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Abstract

Internet of Things (IoT) devices generate and collect massive amounts of IoT
data. Monetizing the flood of data generated by the IoT devices has enabled the
creation of IoT data trading systems where individuals and businesses may trade
data. In the current IoT data trading systems, a third-party broker collects and
manages [oT data for buyers who would like to promote their services and make more
profit. However, there are three main challenges that may hinder the development
of secure IoT data trading systems. First, there is a lack of data transparency and
ownership. While the economic value of IoT data is increasing, it is not very well
known how this data can be conceptualized, measured, and monetized in a trusted
and transparent way. Second, the literature lacks studies about performance models
to demonstrate IoT data trading system usability in real-world systems. Third,
the reputation of the trading parties is an important attribute that affects their
profitability and trading prosperity. However, current reputation systems are prone
to malicious manipulation and single point of failure.

This thesis identifies and addresses the three above challenges for IoT data trad-
ing systems. First, this thesis introduces a trustful IoT data trading system based
on the blockchain as a means of providing anonymity, security, transparency, and
mutual trust for participants. Using a game-theoretic approach, this study develops
a strategic negotiation model that maximizes data buyers’ utility. To ensure that
data owners’ [oT data are accessible by trustful buyers, a novel mechanism design is
used to impede untruthful buyers from accessing the IoT data. Second, this thesis
evaluates the performance of the blockchain-based [oT data trading system using the
Hyperledger blockchain. Unlike existing research, this study measures and analyzes
transaction throughput, latency, elapsed time, and resource consumption (memory
consumption, CPU utilization, and disc read/write operations). Third, this the-
sis proposes a blockchain-based reputation system capable of avoiding failures by
enhancing the Raft consensus mechanism. This thesis also proposes an adaptive
learning mechanism that allows the data providers and consumers to enhance their
reputation and review credibility scores. Lastly, this thesis carries out extensive
theoretical analysis with respect to economic and security properties.

v



Acknowledgements

I want to express my sincere gratitude to my advisors, Dr. Rachid Benlamri
and Dr. Abdulsalam Yassine, for their profound supervision, guidance, support,
encouragement, and long hours of discussions. Both inspire me to work hard, strive
for perfection, and embrace and deal with challenges. I had the great fortune of
being supervised by them. I would also like to thank my committee members for
their valuable comments.

[ would like to express my sincere gratitude to my love, Shima, for all the encour-
agement, sacrifices, patience, motivation and, most importantly, her understanding
that sometimes “I am tired & busy”.

I would like to thank my parents from the bottom of my heart. Although they are
physically far away from me, I feel they are with me all the time. Their unconditional
support and love have made all my accomplishments possible. Finally, I could not
have completed this thesis without the support of my friends, Mahdieh, Navid, and
Mohannad, who provided stimulating discussions as well as happy distractions to
rest my mind outside of my research.

Finally, I would like to thank Lakehead University, the Department of Engineer-
ing, and NSERC for providing financial support during my Ph.D. studies.



Dedication

This thesis is dedicated to the honor of my sister Niloufar. She passed away in
hospital following eight years of a long battle against cancer. She was an incredibly
strong girl, smart, kind, caring, thoughtful, who took things in her stride and stayed
positive throughout her life. I kept my promise to her by completing my Ph.D. Rest
in peace, my lovely sister.

vi



Table of Contents

List of Figures X
List of Tables xii
1 Introduction 1

2 Literature Review 6
2.1 Background . . . . .. ..o 6
2.2 Blockchain and Smart Contract . . . . . . . .. ... ... ... ... 8
2.3 Data Trading Systems . . . . . . . .. .. ... o 9
2.4 Blockchain-based Reputation Systems . . . . . . ... ... ... ... 10
2.5 Summary . o.o.o. ... 12

3 Towards a Trustful Game-Theoretic Mechanism for Data Trading

in the Blockchain-IoT Ecosystem 14
3.1 Data Market Structure . . . . . .. ... ... ... ... ... ... 14
3.1.1 Assumptions. . . . . ... 15
3.1.2  Process details of the proposed system . . . .. ... .. ... 16
3.1.3 DataValue . .. ... ... ... o 18
3.1.4 Data Aggregator Utility . . . . ... ... ... .. ... ... 18
3.2 A Repeated Game Theoretic Approach for Data Trading Between Buyers 19

3.2.1 Data Buyers Utility . . . . ... ... ... ... .. ...... 20

vil



3.3 Nash Equilibrium Solutions . . . . .. .. ... ... ... .. .... 22

3.4 Mechanism Design . . . . . .. ... Lo 26
3.4.1 Winner allocation stage . . . .. ... ... ... ... .... 27
3.4.2 Payment Stage . . . .. ... 29

3.5 Evaluation of Results . . . . . ... .. ... ... ... ... 30
3.5.1 Computational Efficiency Analysis . . . . .. ... ... ... 31
3.5.2 Budget Balance Analysis . . . . . ... ... ... 32
3.5.3 Individual Rationality Analysis . . . . ... .. .. ... ... 32
3.5.4 Bidding Learning Analysis . . . . .. ... .. .. ... ..., 33
3.5.5  Truthfulness Analysis . . . . . . ... ... .. ... ...... 35

3.6 Summary ... ..o 35

Performance Analysis of Blockchain-based IoT Data Trading Sys-

tems 37
4.1 Introduction . . . . . . . ... 37
4.2 Data trading model based on blockchain . . . . ... ... ... ... 39
4.3 Implementation Setup Using Hyperledger Fabric . . . . . . . ... .. 41
4.4 Performance Analysis . . . . . . . .. ..o 44
4.5 SUMMATY . . . . o oo e 53

A Blockchain-based Reputation System for IToT Data Ecosystem 54

5.1 Introduction . . . . . . ... 54
5.2 System Model . . . . . . ... 56
5.2.1 Design Goals . . . . .. .. ... ... 57
5.2.2 System Setup . . . . ... L o8
5.2.3 System Registration . . . ... ... ... 0oL 60
5.24 Payments . . .. ... 60
5.2.5 Reputation Computation and Verification . . . .. ... . .. 61
5.3 Security Analysis . . . . . ... 62



5.4 Implementation and Experimental Results
5.4.1 Raft Consensus Mechanism
5.4.2 Experimental Results . . . . . . ... ... ...
5.4.3 Performance Analysis . . . . . . ... ...

5.5 Summary .. o.o. oL

6 Blockchain-based Reputation System For IoT Data Ecosystem: A

Utility Maximization Approach

6.1 System Model . . . . . . .. ...

6.1.1 Blockchain Registration
6.1.2 Data Providers Utility
6.1.3 Data Consumers Utility

6.1.4 Adaptive Learning Mechanism
6.2 Implementation and Experimental Results
6.2.1 Evaluation of Results . . . . .. .. .. ... ... ... ...
6.2.2 Performance Analysis . . . . . . ... ... ... ...

6.3 Summary . . .. ...

7 Conclusions and Future Works

7.1 Conclusions . . . . . . . .

7.2 Future Works . . . . . ...

References

Author’s Publications

X

74
74
75
78
78
79
80
81
83
85

86
86
88

90

99



List of Figures

2.1

3.1
3.2
3.3

3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2

4.3
4.4
4.5

4.6

An example of data trading system. . . . . . ... ... ... L. 7
High-level architecture of the proposed system. . . . . . . . .. .. .. 15
Sequence diagram describes the interaction between DA and buyers. . 17
Valuation function. This example shows that the valuation v; of buyers

B decreases on the basis of the satisfaction rate . Note that this
example does not take into account the average of all satisfaction rates. 21

Computationally efficient property. . . . . . . . . ... ... .. ... 31
Budget balance property. . . . . . . ... oo 32
Individual rationality property. . . . . . . . . ... ... 33
Learning process. . . . . . . . . ..o 34
Boxplot presenting the bid learning processing using fictitious play. . 34
Truthfulness property. . . . . . . . .. ... . 36
An example of blockchain-based data trading system. . . . . . . . .. 39
The blockchain transaction flow on Hyperledger Fabric V2.2 consisting

of 2 organizations, each operating one running peer and a database

inside a Docker container and orderer running a single channel. . . . 43
The data generation phase. . . . . . . . .. ... ... ... ... 45
Average latency varying workloads and sending rates. . . . . . . . .. 47

Transaction throughput under open, query, and transfer workloads
with varied sending rates. . . . . .. .. L Lo L 48

Running times of test queries. . . . . . . . ... ... 50



5.1
5.2

2.3

0.4

2.5
2.6

5.7

0.8
2.9

6.1
6.2
6.3
6.4

High-level architecture of the proposed system. . . . . . .. .. .. .. o7

The transaction workflow on Hyperledger Fabric V2.2 using Raft con-
sensus mechanism. . . . . ... .0 Lo Lo 65

The result of running the RepGossip protocol during the election pro-
cess with non-negligible link failures. A link failure of 0.1 indicates
that every message sent over a particular link has a likelihood of 10%

lost. . . o 67
Comparison between different timeout intervals with respect to the

crashed nodes. . . . . . . . ..o 68
Computational costs. . . . . . . .. . ... ... . 69

Transaction throughput under Open, Query, and T'rans fer workloads
with varied sending rates. . . . . . ... ..o L. 70

Transaction latency under Open, Query, and Transfer workloads

with varied sending rates. . . . . . ... ..o 71
Memory consumption for Open workload with 500 transactions. . . . 72
CPU consumption for Open workload with 500 transactions. . . . . . 72
High-level architecture of the proposed system. . . . . . . ... . ... 75
Data provider’s utility in repeated interactions overtime. . . . . . . . 82
Data consumer’s utility in repeated interactions overtime. . . . . . . . 83
Performance analysis. . . . . . . .. ... oo 84

x1



List of Tables

2.1
2.2
2.3

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1

6.1
6.2

Common types of [oT driven data that may be used for monetization
Comparison between our work and existing studies . . . . .. .. ..

Comparison between our work and existing studies . . . . . . . . ..
Notations. . . . . . . . . .

Summary of Performance with 500 and 1000 Transactions . . . . . .
Creating the assets in CouchDB . . . . . ... .. ... ... .. ...
Retrieval the assets from CouchDB . . . . ... ... ... ... ...
Resource Consumption for Open Workload with 500 Transactions . .
Resource Consumption for Query Workload with 500 Transactions
Resource Consumption for Transfer Workload with 500 Transactions
Resource Consumption for Open Workload with 1000 transactions
Resource Consumption for Query Workload with 1000 transactions

Resource Consumption for Transfer Workload with 1000 transactions
Notations. . . . . . . . . . . o

Notations. . . . . . . . . s

Experimental setup. . . . . .. ... oo

xil



Chapter 1

Introduction

The IoT ecosystem is expanding daily, connecting the physical and digital worlds to
transform the way we live and do business. With an increasing number of connected
devices, a huge amount of data is instantly collected, aggregated, and exploited in
new applications in areas such as smart homes, smart cities, and health [1]. Accord-
ing to the estimates conducted by the International Data Corporation (IDC) report
[2], 41.6 billion IoT devices will be connected to the Internet by 2025 and generating
79.4 zettabytes of data. As the IoT devices become more instrumented and inter-
connected, data will grow exponentially [3]. Data from IoT devices has spawned a
new data economy in which people and companies can sell and exchange data [1]. As
data continues to pile up, the data economy will continue to emerge and enable new
IoT data marketplaces. Several companies, such as Terbine and Dfintech, have de-
veloped real-world applications to manage and monetize IoT generated data. These
applications allow IoT device owners to sell their data to various stakeholders.

Most existing applications that assist the IoT device owners to sell their data in
exchange for money fail to clearly explain how, where, or with whom the users’ data
are being shared. These applications also tend to package the owners’ data for sale
to other companies repeatedly [5, (]. Such information changes hands or ownership
and the monetary benefit that companies are receiving as a result of selling the
data packages is not passed back to IoT device owners [7]. Therefore, one significant
aspect that needs to be taken into consideration is ensuring data owners have control
of their data and have the autonomy to decide what information is collected, how
it is used, and most importantly, how much it is worth. Consequently, designing a
trustworthy data market, capable of selling and buying data which incentivizes the
participants to maximize their profits under a fair trading mechanism is very critical.



To develop an efficient and trustful data market, a number of challenges need to be
addressed. These are summarized below.

1. How to design a trustful and transparent mechanism to control the dissemina-
tion of data?

2. Since data records can be sold repeatedly to multiple buyers. A key question
to be addressed is how to devise a strategic negotiation model that maximizes
the benefit of data owners and buyers?

3. Trust becomes a challenge if data buyers are not trustful and they may misuse
the data. A key question is how to impede and impose penalties on untruthful
buyers?

4. How to measure the performance of data trading systems in terms of the num-
ber of verified transactions, and resource consumption?

5. How can the reputation system take advantage of blockchain technology’s
tamper-proof characteristics and distributed consensus mechanism?

6. How to design a blockchain-based reputation system that preserves individual
identities and review confidentialities?

7. How can sellers and buyers interact in a blockchain-based reputation system
to improve their reputation and credibility score?

To tackle the first challenge, we integrated the blockchain as a trustworthy and
transparent mechanism that preserves the data owner’s control over their data.
Blockchain technology is difficult to tamper with and transactions are secure as
well as transparent to all parties, including the users who generated the data [0, 8].
As such, blockchain presents a solution for developing a transparent and trustful
network for data trading and give the data owners full control of their information
and guard their privacy [J].

To tackle the second challenge, we formulate a non-cooperative game in infinite
setup between the buyers in which each buyer strategically chooses the bidding price
for that specific data to maximize their utilities. In particular, in each one-shot game
(stage-game), limited amount of records is traded. The game is played repeatedly
and buyers learn from the outcome of the previous stage and update their bids over
the next periods to increase their utilities until the demand is met. We show that



the proposed formulation of the non-cooperative game among buyers achieves Nash
Equilibrium using pure strategy in a one-shot, discounted finite and infinite repeated
horizon, where no buyers in the market can improve their utility by deviating their
bids.

To tackle the third challenge, we propose a novel mechanism design based on the
trust score. The proposed mechanism design impedes untruthful buyers to obtain
the data based on a scoring rule function. Also, if the winner is not fully trusted (i.e.,
trust score less than 1), we consider a penalty on his/her payment for the current
stage of the game.

To tackle the fourth challenge, we measure and analyze transaction throughput,
latency, elapsed time, and resource consumption (memory consumption, CPU uti-
lization, and disc read/write operations) using Hyperledger Caliper. Transactions
are an important part of the blockchain. To find out how well the system is adding
the number of confirmed transactions to the blockchain network, we need to measure
and analyze the throughput metric. By default, the underlying data structure of a
blockchain does not support an effective method of querying the stored data. To over-
come this limitation, we modeled the data in JSON format through CouchDB. The
latter supports deploying indexes within the smart contract to make queries more
efficient in massive datasets. Indexes enable a database to be queried faster and more
efficiently compared to regular queries without indexes. Applying blockchain in data
trading systems is not a straightforward task due to high resource consumption.
Hence, measuring resource consumption is also important for the efficient manage-
ment of systems, such as CPU, memory, etc., as well as the successful execution of
transactions in the blockchain.

To tackle the fifth, and sixth challenges, we propose a blockchain-based reputa-
tion system for the IToT data ecosystem. We design an anonymous reputation system
for the IIoT data ecosystem by leveraging a blind Elliptic Curve Digital Signature
(ECDSA) and a non-interactive zero-knowledge proof (ZKP) technique. Further-
more, we build a blockchain network based on the Raft consensus algorithm. With
Raft, the proposed system is a crash fault-tolerant, which allows the operation to
proceed as planned rather than failing. We further improve the Raft consensus algo-
rithm to avoid single point of failure (SPOF), and link failures. We built a new policy
called RepGossip based on the gossip protocol, which withstands the link failures.

To tackle the seventh challenge, we proposed an adaptive learning mechanism
in which sellers (data providers) and buyers (data consumers) can learn from their
strategies and increase their reputation and credibility scores, respectively.

The main contributions of this research are as follows:



We formulate a non-cooperative infinitely repeated game in which rational
buyers are strategically deciding on their bids and learn from the outcome
of each one-shot (stage) game and try to adjust their bids to maximize their
utility. The non-cooperative nature of the game in the data market is properly
modeled in a one-shot game by carefully defining utility functions. Using this
one-shot game as a building block, we then proceed to define finite and infinitely
repeated games with a discount factor that captures the repeated interactions
among rational buyers.

We show the existence and uniqueness of the Nash Equilibrium under dis-
continuous utility function setup. We establish the best response action for
buyers and show that such best response action is a standard function, which
guarantees the uniqueness of the Nash Equilibrium.

To ensure data owners’ assets are protected and are not being misused within
the data trading system, blockchain is used as a means of data transparency
and security. Furthermore, we filter out the untruthful buyers based on the
scoring function, which is calculated through the trust score. In the payment
stage, we consider a penalty for the winner if he/she is not fully trusted. Even
with considering a penalty, we ensure that the individual rationality property
is set up, which implies the winner buyer receives a non-negative utility.

We designed a blockchain-based reputation system for the Industrial IoT (IToT)
data ecosystem. We propose an anonymous reputation system for the IoT
data ecosystem by leveraging a blind ECDSA (Elliptic Curve Digital Signature
Algorithm) and a non-interactive ZKP (Zero-knowledge proof) technique.

We propose a blockchain-based reputation system where data providers and
data consumers can maximize their utility while engaged in the [oT data ecosys-
tem. We offer an adaptive learning mechanism that allows the data providers
and consumers to enhance their reputation and review credibility scores.

We demonstrate and provide a comprehensive theoretical and experimental
analysis of the proposed system which satisfies the economic properties includ-
ing, computationally efficient, truthful, and individually rational.

Through experimental results, we evaluate the performance of the blockchain-
based data trading system using different metrics, such as transaction through-
put, latency, and resource consumption under varied scenarios and parameters
using Hyperledger Caliper. We show that the proposed system can be easily
deployed on IoT devices at a low cost.
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The organization of this research is as follows. Chapter 2 presents a background
and comprehensive survey of related literature on the data trading systems and
the blockchain technology. Chapter 3 presents a trustful blockchain-based repeated
game mechanism for IoT data trading ecosystem. Chapter 4 describes the perfor-
mance analysis of blockchain-based IoT data trading systems. Chapter 5 introduces
a blockchain-based reputation system for IIoT data ecosystem. Chapter 6 introduces
a utility maximization approach for the blockchain-based reputation system in the
IoT data ecosystem. Chapter 7 summarizes the thesis with future research directions.



Chapter 2

Literature Review

In this chapter, in section 2.1, we discuss how the data trading system works and
follow by the fundamental concept of blockchain technology in section 2.2. Afterward,
we review the existing studies data trading sytems and blockchain-based reputation
systems in section 2.3, and 2.4, respectively.

2.1 Background

[oT devices and data-driven applications are generating huge data. With massive
number of IoT devices and applications, the total amount of data created by IoT
devices will reach 847 ZB per year by 2021 [10]. Indeed, data are becoming the most
valuable asset in use as well as in trade [11]. Such valuable data received considerable
attention from organizations to tailor their services to potential consumers and make
a profit. Table 2.1 summarizes common [oT data types and how [oT driven data
can be monetized.

As a result, various IoT applications and devices such as smartphones, wearable
devices have brought great convenience to people, while producing huge amounts
of data. Data have become a valuable asset, which creates a new business called
data trading. According to a report from MarketsandMarkets [14], the data market
will grow to 229.4 billion dollars by 2025. Figure 2.1 illustrates an example of a
data trading system, in which the market includes data providers, data brokers, and
data consumers. The three stakeholders continuously interact with each other while
trading data.



Table 2.1: Common types of IoT driven data that may be used for monetization

IoT data types Examples

Data collected from Hikers’ data which is produced through IoT smart devices are useful

Apps for a variety of applications: mapping terrain, trail info, maps, detailed
reviews, measuring body performance, and so forth [12]. Applications

that assist the hiker in achieving these goals also tend to package the
hiker’s data for sale to other companies [12].

Sensor data Pharmaceutical companies looking to improve sales can purchase
anonymized health data that is generated by IoT sensors in order to
find new customers and more effectively target their product marketing

[1]-

Smart meter data Advertisement companies want to know what type of equipment the
house is using, so they can target their advertisement to maximize con-
sumers’ attention to their products [13].

High Volume
Data

Data providers Data brokers

Figure 2.1: An example of data trading system.

In the data market, the data providers (data owners) generate data from various
sources, such as smart devices and social networks, and are willing to sell their data
in exchange for money. The data market handles N IoT data types (e.g., energy
consumption, location, purchase history, etc.). The data broker obtains opt-in based
agreement for data collection from each data provider, and then the data broker
continuously gathers personal data based on the agreement. Once agreement is
completed, the data broker sells the data to data consumers (e.g., data buyers) and
pass back the money to providers.



2.2 Blockchain and Smart Contract

A blockchain technology is identified as a distributed ledger technology for peer-
to-peer (P2P) network digital data transactions that may be publicly or privately
distributed to all users, allowing any type of data to be stored in a reliable and
verifiable way [15, 16]. Blockchain is the underlying platform of cryptocurrencies (e.g.
Bitcoin, Ethereum) that facilitates a P2P transaction system to eliminate third-party
[17, 18]. Every block of data is cryptographically connected with previous blocks by
secure hash functions [¢]. The methodology of certifying a block whether it is valid
or not, in such a way, is called Proof-of-Work (PoW) consensus algorithm (protocols)
[19]. The block will be added into the chain after performing the consensus algorithm,
every node in the network admits this block and incessantly spreads the chain [20)].
Several consensus algorithms such as Proof-of-Stake (PoS), Practical Byzantine Fault
Tolerance (PBFT), Delegated Proof of Stake (DPoS), Proof of Authority (PoAu),
etc perform a similar job [21]. Blockchains can be classified as public, and depending
on their application. Public blockchains have no single owner and are visible by
anyone (e.g., Bitcoin). Private (permissioned) blockchains work based on access
controls which use privileges (e.g., Hyperledger Fabric). Blockchain network have
the following characterizes [22, 9]:

e Decentralized: There is no centralized authority in the blockchain network.

e Highly secure: Blockchains rely heavily on advanced cryptographic techniques.

e Anonymity: A participant of the blockchain network only provides a pseudonym
and a unique public/secret key pair.

e Transparency: Any transaction in the blockchain is publicly verifiable for the
participants in the network.

e Immutability: Any transaction that is confirmed in the blockchain network
cannot be altered.

e Double-spending prevention: In Bitcoin, no malicious participant can spend
the same digital currency at different transactions.

Etherem [17] is another distributed blockchain network that supports its own
digital currencies, i.e. Ether. It shares many common features with the Bitcoin,
e.g. anonymity, openness, transparency, etc. However, Ethereum implements an



account-based model [17] instead of the UTXO model in the Bitcoin. Ethereum
first introduced the smart contract [23] to the blockchain network. It is a computer
program which is embedded in the blockchain to digitally facilitate, verify or enforce
the negotiation of a contract [23]. The smart contract specifies the rules and condi-
tions of involved participants in the network and can take actions (e.g., sharing data,
transferring cryptocurrencies) when conditions are met [24]. All smart contracts have
a unique address and are stored in the blockchain [17].

2.3 Data Trading Systems

Extensive research has been conducted in order to monetize and trade data [25, 20,

, 28, 29]. Oh et al. [25] proposed a non-cooperative game for data trading with
privacy valuation for data consumers in the IoT environment. The paper introduced
a method to unify the unit price of data for data brokers as well as an optimization
model to maximize data providers’ profits. Similarly, in other work, Oh et al. [20]
proposed a data trading model between data owners and consumers as two natural
logarithmic functions and a data broker who processes data and provides service
to the consumers. This model guaranteed that a data broker will find a global
maximum point to reach the best probability deal to sell the data. Tian et al. [27]
proposed an optimal contract-based model for data trading between data sellers and
consumers. This model maximizes the data seller’s payoff while satisfying individual
rationality and incentive compatibility properties for data consumers. The work in
[28] introduced an iterative auction mechanism for data trading to coordinate the
selfish agents in an optimal way to prevent direct access to private information.
Khokhar et al. [29] proposed an entropy-based trust computation model to verify
the correctness of data from untrusted data providers in the data market. This
model utilized the Vickrey—Clarke-Groves auction mechanism for the valuation of
data providers’ attributes for determining truthful pricing strategies.

To build a more transparent data marketplace, blockchain-based data trading
systems are studied in [30, 3, 31, 32, 33], and [31]. Liu et al. [30] introduced an
optimal pricing mechanism for data trading in the IoT environment adopted by
the two-stage Stackelberg competition based on the blockchain. The model pre-
sented a pricing and purchasing mechanism between the data consumer and the
market-agency to maximize the profits of both parties. The work in [3] proposes
a decentralized fair data trading system, which guarantees the availability of data
and fairness between the sellers and buyers. The model implements homomorphic



encryption, double-authentication-preventing signatures, and smart contracts to im-
prove data availability and achieve fairness in data trading between participants. In
the work presented in [30], the authors propose a blockchain-data market framework
and an optimal pricing mechanism. They designed an optimal pricing mechanism
to support efficient data trading in an IoT environment using a two-stage Stackel-
berg game. Sheng et al. [31] studied a crowd-sourcing data trading system based
on blockchain. The model implements a smart contract that enables sellers and
buyers to conduct credible and truthful data trading while ensuring the copyright
and quality of data. The authors also proposed a semantic-similarity-based auction
mechanism to guarantee truthful data trading. Similarly, the authors in [32] inves-
tigated a blockchain-based data trading ecosystem that filters out dishonest buyers
to guarantee the market’s truthfulness. The security model in [32] includes a set of
trading protocols based on asymmetric cryptography. The work in [33] proposes a
trading model based on Ethereum smart contracts. It incorporates machine learning
to guarantee fairness in data trading. All the participants in the blockchain network
achieve a consensus on an authentication task, and any potential threats can be
identified. Truong et al. [341] proposed a blockchain-based for sharing ToT data, in
which data owners can sell their private data. In this framework, smart contracts
evaluate access control requests to off-chain encrypted data. Table 2.2 summarizes
the comparison of our work and previous studies.

Table 2.2: Comparison between our work and existing studies

Research Smart  Reputation Utility Performance
studies  Decentralization contracts computation maximization evaluation

NS NN X X% %
NN NN X X% %
N X N\ XN % %
NX X NN\
N X X X X X %

2.4 Blockchain-based Reputation Systems

In this section, we review the recent studies that use blockchain technology to build
transparent and secure reputation systems for I[IoT data ecosystem. Then, we com-

10



pared our proposed system to the recent studies. Soska et al. [35] presented a
decentralized anonymous reputation system based on ring linkable signatures and
the ZKP method. Customers use the Zerocash anonymous payment method to pur-
chase items. The reviews cannot be linked to previous or any transactions and
prevent adversaries to find out the link. This model preserves users’ privacy while
resisting Sybil attacks. However, the ring signature resulted in a linear overhead
when generating the anonymous review. Similarly, in other work, Liu et al. [30]
proposed a blockchain-based anonymous reputation system for Industry 4.0 that uti-
lizes the proof-of-stake consensus protocol by leveraging a randomized signature and
non-interactive ZKP method. This model used an identity management entity that
provides anonymous identities to consumers and retailers. Then, consumers can leave
reviews anonymously using rating tokens. However, the centralized structure of the
identity management entity may create the concern of a SPOF. Truong et al. [37]
introduced a blockchain-based decentralized trust system. They presented a trust
model based on an asymmetric relationship between two entities formed through the
history of the previous transactions. They investigate the feasibility of their trust
system as a bridge between a blockchain platform and decentralized applications.
They built a proof-of-concept mechanism and integrated the trust model on top of
the Ethereum blockchain. However, they do not examine the security of their model,
which presents serious privacy concerns for the users.

In other domains such as energy trading, vehicular and IoT mobile devices, Weer-
apanpisit et al. in [38] proposed a blockchain-based reputation management system
for the IoT systems based on their location. The reputation scores depend on the
[oT device’s geographical location, and locations are stored in smart contracts. Their
approach keeps the reputation system fault-tolerant and consistent across blockchain
networks using cloud and fog nodes. The work in [39], proposed a blockchain-based
reputation management system for mobile applications through Hyperledger Fabric.
They used a mobile application named Aptoide to evaluate their proposed model.
Soojan et al. in [10], proposed a two-layered blockchain-based reputation for the
vehicular network. The first layer consists of different nodes such as vehicle and
roadside units that communicate with a blockchain network to store the transac-
tions from traffic events daily. The global reputation blockchain network is deployed
in the second layer to calculate and update the reputation score of member nodes in
layer one.

The work in [11], designed a blockchain-based reputation system for energy trad-
ing. In this model, the reputation is derived from the behavior of each node according
to its role in the peer-to-peer process. To link buyers and sellers and to determine
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trading prices, a matchmaking method based on a k-double auction algorithm is
used. The matchmaking method balances the fairness among sellers and buyers
which is defined as a ratio between reputation score and the average income and
cost. However, like the previous work, they do not analyze the security of their
proposed model. Zhou et al. [12] proposed a blockchain-based reputation system in
the e-commerce environment. In this model, users’ reputation scores are generated
and updated by all ratings of their transactions weighted by practical transaction
characteristics such as transaction duration, amount, and previous reputation scores
to prevent unfair rating and collusion attacks. However, they do not measure the
performance of their system to determine whether or not it is usable in real-world
applications. Li et al. [13] proposed a reputation system for e-commerce applications
based on Ethereum blockchain. They built anonymous credentials constructed from
two-step blind signatures and the ZKP method. The claimed results show that the
system resisted multiple and abnormal rating attacks. The model satisfies the rat-
ing and identity privacy, and unlinkability properties. This model relied on a single
certificate authority entity to register the users and provide them with identities.
However, the certificate authority’s structure raises the concern of a SPOF. Table
2.3 provides a summary of the comparison between our work and existing studies.

Table 2.3: Comparison between our work and existing studies

Work Work Work Work Work  Our

Properties [35] [36]  [37,38,39] [10, 41, 12]  [13]  system
Decentralization v v v v v v
Authentication v v v X X v
Anonymity v v X X v v
Reputation computation X X v v v v
Resist to SPOF X X X X X v
Performance evaluation X v X X v v

2.5 Summary

Blockchain technology is gaining significant attention from individuals and organiza-
tions of nearly all kinds and dimensions. It is capable of transforming the traditional
industry with its features, which include decentralization, anonymity, persistency,
and auditability. This chapter highlighted the importance of blockchain technology,
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and it’s core concepts. We presented a literature review pertinent to our research
work dealing with IoT data trading and reputation systems.
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Chapter 3

Towards a Trustful
Game-Theoretic Mechanism for
Data Trading in the
Blockchain-IoT Ecosystem

In this chapter, we formulate the data market structure in section 3.1, followed by
non-cooperative game theoretic approach for data trading in section 3.2. Section 3.3
discusses the Nash equilibrium solutions. Section 3.4 discusses the mechanism design,
while section 3.5 presents experimental results of the model. Finally, conclusion is
drawn in section 3.6.

3.1 Data Market Structure

Figure 3.1 shows the high-level architecture of the proposed data market. At a high
level, data buyers and a data aggregator (DA) register themselves to the certificate
authority (CA) to obtain a legal identity. The CA issues certificates (digital identities
contained in X.509 digital certificates) to each entity. In this market, continuous
data records are generated through IoT devices and made for sale by data owners
(DOs). The latter grant access permission to the DA to aggregate, package, and
sell data records on their behalf according to a smart contract-based agreement.
The DA informs all the buyers about the packages available for sale through the
blockchain network. Buyers simultaneously reply with their bids, which include the
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bidding price and required data records from a specific package. Buyers will compete
with each other to obtain desired records and learn from the outcome. Afterward,
through a trustful auctioning process, data records will be awarded to one winner at
a given time. Later, DA can leave a review score for a winner buyer for the current
transaction. All the transactions will be added to the ledger. Our auction mechanism
(winner determination and payment allocation) and review score are implemented
in the form of smart contracts on the blockchain network.

[ ]
’ Data Buyers
Blockchain Network

Winner Determination

Payment Allocation

Trust Score

OO O OO
$
ﬁ
Al

Smart Contracts

Certificate @

Encryption Storage Authority

1 Data Aggregator

Data Owners
=
m &

Figure 3.1: High-level architecture of the proposed system.

3.1.1 Assumptions

Before describing the detailed process of the proposed system, the following assump-
tions are made:

1. Infinite data records: we assume that DO w € W = {1,2,...,m} produces
infinite data records r! from IoT devices, such as wearable devices and smart
appliances at time ¢. This is reasonable since 41.6 billion IoT devices will be
connected to Internet by 2025 [2].
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2. Data aggregator: we assume that DA is a trusted entity, acting on behalf of
DOs, involves in technical and operational tasks, such as deriving data records
value based on DOs’ privacy risk, data encryption, coding a smart contract, and
blockchain operations. This is reasonable because performing these technical
tasks for senior citizens equipped with IoT devices would be extremely difficult.

3. Certificate authority: we assume the CA to be fully trusted. This is reasonable
since the CA is a government agency responsible for managing the identities
and credentials of a data aggregator and buyers.

4. Data buyers: we assume that the data buyers do not share their bidding val-
ues among each other, and their behavior is non-cooperative with the goal of
maximizing their benefit.

3.1.2 Process details of the proposed system

Figure 3.2 describes the sequence diagram of the interaction between DA and buyers.
Once DA and buyers obtained their certificates, the DA creates different packages
based on data types received from DOs. For example, a package D = {r}, 7%, ... 7t}
may contain smart TV records or energy records. The DA encrypts and stores data
records in a secure indexed database, and generates a decryption key. Once this is
completed, the DA sends the index of the records to the blockchain. Afterward, the
DA publicizes the packages to the blockchain network. Data buyers are the end-
users who purchase the data. Let B = {1, 2, ..., b} be the set of data buyers in
our system. Each data buyer is indexed by ¢ € B. Each data buyer ¢ submits its
bid 8! = (g;,v!(x)) to the blockchain network, where g; and v! are total required
quantity and reserved value, respectively. We denote x as the traded amount of
records from package D in the market at time ¢. In this model, a limited number
of records will be traded at each time ¢, until buyers fulfill their total demand g;.
The traded amount of records x can be defined by the CA or can be based on an
agreement between players inside the market. For example, assume that a package
consists of 10 million energy records about TV usage. Utility companies (i.e, buyers)
are usually interested in different quantities, maybe one company is interested in
one thousand records, while another company is interested in one million records,
and in each auction period a hundred number of records are going to be sold. Thus,
companies are going to keep competing with each other and biding simultaneously at
each period (stage) until obtaining the desired quantity. Finally, after receiving the
asking price for data records to be traded and bids from buyers, the smart contracts
run as follow:
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Collects the data

Submit the price

] Ask bids

Submit bids

Query the trust scores
_ ~ 1 Return

Calculate scoring rule

—— Determine the
B winner

Announce the
highest score

Allocation

Payment
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Figure 3.2: Sequence diagram describes the interaction between DA and buyers.

1. In the first sub-stage, the winner determination smart contract retrieves the
trust score of buyers from blockchain. The trust score is determined by DA
and buyer i’s previous trading experiences. Then, the smart contract will
remove the bids which are less than the trust threshold. This is done to ensure
untrustworthy buyers will not have a chance to get the data. Then, smart
contract will run the scoring rule and announce the winner.

2. In the second sub-stage, the payment allocation smart contract will run to
determine the payment. In the payment stage, we impose a penalty on the
payment of the winning buyer with respect to his/her trust score. The winner
i receives data records and a decryption key. Simultaneously, the DA receives
a payment amount p;.
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3.1.3 Data Value

The value of data will be derived based on DOs’ privacy risk. DOs may have different
privacy attitudes, and as a result, they may set different values for their data records.
For instance, some DOs may be concerned about their privacy and would allow a
user to access a small portion of data in exchange for a few dollars, whereas others
may not be concerned about privacy and they ask for a higher price. The DA derives
the privacy risk Q,(rf) of a DO w as follows [13]:

Qu(rt) = PC(rt) x SL(r!) VPC,SL € [0,1] (3.1)

where PC(rl) denotes privacy concern of DO w, and SL(r!)) denotes the sensitivity
level of data [13]. The DA derives the privacy risk values €, ,(rf)) of each w. Each
DO w is described by a privacy risk value Q,,(r%) as well as a value of data V,,(r%).
Therefore, there is mapping Z between the privacy risk and the value of data that
Z = [Qu,(rt) = Vyu(rl)]. The data values may vary for each DO. In order to find
the final value of data records for each data type, we calculate the average value of
data records as follows:

- " Vl(rt

Pt = (M) (3.2)
m

where m is the total number of DOs which participate in selling data for a specific

data type. Once the data aggregator announces the final value of the data to DOs,

they can either accept or reject it (Accept, Reject). If the DO w decides to accept

the final value then DA collects the data for further processing.

3.1.4 Data Aggregator Utility

For DA j, we define a cost function Cj(r!)) representing the total cost incurring
from operation, maintenance and electricity bill for the data records 7 at period
t. It can be noticed that such cost increases with the size of data records, yielding
an increasing and strictly convex cost function. We choose a quadratic function to
model the cost function as follows [1]:

Ci(rl) = a(rl)> + b(rl) + ¢ (3.3)

where a,b,c > 0 are constants. These parameters are dependent on the type of
operation, maintenance, and electricity bill incurred to the DA. The utility function
of DA is modeled by revenue of selling data records minus the cost:
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U= Ri(rl,) = Cj(rh,) (3.4)

subject to xf, <1 (3.5)

w — S w

Eq. (3.5) ensures that the DA trades no more than the agreed upon amount of
records. Significant notation is summarized in Table 3.1 for the clarity of readers.

Table 3.1: Notations.

Notation Description
w Data owner (DO) w € W ={1,2,...,m}
J Data aggregator (DA)

rt Infinite data records rf, of Do w at time ¢
1 Buyer i € B={1,2,...,b}
x Trading amount of records x
Qu(rt) Privacy risk
Vi(rk) Value of data
% Average value of data records
C;(rt) Cost function
Uj Utility function for the DA
w; (B, BY;)  Utility function for buyer i for one-shot game
vi(z(BL, BY,)) The buyers’ valuation functions v
U; Overall utility of buyer 7
G One-shot game
S(B:) Scoring rule funtion for buyer i bid
Gi Finite repeated game with discount factor

Try,(5,19) Total trust DA has about a given buyer i

yi }
indirect Indirect trust

pi(Bi) Payment of the winner buyer i

3.2 A Repeated Game Theoretic Approach for Data
Trading Between Buyers

In this section, we present a non-cooperative game for data buyers in the infinite
repeated horizon. A repeated game is one where the buyers repeatedly play the

19



same one-shot game in each time period (called a stage game) in which they play
simultaneously [15]. We first formulate the utility function for a one-shot game G.
Then, using the one-shot game definition as a building block, we then proceed to de-
fine finitely G and infinitely repeated games G that capture repeated interactions
among the different buyers. We consider a data market setting for one-shot game
G = (B, A;,u;), where B is set of buyers. Each buyer i has an action set A;. An
action profile 8 = (f;, ;) consists of the bid of buyer i and bids of other buyers,
denoted by 5_; = (B4, ..., Bi—1, Bix1, ---, Bp) € A_;. In addition, each buyer i has a
real-valued, one-shot game utility function u; : A; — R, which maps every action
profile 8 € A into a utility for buyer i, where A denotes the cartesian product of the
action spaces A;, written as A = Hf;l A;.

3.2.1 Data Buyers Utility

We assume a buyer ¢, who needs a number of records from package D of a specific
type, knows his own valuation of the current traded amount of records, but not those
of his opponents. On receiving the required amount of records, the buyers pay the
price p!(z (!, f%;)), conditional on winning records, given the other buyers bid A,
If the game G is played only once, the utility function for the buyer ¢ is the difference
between valuation for traded amount of records and payment. The utility function
u; of buyer ¢ for one-shot game is:

wi(B,8L) = vl (@8], L)) — ph (=B, B2)) (3.6)

t

where v! is buyer ¢’s valuation for the trading amount of records x. It represents how
much the requested records are worth to the buyer ¢. The buyer ¢ hopes to pay a
smaller price p; then his estimated value v;. The buyers’ valuation functions v} are
drawn independently from the following equation:

vi(z (B, BL) = vi (96 (1 +log (B (¢), B%(@)))) (3.7)

where ¢ denotes the satisfaction rate of buyer i (0 < ¢ < 1). The log function
modifies the buyers’ valuation in proportion to their satisfaction rate. This means
that if buyer ¢ is not satisfied with the quality of obtained records at stage t, the
valuation of the buyer 7 in next stage decreases as show in in Figure 3.3. We assume
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that the satisfaction rate of buyers ¢ € B is 1 at the beginning. After receiving
records at stage t, the buyer measures the quality of the records and updates the
satisfaction rate. The buyers use the average of satisfaction rates as their valuation
for the next stage. Figure 3.3 describes they way valuations are affected by the
satisfaction rates.

500 -

400 -

300 -

200 A

100 -

Valuation for current records

0.2 0.4 0.6 0.8 1.0
Satisfaction rate based on previously obtained records
Figure 3.3: Valuation function. This example shows that the valuation v; of buyers

B decreases on the basis of the satisfaction rate ¢. Note that this example does not
take into account the average of all satisfaction rates.

In the next stage, the game G structure stage does not change. Buyers will
continue bidding until they obtain the total quantity they needed. The overall utility
of buyer 7 in the repeated game Gi is:

U= (1-1) Zwtflui( f7 t—z) (3.8)

where 1 is a discounted factor and 3, denotes the set of bids submitted by the buyers
other than i at stage t. We assume that future utilities are discounted proportionally
at some rate (0 < ¢ <1). ¢ = ﬁ, where r is the interest rate. We used fictitious
play as type of learning for the buyers [16, 47]. Each buyer i starts with some belief
about what are the bids of other buyers. Each buyer i updates his/her beliefs based
on what he/she observed in the iteration of G7,. More formally, let 7}(5_;) denotes
the number of times buyer ¢ has observed (/5_;) in the previous stages. So, buyer i

assesses other buyers bid using fictitious learning as follow [16, 47]:

21



¢
t n;(B-i)
o; (i) = (3.9)
Zﬁ—ieA—i i (B-i)

where o!(3;) is the probability that is proportional to the time it was played in the
past. This means that buyer ¢ forecasts buyer —i’s bid at time t to be the empirical
frequency distribution of past G. Given buyer i’s belief about other buyers play,
he/she chooses the bid at time ¢ to maximize his/her utility [0, 17]:

Bl € arg 5m%xv(6i,af) (3.10)

7 —1

3.3 Nash Equilibrium Solutions

The Nash equilibrium (NE) of a game is an action profile (list of actions — one for
each buyer) with the property that no player can increase his utility to achieve higher
benefits by choosing a different action given the other buyers’ actions. To maximize
the utilities, the buyers adjust their bids to reach the equilibrium. This means that
if a NE exists for the game, then all buyers ¢ € B are expected to converge to the
state represented by the equilibrium. So, each buyer ¢ aims to choose the strategy
or action that maximizes its utility function to determine the best outcome. In
addition, the players in the one-shot game choose their own bids independently and
simultaneously and try to maximize their expected utility. There are two types of
strategies or actions available for players: pure strategies and mixed strategies. Pure
strategy defines an action that a player wants to take with positive probability from
a given set of strategies in the game. In contrast, a mixed strategy for a player is
a probability distribution over his/her pure-strategy choices. In our model, we will
prove that the pure strategy equilibrium exists for the proposed one-shot game. The
objective function of the players is to maximize their utilities. Before finding the
NE of our one-shot game G, we first define formally the best response and NE. For
the sake of clarity, we are dropping t notations, referring to the time, since we are
dealing with a one-shot game.

Definition 1 (Best response [13]). Assuming all the buyers i € B are rational, a
buyer i played his/her bid (ﬁz*) as best response to the other buyers’ f_; played action
(,8* ) such that:

—1

Bi € BR</8—13> iff VBi € Ai,uy <5f;ﬁ—i> > u; (5@54) (3.11)
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Definition 2 (Nash equilibrium [18]). The NE is a profile of actions, one for each
buyer, such that each action is the best response to the other buyers actions. Specif-
ically, an action profile B is said to be NE, if:

B* = (8,55, ..., B2) is a NE iff Vi, B € BR(BL) (3.12)

We will first define the existence of NE for the finite repeated game, which can
be viewed as a generalization of the equilibrium concept for the one-shot game. We
should point out here that we won’t be able to construct subgame perfect nash
equilibrium (SPNE) i.e., induced normal form - backward induction, which is the
standard solution for finding NE. SPNE works only when the utility function is
continuous and only applies to finite games. However, in our model, the utility
function of buyers in (3.6) introduces a discontinuity in utilities. This means that
the u; could be zero at some stage t for buyer i, or it could have non-zero value.
Hence, we will use the following approach to finding the NE in every one-shot game
with a discontinuous utility setting. Next, we will leverage the results by using the
Folk theorem in the infinitely horizon setup to find NE.

Theorem 1. A Nash equilibrium exists in the proposed non-cooperative game G =
<B, Ai7 Uz> .

Proof. The Nash equilibrium exists only when the following conditions are satisfied

[49]:

1. A; CR™ (i =1,....,b) is a non-empty, compact and convex subset of Euclidean
space.

2. u; = A; — R is upper semi-continuous in 3 and quasi-concave in 3; Vi.

Obviously, the first condition can be satisfied since A; is defined by a set of bidding
vectors in which all the values are between zero and the maximum bidding of buyers.
So, it is a nonempty, compact and convex subset of the Euclidean space R’. To show
that u; = A; — R® is upper semi-continuous, we first define the following property

[50]:
Definition 3. u;(3;, 5-;) is upper semi-continuous at B if 3B; as a neighborhood
such that:

lim supu;(8;, B-:) < ui(Bio, B—i) (3.13)

Bi—Bio
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For a jump point of u; in a given range AS, we define [50]: B0 = ;+ A/ such that
p1 < p2, pe(Bi, B—i) = p1, and py(Bio, B—i) = p2. This means that w; function is upper
semi-continuous because rational buyers i € B attempt for a higher utility around the
discontinuity point. Only the quasi-concave property remains to be proved. Taking
the derivatives of (3.6) with respect to 3;, we get:

ou; _ U(x(ﬁfi)) _
9B In(10)B;

0%u; v (33(5—1))

1 (3.14)

= — 3.15

05; In(10)47 (319)

Since gg = vl(;((fo );)) — 1> 0 and %“i; = —Ulgf((lé);;) < 0, the utility function u; is
concave with respect to 3;, hence it is quasi-concave in 3; [14], thus we get:

ui((1 = X)BF + A8Y, B-i) =2 min{w;(57), wi(8]), B} (3.16)

where ¥ and /3 belong to the buyer i action set A;. Therefore, u; is a quasi-concave
in 8; Vi. Thus, we have proved the existence of the NE. ]

Theorem 2. The NE of game G = (B, A;, u;) is unique.

Proof. The uniqueness proof is to show that the best response function of each buyer

Br is a standard function. Based on best response Definition 3.11 and using Eq.

(3.14), the best-response is achieved when the first derivative of u; is equal to 0, thus

we have:
Ou, _ v((8-1)) _
00; In(10)8;
U(ﬂf(ﬁ—z’»
In(10)

A function f(f) is a standard function [51], if the following properties are satisfied:

1=0 (3.17)

and we obtain:

Bi = f(B) = (3.18)

1. Positivity: f(5) > 0;
2. Monotonicity: For all 8 and £, if 8 > 3, then f(B) > f(B),
3. Scalability: For all u > 1, uf(8) > f(ub);
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f(B) satisfies the three above properties of a standard function.

Positivity: The best-response function in (19) is always positive, so f(/5) > 0 posi-
tivity property is set up.

Monotonicity: Assuming 5 > B, then

v(z(8-5) >0 (3.19)

R e O

~

we have f(8) — f(£) > 0, in which f(/) is monotonically increasing function.
Scalability: For all 4 > 1 we have,

U(x(ﬁ—i))
In(10)

_p (w(ﬁ—i))

f(B) (3.20)
So, for all > 1, uf(8) > f(upB) thus, scalability property holds. Therefore, there
exists a unique NE in the above one-shot game (G, which can be viewed as the finite
repeated game G O

If the stage-game of a finitely repeated game has a unique NE, then we can
consider that constant action for each buyer ¢, always play the stage-game best
response irrespective of the past history. The infinitely repeated games requires
different setup than finitely repeated games since it dose not have a terminal point.
Before finding the NE of infinitely repeated game G77, we need to formally define
the minmax value, enforceable and feasible utility as follows:

Definition 4 (Minmax value [18]). Considering stage-game G = (B, A;,u;), the
minmax value v; for each buyer v is:

v; = min max u; (i, f-) (3.21)

—1 7

It represents the amount of utility buyer i receives when the other buyers play minmax
strategies and buyer v plays the best response.

Definition 5 (Feasible [18]). Given a set of utility vector U = (uy, ug, ..., u,), U is
said to be feasible if the convex hull of U is expressed as:

H=Conv{uecR, |3 eR,U;= Zuz} (3.22)

t=1
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First, we need to apply Definition 5 to the set of utilities in a stage game G.
Then, the convex hull of U will be determined by the convex combination between
all utility vectors. Note that convex hull H of the vector utilities is achievable with
pure strategies. In other words, a utility profile is feasible if it is a convex, and convex
combination of the outcomes in G.

Definition 6 (Enforceable [18]). A wtility vector U is said to be enforceable, if:

The set of feasible and enforceable utilities is € = H N U. Therefore, any set
of feasible and enforceable utilities in E (Infinitely repeated game), Er (Finitely
repeated game), and &y (Discounted repeated game) are always included in E.

Theorem 3. A Nash equilibrium exists in infinitely repeated game G° = (B, A;, Uy),
if U is enforceable and feasible in &, such that for each buyer i, we have u; > v; [52].
Then &y, —— &.

»Y—0
Proof. According to [53], there exists NE in discounted infinitely repeated game.
There can be many NE in the infinitely repeated games GG even if the stage game
only has a unique NE. ]

3.4 Mechanism Design

In this section, we design a truthful mechanism to determine the winner allocation
and corresponding payment for the proposed one-shot game G (possibly G — GT)
and implement it in form of smart contracts. The process of developing a mechanism
design faces two primary challenges. One is how to determine the winner buyer and
allocation. The other is how much the winner buyer should pay for the records. This
section addresses these two issues by using a scoring function based on the trust score
to evaluate the buyer’s bid and announce the winner. Furthermore, we consider a
penalty for the winner if he/she is not fully trusted with respect to his/her trust
score. Given the reservation price p;(x) and the submitted bids, the smart contracts
will return the winner allocation and payment rules.
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3.4.1 Winner allocation stage

In winner allocation stage, each data buyer i € B submits his/her bid 5; = (gi, vl(x))
simultaneously to the blockchain at stage ¢. The valuation v;(x) for the traded
amount of records offered in all stages is unknown to the DA. In this model the
winner allocation stage includes two steps. In the first step, after receiving bids from
buyers, the smart contract collects the trust score of buyers who participated in
the bidding process and eliminates buyers whose trust score is less than a threshold
T. The T is determined based on the average of data sensitivity SL(r) Yw € W,
which is obtained through Eq. (3.1). In the second step, the scoring function S(g;)
is calculated for each buyer ¢ € B according to the following scoring rule:

S(B:) = B; x Trl,(j, 1) (3.24)
subject to f; > p; (3.25)

where Tr!(j,4) measures the total trust DA has about a given buyer 4, which is
computed using the current satisfaction Tr. and previous trust score Trf _(j,i) as
shown in Eq. (5.10). In case DA does not have a prior trust for buyer i, we take

indirect trust ﬂ%dmct into account. The total trust function is defined as follows:

Tr,(j,1) =
axTro+ (1 —a)xTrt_(5,9), f Tr(.) >0 (3.26)
axTre+(1—a)x T, o i Tr() =0

Here « is a relative weight that changes based on the accumulated deviation defined
in Eq. (3.30, 3.31) and (3.32). The T'r. function measures how much DA j is
satisfied about data buyer 7. It represents the satisfaction score for the most recent
transaction between j and 7 (0 < 7T'r. < 1).

(1— ef)\Val}iL(j,i))
1+&u(4,1)

Here Sat. is a feedback-based factor (e.g., review score) for the current transaction
n reflecting the way DA j rates data buyer i [54].

Tr.= Sat. x

(3.27)
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0, if 7 is totally unstatisied with 7,
Sat. =<1, if j is totally statisied with 7,
€ (0,1), otherwise.

Val?(j,4) is a recent value fluctuation between the previous and current value Val..
Here, A is the decay constant and it controls the trust value. The T'r. value reaches
1.0 with larger V'al®(j,4) and decreases slowly with smaller V'al’(j,4). For example, if
the transaction’s value is insignificant and current satisfaction is high, this will have
little effect on overall trust. On the other hand, if the value of the transaction is
high, and current satisfaction is high, the overall trust will be increased significantly.

Val(j,i) =IVals_, (j,i) — Val| (3.28)

&0, 1) = K x Val, (5, i) + (1 = K) x &5, 1) (3.29)

Here £Y(7,1) represents the accumulated value deviation for the history of all trans-
actions. The « is relative weight which gives higher weight to the recent n [54]. The

weight of o changes based on the accumulated deviation &*(7,4) [54].

54.0.)
a = threshold + I x —*"—"— 3.30
1+ &.(5,7) (3:30)
0 (jy) =[Tr5, 4 (4,7) = Tre| (3.31)
&0, 1) = K x 8,5, 8) + (1 = K) x &,(,4) (3.32)
Here K is some user-defined constant factor which controls to what extent we will
react to the recent error of(j,4) [54]. So, if we increase the value of K, then we
give more significance to the recent deviation than accumulated deviation [54]. The

threshold is used to prevent « from saturating to a constant value. demct value is
computed when DA j does not have a prior trust relationship and experience with
buyer i. The DA requests other entities’ y € Y to provide their rating about the
target buyer i. So, the DA will have the capability and experience to truthfully judge
the data buyer for the first transaction. The indirect trust function is:

3.33
zndzrect Z 7) 4 Nyz ( )
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where, Py; denotes positive feedback of entity y (0.5 < Py; < 1), and N, termed
as negative feedback (0 < Nyi < 0.5). So, T, ... represents the total number
of positive and negative feedbacks for buyer i. Based on Eq. (3.24), the buyer
with the highest score wins the game at stage t. If the buyers have an equally
high trust score, we randomly selected the winner. After that, allocation rule will
apply X : R, — [0, 1], meaning that with the score bid profile S(;), buyer i gets
the records with probability X (S(5;)) and makes a payment of p;(3) € R, which
indicates the amount that buyer ¢« must pay. Furthermore, allocation rules have to
satisfy the feasibility constraint as follows:

t
> X(S(B)) < VB (3.34)
i€B
Eq. (3.34) restricts the allocation of records for the winner not to be more than the
traded amount at stage t. Other buyers will modify their bids accordingly for the
next stage of the game. Buyer ¢« € B will continue bidding until obtaining the total
quantity he/she requested.

gz (3.35)
t

3.4.2 Payment Stage

In the payment stage, we consider a penalty for the winner if he/she is not fully
trusted i.e., a trust score less than 1. If the winner is fully trusted which implies
(Trt(j,i) = 1), he/she will not be punished. The trust is calculated based on Eq.
(5.10). The payment rule of winning buyer fj3; is:

pi(Bi) = Bi — ws (1 + log (TTZ(jy Z))) (3.36)
The above equation provides assurances that buyer ¢ is punished only on its stage

utility u; and will not be charged more than its bid. Algorithm 1 describes the winner
allocation as well as the payment stage.
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Algorithm 1 Winner allocation and payment stages

Input: Submitted bids f5; and reservation price p; for stage ¢

Output: Winner allocation X (S (ﬁ,)), payment p;(5;), current satisfaction score
Sat,

Stage 1: Winner allocation stage
1: for each B;(g;,vi(z)) and p; do
2 Calculate the Trt (4,4)
3 if Tri(j,i) > T then
4 Calculate the S(5;) = §; x Trt,
5: else
6 Remove [3; Eliminating bids less than thershold T
7 end if
8: end for
9: S(B;) = max (S(8;),i =1 to b)
10: X(S(ﬁ_z)) = 1 Allocation for the highest score
11: X(S(8;)) =0,i=1tob

Stage 2: Payment stage

12:
13: Calculate the stage utility u; for winner ¢

14: pz(ﬁ_l) — B@ — Uy (1 + log (TT;(],’L)))

15: Leave current satisfaction score (Sat.) for winner i

Return (x (S(3). pi(5), Satc)

3.5 Evaluation of Results

In this section, we evaluate the model and analyze the results using different prop-
erties such as computational efficiency, bidding learning process, truthfulness, in-
dividual rationality, and budget balance. In our experiments, all the results were
conducted using a Windows 10, 3.78 GHz Intel Core 7 with 6 GB RAM. For the
evaluation of the model, since the record price is decided by the number of DOs
w € W based on their privacy risk, we choose reasonable values for our experiments.
We assigned a privacy risk value that is uniformly distributed between 0 and 1 to re-
flect the privacy attitude of the different DOs. Then, we calculate the average value
of the data. We assumed that the data records cost varies between 0 and 1, which
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is incurred by DA. We vary the number of buyers for evaluating the performance of
our proposed data market.

3.5.1 Computational Efficiency Analysis

We evaluate the property of computational efficiency property, which means that
winning determination and the payment stages in Algorithm 1 must be solved within
a polynomial time. The computation complexity of the Algorithm 1 is O(n), where
n is the number of bidders. In the winning allocation stage, the for loop runs for all
submitted bids and then calculates the trust score and scoring rule. The computa-
tional complexity of the for loop takes O(n). The max operation will take O(n), and
allocations will take O(1). In the payment stage, each statement will take O(1) to
finish. Therefore, the computational complexity of the proposed system is bounded
by O(n) time complexity at the most. We select 10, 50, 100, 150, 200, 250 and
300 buyers for the experiment, respectively. Figure 3.4 shows the running time of
Algorithm 1 under various numbers of buyers. These results indicate that Algorithm
1 completes the computation in almost linear time, as demonstrated in the time
complexity analysis given above. Therefore the computational efficiency property is
satisfied.
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Figure 3.4: Computationally efficient property.
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3.5.2 Budget Balance Analysis

We verify the budget balance property. Budget balance means at each stage t,
the buyer’s payment is higher than the reservation price (asked-price) of the data
aggregator. As shown in the payment stage described in Algorithm 1, the buying
price for the winner, taking into account the penalty, is greater than the selling price
B; > p;. To verify the property of budget balance, we repeatedly run the game until
stage 20 as shown in Figure 3.5. We can see that the curve line representing the
buyer’s payment is higher than of the asking price. Since we are imposing a penalty
in the payment stage, definitely we satisfy the property of budget balance.

—+— Bid
80 - —A— Payment
—&— Reservation Price
60 -
]
)
=
o 40
20 -
0 -

123456 7 8 91011121314151617181920
Number of stage

Figure 3.5: Budget balance property.

3.5.3 Individual Rationality Analysis

We evaluate the property of individual rationality in which each winning buyer ¢
must receive a non-negative stage utility w; > 0. Similarly, DA utility must be
non-negative U; > 0. The stage utility is u; = 0 for buyers who are not selected
in the winning determination stage. Even by imposing a penalty on the winning
buyer in the payment stage, the winning buyer has non-negative u;. For example, in
the worst-case scenario, let’s assume that the buyer trust score is 0.1. The payment
would be the same as the bidding price. So, the buyer’s utility is non-negative.
Figure 3.6 shows the average utility for the buyers and DA. We can observe that the
winning buyer receives non-negative utility considering penalty in each stage. It can
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also be observed that DA has a non-negative utility. From the above, we can verify
the individual rationality property of our proposed system.
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Figure 3.6: Individual rationality property.

3.5.4 Bidding Learning Analysis

As mentioned in section 3.2, we used fictitious play for the bidding learning process.
After some arbitrary initial bidding at the first stage of the game, the buyers myopi-
cally choose their best responses against the empirical action distribution of other
buyers’ bids at every subsequent stage. Buyers hope that such a bidding learning
process will converge and lead to a NE to increase their utility. Figure 3.7 shows the
bidding learning process among 10, 100, and 500 buyers without considering trust.
After each stage t, buyers update their actions (bids) based on the outcome of pre-
vious stages and observation of other bidders. We can notice that by increasing the
number of buyers, the expected utilities increase as well. This will lead to the point
where buyers can learn bidding strategies swiftly and converge to a NE to maximize
their expected utilities. From Figure 3.7, we can see that buyers are learning from
the outcome and observation of other buyers in the previous stage and are increasing
their stage utility. Furthermore, by increasing the number of buyers, we can see that
buyers converge to their NE profile.

We conducted a box-plot presentation to show the learning process of different
data buyers using fictitious play. Figure 3.8 shows the utility with 10, 100, and 500
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Figure 3.7: Learning process.

data buyers competing with each other repeatedly. For each box plot, the central
mark indicates a median of utilities. The upper whiskers show the highest utility and
the lowest whiskers show the lowest utility at each stage. The outliers are indicated
by a (o) symbol.
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Figure 3.8: Boxplot presenting the bid learning processing using fictitious play.
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3.5.5 Truthfulness Analysis

We evaluate the property of truthfulness in which each winning buyer ¢ must bid
their true valuation. Let’s assume the following two cases:

1. We define $3; as overbid from the valuation, and BF as the best response, and
u; and w; as their stage utilities, respectively. Buyer ¢ is the winner when
submitting either 3; or Br at stage t. However, overbidding creates extreme
penalties with respect to trust scores in the payment stage in our model, which
leads the winning buyer to pay more and gain less utility than if he/she plays
their best response. The best response scheme given by Eq. 3.11 is incentive-
compatible, when buyer ¢ is repeatedly best-responding, in which case other
buyers are incentivized to do the same to maximize their utilities. In other
words, a buyer ¢ € B cannot increase its utility by overbidding, since he/she
will be punished severely.

2. Buyer ¢ will lose the game G if he/she bids lower than their valuation (under-
bidding), otherwise would win if he/she reported the true valuation and played
their best response.

Therefore, buyer 7 cannot increase its utility by providing untruthful bidding
(overbidding and under-bidding), no matter what the other buyers’ bid. For the
experiment, we select two buyers; the first buyer bids truthfully while the other bids
untruthfully. To provide a consistent environment for comparison, we set the trust
score for both buyers to 0.7 and ask price to 50, 48, 41, 40, and 30, respectively.
Figure 3.9 (a) is the result when winner buyer ¢ is biding his/her true valuation and
pays the price p; at stage t. Figure 3.9 (b) is the result when buyer ¢ bids untruthfully.
We can see that buyer i receives zero payment when he/she is underbidding, which
means that he/she receives zero utility. At stages 3 and 4, he/she is overbidding,
and he/she is the winner. However, we can see that the winner is paying much more
than if he bids truthfully. Truthfulness property provides the best possible utility
for the buyers and ensures there is no incentive for a buyer to bid untruthfully.

3.6 Summary

While the economic value of IoT data is increasing, it is not very well known how
these data can be conceptualized, measured, and monetized in IoT data markets that
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Figure 3.9: Truthfulness property.

enable data owners to trade their data. Unfortunately, the existing [oT data markets
are insufficient for capitalizing on the full value of the data in a trusted and transpar-
ent way. To address these challenges, we proposed a trustful data trading framework
using the game theory approach in an infinitely repeated horizon to enable secure
and efficient data trading between buyers and sellers. To model the data market, this
chapter proposed a non-cooperative infinity repeated game model between rational
data buyers. In each stage of the game, buyers hold a bid for a traded amount of
records and seek to maximize their expected utility through learning from the out-
come of previous stages considering discounted rates for the future utility. We proved
NE and the uniqueness of our model, which is derived theoretically for the one-shot
game, finite, and infinite horizon games, respectively. Besides, this model imposes
a penalty on those buyers who do not have a good reputation and decreases their
chance of winning to preserve the data owner’s privacy. Through theoretical and
security analysis, we showed that the proposed system is computationally efficient,
truthful, budget balance, and individually rational.
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Chapter 4

Performance Analysis of
Blockchain-based 10T Data
Trading Systems

In this chapter, we discuss the existing challenges of blockchain-based data trad-
ing systems in section 4.1. Section 4.2 discusses the data trading model based on
blockchain. In section 4.3, the implementation setup using Hyperledger Fabric is
presented followed by the system performance analysis and results in section 4.4.
Finally, conclusion is discussed in section 4.5.

4.1 Introduction

According to a report from MarketsandMarkets [11], the data market will grow to
229.4 billion dollars by 2025. With massive number of IoT devices and applications,
the total amount of data created by IoT devices will reach 847 ZB per year by
2021 [10]. Indeed, data are becoming the most valuable asset in use as well as
in trade. Such valuable data received considerable attention from organizations to
tailor their services to potential consumers and make a profit. As a result, various IoT
applications and devices such as smartphones, wearable devices have brought great
convenience to people, while producing huge amounts of data. Data have become a
valuable asset, which creates a new business called data trading. Currently, there
are several data trading systems, e.g., CitizenMe, Datacoup, DataExchange, Factual,
and Terbine, to name a few. These systems suffer from two main concerns. First,

37



they fail to clearly explain where or with whom the owner’s data are being shared,
and often data change ownership illegally [0]. Second, aggregating large-scale data in
storage platforms is subject to cyber attacks [55]. To address these issues, researchers
propose blockchain systems as a means of providing people the ability to track and
control their data securely [56, 57, 58]. In blockchain systems, the transactions
are secure, tamper proof as well as transparent to all data owners and brokers [0].
Furthermore, several studies propose data encryption methods to reduce the risk of
data breaches [59, 60, G1].

While all of the above-mentioned studies consider blockchain and encryption
methods to achieve private and secure data trading, researchers paid little attention
to the performance measures of these systems. This research aims at evaluating the
performance of the blockchain-based data trading systems based on throughput (i.e.,
number of completed transactions per second in blockchain), latency, elapsed time
(amount of time needed to query the assets), and resource consumption analysis.
Transactions are an important part of the blockchain. To find out how well the
system is adding the number of confirmed transactions to the blockchain network,
we need to measure and analyze the throughput metric. By default, the underlying
data structure of a blockchain does not support an effective method of querying the
stored data. To overcome this limitation, we modeled the data in JSON format
through CouchDB. The latter supports deploying indexes within the smart contract
to make queries more efficient in massive datasets. Indexes enable a database to
be queried faster and more efficiently compared to regular queries without indexes.
Applying blockchain in data trading systems is not a straightforward task due to
high resource consumption. Hence, measuring resource consumption is also impor-
tant for the efficient management of systems, such as CPU, memory, etc., as well as
the successful execution of transactions in the blockchain. Therefore, this research
demonstrates a scenario of a blockchain-based data trading system based on Hyper-
ledger Fabric and analyzes its performance measures using Hyperledger Caliper. The
main contributions of this chapter are as follows:

e We analyze and evaluate the performance of the blockchain-based data trad-
ing system using Hyperledger. Our work measures and analyzes transaction
throughput, latency, elapsed time, and resource consumption (memory con-
sumption, CPU utilization, and disc read/write operations) unlike existing re-
search.

e We used a real dataset to emulate a real-life data trading scenario and show
that the proposed system can be easily deployed on IoT devices at a low cost.
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4.2 Data trading model based on blockchain

Figure 4.1 illustrates an example of a blockchain-based data trading system, in which
the market includes data sellers, auctioneers, and data buyers. The three stakehold-
ers continuously interact with each other while trading data. In the data market, the
sellers (data owners) generate data from various sources, such as smart devices and
social networks, and are willing to sell their data in exchange for money. A seller
j€{1, 2 ..., N} encrypts and stores its data in a secure indexed database. Since
blockchain is suitable for storing small quantities of data, we considered such a secure
database for each seller to store their large volume of data. Next, data seller j creates
the smart contract SC; to specify access control policies for the data and the way
the buyer can search the index. Once this is completed, the data seller sends both
the smart contract SC; and the index to the blockchain. Next, seller j submits the
asking price of their data records to the auctioneer. The auctioneer administers the
auctioning process to avoid unfair trading, matches between the data sellers and the
data buyers, and determines the winner and the payment. The auctioneer may exe-
cute an auction mechanism such as a sealed bid auction, double auction to complete
the trading process. It should be noted that this study does not focus on auction
mechanisms, but rather presents a blockchain-based trading scenario to analyze its
performance as indicated previously.

Encrypted
Storage

Request

Data encryption authorization Data Accessg
. (Decryption)

DEERINTES
Data Sellers

H Auctioneer
i Trapdoor

Blockchain Smart

Contract Request

search using
_ Trapdoor Return the
~ search result
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Figure 4.1: An example of blockchain-based data trading system.
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Each buyer i € {1, 2, ..., B} submits its bid to the auctioneer who tries to match
buyers and sellers. If buyer ¢ is declared a winner, it receives the search token and
decryption key from seller j to obtain the required data. Then, seller j receives the
agreed upon payment amount. The winning buyer ¢ will utilize the token to request a
search through the blockchain. The smart contract, which is stored in the blockchain,
will use the token and return the search result to buyer 7. A smart contract specifies
rules and conditions in a digital format, containing protocols within which the par-
ticipants perform on these promises. A smart contract is a script (e.g., Solidity in
Ethereum and Golang in Fabric) which defines the set of assets available to transfer
and the type of transactions permitted. All smart contracts have a unique address
and are stored in the blockchain. The model assumes that the data sellers have the
skill and ability to perform these operations on the blockchain network. More for-
mally, blockchain-based data trading systems is composed of following polynomial
algorithms [02, 63]:

1. KeyGenSetup(1*) — SK: It is run by seller j and takes security parameter
A. It outputs the encryption key SK;.

2. Encrypt(SK,D) — C: It is run by the seller j to encrypt data. Given the
encryption key of seller SKC;, and data set D, it outputs a ciphertext data set

C.

3. DataPolicyRules([r, s, ..., 7,]) — P: It is run by the seller j to define data
access control policy rules. Given the set of rules r,, and data set D, it outputs
the data policy P. Inside the smart contract, the seller j can specify access
control policy P for his/her data such as what data can be used for, and when
it can be used.

4. Createlndex(SK,D,C,P) — Z: It is run by the seller j to create the index
Z. Given the encryption key of seller SK;, and encrypted data set C, and access
policy rules P, it outputs the searchable index Z.

5. Trapdoor(SK, Q) — Tg: It is run by the seller j to create trapdoor for the
authorized buyer i. Given the encryption key of seller SK;, and query (e.g.,
keyword) Q, it outputs the trapdoor 7.

6. Search(Z,7T,) — S: It is run by buyer i and evaluated by smart contract (1
or 0). Given the search index Z, and trapdoor 7, it outputs the search result
S, including the list of the encrypted data set C.

40



7. Eval(Z,T,) — m Given index Z, and trapdoor Tg, it evaluates the search
function and outputs the correctness proof .

8. Verify(7g,S,m) — True or False: Given trapdoor 7g, search S, and proof
7, it outputs the (inculding ciphertext C), and correctness proof 7. It outputs
True if the result is valid (correct) and False otherwise.

9. Decrypt(SK,C) — D: Given the encryption key SK, and ciphertext data
set C, it outputs the decrypted data set D to buyer 7.

The key principles of the proposed data market are data ownership, transparency,
and access control. Algorithm 2 presents the scheme construction pseudo-code for
the blockchain-based data trading system.

4.3 Implementation Setup Using Hyperledger Fab-
ric

To implement the data trading system we use the Hyperledger platform. Hyperledger
was established to address some of the concerns posed by permissionless blockchains.
Under the Hyperledger umbrella, various purpose-specific systems and tools are being
built for use-cases ranging from finance to the IoT, manufacturing, and supply chain
management [61]. Hyperledger Fabric is one of the tools that offer permissioned
distributed ledger technology allowing specific entities to participate [64]. Some of
the main components of Hyperledger Fabric are as follows:

e Ledger: Immutable data storage tool that keeps the records of the transactions.

e Organization: A Fabric network might contain one or multiple organizations.
Organizations host peers and other components of the network and each main-
tains a copy of the ledger. A single organization in a Fabric called Org! and
uses the domain name orgl.ezample.com.

e Peer: A Fabric network might contain one or multiple peers. Peers execute
transactions and host in the Docker containers. Peers can be committer or
endorser. All peers are committers by default. Peers receive orders in form
of a block of transactions from the Orderer. Upon receiving a new block, the
peer validates the transactions. Peers can take up the additional responsibility
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Algorithm 2 Scheme construction for blockchain-based data trading system
Input: Encryption key SK, document set D, cipher-text data set C, submitted bids
and asking price, query Q

Output: Winning buyer, payment, index Z, document set D, smart contract

1: for each j € N do

2: SK + (1>‘) // Calculate KeyGenSetup function and create the encryption key SK
3: C «+ (SK,D) // Encrypt the data set D
4: P < ([r1,72,...,mn]) // Define the access policy rules for the data set D
5: Sign; the data access policy P
6: T < (SK,D,C) // Create the index Z for the data set D
T Add the encrypted data set D to database
8: if SC; exists then
9: Update new information for seller j in SC;
10: else
11: Add/append SC; and index to the blockchain for seller j
12: end if
13: Submit the ask price for data D to the blockchain
14: end for
15: for each ¢ € B do
16: Submit the bidding price to the blockchain
17 Smart contract runs the auction mechansim
18: Smart contract announces the winners and payments
19: end for
20: for each matching pair ¢ and 5 do
21: Seller j receives the payment

22: To < (SK, Q) // Create the trapdoor 7¢ for the authorized buyer ¢
23: Add the 7Tg to the smart contract SC;

24: Share the 7g and index Z to buyer 4

25: S + (Z,Tq) // Buyer i requests search using the 7o and index 7
26: if Verify = 1 then

27: D «+ (SK,C) // Decryption process
28: else

29: Invalid

30: end if

31: end for

of endorsing transactions (endorsers). An endorser simulates the transaction
by running the chain code and appending the results with its cryptographic
signature (referred to as endorsement) before returning it to the application.
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Orderer: The component responsible for ordering all the transactions, proposes
new blocks, and seeks consensus (using one of the consensus protocols available
in Hyperledger, e.g., Kafka, Solo, Raft) in the network. Peers are linked to
orderers through channels so that when a new block is created, all peers linked
to the orderer receive a copy of the new block.

Chaincode (Smart contract): A piece of computer program which runs on the
blockchain and enforces how applications communicate with the ledger.

Database: LevelDB and CouchDB are the two existing state database solu-
tions in Fabric to store data. LevelDB stores the data as key-value pairs and

CouchDB stores the data as JSON.

Channel: A component of the Fabric that allows private communication among
different participants/organizations in the network. This will allow for data
isolation (private subnet) and confidentiality among members.
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Figure 4.2: The blockchain transaction flow on Hyperledger Fabric V2.2 consisting
of 2 organizations, each operating one running peer and a database inside a Docker
container and orderer running a single channel.

Let us consider the Fabric network in Figure 4.2. In this example, sellers and buy-

ers request a transaction through a data trading application (SDK). A transaction
is a process of receiving the asks and bids from the sellers and buyers, respectively.
The data trading system generates a transaction proposal and sends it to the or-
derer. Orderer broadcasts the transaction to the peers inside the channel. The peers
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verify the transactions based on the predefined endorsement policy. Every chaincode
contains an endorsement policy. It specifies which peers to execute chaincode and
endorse (verify) the results for the transaction to be deemed valid. For example, it
checks if the transaction proposed is in the correct format and the signature is valid,
etc. The endorsed transaction is then returned to the application containing the re-
sult. Then, the application verifies the results if the endorsement policy is satisfied.
Then, the orderer finalizes all the transactions in the network, seeks consensus (Solo
consensus protocol), and creates a new block. Next, the orderer distributes the new
block to all peers for the final validation. Finally, the peers validate the transactions
and append them to the block. Since we only used one ordering node, Solo was
chosen. Furthermore, we utilized CouchDB to model data on the ledger as JSON
format. CouchDB enables us to deploy indexes in the chaincode to make queries
efficient, thus empowering us to query large datasets.

4.4 Performance Analysis

The Fabric network we deployed for the experiment consists of two organi-
zations (Org0, Orgl), each consisting of one peer (peer0.orgl.example.com,
and peer0.org2.example.com), each consisting of  one database
(couchdb.orgl.example.com, and couchdb.org2.example.com), and one orderer
node (orderer.example.com) hosted inside a Docker container. We run the Hy-
perledger Caliper benchmark framework [05] over the implementation of Fabric to
analyze our system performance on Ubuntu Linux Intel Core(TM) i7-3610QM CPU
@2.30GHz with 6 GB RAM. Hyperledger Caliper allows users to execute, measure,
and verify the performance of blockchain networks with predefined use cases [05].
The Hyperledger Caliper report file in an HTML format contains the performance
of the blockchain network. Data is visualized via Python from various viewpoints
for the readers’ better understanding. Fig. 4.3 shows the data generation process.
We used a real dataset UK-DALE [66] to emulate a real-life data trading scenario.
The UK-DALE dataset contains five houses’ energy usage consumption, measured
by an IoT-based smart meter device. To make the data trading happen on the
blockchain network, we converted the IoT data (energy consumption records) to a
JSON file (key-value). We created three samples (assets) from UK-Dale dataset
and stored them in CouchDB for our experiments. The results may change over
different runs under different workloads. Therefore, the experiment itself must be
repeatable. We run our experiments for eight rounds on the blockchain network to
ensure the repeatability of the experiment. We measured our system performance
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by using the following metrics:

"name": "Housel",
"DishWasher": [
{
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"Gas (cubic meters)": "7,818.51

Figure 4.3: The data generation phase.

Transaction throughput: The average number of transactions per second (tps)
that can be processed (i.e., written on the ledger) in the blockchain network. This
metric measures how many transactions successfully processed on the blockchain. In
the data trading systems, it is essential to find out the number of confirmed successful
transactions in a unit of time to measure the performance of the system. Therefore,
it is important to measure the system’s capability of processing the transactions.
The transaction throughput of the network calculated as follows [67]:

Total transcations

Transaction throughput =

(4.1)

Total time in seconds

Transaction latency: The amount of time taken from the moment when a
transaction is submitted till the moment when it is confirmed and available on the
blockchain. This includes the propagation time and the processing time due to the
consensus/ordering mechanism.

Resource consumption: The amount of computing resources (e.g., CPU us-
age, memory consumption) consumed by the blockchain network through different
operations. This metric measures the cost efficiency of our system. Furthermore,
based on this measure, users will be able to adapt algorithms to reduce resource
consumption usage.



Elapsed time: The amount of time that each buyer needs to interact with
the blockchain network to query data from chaincode. This metric measures how
much time it takes for the buyer to get query result from database. Therefore, it is
necessary to know the availability of the system in different requests.

It is important to test the system performance under different workloads. The
workload is representative of the actual production usage. It is related to the amount
of time and computational power used to complete a given task (e.g., amount of time
and computing resources used to create a new transaction on the blockchain). We
define the following workloads for our proposed system:

e Open workload: Opening accounts and testing the writing performance of the
ledger.

e Query workload: Querying accounts and testing the reading performance of
the ledger.

e Transfer workload: Data trading between accounts and testing the transaction
performance of the ledger.

Table 4.1: Summary of Performance with 500 and 1000 Transactions

Send Rate Max Min Avg Throughput

Name Succ Fail (TPS) Latency (s) Latency (s) Latency (s) (TPS)
Open 500 0 50 6.38 3.37 9.75 38.5
Query 500 0 50 1.99 0.30 1.14 48
Transfer 500 0 50 0.79 0.14 0.46 50
Open 1000 0 50 12.41 8.32 10.36 48
Query 1000 0 50 4.12 0.78 2.24 38.2
Transfer 1000 0 50 3.67 0.34 2.00 50

Table 4.1 summarize the performance of the network with 500 and 1000 transac-
tions using 50 transactions per second (TPS) for opening, querying, and transferring
workloads, respectively. From the results in Table 4.1, we see that the average la-
tency results for the 500 and 1000 transaction under the open workload is 9.75 and
10.36 seconds, respectively. The latency timer starts from the point of submitting
the transaction and the result is available in our blockchain network. To evaluate
the average latency blockchain network in more detail, we consider different sending
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rates for analyzing the average latency of the proposed system. Figure 4.4 indicates
the average latency for 500 and 1000 transactions with different sending rates 50,
100, 200, 400, 800 TPS, respectively. From Figure 4.4, we can see that by increasing
the sending rate, the average latency of the open workload increases with the sending
rate for both 500 and 1000 transactions. Sending a large number of transactions with
higher sending rates would cause a failure in the network. Many other things can also
cause transaction failures in the blockchain network, such as chaincode logic, ver-
sion errors, peer resources, policy failures, network resources, consensus errors, and
repeated transactions, to name a few. For query and transfer workload, from Figure
4.4, we can see that when the sending rate increases, the average latency increases
slightly. Figure 4.5 shows the transaction throughput with different sending rates.
The transaction throughput metric only measures valid committed transactions per
second in the blockchain network. From the results in Figure 4.5 (a), we observe
that by increasing the sending rate, the throughput of the query workload increased
linearly, and the throughput of the open and transfer workload increases slightly too.
However, in Figure 4.5 (b) the open and transfer workload for 1000 transactions will
reaches a bottleneck when throughput gets close to 400, thus resulting into a higher
latency average per transaction, and the throughput cannot be further improved.

Performance With 500 Transactions Performance With 1000 Transactions
= Open 407 Open
351 mm Query 35| ™= Query
B Transfer B Transfer

w

o
w
o

N
[

N

o

[¥]
o

—
[

Avg Latency (s)
- ~N
7] (=)

Avg Latency (s)

50 100 200 400 800 50 100 200 400 800

Send Rate (TPS) Send Rate (TPS)
(a) (b)

Figure 4.4: Average latency varying workloads and sending rates.
To create an asset in CouchDB the data trading application submits the createAs-

set method to the Hyperledger Fabric. Then, peers are required to verify the request
through the Chaincode. Next, the orderer appends the transaction to the ledger and
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Figure 4.5: Transaction throughput under open, query, and transfer workloads with

varied sending rates.

the asset is written in the database. On the other hand, to retrieve the asset, the
data trading application submits the getPrivateAsset to the Fabric. Then, peers are
required to verify the request through the Chaincode and allow the application to
read the data from CouchDB. Asset retrieval will not have an interaction with the
orderer. Tables 4.2 and 4.3 show the benchmark results of creating and retrieval
assets within CouchDB, respectively. We can see the average latency increases with

the size of the asset.

Table 4.2: Creating the assets in CouchDB

Asset Size (MB) Max Latency (s) Avg Latency (s) Throughput

3.2MB
5.4MB
7.4MB

9.36
15.47
21.75

6.50 703.3
8.13 819.9
9.75 980.5

We ran the test queries on assets to calculate the elapsed time.

The elapsed

time begins when the query is executed, and ends when the query is returned. The
following is an example of test query for the third asset (7.4Mb). The first query is
not supported by the index while the second one is supposed by the index.

Query 1:



Table 4.3: Retrieval the assets from CouchDB

Asset Size (MB) Max Latency (s) Avg Latency (s) Throughput

3.2MB 8.24 5.11 600.13
5.4MB 12.47 6.44 719.9
7.4MB 17.75 8.01 815.7

peer chaincode query -C $CHANNEL_NAME -n
ledger -c ’{"Args":["QueryAssets",
"{\"selector\":{\"owner\":\"user3\"}]}’

Query 2:

peer chaincode query -C $CHANNEL_NAME -n
ledger -c ’{"Args":["QueryAssets",
"{\"selector\":{\"docType\":\"asset3\",
\"owner\":\"user3\"}, \"use_index\":
[\"index0OwnerDoc\", \"indexOwner\"]}"]1}’

Figure 4.6 shows running times of test queries without index and with index.
From Figure 4.6, we can observe that querying with index takes less elapsed time
compared with querying without index. In general, queries without index will have
a longer elapsed time. Indexes allow a database to be queried without having to ex-
amine every row with every query, thus making them run faster and more efficiently.

Finally, tables 4.4, 4.5, 4.6 and 4.7, 4.8, 4.9 show the resource consumption
for open, query, and transfer workloads with 500, and 1000 transactions, respec-
tively. Memory displays the amount of memory used by the docker container on
each test round. Memory(MAX) measures the maximum resources spent on a trans-
action, and memory(AVG) measures the average resources spent on all transactions.
CPU displays the amount of CPU used by the docker containers during the test
round. CPU(MAX) measures the maximum resources spent on a transaction, and
CPU(AVG) measures the average resources spent on all transactions. For both 500
and 100 transactions, the resource consumption for open and query workloads reveals
that CouchDB consumes the most memory and CPU, followed by the peers. The
memory and CPU usage metrics indicate that with the increasing number of trans-
actions from 500 to 1000, memory and CPU usage increases relatively. The network
usage is conducted based on the traffic input and traffic output parameters. The ma-
jority of the network traffic is occupied by the orderer since it seeks the consensus in
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Figure 4.6: Running times of test queries.

the network in open workload. During our experiments, we observed that disk read
is zero bytes, as there is no need to perform read operations on the ledger in open,
and transfer workloads. The query transaction reads the data from the CouchDB
in query workload. The performance analysis shows considerable low memory and
CPU consumption for 500 and 1000 transactions. The peer node consumes an av-
erage of 54.1MB and 100.2MB for memory and 2.58% and 4.36% for CPU in 500
and 1000 transactions, respectively. This depicts that this blockchain network can
be easily deployed in real-world applications with low-cost hardware. Focusing on
[oT devices with the decentralized network. This will enable companies to deploy
such a blockchain network to cut down the costs of expensive hardware and lead to
successful secure data trading. Furthermore, since the average consumption is low
it can be easily deployed on low-cost IoT devices such as Banana Pi, Raspberry Pi,
VoCore, and Arduino.
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Table 4.4: Resource Consumption for Open Workload with 500 Transactions

Type Name Memory (Max) Memory (Avg) CPU% (Max) CPU% (Avg) Traffic Input Traffic Out Disc Read/Write
Docker  peer(.org2.example.com 56.5MB 54.1MB 3.12 2.58 2.6MB 1.2MB 0B & 7.6MB
Docker peer(O.orgl.example.com 27.1MB 21.2MB 3.8 1.45 2.2MB 1.1IMB 0B & 7.2MB
Docker orderer.example.com 6MB 5.4MB 1.22 0.14 2.1M 3.4M 0B & 4.6MB
Docker couchdb.org2.example.com 71.1MB 67.9MB 35.3 22.9 3.1MB 2.9MB 0B & 3.4MB
Docker couchdb.orgl.example.com 68.5MB 65.7MB 31.1 20.4 3.1MB 2.9MB 0B & 3.1MB

Table 4.5: Resource Consumption for Query Workload with 500 Transactions

Type Name Memory (Max) Memory (Avg) CPU% (Max) CPU% (Avg) Traffic Input Traffic Out Disc Read/Write
Docker  peer(.org2.example.com 32.1MB 28.1MB 2.52 1.18 1.7MB 1.0MB 0B
Docker  peer0.orgl.example.com 13.1MB 7.4MB 1.8 0.68 1.2MB 0.652B 0B
Docker orderer.example.com 4.1MB 4.1MB 1.01 0.26 1.1IMB 0.319B 0B
Docker couchdb.org2.example.com 88.2MB 81.3MB 43.9 30.5 4.4MB 4.1MB 1.2M & 0B
Docker couchdb.orgl.example.com 86.1MB 79.4MB 40.8 29.1 4.2MB 3.9MB 1.0M & 0B

Table 4.6: Resource Consumption for Transfer Workload with 500 Transactions

Type Name Memory (Max) Memory (Avg) CPU% (Max) CPU% (Avg) Traffic Input Traffic Out Disc Read/Write
Docker  peer(.org2.example.com 32.1MB 28.1MB 2.52 1.18 1.7MB 1.0MB 0B & 7.6MB
Docker  peer(.orgl.example.com 13.1MB 7.4MB 1.8 0.68 1.2MB 0.652B 0B & 7.2MB
Docker orderer.example.com 9MB 7.1MB 1.04 0.54 6148 1538 0B & 4.6MB
Docker couchdb.org2.example.com 70.6MB 66.7MB 34.3 21.0 2.9MB 2.4MB 0B & 3.3MB
Docker couchdb.orgl.example.com 68.1MB 65.3MB 31.1 19.2 2.9MB 2.4MB 0B & 3.1MB
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Table 4.7: Resource Consumption for Open Workload with 1000 transactions

Type Name Memory (Max) Memory (Avg) CPU% (Max) CPU% (Avg) Traffic Input Traffic Out Disc Read/Write
Docker  peer(.org2.example.com 101.9MB 100.2MB 6.8 4.12 3.7TMB 3.5MB 0B & 11.7MB
Docker peer(O.orgl.example.com 91.2MB 88.1MB 6.1 3.39 3.7TMB 3.5MB 0B & 11.1MB
Docker orderer.example.com 14.7MB 12.7MB 2.98 1.19 3.4M 7.1M 0B & 8.6MB
Docker couchdb.org2.example.com 107.1MB 100.9MB 479 32.6 4.4MB 6.2MB 0B & 5.1MB
Docker couchdb.orgl.example.com 101.8MB 98.5MB 46.1 31.2 4.4MB 6.2MB 0B & 4.7MB

Table 4.8: Resource Consumption for Query Workload with 1000 transactions

Type Name Memory (Max) Memory (Avg) CPU% (Max) CPU% (Avg) Traffic Input Traffic Out Disc Read/Write
Docker  peer(.org2.example.com 91.8MB 87.1MB 5.41 4.36 2.4MB 2.1MB 0B
Docker  peer0.orgl.example.com 78.9MB 73.2MB 5.11 4.08 2.2MB 1.8MB 0B
Docker orderer.example.com 12.1MB 10.9MB 2.11 1.51 3.1MB 6.6MB 0B
Docker couchdb.org2.example.com 88.2MB 81.3MB 43.9 30.5 4.4MB 4.1MB 1.4M & 0B
Docker couchdb.orgl.example.com 86.1MB 79.4MB 40.8 29.1 4.2MB 3.9MB 1.1M & 0B

Table 4.9: Resource Consumption for Transfer Workload with 1000 transactions

Type Name Memory (Max) Memory (Avg) CPU% (Max) CPU% (Avg) Traffic Input Traffic Out Disc Read/Write
Docker  peer(.org2.example.com 91.8MB 87.1MB 5.41 4.36 2.4MB 2.1MB 0B & 11.7MB
Docker  peer(.orgl.example.com 78.9MB 73.2MB 5.11 4.08 2.2MB 1.8MB 0B & 11.1MB
Docker orderer.example.com 15.1MB 15.0MB 1.03 0.54 2.6MB 3.3MB 0B & 8.6MB
Docker couchdb.org2.example.com 77.2MB 71.3MB 38.9 29.6 4.1MB 3.8MB 0B & 5.1MB
Docker couchdb.orgl.example.com 75.5MB 70.1MB 36.2 27.5 4.1MB 3.8MB 0B & 4.7MB
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4.5 Summary

[oT devices and data-driven applications are generating huge data. Such valuable
data received considerable attention from organizations to tailor their services to
potential consumers and make a profit. On the other hand, data owners can sell
their private data for profit. Data trading can be used to achieve efficient use of
data resources and increase data valuation. In recent years, several studies focused
on designing data trading systems based on blockchain in which sellers and buyers
can interact securely with each other. However, conflicting issues have been raised
regarding the performance of data trading systems in the blockchain network. This
chapter presents a performance analysis of a blockchain-based data trading system
using Hyperledger Caliper. Specifically, we highlighted the importance of transaction
throughput, elapsed time, and CPU usage as performance parameters for system
design efficiency. The experimental results show that the proposed system can easily
be deployed on IoT devices at a low cost.
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Chapter 5

A Blockchain-based Reputation
System for IIoT Data Ecosystem

In this chapter, we discuss the existing challenges of blockchain-based reputation
system for IIoT data ecosystem in section 5.1. In section 5.2, the blockchain-based
reputation system for IIoT data ecosystem is presented, followed by security analysis
in section 5.3. Section 5.4 presents implementation and experimental results of the
proposed system. Finally, conclusions are drawn and future research directions are
discussed in section 5.5.

5.1 Introduction

In 21st century’s Industry 4.0, IIoT data is considered the most valuable asset in
use as well as in trade [68]. The radically increasing amount of data generated by
[ToT devices has led to the emergence of a new IloT data ecosystem. In such an
ecosystem, data providers generate an infinite number of data records from various
[ToT applications (e.g., autonomous systems, smart healthcare, etc.) and sell them
to data consumers [69]. Such valuable data received considerable attention from data
consumers to tailor their services to potential consumers and make a profit [70]. Sev-
eral firms, like Terbine and Dfintech, have developed online data trading systems for
monetizing [ToT data. With the tremendous growth of online marketplaces ranging
from e-commerce companies to data marketplaces, the need for a robust intelligent
reputation systems for Industry 4.0 is becoming increasingly vital as more people
and services interact online. The important components of a reputation system are
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product ratings and reviews [71]. These components not only assist consumers with
their purchasing decisions but are also valuable for data providers to build their trust

[72].

However, current [loT-based data trading systems suffer from three main con-
cerns. To begin, current systems such as CitizenMe, Terbine, Datacoup, DataEx-
change, and Factual, to name a few, use a centralized-based reputation system, which
is vulnerable to data leakage [73], and hence, a distributed blockchain system may
alleviate this problem. Furthermore, because user accounts are not anonymous and
may be traced, the process of posting reviews may reveal personal information about
consumers [36]. Thus, consumers may be reluctant to post a review. On top of
that, reputation systems are vulnerable to a variety of attacks, including White-
washing, Self-promotion, Sybil, Slandering, and Bad-Mouthing, to mention a few.
To address these issues, researchers propose blockchain-based reputation systems
[35, 36, 37, 41, 12, 13] as a means of providing anonymity, transparency, increase
mutual trust, and security for both providers and consumers in Industry 4.0. These
studies focus on the decentralized reputation system with a single certificate author-
ity, which creates the concern of a SPOF. They utilized a consensus mechanism that
is not crash fault-tolerant and cannot continue to operate despite the failures. More-
over, they paid little attention to the performance measures of these blockchain-based
reputation systems to demonstrate their usability in a real I[IoT data ecosystem. In
this chapter, the proposed blockchain-based reputation system is capable of avoiding
a SPOF, by allowing the operation to proceed despite the failures. We provide a
detailed performance analysis to ensure the feasibility and usability of the proposed
system in real-world applications. The main contributions of this chapter are as
follows:

e To the best of our knowledge, this is the first work to design a blockchain-based
reputation system for the ITIoT data ecosystem for Industry 4.0. We propose
an anonymous reputation system for the IloT data ecosystem by leveraging
a blind Elliptic Curve Digital Signature (ECDSA) and a non-interactive zero-
knowledge proof (ZKP) technique.

e We build a blockchain network based on the Raft consensus algorithm. With
Raft, the proposed system is a crash fault-tolerant, which allows the operation
to proceed as planned rather than failing. We further improve the Raft consen-
sus algorithm to avoid SPOF, and link failures. We built a new policy called
RepGossip based on the gossip protocol, which withstands the link failures.
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e We demonstrate and provide a comprehensive security analysis of the pro-
posed system which satisfies review completeness, review soundness, review
anonymity, and review unlinkability properties.

e We analyze and evaluate the performance of the blockchain-based reputation
for IToT data ecosystem using Hyperledger Fabric. Unlike existing research, our
work measures and analyzes transaction throughput, latency, memory usage,
and CPU consumption.

5.2 System Model

In this section, we describe the blockchain-based reputation system for the IloT
data ecosystem which is shown in Figure 5.1. To give the reader an idea about the
involved parties in this system, consider the example in [74] where a transportation
department (i.e., data consumer) in a city would like to acquire information about
traffic conditions, logistics, etc. The department would subscribe to Amazon Data
Exchange which collects IIoT data from different data providers (owners of traffic
IToT devices with intelligent edge computing). In this example, the data consumer
would benefit from the data to improve decision-making and services while the data
providers trade their data for monetary benefit. The proposed system comprises
several components that interact with one another, as explained below.

1. Data providers: A data provider i € {1, 2, ..., B} sells data records, which
is generated by IIoT devices for a monetary value. Data records are any type
of records sold by a provider 7 in a [IoT data ecosystem. Let X; be the set of
data records, and let z; be a data package x; € X;. The reputation of a data
provider ¢ is built on the feedback of data consumers.

2. Data consumers: A data consumer j € {1, 2, ..., N} make purchases from
data provider i, and may leave feedback on his/her purchase.

3. Certificate authority (CA): It is a government agency responsible for authenti-
cating data providers and consumers by registering and issuing certificates to
them. CA maintains a public ledger £ based on the Raft consensus protocol.

At a high level, our proposed system works as follows. Data providers and con-
sumers register themselves to the CA. The CA issues certificates (digital identities
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Figure 5.1: High-level architecture of the proposed system.

contained in X.509 digital certificates) to each entity. Afterward, data consumer j
can make purchases from provider i. CA issues a rating token to the consumer j after
the purchase is completed and verified. Later, a consumer j can leave a review score
for a provider 7. A review will be added to the £. Finally, the CA accumulates and

calculates the review scores and updates j’s overall reputation score of the provider
1 € B.

5.2.1 Design Goals

There are six significant security properties that our proposed system aims to achieve
as follows:

1. Review anonymity: The consumer should be anonymous in the rating score
process to protect the consumer’s privacy. Moreover, review scores in the
ledger £ will not expose a data consumer j’s identity.

2. Review unlinkability: Given two or more payment transactions, unlinkability
guarantees that no entity can determine whether two or more valid reviews are
from the same data consumer.

3. Review correctness: A data consumer j who performs a payment for a data
package x; must be able to leave a review. This property guarantees no con-
sumer j can leave a review score without making the payment.
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4. Review soundness: A data consumer j is only able to leave exactly one review
per purchase with a valid payment transaction. This ensures that dishonest
consumers can not leave a review.

5. Review completeness: All the reviews must be publicly available and visible in
L for all consumers N and providers B without revealing identities.

5.2.2 System Setup

In this sub-section, we briefly describe the basic definition of bilinear pairing, non-
interactive ZKP technique, and blind ECDSA schema as building blocks of the pro-
posed system. Let G = (Gy,Gs,Gr) be multiplicative cyclic groups with a bi-
linear paring e : Gy X Gy — Gr, g1 and gy are generators of G; and G,, and a
prime order q. CA defines a security parameter A and generates public parame-
ters (G1, Go, Gr, g1, g2, q, e, H) for consumers and providers, where H is a collision-
resistant hash function. CA selects H : {0,1}* — Z,, where Z, is a finite field of
order ¢q. Then, CA chooses a random numbers sy, so € Z?I as private key and computes

95t 952 — (Q, U) The public system parameters are (Gy, Gy, Gr, q, €, g1, g2, Q, U, H).

Definition 7 (Non-interactive ZKP [75]). The non-interactive ZKP is the safest
method of authentication of the entities. It allows entities to validate transactions
on the blockchain network without reviling sensitive information (e.g., password) as-
sociated with the transaction (e.g., Zcash crypto platform is a real-world application
that utilizes ZKP). Formally, given an element e of a language L € NP language,
an entity (prover) is able to convince other entity (verifier) that e belongs to L, i.e.
w is witness for e.

Definition 8 (Blind ECDSA schema [76]). ECDSA is a cryptographic algorithm
used in many blockchain-based such as bitcoin other blockchain systems to secure
transactions and increase efficiency. Blind ECDSA adds an extra layer of security
and anonymity to the standard ECDSA, allowing users to acquire a signature from
signers while preventing the signers from learning any information about the message.
More formally, the blind ECDSA between the recipient r and the signer s is defined
as follows:

e Signer s randomly selects an integer ny from 2 to ¢ — 1.

e Signer s computes K1 = ny1g; and send is it to r.
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e Recipient r randomly selects an integer ny from 2 to q — 1.

o Recipient r computes K = (ky, k,) = na K.

e Recipient r selects two distinct primes ty,ty and computes public key (N, g).
o Recipient r encrypts ky and ky, and randomly selects ri,ry € Ziys.

e Recipient v computes Cy = g*=rl¥(modN?) and Cy = g*vrl¥ (modN?).

e Recipient r submits (N, g, Cy,Cy) to singer s.

e Signer s selects v from 2 to N and computes C = (C1C5F)kr (modd)yN (10 N2)
and C' to recipient r.

e Recipient v computes s = kyD(C, (p,t))(modq)(D(.) decryption algorithm).

e Recipient v obtains a blind signature o = (k,, s).

Significant notation is summarized in Table 5.1 for the clarity of readers.

Table 5.1: Notations.

Notation Description
CA Certificate authority
‘ Data provider i € {1, 2, ..., B}
J Data consumer j € {1, 2, ..., N}
X; Set of data records
x; A data package
g Data provider 7’s signature
0j Data consumer j’s signature
ocA CA j’s signature
L Ledger
Ci () Review score of consumer j on provider i’s data package
;n Accumulated value deviation for the history of all transactions
R; Total reputation score of data provider ¢
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5.2.3 System Registration

Each data provider ¢ and data consumer j register themselves to CA to obtain
anonymous credentials. Provider ¢ and consumer j choose a secret key s; € ZZ,

55 € Zg and computes gfﬂ@si — (M;, M), g5, Usi — (Nj, N;), respectively. Then,

provider 7 and consumer j generate a ZKP [75] m,,, 7;, respectively as follows:
SjINj:g;j/\Nj:USJ (52)

Then, provider ¢ and consumer j send their public keys, signatures and proofs
(M;, M;, 03, 7s,), (Nj, Nj,04,7,) to CA, respectively. Afterward, CA checks the va-

lidity of proofs m,, 7s;, and e(M;, Q) < e(gi, M;), e(N;, U) = e(ga, N;) for provider
7 and consumer j, respectively. CA ignores when the proofs are invalid. Otherwise,
CA issues and signs the certificates for provider ¢ and consumer j as follows:

O'CA(MhMiyo'iaﬂ-si) — C@?"tl' (53)

O'CA(Nj,Nj,O'j,WSj) —>C€T’tj (54)

The CA stores oca(M;, My, 04,7s,), oca(Nj, Nj,(fj,ﬂ'sj) in the blockchain and send
the Cert;, Cert; to provider ¢ and consumer j, respectively.

5.2.4 Payments

In the payment stage, the provider i sends its account (e.g., wallet address) and the
price of data package x; to the consumer j. When a data consumer j decides to
purchase the data package x; from provider ¢, consumer j can transfer the money
anonymously via secure payment channels such as Bolt, and Zerocash. For example,
Bolt anonymous payment channel scheme includes a tuple of probabilistic algorithms
(KeyGen, Init;, Init;, Re fund, Re fute, Resolve) [77]. At beginning, data provider ¢
and consumer j generate their public and private keys using bilinear pairing cryptog-
raphy, as discussed in section 5.2.2. Then, both execute the Init;, Init; algorithms
to initiate the private channel to drive tokens. Next, they send the tokens alongside
a transaction to the payment network. If the transaction succeeds, the provider ¢
receives Fstablish protocol, and customer j receives Pay protocol. The data con-
sumer j runs the Pay protocol to process the payment. Afterward, data consumer
j runs the Refund algorithm to end the payment channel, and data provider i runs
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Re fute algorithm to revoke the tokens. Then, provider i generates a transaction
proposal (TxProposal) that contains of the payload (includes all of the metadata
about a transaction), and txID, certificates, along with a cryptographic signature
of himself and consumer j on the transaction header, and eventually submits the
transaction to the CA. A payment transaction proposal P looks as follow:

P = (thD, o;, 05, Cert;, Cert;, pType, payload) (5.5)

where T'xID is the unique transactionlD, o;,0;, Cert;, Cert; are signatures, and
certificates of provider ¢ and consumer j, respectively. pType is the type of payment
(Zerocash, Bolt, etc.). Afterward, once CA receives the transaction proposal, CA
checks TxID ¢ L, and verifies the Cert;, and Cert; and its corresponding o;, and
o; digital signatures from L. If the transaction satisfies the requirements then, CA
adds the P to the ledger L.

5.2.5 Reputation Computation and Verification

Once the payment transaction p is appended to the blockchain, and the co