, it was assigned a greater positive weight, which indicates that misclassifying an EDH

sample has a significantly higher penalty than misclassifying other ICH subtypes.

Training procedure– This work uses a two-step process for training the proposed model. Step-

I: the ImageNet pre-trained vision subnetwork is fine-tuned for 20 epochs using 2D CT scan slices

with a batch size of 128 to allow the vision network to adapt to the target domain, as shown in

Fig. 4.10-(a). The vision network achieved its lowest validation loss score on epoch 9. Step-II: A

view transformation is applied that reshapes the input dimensions to a sequence of slices instead of

a sequence of CT scans. The vision network’s trainable parameters are frozen to avoid overfitting

when the learner subnetwork is integrated with it. This also helps the model preserves its ability to

detect an information-rich set of primitive features from the input CT scan slices. The integrated

model–CNN-BiLSM is trained for additional epochs to fully adjust the parameters of the learner

subnetwork, while the parameters for the vision network remain unchanged. Fig. 4.10-(b) shows

its training progress, where the lowest validation loss score is found to be at the 16th epoch.

Optimizer– During the training process, the model’s parameters are adjusted in such a way

that the loss function is minimized, leading to better predictions. To accomplish this, an AdamW

optimizer is used is used to iteratively update these parameters based on the gradients of the loss

function with respect to the parameters. The AdamW optimizer extends the Adaptive Moment

Estimation (Adam) optimizer by incorporating a weight decay regularization term. AdamW main-
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tains the benefits of Adam’s adaptive learning rates, while simultaneously ensuring that weight

decay has a more pronounced impact on the optimization process. The incorporation of weight

decay penalizes large parameter values, which can lead to the model fitting the noise in the train-

ing data rather than learning the underlying patterns. The AdamW optimizer is mathematically

defined in (4.3).

wt = wt−1 −
η√

v̂t + ϵ
m̂t, (4.3)

where wt, m̂t, and v̂t is the weight, and estimates of the first and second moments of the gradients,

respectively at time t. Hence, η is the learning rate, and ϵ is a small constant to prevent division by

zero [73].

Learning rate scheduler– A one-cycle learning rate scheduler is used to optimize the training

process. The scheduler is designed to dynamically adjust the learning rate throughout the train-

ing epochs. By intelligently controlling the learning rate, the scheduler aims to strike a balance

between rapid convergence and avoidance of overshooting the optimal solution. The one-cycle

scheduler utilizes a cosine annealing strategy with a minimum learning rate of 1 × 10−5 and a

maximum learning rate of 3 × 10−4, as defined in (4.4). At the beginning of the training process,

when the model’s parameters are far from optimal, a higher learning rate encourages the model to

make more significant parameter adjustments and reduces the risk of stagnating at a suboptimal so-

lution in the optimization space. Near the end of the training process, the learning rate is gradually

decreased as it approaches the vicinity of the global optimal solution so that the model parameter

updates become smaller and more controlled.

ηt = ηmin +
1

2
(ηmax − ηmin)

(
1 + cos

(
Tcur

Ttotal

π

))
, (4.4)

where ηt, ηmin, and ηmax stand for the learning rate at iteration t, the minimum learning rate, and

the maximum learning rate, respectively. Tcur, Ttotal, and cos is the current training iteration, the

total number of training iterations, and the cosine function, respectively [74].

68



4.1.5 Grad-Cam Visualizations

Grad-CAM visualization is a technique used to visualize and comprehend the significant regions

of a CT scan slice that contribute to the prediction made by a CNN. The process involves com-

puting importance weights for different regions of the feature maps and generating a heatmap that

highlights the most influential areas in the CT scan slice for identifying the target class.

First, the gradient of the target class score, yc, with respect to the feature maps is computed

using backpropagation. Let ∂yc

∂Ak represent the gradient of yc with respect to the k-th feature map.

The importance weight, αc
k, of the k-th feature map in classifying the target class c is calculated as

the spatial average of the gradients, as parameterized in (4.5)

αc
k =

1

Z

∑
i

∑
j

∂yc

∂Ak
ij

, (4.5)

where Ak
ij denotes the activation value at position (i, j) in the k-th feature map, and Z is the spatial

dimensionality of the feature maps.

Next, the importance-weighted feature maps, Lk
c , for the target class c are computed by element-

wise multiplication between the importance weight and the corresponding feature map, as com-

puted in (4.6).

Lk
c = αc

k ·Ak. (4.6)

The weighted feature maps are then summed along the channel dimension to obtain a single

heatmap, Hc, that highlights the regions of the input CT scan slice most influential for the target

class c, as defined in (4.7).

Hc =
∑
k

Lk
c . (4.7)
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To emphasize the most important regions, an element-wise ReLU operation is applied to the

heatmap to generate the transformed heatmap, H+
c , as defined in (4.8).

H+
c = max(Hc, 0). (4.8)

The normalized heatmap, Hnorm
c , is obtained by scaling the values of the heatmap between 0

and 1, as expressed in (4.9).

Hnorm
c =

H+
c −min(H+

c )

max(H+
c )−min(H+

c )
. (4.9)

The normalized heatmap is upsampled to match the dimensions of the original input CT scan

slice. Finally, the heatmap is overlayed with the input CT scan slice, where the heatmap values

determine the intensity of the color to visualize the regions most relevant to the target class [75,

76].

4.2 Experimental Analysis

4.2.1 Environment

The proposed solution is developed using Python 3.10 and its open-source native libraries along

with PyTorch 1.13. The model development, training, and testing are carried out on a system with

an AMD Epyc 7413 processor with base clock speed of 2.65 GHz, and an NVIDIA A100 Tensor

Core GPU has 6,912 CUDA cores and 40 GB of HBM2 VRAM. The computational resources

have been generously provided by the Digital Research Alliance of Canada.

4.2.2 Evaluation Metrics

To evaluate the performance of the model, the following metrics are used: accuracy (4.10), sensi-

tivity (4.11), specificity (4.12), precision (4.13), and AUC. By employing these metrics, the per-
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formance of the model can be thoroughly evaluated, allowing for comparisons and assessments of

its effectiveness in classifying ICH.

Accuracy is the proportion of correctly classified samples, as in (4.10).

Accuracy =
TP + TN

TP + TN + FP + FN
, (4.10)

where TP refers to the number of true positives, which are the samples with ICH that are correctly

predicted by the model. TN refers to the number of true negatives, which are the samples without

ICH that are correctly identified by the model. FP refers to the number of false positives, which are

the samples that are incorrectly classified as having ICH. Finally, FN refers to the number of false

negatives, which are the samples with ICH that are incorrectly classified as not having hemorrhages

by the model.

Sensitivity is the proportion of true positive samples that are correctly identified by the model,

as defined in (4.11). A high sensitivity indicates that the model is effective at identifying positive

cases, which can be crucial in situations where false negatives are undesirable, such as medical

diagnoses.

Sensitivity =
TP

TP + FN
. (4.11)

Specificity is a complementary metric to sensitivity, indicating the proportion of true negative

samples correctly identified by the model, as defined in (4.12). High specificity indicates that the

model is effective at avoiding false alarms and is particularly important when false positives have

significant consequences, such as in medical diagnostics where unnecessary treatments might be

administered.

Specificity =
TN

TN + FP
. (4.12)

Precision focuses on how well the model performs among the instances it predicts as positive. It

indicates the proportion of correctly predicted positive cases out of all cases predicted as positive
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by the model. Precision is particularly important when the consequences of false positives are

high. For example, in medical testing, a high precision would imply that when the model predicts

a positive case, it is highly likely to be accurate. High precision also helps minimize unnecessary

interventions or treatments.

Precision =
TP

TP + FP
. (4.13)

On the other hand, the area under the curve, a.k.a. AUC represents the area under the receiver

operating characteristic (ROC) curve. An ROC curve is a graphical representation of the perfor-

mance of a binary classification model that plots the trade-off between its sensitivity and specificity

at various decision thresholds. Besides, weighted multi-label binary cross entropy with logits loss

defined in (4.2) is also used as one of the evaluation metrics following the RSNA competition

standards.
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4.2.3 Performance Analysis

Table 4.2: Performance of the proposed model on RSNA validation set, CQ500 dataset, and

PhysioNet datasets using the loss function defined in (4.2). The abbreviations BCE Loss and Inf.

Time refer to weighted multi-label binary cross entropy with logits loss and inference time,

respectively.

Dataset Evaluation Types of ICH Ave- BCE Inf.
Metric EDH IPH IVH SAH SDH ANY rage Loss Time

R
SN

A

Accuracy 0.9955 0.9834 0.9897 0.9742 0.9689 0.9600 0.9786

0.0501 11.7 ms
Sensitivity 0.2531 0.7987 0.8537 0.6905 0.7438 0.8722 0.8036
Specificity 0.9982 0.9925 0.9946 0.9885 0.9841 0.9746 0.9891
Precision 0.3481 0.8394 0.8473 0.7523 0.7606 0.8509 0.8151

AUC 0.9741 0.9909 0.9962 0.9813 0.9810 0.9869 0.9851

C
Q

50
0

Accuracy 0.9954 0.9819 0.9889 0.9727 0.9656 0.9577 0.9770

- 19.3 ms
Sensitivity 0.2065 0.7674 0.8298 0.6602 0.6682 0.8569 0.7714
Specificity 0.9983 0.9924 0.9946 0.9885 0.9858 0.9745 0.9893
Precision 0.2646 0.7989 0.8440 0.6838 0.7024 0.8677 0.8122

AUC 0.9708 0.9750 0.9927 0.9721 0.9777 0.9780 0.9777

Ph
ys

io
N

et

Accuracy 0.9952 0.9805 0.9875 0.9709 0.9651 0.9554 0.9758

- 12.5 ms
Sensitivity 0.1795 0.7338 0.7600 0.6189 0.6515 0.8118 0.7315
Specificity 0.9982 0.9926 0.9955 0.9887 0.9864 0.9792 0.9904
Precision 0.2786 0.7699 0.7754 0.6626 0.6739 0.8343 0.6852

AUC 0.9396 0.9872 0.9942 0.9764 0.9774 0.9809 0.9759
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Table 4.3: Performance of the proposed model on RSNA validation set, CQ500 dataset, and

PhysioNet datasets. The loss function defined in (4.2) is modified by assigning a weight of 30

to positive samples of the EDH class and 6 to all other classes. The abbreviations BCE Loss and

Inf. Time refer to weighted multi-label binary cross entropy with logits loss and inference time,

respectively.

Dataset Evaluation Types of ICH Ave- BCE Inf.
Metric EDH IPH IVH SAH SDH ANY rage Loss Time

R
SN

A

Accuracy 0.9346 0.9840 0.9897 0.9740 0.9647 0.9562 0.9692

0.0984 11.7 ms
Sensitivity 0.8468 0.9644 0.9861 0.9479 0.9665 0.9907 0.9744
Specificity 0.9369 0.9871 0.9919 0.9774 0.9667 0.9528 0.9689
Precision 0.8598 0.9658 0.9868 0.9497 0.9665 0.9868 0.9763

AUC 0.9404 0.9888 0.9946 0.9838 0.9865 0.9905 0.9808

C
Q

50
0

Accuracy 0.8781 0.9792 0.9840 0.9646 0.9583 0.9505 0.9525

- 19.3 ms
Sensitivity 0.8768 0.9744 0.9938 0.8992 0.9716 0.9940 0.9724
Specificity 0.8781 0.9794 0.9836 0.9679 0.9574 0.9433 0.9513
Precision 0.8769 0.9751 0.9929 0.9062 0.9699 0.9898 0.9756

AUC 0.9357 0.9892 0.9942 0.9637 0.9836 0.9895 0.9760

Ph
ys

io
N

et

Accuracy 0.9059 0.9536 0.9915 0.9747 0.9659 0.9585 0.9584

- 12.5 ms
Sensitivity 0.8426 0.9434 0.9849 0.9418 0.9629 0.9910 0.9699
Specificity 0.9061 0.9541 0.9918 0.9764 0.9661 0.9531 0.9577
Precision 0.8507 0.9441 0.9855 0.9459 0.9632 0.9856 0.9695

AUC 0.9244 0.9756 0.9939 0.9800 0.9833 0.9894 0.9744

RSNA– Since the ground truth labels for the test set are not provided in the RSNA dataset,

the model’s performance on the test set can not be assessed using the evaluation metrics stated in

Section 4.2.2. Instead, the model is assessed using the validation set, and the results are tabulated

in Table 4.2. In this case, the model uses the loss function defined in (4.2). The model obtains aver-

age accuracy, sensitivity, specificity, precision, and AUC scores of 0.9786, 0.8036, 0.9891, 0.8151,

and 0.9852, respectively. The model has the most difficulty with identifying the EDH class as it

only obtains a sensitivity of 0.2531. This is likely because this class is severely underrepresented

in the class distribution of the dataset. The proposed model achieves excellent AUC scores of

0.9741, 0.9909, 0.9962, 0.9813, 0.9810, and 0.9869 for the subtypes EDH, IPH, IVH, SAH, SDH,

and ANY, respectively. The deep learning model, enriched with comprehensive data augmenta-
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tions, yields a significant improvement in performance, as evidenced by a 25.5% reduction in the

weighted multi-label logarithmic score from 0.0672 to 0.0501.

Table 4.3 shows the performance of the proposed model when modifying the weighting scheme

by assigning a weight of 30 to positive samples of the EDH class and 6 to all other classes. This

modification enables the model to achieve a notable increase in average sensitivity on the RSNA

dataset, rising from 0.8036 to 0.9744, while experiencing only a slight reduction in specificity,

from 0.9891 to 0.9744.

In the context of medical emergencies, prioritizing higher sensitivity is generally preferred over

specificity. Sensitivity refers to the ability of the model to correctly identify true positive cases, i.e.,

correctly detecting patients with ICH. Having a higher sensitivity in medical emergencies is crucial

because it reduces the likelihood of missing critical cases. In the scenario of ICH, identifying these

cases promptly is crucial as timely medical attention and treatment can significantly impact patient

outcomes and potentially save lives. While specificity is also essential, it measures the ability

of the model to correctly identify true negative cases, i.e., correctly classifying patients without

ICH as not having the condition. A slightly lower specificity is generally acceptable in medical

emergencies because the primary concern is to identify true positive cases effectively.

While this modification is likely preferable in clinical practice, it is suboptimal for optimizing

results in the RSNA competition where the weighted multi-label logarithmic loss evaluation metric

is prioritized. The positive weighting scheme, while beneficial for clinical practice, leads to a

higher test loss score of 0.0984 compared to 0.0501 without the positive weighting scheme in the

competition setting.

The predictions on the test set are uploaded to the RSNA competition site to compute the

model’s performance in terms of weighted multi-label logarithmic loss and to compare it with

the existing solutions. The proposed model achieves a weighted multi-label logarithmic loss of

0.0501 (cf. Table 4.4). It reduces the weighted multi-label logarithmic loss by 6.2% in comparison

to the baseline model introduced by Ngo et al. while being significantly more computationally

efficient. Their solution involves using seven consecutive slices during inference to generate a

single prediction for the center slice whereas the proposed model only loads each image once.
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Table 4.4: Performance Comparison of Various Models on RSNA Test set using the loss function

defined in (4.2). ”–”: Data Not Available, DA: Data Augmentation

Model Name Loss % of Inference
Improvement Time

CNN-GRU [12] 0.0659 23.4 ↓ –
CNN Ensemble [56] 0.0548 2.6 ↓ –

CNN + Axial Fusion [45] 0.0534 Baseline –
CNN Ensemble + ViT [49] 0.0705 32.0 ↓ –

CNN-BiLSTM [48] 0.0522 2.2 ↑ –
CNN-LSTM [77] 0.0753 41.0 ↓ –

CNN-BiLSTM w/o DA (ours) 0.0672 25.8 ↓ 11.7 ms
CNN-BiLSTM w/t DA (ours) 0.0501 6.2 ↑ 11.7 ms

The baseline model only uses information from six adjacent slices for class prediction of each

slice and does not consider long-term sequential dependencies. In contrast, the proposed solution

uses sequential information from all slices in a CT scan to make a more accurate prediction.

The proposed model has an average inference speed of only 11.7 ms per CT scan. Unfortu-

nately, the other studies in Table 4.4 do not record any timing analysis. It can be deduced that

the proposed solution offers the lowest inference time since the EfficientNetV2 contains fewer

computations than the architectures used by other studies. This is because the EfficientNetV2-

Small architecture contains depthwise separable convolutions and squeeze-and-excitation blocks

to reduce the number of trainable parameters [71]. For example, the EfficientNetV2-Small archi-

tecture used in this study contains 21.5 million parameters whereas the ResNet architectures used

by Ngo et al. contains 25.6 million parameters.

CQ500– Using the loss function described in (4.2), the model obtains average accuracy, sen-

sitivity, specificity, precision, and AUC scores of 0.9770, 0.7714, 0.9893, 0.8122, and 0.9777,

respectively. The model has the most difficulty with identifying the EDH class as it only obtains

a sensitivity of 0.2065. This is likely because this class is severely underrepresented in the class

distribution of the RSNA training dataset. Consequently, the proposed model struggles to adapt

its parameters to discern the unique characteristics of EDH, resulting in a reduced sensitivity score

for EDH on the CQ500 dataset. The proposed model achieves excellent AUC scores of 0.9708,
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0.9750, 0.9927, 0.9721, 0.9777, and 0.9780 for the subtypes EDH, IPH, IVH, SAH, SDH, and

ANY, respectively.

Table 4.3 presents the results of the proposed model’s performance when altering the weighting

approach. Specifically, it assigns a weight of 30 to positive samples in the EDH class and a weight

of 6 to all other classes. This adjustment allows the model to significantly improve its average

sensitivity on the CQ500 dataset, increasing from 0.7714 to 0.9724, while only slightly decreasing

specificity from 0.9893 to 0.9513.

Table 4.5: Performance Comparison of Various Models on CQ500 dataset using the loss function

defined in (4.2) with a weight of 30 assigned to positive samples of the EDH class and 6 to all

other classes. ”–”: Data Not Available.

Model Name Sensitivity Specificity Precision AUC Inf. Time
CNN + RF [19] 0.942 0.710 – 0.942 –

Intensity and shape features + KNN[52] 0.969 0.947 – – –
RoLo [78] 0.943 0.856 – 0.957 –

CNN-ELM [79] 0.953 0.977 0.963 – –
CNN-BiLSTM (ours) 0.972 0.951 0.956 0.960 19.3 ms

Although the model was not trained directly on the CQ500 dataset, the model was able to

effectively learn ICH representation and retain high performance on unseen data. The CQ500

dataset differs from the RSNA dataset in terms of the CT scanner used, CT slice thickness, and

patient characteristics. As presented in Table 4.5, the proposed model outperforms state-of-the-art

methods in terms of sensitivity and AUC while maintaining a competitive precision and specificity.

The proposed solution overcomes a common limitation of other state-of-the-art studies on the

CQ500 dataset in Table 4.5 by exploiting the sequential nature of CT scans. The learner subnet-

work in the proposed solution is able to learn the temporal dependencies of slices in each CT scan

to enhance the model’s predictive capabilities. Hence, the model uses information about how an

ICH evolves over time across all slices in a CT scan to improve its predictive capabilities. In con-

trast, the other studies treat each slice independently which may cause them to miss out on valuable

information embedded in the sequence and have reduced performance.
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Chilamkurthy et al. developed a CNN, based on the ResNet18 architecture, to extract features

that serve as input for an RF model for generating classification predictions. However, an RF

model may face difficulties with grasping spatial context from the CNN feature embeddings alone

[19].

Raghavendra et al. extracted shape and intensity based features from their training dataset.

Nature-inspired meta-heuristics algorithms, including BA, GWO, and WOA, were used to select

the best set of features. The selected features were then used to train a KNN classifier for ICH

subtype classification. However, extracting handcrafted features of ICH may not capture general-

ized ICH representations as effectively as a CNN that can learn complex spatial and hierarchical

features from raw pixels. As a result, this model may struggle if tested in a different clinical setting

[52].

Guo et al. proposed a weakly supervised approach. In this method, a ResNet18 CNN model

was also used for feature extraction which was combined with an attention module. However,

weakly supervised approaches generally do not achieve the same level of accuracy as fully su-

pervised methods like a CNN-BiLSTM, where ground truth labels are available for training. The

ResNet18 architecture is less sophisticated than the EfficientNetV2-Small architecture used in this

work, which may reduce its ability to learn generalized ICH feature representations [78].

Santhoshkumar et al. used Tsallis entropy with GOA to identify the ROI. Then, a DenseNet

CNN model was combined with an ELM for ICH classification. The use of these image-preprocessing

strategies may lead to increased computational complexity and difficulty in fine-tuning hyperpa-

rameters. ELM assigns random or fixed weights to input features, and as a result, it may not

effectively handle irrelevant or noisy features in CT scan slices [79].

PhysioNet– Using the loss function described in (4.2), the model obtains average accuracy,

sensitivity, specificity, precision, and AUC scores of 0.9758, 0.7315, 0.9904, 0.6852, and 0.9759,

respectively. The model has the most difficulty with identifying the EDH class as it only obtains

a sensitivity of 0.1795. This is likely because this class is severely underrepresented in the class

distribution of the RSNA training dataset. Hence, the proposed model encounters obstacles in

adjusting its parameters to effectively capture the distinctive features of EDH, leading to a reduced
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sensitivity score for EDH in the PhysioNet dataset. The proposed model achieves excellent AUC

scores of 0.9396, 0.9872, 0.9942, 0.9764, 0.9774, and 0.9809 for the subtypes EDH, IPH, IVH,

SAH, SDH, and ANY, respectively. The proposed model has an inference time of 12.5 ms for

processing an entire CT scan.

Table 4.3 shows the performance of the proposed model when modifying the weighting scheme

by assigning a weight of 30 to positive samples of the EDH class and 6 to all other classes. This

modification enables the model to achieve a notable increase in average sensitivity on the Phys-

ioNet dataset, rising from 0.7315 to 0.9699, while experiencing only a slight reduction in speci-

ficity, from 0.9904 to 0.9577.

Since the dataset contains masks that delineate the ICH regions, all reviewed studies have

developed segmentation models for detecting ICH. To the best of our knowledge, this is the only

study to validate the performance of a classification model on the PhysioNet dataset.

Grad-CAM– This study aims to address a significant limitation of DL models, which often

face criticism for being ”black box” algorithms. These algorithms tend to generate predictions

that lack explainability due to their complex internal workings. To overcome this limitation, Grad-

CAM visualizations are used to highlight regions in CT scan slices that have the greatest impact on

the final predictions made by the mode. This visualization technique enables radiologists to assess

the accuracy of the model’s classification predictions. In cases where the model misclassifies,

radiologists can examine whether the model is giving undue importance to specific aspects of the

CT scan slice. Consequently, appropriate measures can be taken to mitigate this issue. The ability

to detect and interpret misclassifications is a crucial step toward developing a system that is both

correctable and reliable. Moreover, this technique allows for the visual localization of ICH without

requiring pixel-level annotations labelled by radiologists to train the model [50].

Fig. 4.12 presents Grad-Cam visualizations that identify regions with CT scan slices with the

highest probability of ICH presence.
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Figure 4.12: Grad-Cam visualizations showcase ICH subtypes for every CT scan slice. These

visualizations effectively pinpoint regions within the slice where the DL model identifies the

highest probability of ICH presence. The highlighted areas in red signify a higher likelihood of

ICH, whereas the regions in blue indicate a lower probability.

4.3 Conclusion

ICH is a life-threatening condition that requires immediate medical attention. Rapid and accurate

diagnosis of ICH is essential for initiating timely treatment, which can significantly impact patient

outcomes and improve survival rates. A DL model holds the potential to be used as a triage tool to

flag potential ICH cases for further examination by a trained radiologist.

The proposed CNN-BiLSTM classification framework has been developed to automatically

identify ICH in CT scan images. Windowing is used as an image preprocessing technique to en-

hance contrast and highlight potential abnormalities while data augmentations are introduced to

increase the diversity of the training dataset. The Vision Network employs a 2-D CNN to learn

feature representations of ICH while a BiLSTM network captures sequential patterns among CT

scan slices. The trained model is evaluated on RSNA test set, CQ500, and PhysioNet-ICH datasets.

Key metrics like sensitivity, specificity, precision, AUC, and weighted logarithmic loss are used to

assess its ability to identify ICH instances. Grad-Cam visualization was then used to highlight the

regions of the CT scan slices that contribute the most in generating its final classification predic-

tions.
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The proposed CNN-BiLSTM classification framework demonstrated excellent performance

and generalizability on three datasets. The model achieves an average AUC of 0.9851, 0.9777,

and 0.9757 on the RSNA, CQ500, and PhysioNet datasets. Notably, the proposed model achieves

a 6.2% reduction in the weighted multi-label logarithmic evaluation metric on the RSNA dataset

compared to the baseline model proposed by Ngo et al. that combines a CNN with axial fusion

[45]. In addition, it outperforms state-of-the-art methods on the CQ500 dataset in terms of sensi-

tivity, and AUC while maintaining competitive precision and specificity performance.

One of the key strengths of this framework is its efficiency in terms of computation time.

During inference, the model only required 11.7 ms, 12.5 ms, and 19.3 ms to process an entire CT

scan on the RSNA, CQ500, and PhysioNet datasets, respectively. This fast inference time is vital,

especially in real-time applications, where timely responses can be potentially life-saving.

The model with the weighted multi-label logarithmic loss defined in (4.2) obtains compara-

tively lower sensitivity performance than specificity since ICH is underrepresented across all three

datasets. The model obtains average sensitivity scores of 0.8038, 0.7714, and 0.7315 compared

to average specificity scores of 0.9891, 0.9893, and 0.9904 on the RSNA, CQ500, and PhysioNet

datasets respectively. To mitigate this limitation, the loss function defined in (4.2) is modified by

assigning a weight of 30 to positive samples of the EDH class and 6 to all other classes. This ef-

fectively bolstered the sensitivity scores to 0.9744, 0.9724, and 0.9699 while only causing a slight

decrease in specificity scores of 0.9689, 0.9513, and 0.9577.

4.4 Future Directions

This study employed the EfficientNetV2-Small architecture for learning feature representations of

ICH. However, future research could explore the use of larger architectures such as EfficientNetV2-

Medium or EfficientNetV2-Large. By increasing the model’s capacity, it can better leverage the

available training data and potentially enhance its performance. Larger architectures contain more

parameters which may the model to capture more intricate patterns and features. With this in mind,
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it is important to also consider the computational resources necessary for training and deploying a

larger model.

Grad-CAM visualizations were used to identify the regions of CT scan slices that significantly

contributed to the model’s predictions. However, the analysis did not involve identifying areas

where the model may have made errors. To address this, it would have been valuable to involve

experienced radiologists in reviewing Grad-CAM visualizations for cases of false positives or false

negatives. Radiologists’ expertise and feedback can enhance the model’s performance and uncover

potential areas of improvement. Establishing a feedback loop between the model and radiologists

can lead to continuous refinement and bolster the system’s overall reliability.

In the study, the loss function was modified to prioritize the accurate classification of under-

represented ICH subtypes across the three datasets. An alternative approach that could have been

explored is oversampling the ICH samples to address the class imbalance. By increasing the num-

ber of training examples for ICH, the model can become more familiar with the specific features

and patterns associated with ICH. Oversampling the minority class provides the model with a

more balanced distribution of samples during training which can lead to improved generalization

and sensitivity towards ICH.
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Chapter 5

An Improved CNN-BiLSTM Model with

Multi-head Attention for Intracranial

Hemorrhage Classification

5.1 Overview

This chapter proposes incorporating a multi-head attention mechanism into the Learner Subnet-

work module of the CNN-BiLSTM CT scan classification framework described in Chapter 4. The

multi-head attention mechanism enables the model to better learn global dependencies and cap-

ture long-range interactions within the sequential feature embeddings produced by the BiLSTM. It

accomplishes this by concentrating on the most pertinent aspects of the feature embeddings. By di-

recting its attention to these crucial areas, the proposed model demonstrates an im-proved ability to

identify patterns associated with ICH, resulting in improved predictive performance. An ablation

study is conducted to determine the optimal number of attention heads needed in the multi-head

attention mechanism design.
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5.2 Proposed Solution

The incorporation of a multi-head attention mechanism into the learner subnetwork architecture

aims to improve the model’s capacity to capture and understand the intricate sequential depen-

dencies present among the various slices of CT scans. As illustrated in Fig. 5.1, the multi-head

attention mechanism operates on the hidden states derived from the BiLSTM. These hidden states

contain valuable information encapsulating temporal relationships and dependencies among the

slices. The multi-head attention mechanism acts as a discerning filter for this temporal infor-

mation. It enables the model to focus its attention on the most salient and contextually relevant

characteristics within the sequence of hidden output states produced by the BiLSTM. This selective

attention is pivotal because it allows the model to emphasize and weigh certain slices or temporal

patterns more heavily, depending on their significance for the given task. Hence, the multi-head

attention mechanism produces an enriched representation of the sequential data which is subse-

quently channeled into the FC layers. The FC layers serve as the final computational stage where

the model uses its learned knowledge to generate final classification predictions.

Figure 5.1: A flowchart of the modified Learner Subnetwork architecture with the incorporation

of a multi-head attention mechanism.

To accommodate varying CT scan lengths resulting from the number of slices taken, masking is

employed to efficiently manage input sequences of different sizes without the need for uniformity.

84



Masking is used to prevent the model from directing its attention to padded positions in the input

sequences. This is pivotal as incorporating irrelevant information can introduce noisy or erroneous

attention patterns. By systematically masking out padded positions, the model can better focus

on the valuable content within each sequence. Furthermore, masking contributes to optimizing

computational efficiency during both training and inference. By allowing the model to disregard

padded slices, it eliminates the need to process and attend to every position in input sequences,

thus reducing unnecessary computational overhead.

To enhance the overall performance of the system, a thorough ablation study is conducted that

focuses on fine-tuning the number of attention heads used in the multi-head attention mechanism.

Specifically, three different configurations were tested, each with a varying number of attention

heads — 4, 8, and 16. After analyzing the performance outcomes, the number of attention heads

that yields the highest overall performance was identified.

Furthermore, to address the class imbalance problem, an additional experiment is then con-

ducted using the optimal number of attention heads, and the loss function defined in (4.2) with a

weight of 30 assigned to positive samples of the EDH class and 6 to all other classes. This class

weighting scheme helps to ensure that the model places a higher emphasis on correctly identifying

instances of ICH subtypes due to their rarity across all three benchmark datasets.

It is essential to highlight that these experiments and analyses are carried out using a consistent

procedure and set of hyperparameters that have been detailed in Section 4.1 – Proposed Solution.

This consistency ensures that the results obtained can be reliably compared and that any observed

improvements or changes can be attributed to the specific variations being tested, such as the

number of attention heads or the class weighting scheme.

5.3 Experimental Analysis

Based on the experimental results in Tables 5.1- 5.3, the number of attention heads has a marginal

impact on the performance evaluation metrics. However, using 8 attention heads for the multi-

head attention mechanism exhibits slightly better performance. In Table 5.1, using 8 attention
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heads leads to a lower weighted log loss score of 0.0482 for the RSNA dataset compared to 0.0488

and 0.0484 when using 4 and 16 attention heads, respectively. In Table 5.2, using 8 attention heads

leads to an average AUC of 0.9797 for the CQ500 dataset compared to 0.9795 and 0.9796 when

using 4 and 16 attention heads, respectively. In Table 5.3, using 8 attention heads leads to an

average AUC of 0.9778 for the PhysioNet dataset compared to 0.9771 and 0.9776 when using 4

and 16 attention heads, respectively.

Figure 5.2: Training progress of the integrated CNN-BiLSTM model with the inclusion of 8

attention heads. During the training of the CNN-BiLSTM, the vision network’s parameters are

not updated, i.e., kept frozen.

Since the inclusion of the multi-head attention mechanism in the learner subnetwork does not

impact the vision network architecture, it is not necessary to retrain the vision network. The train-

ing progress of the integrated CNN-BiLSTM model, featuring the optimal number of 8 attention

heads, is visually represented in Fig. 5.2. Upon introducing the multi-head attention mechanism,

the validation loss scores exhibit an initial increase during the first four epochs of training, as

compared to the training progress of the model without the multi-head attention mechanism, as

depicted in Fig. 4.10-(b). This phenomenon can be attributed to the initial learning challenges
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faced by the multi-head attention mechanism in effectively attending to various input sequences.

However, as the training proceeds, the multi-head attention mechanism gradually becomes more

effective in learning relevant temporal information, resulting in lower validation loss scores after

the fifth epoch. The CNN-BiLSTM model with 8 attention heads achieves its lowest validation

loss on epochs 15 and 17 of 0.0479 and its highest validation AUC score on epoch 15 of 0.9869.

Table 5.1: Performance of the proposed model using 4, 8, and 16 attention heads on RSNA

validation set while using the loss function defined in (4.2). The abbreviations BCE Loss and Inf.

Time refer to weighted multi-label binary cross entropy with logits loss and inference time,

respectively.

Heads Evaluation Types of ICH Ave- BCE Inf.
Metric EDH IPH IVH SAH SDH ANY rage Loss Time

4

Accuracy 0.9854 0.9842 0.9895 0.9746 0.9679 0.9591 0.9785

0.0488 12.0 ms
Sensitivity 0.2783 0.8317 0.8638 0.7267 0.7628 0.8816 0.8221
Specificity 0.9981 0.9917 0.9939 0.9871 0.9818 0.9720 0.9878
Precision 0.3744 0.8411 0.8780 0.7425 0.7951 0.8891 0.8014

AUC 0.9802 0.9954 0.9892 0.9878 0.9731 0.9820 0.9863

8

Accuracy 0.9853 0.9842 0.9895 0.9747 0.9680 0.9592 0.9785

0.0482 12.0 ms
Sensitivity 0.2819 0.8309 0.8636 0.7270 0.7637 0.8820 0.8223
Specificity 0.9981 0.9917 0.9940 0.9872 0.9818 0.9720 0.9878
Precision 0.3487 0.8514 0.8784 0.7465 0.7891 0.8905 0.8018

AUC 0.9814 0.9955 0.9907 0.9873 0.9736 0.9828 0.9869

16

Accuracy 0.9854 0.9842 0.9895 0.9746 0.9680 0.9591 0.9785

0.0484 12.0 ms
Sensitivity 0.2837 0.8320 0.8621 0.7252 0.7638 0.8817 0.8220
Specificity 0.9981 0.9917 0.9940 0.9872 0.9819 0.9720 0.9878
Precision 0.3621 0.8558 0.8728 0.7499 0.7935 0.8936 0.8018

AUC 0.9821 0.9955 0.9900 0.9878 0.9729 0.9827 0.9868
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Table 5.2: Performance of the proposed model using 4, 8, and 16 attention heads on CQ500

dataset while using the loss function defined in (4.2).

Heads Evaluation Types of ICH Ave- Inf.
Metric EDH IPH IVH SAH SDH ANY rage Time

4

Accuracy 0.9954 0.9823 0.9891 0.9730 0.9665 0.9583 0.9774

19.8 ms
Sensitivity 0.2208 0.7748 0.8345 0.6663 0.6809 0.8605 0.7778
Specificity 0.9983 0.9925 0.9946 0.9885 0.9858 0.9745 0.9894
Precision 0.3214 0.8003 0.8570 0.6919 0.7107 0.8708 0.8140

AUC 0.9714 0.9785 0.9942 0.9749 0.9784 0.9798 0.9795

8

Accuracy 0.9954 0.9822 0.9891 0.9731 0.9666 0.9584 0.9774

19.8 ms
Sensitivity 0.2118 0.7742 0.8337 0.6673 0.6813 0.8614 0.7782
Specificity 0.9983 0.9925 0.9946 0.9885 0.9859 0.9745 0.9894
Precision 0.2610 0.8053 0.8543 0.6971 0.7215 0.8714 0.8141

AUC 0.9714 0.9787 0.9944 0.9751 0.9785 0.9800 0.9797

16

Accuracy 0.9954 0.9823 0.9891 0.9730 0.9665 0.9584 0.9775

19.9 ms
Sensitivity 0.2101 0.7754 0.8360 0.6667 0.6822 0.8614 0.7786
Specificity 0.9983 0.9925 0.9946 0.9885 0.9858 0.9745 0.9894
Precision 0.2500 0.7993 0.8485 0.7129 0.7109 0.8681 0.8139

AUC 0.9713 0.9787 0.9944 0.9751 0.9785 0.9800 0.9796

Table 5.3: Performance of the proposed model using 4, 8, and 16 attention heads on the

PhysioNet dataset using the loss function defined in (4.2).

Heads Evaluation Types of ICH Ave- Inf.
Metric EDH IPH IVH SAH SDH ANY rage Time

4

Accuracy 0.9953 0.9818 0.9890 0.9723 0.9674 0.9585 0.9774

12.8 ms
Sensitivity 0.2029 0.7605 0.8022 0.6487 0.6871 0.8336 0.7597
Specificity 0.9982 0.9926 0.9956 0.9887 0.9864 0.9792 0.9904
Precision 0.2784 0.7860 0.8234 0.6851 0.7192 0.8412 0.7084

AUC 0.9379 0.9884 0.9950 0.9782 0.9795 0.9842 0.9771

8

Accuracy 0.9953 0.9820 0.9890 0.9727 0.9680 0.9593 0.9777

12.8 ms
Sensitivity 0.2065 0.7652 0.8049 0.6551 0.6979 0.8398 0.7662
Specificity 0.9982 0.9926 0.9956 0.9887 0.9863 0.9792 0.9904
Precision 0.2936 0.7809 0.8242 0.6820 0.7190 0.8503 0.7112

AUC 0.9394 0.9887 0.9953 0.9787 0.9800 0.9850 0.9778

16

Accuracy 0.9953 0.9820 0.9890 0.9726 0.9681 0.9592 0.9777

12.8 ms
Sensitivity 0.2101 0.7656 0.8018 0.6532 0.6976 0.8381 0.7650
Specificity 0.9982 0.9926 0.9957 0.9887 0.9864 0.9793 0.9904
Precision 0.2828 0.7813 0.8218 0.6954 0.7242 0.8496 0.7119

AUC 0.9384 0.9886 0.9952 0.9786 0.9799 0.9849 0.9776
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Table 5.4: Performance of the proposed model RSNA validation set, CQ500 dataset, and

PhysioNet while using 8 attention heads. The loss function defined in (4.2) is modified by

assigning a weight of 30 to positive samples of the EDH class and 6 to all other classes.

Dataset Evaluation Types of ICH Ave- BCE Inf.
Metric EDH IPH IVH SAH SDH ANY rage Loss Time

R
SN

A

Accuracy 0.9402 0.9859 0.9910 0.9749 0.9664 0.9585 0.9715

0.0947 12.0 ms
Sensitivity 0.8684 0.9693 0.9896 0.9530 0.9680 0.9914 0.9770
Specificity 0.9425 0.9889 0.9931 0.9781 0.9684 0.9554 0.9712
Precision 0.8776 0.9722 0.9899 0.9563 0.9680 0.9879 0.9826

AUC 0.9477 0.9917 0.9960 0.9842 0.9862 0.9908 0.9828

C
Q

50
0

Accuracy 0.8940 0.9829 0.9883 0.9691 0.9631 0.9552 0.9588

- 19.8 ms
Sensitivity 0.8821 0.9779 0.9909 0.9021 0.9715 0.9960 0.9738
Specificity 0.8940 0.9832 0.9882 0.9725 0.9625 0.9484 0.9578
Precision 0.8831 0.9784 0.9907 0.9063 0.9707 0.9890 0.9769

AUC 0.9387 0.9910 0.9943 0.9677 0.9842 0.9904 0.9777

Ph
ys

io
N

et

Accuracy 0.9110 0.9557 0.9924 0.9766 0.9679 0.9594 0.9605

- 12.8 ms
Sensitivity 0.8409 0.9503 0.9862 0.9538 0.9670 0.9922 0.9740
Specificity 0.9113 0.9560 0.9926 0.9778 0.9680 0.9540 0.9597
Precision 0.8452 0.9508 0.9867 0.9560 0.9672 0.9882 0.9726

AUC 0.9334 0.9783 0.9934 0.9838 0.9848 0.9899 0.9773

RSNA– Since the ground truth labels for the test set are not provided in the RSNA dataset,

the model’s performance on the test set can not be assessed using the evaluation metrics stated

in Section 4.2.2. Instead, the model is assessed using the validation set. The results of using

varying numbers of attention heads for training the proposed model on the RSNA dataset are

tabulated in Table 5.1. In these experiments, the model uses the loss function described in (4.2).

Using 8 attention heads, the model obtains average accuracy, sensitivity, specificity, precision, and

AUC scores of 0.9785, 0.8223, 0.9878, 0.8018, and 0.9869, respectively. The model has the most

difficulty with identifying the EDH class as it only obtains a sensitivity of 0.2819. This is likely

because this class is severely underrepresented in the class distribution of the dataset. The proposed

model achieves excellent AUC scores of 0.9814, 0.9955, 0.9907, 0.9873, 0.9736, and 0.9828 for

the subtypes EDH, IPH, IVH, SAH, SDH, and ANY, respectively. The model requires 12.0 ms to

process an entire sequence of CT scans.
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Table 5.4 shows the performance of the proposed model while using 8 attention heads when

modifying the weighting scheme by assigning a weight of 30 to positive samples of the EDH class

and 6 to all other classes. This modification enables the model to achieve a notable increase in

average sensitivity on the RSNA dataset, rising from 0.8223 to 0.9770, while experiencing only

a slight reduction in specificity, from 0.9894 to 0.9712. However, this drastically increased the

weighted multi-label logarithmic score from 0.0482 to 0.0947.

CQ500– The results of using varying numbers of attention heads for training the proposed

model on the CQ500 dataset are tabulated in Table 5.2. In these experiments, the model uses the

loss function described in (4.2). Using 8 attention heads, the model obtains average accuracy,

sensitivity, specificity, precision, and AUC scores of 0.9714, 0.9787, 0.9944, 0.9751, and 0.99785,

respectively. The model has the most difficulty with identifying the EDH class as it only obtains

a sensitivity of 0.2118. This is likely because this class is severely underrepresented in the class

distribution of the dataset. The proposed model achieves excellent AUC scores of 0.9714, 0.9787,

0.9944, 0.9751, 0.9785, and 0.9800 for the subtypes EDH, IPH, IVH, SAH, SDH, and ANY,

respectively. The model requires 19.8 ms to process an entire sequence of CT scans.

Table 5.4 shows the performance of the proposed model while using 8 attention heads when

modifying the weighting scheme by assigning a weight of 30 to positive samples of the EDH class

and 6 to all other classes. This modification enables the model to achieve a notable increase in

average sensitivity on the CQ500 dataset, rising from 0.7782 to 0.9738, while experiencing only a

slight reduction in specificity, from 0.9878 to 0.9578.

PhysioNet– The results of using varying numbers of attention heads for training the proposed

model on the RSNA dataset are tabulated in Table 5.3. In these experiments, the model uses the

loss function described in (4.2). Using eight attention heads, the model obtains average accuracy,

sensitivity, specificity, precision, and AUC scores of 0.9777, 0.7662, 0.9904, 0.7112, and 0.9778,

respectively. The model has the most difficulty with identifying the EDH class as it only obtains

a sensitivity of 0.2065. This is likely because this class is severely underrepresented in the class

distribution of the RSNA training dataset. The proposed model achieves excellent AUC scores of

0.9384, 0.9887, 0.9953, 0.9787, 0.9800, and 0.9850 for the subtypes EDH, IPH, IVH, SAH, SDH,

90



and ANY, respectively. The proposed model has an inference time of 12.8 ms for processing an

entire CT scan.

Table 5.4 shows the performance of the proposed model while using 8 attention heads when

modifying the weighting scheme by assigning a weight of 30 to positive samples of the EDH class

and 6 to all other classes. This modification enables the model to achieve a notable increase in

average sensitivity on the PhsyioNet dataset, rising from 0.7662 to 0.9740, while experiencing

only a slight reduction in specificity, from 0.9904 to 0.9597.
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5.4 Conclusion

In this chapter, a multi-head attention mechanism was integrated into the design of the Learner Sub-

network module of the CNN-BiLSTM CT scan classification framework described in Chapter 4.

The primary goal of this attention mechanism is to facilitate the model in better understanding

global dependencies and capturing long-range interactions within the sequential feature embed-

dings generated by the BiLSTM. The multi-head attention mechanism achieves this by selectively

focusing on the most relevant aspects of the feature embeddings. This targeted attention allows

the proposed model to excel in identifying essential patterns associated with ICH, resulting in a

marginal boost in predictive performance.

To fine-tune the multi-head attention mechanism’s design, an ablation study is carried out to

determine the optimal number of attention heads required. The experimental results indicate that

using 8 attention heads for the multi-head attention mechanism is marginally better than using 4

or 16 attention heads. While the multi-head attention mechanism does slightly increase inference

time, its improved predictive accuracy can be valuable in clinical settings with sufficient hardware

resources to manage the added computational load. The experimental results across three datasets

demonstrate the effectiveness of incorporating a multi-head attention mechanism into the CNN-

BiLSTM design.

While a multi-head attention mechanism was incorporated after the Bi-LSTM, it may also be

beneficial to consider incorporating an attention mechanism into the Vision Network. By incor-

porating attention into the Vision Network, the model can focus on specific regions or features of

the input image that are most relevant to the task at hand. For instance, the inclusion of spatial at-

tention following the final convolutional layer empowers the network to selectively prioritize vital

visual cues. Spatial attention has the potential to enhance the model’s capacity to extract pertinent

features and consequently improve its predictive capabilities.
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Chapter 6

Conclusion

Accurate and early detection of ICH through the use of DL models has the potential to significantly

impact patient outcomes. Timely detection allows for prompt intervention and treatment, leading

to improved prognosis and reduced morbidity and mortality rates. The integration of this model

into clinical practice can optimize the workflow of radiologists and healthcare providers which

may save valuable time and resources.

The proposed classification framework, CNN-BiLSTM, was designed to automatically detect

Intracranial Hemorrhage (ICH) in CT scan images. To improve image contrast and identify poten-

tial abnormalities, windowing was employed as a preprocessing technique, and data augmentations

were introduced to diversify the training dataset. The Vision Subnetwork uses a 2-D CNN to learn

feature representations of ICH, while the BiLSTM network captures sequential patterns in CT

scan slices. The performance of the trained model was evaluated on multiple datasets, including

RSNA-ICH test set, CQ500, and PhysioNet-ICH. Various key metrics such as sensitivity, speci-

ficity, precision, AUC, and weighted logarithmic loss were used to measure its ability to identify

instances of ICH. To gain insights into the model’s decision-making process, Grad-Cam visualiza-

tion was utilized. This technique highlights the regions of the CT scan slices that contribute the

most to the final classification predictions.

The experimental results in Chapter 4 demonstrate the exceptional performance and adaptabil-

ity of the proposed CNN-BiLSTM classification framework across three datasets. Compared to the
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baseline model by Ngo et al. that combines a CNN with axial fusion, the proposed model achieves

a 6.2% reduction in the weighted multi-label logarithmic evaluation metric on the RSNA dataset.

Furthermore, on the CQ500 dataset, our model outperforms state-of-the-art methods in sensitivity,

precision, and AUC, while maintaining competitive specificity performance. During inference, the

model only requires 11.7 ms, 12.5 ms, and 19.3 ms to process an entire CT scan on the RSNA,

CQ500, and PhysioNet datasets, respectively. Such rapid inference times are crucial, especially

in real-time applications, where quick responses can have life-saving implications. These perfor-

mance metrics highlight the potential of the model to serve as a reliable tool for radiologists and

healthcare professionals in diagnosing intracranial hemorrhage with precision and efficiency.

In Chapter 5, a multi-head attention mechanism is integrated into the Learner Subnetwork ar-

chitecture to learn global dependencies and capture long-range interactions within the sequential

feature embeddings. The attention mechanism allows the model to concentrate on pertinent charac-

teristics and accentuate the most informative aspects of within the CT scan slices. After conducting

an ablation study, it was determined that using eight attention heads leads to the best performance.

Overall, the development of DL models for detecting ICH in CT scans holds immense promise

for enhancing medical diagnostics and patient care. By harnessing the potential of DL models, the

speed and accuracy of ICH detection, lead to enhanced patient outcomes, optimized resource al-

location, and ultimately improved healthcare. The research findings and future directions outlined

in this study lay the foundation for further advancements in developing DL models for detecting

ICH.

6.1 Future Directions

The proposed model for detecting and classifying ICH has undergone extensive evaluation us-

ing three publicly available datasets. These evaluations have provided valuable insights into the

model’s performance and its potential application in ICH detection. However, in order to deter-

mine its effectiveness in real-world scenarios, it is crucial to deploy the model into clinical settings,

such as radiology departments or emergency rooms, to conduct validation studies. It should be em-
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phasized that the transition from testing on publicly available datasets to real-world clinical prac-

tice can pose several challenges that reduce the model’s performance. For example, the publicly

available datasets may not fully represent the diversity and complexity of the patient population

encountered in clinical practice. Factors such as data acquisition, image quality, and compatibility

with existing systems, may limit the practical utility of the proposed model.

Furthermore, the proposed model can serve as a valuable triage tool in assisting medical pro-

fessionals with prioritizing care for patients. By quickly flagging potential cases of ICH, the model

can help assess the urgency and severity of different patient cases so that appropriate resources and

treatment can be provided accordingly. In addition, the validation of the model within a clinical

workflow allows for the collection of real-time feedback from healthcare professionals. This feed-

back may offer important insights into the limitations of the proposed model. Subsequently, the

proposed model can be iteratively improved to reduce the impact of its limitations and enhance

predictive accuracy. Overall, integrating the proposed model into clinical workflow can lead to

significant benefits, such as enhanced accuracy and efficiency in ICH detection, improved patient

outcomes, and reduced healthcare costs.

Future studies may explore the application of Graph Neural Networks (GNNs) for the auto-

matic detection of ICH. Due to their ability to learn complex relationships in imaging data, GNNs

have recently become very popular in the field of medical imaging. ICH detection often requires

considering the spatial relationships between different regions within the brain. GNNs can effec-

tively capture these relationships by modeling the brain as a graph, where nodes represent different

brain regions and edges represent their connections. By incorporating this structural information

into the model, GNNs may be able to detect ICH with a high degree of accuracy by extracting

information from the interdependencies between brain regions. Furthermore, GNNs inherently

confer interpretability which is crucial for medical imaging tasks. GNNs provide insights into the

importance and contribution of different brain regions in the detection of ICH. This quality may

enhance the trust and acceptance of the system among healthcare professionals [80].
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In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE

does not endorse any of Lakehead University’s products or services. Internal or personal use

of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material

for advertising or promotional purposes or for creating new collective works for resale or redis-

tribution, please go to http://www.ieee.org/publications standards/publications/rights/rights link.

html and https://www.ieee.org/publications/rights/author-rights-responsibilities.html to learn how

to obtain a License from RightsLink.
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Appendix B: Source Code

The source codes of this thesis are available at GitHub.
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