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Abstract

Internet of Things (IoT) devices generate and collect massive amounts of IoT
data. Monetizing the flood of data generated by the IoT devices has enabled the
creation of IoT data trading systems where individuals and businesses may trade
data. In the current IoT data trading systems, a third-party broker collects and
manages IoT data for buyers who would like to promote their services and make more
profit. However, there are three main challenges that may hinder the development
of secure IoT data trading systems. First, there is a lack of data transparency and
ownership. While the economic value of IoT data is increasing, it is not very well
known how this data can be conceptualized, measured, and monetized in a trusted
and transparent way. Second, the literature lacks studies about performance models
to demonstrate IoT data trading system usability in real-world systems. Third,
the reputation of the trading parties is an important attribute that affects their
profitability and trading prosperity. However, current reputation systems are prone
to malicious manipulation and single point of failure.

This thesis identifies and addresses the three above challenges for IoT data trad-
ing systems. First, this thesis introduces a trustful IoT data trading system based
on the blockchain as a means of providing anonymity, security, transparency, and
mutual trust for participants. Using a game-theoretic approach, this study develops
a strategic negotiation model that maximizes data buyers’ utility. To ensure that
data owners’ IoT data are accessible by trustful buyers, a novel mechanism design is
used to impede untruthful buyers from accessing the IoT data. Second, this thesis
evaluates the performance of the blockchain-based IoT data trading system using the
Hyperledger blockchain. Unlike existing research, this study measures and analyzes
transaction throughput, latency, elapsed time, and resource consumption (memory
consumption, CPU utilization, and disc read/write operations). Third, this the-
sis proposes a blockchain-based reputation system capable of avoiding failures by
enhancing the Raft consensus mechanism. This thesis also proposes an adaptive
learning mechanism that allows the data providers and consumers to enhance their
reputation and review credibility scores. Lastly, this thesis carries out extensive
theoretical analysis with respect to economic and security properties.
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Chapter 1

Introduction

The IoT ecosystem is expanding daily, connecting the physical and digital worlds to
transform the way we live and do business. With an increasing number of connected
devices, a huge amount of data is instantly collected, aggregated, and exploited in
new applications in areas such as smart homes, smart cities, and health [1]. Accord-
ing to the estimates conducted by the International Data Corporation (IDC) report
[2], 41.6 billion IoT devices will be connected to the Internet by 2025 and generating
79.4 zettabytes of data. As the IoT devices become more instrumented and inter-
connected, data will grow exponentially [3]. Data from IoT devices has spawned a
new data economy in which people and companies can sell and exchange data [4]. As
data continues to pile up, the data economy will continue to emerge and enable new
IoT data marketplaces. Several companies, such as Terbine and Dfintech, have de-
veloped real-world applications to manage and monetize IoT generated data. These
applications allow IoT device owners to sell their data to various stakeholders.

Most existing applications that assist the IoT device owners to sell their data in
exchange for money fail to clearly explain how, where, or with whom the users’ data
are being shared. These applications also tend to package the owners’ data for sale
to other companies repeatedly [5, 6]. Such information changes hands or ownership
and the monetary benefit that companies are receiving as a result of selling the
data packages is not passed back to IoT device owners [7]. Therefore, one significant
aspect that needs to be taken into consideration is ensuring data owners have control
of their data and have the autonomy to decide what information is collected, how
it is used, and most importantly, how much it is worth. Consequently, designing a
trustworthy data market, capable of selling and buying data which incentivizes the
participants to maximize their profits under a fair trading mechanism is very critical.
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To develop an efficient and trustful data market, a number of challenges need to be
addressed. These are summarized below.

1. How to design a trustful and transparent mechanism to control the dissemina-
tion of data?

2. Since data records can be sold repeatedly to multiple buyers. A key question
to be addressed is how to devise a strategic negotiation model that maximizes
the benefit of data owners and buyers?

3. Trust becomes a challenge if data buyers are not trustful and they may misuse
the data. A key question is how to impede and impose penalties on untruthful
buyers?

4. How to measure the performance of data trading systems in terms of the num-
ber of verified transactions, and resource consumption?

5. How can the reputation system take advantage of blockchain technology’s
tamper-proof characteristics and distributed consensus mechanism?

6. How to design a blockchain-based reputation system that preserves individual
identities and review confidentialities?

7. How can sellers and buyers interact in a blockchain-based reputation system
to improve their reputation and credibility score?

To tackle the first challenge, we integrated the blockchain as a trustworthy and
transparent mechanism that preserves the data owner’s control over their data.
Blockchain technology is difficult to tamper with and transactions are secure as
well as transparent to all parties, including the users who generated the data [6, 8].
As such, blockchain presents a solution for developing a transparent and trustful
network for data trading and give the data owners full control of their information
and guard their privacy [9].

To tackle the second challenge, we formulate a non-cooperative game in infinite
setup between the buyers in which each buyer strategically chooses the bidding price
for that specific data to maximize their utilities. In particular, in each one-shot game
(stage-game), limited amount of records is traded. The game is played repeatedly
and buyers learn from the outcome of the previous stage and update their bids over
the next periods to increase their utilities until the demand is met. We show that
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the proposed formulation of the non-cooperative game among buyers achieves Nash
Equilibrium using pure strategy in a one-shot, discounted finite and infinite repeated
horizon, where no buyers in the market can improve their utility by deviating their
bids.

To tackle the third challenge, we propose a novel mechanism design based on the
trust score. The proposed mechanism design impedes untruthful buyers to obtain
the data based on a scoring rule function. Also, if the winner is not fully trusted (i.e.,
trust score less than 1), we consider a penalty on his/her payment for the current
stage of the game.

To tackle the fourth challenge, we measure and analyze transaction throughput,
latency, elapsed time, and resource consumption (memory consumption, CPU uti-
lization, and disc read/write operations) using Hyperledger Caliper. Transactions
are an important part of the blockchain. To find out how well the system is adding
the number of confirmed transactions to the blockchain network, we need to measure
and analyze the throughput metric. By default, the underlying data structure of a
blockchain does not support an effective method of querying the stored data. To over-
come this limitation, we modeled the data in JSON format through CouchDB. The
latter supports deploying indexes within the smart contract to make queries more
efficient in massive datasets. Indexes enable a database to be queried faster and more
efficiently compared to regular queries without indexes. Applying blockchain in data
trading systems is not a straightforward task due to high resource consumption.
Hence, measuring resource consumption is also important for the efficient manage-
ment of systems, such as CPU, memory, etc., as well as the successful execution of
transactions in the blockchain.

To tackle the fifth, and sixth challenges, we propose a blockchain-based reputa-
tion system for the IIoT data ecosystem. We design an anonymous reputation system
for the IIoT data ecosystem by leveraging a blind Elliptic Curve Digital Signature
(ECDSA) and a non-interactive zero-knowledge proof (ZKP) technique. Further-
more, we build a blockchain network based on the Raft consensus algorithm. With
Raft, the proposed system is a crash fault-tolerant, which allows the operation to
proceed as planned rather than failing. We further improve the Raft consensus algo-
rithm to avoid single point of failure (SPOF), and link failures. We built a new policy
called RepGossip based on the gossip protocol, which withstands the link failures.

To tackle the seventh challenge, we proposed an adaptive learning mechanism
in which sellers (data providers) and buyers (data consumers) can learn from their
strategies and increase their reputation and credibility scores, respectively.

The main contributions of this research are as follows:

3



❼ We formulate a non-cooperative infinitely repeated game in which rational
buyers are strategically deciding on their bids and learn from the outcome
of each one-shot (stage) game and try to adjust their bids to maximize their
utility. The non-cooperative nature of the game in the data market is properly
modeled in a one-shot game by carefully defining utility functions. Using this
one-shot game as a building block, we then proceed to define finite and infinitely
repeated games with a discount factor that captures the repeated interactions
among rational buyers.

❼ We show the existence and uniqueness of the Nash Equilibrium under dis-
continuous utility function setup. We establish the best response action for
buyers and show that such best response action is a standard function, which
guarantees the uniqueness of the Nash Equilibrium.

❼ To ensure data owners’ assets are protected and are not being misused within
the data trading system, blockchain is used as a means of data transparency
and security. Furthermore, we filter out the untruthful buyers based on the
scoring function, which is calculated through the trust score. In the payment
stage, we consider a penalty for the winner if he/she is not fully trusted. Even
with considering a penalty, we ensure that the individual rationality property
is set up, which implies the winner buyer receives a non-negative utility.

❼ We designed a blockchain-based reputation system for the Industrial IoT (IIoT)
data ecosystem. We propose an anonymous reputation system for the IoT
data ecosystem by leveraging a blind ECDSA (Elliptic Curve Digital Signature
Algorithm) and a non-interactive ZKP (Zero-knowledge proof) technique.

❼ We propose a blockchain-based reputation system where data providers and
data consumers can maximize their utility while engaged in the IoT data ecosys-
tem. We offer an adaptive learning mechanism that allows the data providers
and consumers to enhance their reputation and review credibility scores.

❼ We demonstrate and provide a comprehensive theoretical and experimental
analysis of the proposed system which satisfies the economic properties includ-
ing, computationally efficient, truthful, and individually rational.

❼ Through experimental results, we evaluate the performance of the blockchain-
based data trading system using different metrics, such as transaction through-
put, latency, and resource consumption under varied scenarios and parameters
using Hyperledger Caliper. We show that the proposed system can be easily
deployed on IoT devices at a low cost.
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The organization of this research is as follows. Chapter 2 presents a background
and comprehensive survey of related literature on the data trading systems and
the blockchain technology. Chapter 3 presents a trustful blockchain-based repeated
game mechanism for IoT data trading ecosystem. Chapter 4 describes the perfor-
mance analysis of blockchain-based IoT data trading systems. Chapter 5 introduces
a blockchain-based reputation system for IIoT data ecosystem. Chapter 6 introduces
a utility maximization approach for the blockchain-based reputation system in the
IoT data ecosystem. Chapter 7 summarizes the thesis with future research directions.
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Chapter 2

Literature Review

In this chapter, in section 2.1, we discuss how the data trading system works and
follow by the fundamental concept of blockchain technology in section 2.2. Afterward,
we review the existing studies data trading sytems and blockchain-based reputation
systems in section 2.3, and 2.4, respectively.

2.1 Background

IoT devices and data-driven applications are generating huge data. With massive
number of IoT devices and applications, the total amount of data created by IoT
devices will reach 847 ZB per year by 2021 [10]. Indeed, data are becoming the most
valuable asset in use as well as in trade [11]. Such valuable data received considerable
attention from organizations to tailor their services to potential consumers and make
a profit. Table 2.1 summarizes common IoT data types and how IoT driven data
can be monetized.

As a result, various IoT applications and devices such as smartphones, wearable
devices have brought great convenience to people, while producing huge amounts
of data. Data have become a valuable asset, which creates a new business called
data trading. According to a report from MarketsandMarkets [14], the data market
will grow to 229.4 billion dollars by 2025. Figure 2.1 illustrates an example of a
data trading system, in which the market includes data providers, data brokers, and
data consumers. The three stakeholders continuously interact with each other while
trading data.
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2.2 Blockchain and Smart Contract

A blockchain technology is identified as a distributed ledger technology for peer-
to-peer (P2P) network digital data transactions that may be publicly or privately
distributed to all users, allowing any type of data to be stored in a reliable and
verifiable way [15, 16]. Blockchain is the underlying platform of cryptocurrencies (e.g.
Bitcoin, Ethereum) that facilitates a P2P transaction system to eliminate third-party
[17, 18]. Every block of data is cryptographically connected with previous blocks by
secure hash functions [8]. The methodology of certifying a block whether it is valid
or not, in such a way, is called Proof-of-Work (PoW) consensus algorithm (protocols)
[19]. The block will be added into the chain after performing the consensus algorithm,
every node in the network admits this block and incessantly spreads the chain [20].
Several consensus algorithms such as Proof-of-Stake (PoS), Practical Byzantine Fault
Tolerance (PBFT), Delegated Proof of Stake (DPoS), Proof of Authority (PoAu),
etc perform a similar job [21]. Blockchains can be classified as public, and depending
on their application. Public blockchains have no single owner and are visible by
anyone (e.g., Bitcoin). Private (permissioned) blockchains work based on access
controls which use privileges (e.g., Hyperledger Fabric). Blockchain network have
the following characterizes [22, 9]:

❼ Decentralized: There is no centralized authority in the blockchain network.

❼ Highly secure: Blockchains rely heavily on advanced cryptographic techniques.

❼ Anonymity: A participant of the blockchain network only provides a pseudonym
and a unique public/secret key pair.

❼ Transparency: Any transaction in the blockchain is publicly verifiable for the
participants in the network.

❼ Immutability: Any transaction that is confirmed in the blockchain network
cannot be altered.

❼ Double-spending prevention: In Bitcoin, no malicious participant can spend
the same digital currency at different transactions.

Etherem [17] is another distributed blockchain network that supports its own
digital currencies, i.e. Ether. It shares many common features with the Bitcoin,
e.g. anonymity, openness, transparency, etc. However, Ethereum implements an
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account-based model [17] instead of the UTXO model in the Bitcoin. Ethereum
first introduced the smart contract [23] to the blockchain network. It is a computer
program which is embedded in the blockchain to digitally facilitate, verify or enforce
the negotiation of a contract [23]. The smart contract specifies the rules and condi-
tions of involved participants in the network and can take actions (e.g., sharing data,
transferring cryptocurrencies) when conditions are met [24]. All smart contracts have
a unique address and are stored in the blockchain [17].

2.3 Data Trading Systems

Extensive research has been conducted in order to monetize and trade data [25, 26,
27, 28, 29]. Oh et al. [25] proposed a non-cooperative game for data trading with
privacy valuation for data consumers in the IoT environment. The paper introduced
a method to unify the unit price of data for data brokers as well as an optimization
model to maximize data providers’ profits. Similarly, in other work, Oh et al. [26]
proposed a data trading model between data owners and consumers as two natural
logarithmic functions and a data broker who processes data and provides service
to the consumers. This model guaranteed that a data broker will find a global
maximum point to reach the best probability deal to sell the data. Tian et al. [27]
proposed an optimal contract-based model for data trading between data sellers and
consumers. This model maximizes the data seller’s payoff while satisfying individual
rationality and incentive compatibility properties for data consumers. The work in
[28] introduced an iterative auction mechanism for data trading to coordinate the
selfish agents in an optimal way to prevent direct access to private information.
Khokhar et al. [29] proposed an entropy-based trust computation model to verify
the correctness of data from untrusted data providers in the data market. This
model utilized the Vickrey–Clarke–Groves auction mechanism for the valuation of
data providers’ attributes for determining truthful pricing strategies.

To build a more transparent data marketplace, blockchain-based data trading
systems are studied in [30, 3, 31, 32, 33], and [34]. Liu et al. [30] introduced an
optimal pricing mechanism for data trading in the IoT environment adopted by
the two-stage Stackelberg competition based on the blockchain. The model pre-
sented a pricing and purchasing mechanism between the data consumer and the
market-agency to maximize the profits of both parties. The work in [3] proposes
a decentralized fair data trading system, which guarantees the availability of data
and fairness between the sellers and buyers. The model implements homomorphic
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encryption, double-authentication-preventing signatures, and smart contracts to im-
prove data availability and achieve fairness in data trading between participants. In
the work presented in [30], the authors propose a blockchain-data market framework
and an optimal pricing mechanism. They designed an optimal pricing mechanism
to support efficient data trading in an IoT environment using a two-stage Stackel-
berg game. Sheng et al. [31] studied a crowd-sourcing data trading system based
on blockchain. The model implements a smart contract that enables sellers and
buyers to conduct credible and truthful data trading while ensuring the copyright
and quality of data. The authors also proposed a semantic-similarity-based auction
mechanism to guarantee truthful data trading. Similarly, the authors in [32] inves-
tigated a blockchain-based data trading ecosystem that filters out dishonest buyers
to guarantee the market’s truthfulness. The security model in [32] includes a set of
trading protocols based on asymmetric cryptography. The work in [33] proposes a
trading model based on Ethereum smart contracts. It incorporates machine learning
to guarantee fairness in data trading. All the participants in the blockchain network
achieve a consensus on an authentication task, and any potential threats can be
identified. Truong et al. [34] proposed a blockchain-based for sharing IoT data, in
which data owners can sell their private data. In this framework, smart contracts
evaluate access control requests to off-chain encrypted data. Table 2.2 summarizes
the comparison of our work and previous studies.

Table 2.2: Comparison between our work and existing studies

Research
studies Decentralization

Smart
contracts

Reputation
computation

Utility
maximization

Performance
evaluation

[25], [26] ✗ ✗ ✗ ✓ ✗

[27], [28] ✗ ✗ ✗ ✓ ✗

[29] ✗ ✗ ✓ ✓ ✗

[30], [3] ✓ ✓ ✗ ✓ ✗

[31], [32] ✓ ✓ ✓ ✗ ✗

[33], [34] ✓ ✓ ✗ ✗ ✗

Our work ✓ ✓ ✓ ✓ ✓

2.4 Blockchain-based Reputation Systems

In this section, we review the recent studies that use blockchain technology to build
transparent and secure reputation systems for IIoT data ecosystem. Then, we com-
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pared our proposed system to the recent studies. Soska et al. [35] presented a
decentralized anonymous reputation system based on ring linkable signatures and
the ZKP method. Customers use the Zerocash anonymous payment method to pur-
chase items. The reviews cannot be linked to previous or any transactions and
prevent adversaries to find out the link. This model preserves users’ privacy while
resisting Sybil attacks. However, the ring signature resulted in a linear overhead
when generating the anonymous review. Similarly, in other work, Liu et al. [36]
proposed a blockchain-based anonymous reputation system for Industry 4.0 that uti-
lizes the proof-of-stake consensus protocol by leveraging a randomized signature and
non-interactive ZKP method. This model used an identity management entity that
provides anonymous identities to consumers and retailers. Then, consumers can leave
reviews anonymously using rating tokens. However, the centralized structure of the
identity management entity may create the concern of a SPOF. Truong et al. [37]
introduced a blockchain-based decentralized trust system. They presented a trust
model based on an asymmetric relationship between two entities formed through the
history of the previous transactions. They investigate the feasibility of their trust
system as a bridge between a blockchain platform and decentralized applications.
They built a proof-of-concept mechanism and integrated the trust model on top of
the Ethereum blockchain. However, they do not examine the security of their model,
which presents serious privacy concerns for the users.

In other domains such as energy trading, vehicular and IoT mobile devices, Weer-
apanpisit et al. in [38] proposed a blockchain-based reputation management system
for the IoT systems based on their location. The reputation scores depend on the
IoT device’s geographical location, and locations are stored in smart contracts. Their
approach keeps the reputation system fault-tolerant and consistent across blockchain
networks using cloud and fog nodes. The work in [39], proposed a blockchain-based
reputation management system for mobile applications through Hyperledger Fabric.
They used a mobile application named Aptoide to evaluate their proposed model.
Soojan et al. in [40], proposed a two-layered blockchain-based reputation for the
vehicular network. The first layer consists of different nodes such as vehicle and
roadside units that communicate with a blockchain network to store the transac-
tions from traffic events daily. The global reputation blockchain network is deployed
in the second layer to calculate and update the reputation score of member nodes in
layer one.

The work in [41], designed a blockchain-based reputation system for energy trad-
ing. In this model, the reputation is derived from the behavior of each node according
to its role in the peer-to-peer process. To link buyers and sellers and to determine
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trading prices, a matchmaking method based on a k-double auction algorithm is
used. The matchmaking method balances the fairness among sellers and buyers
which is defined as a ratio between reputation score and the average income and
cost. However, like the previous work, they do not analyze the security of their
proposed model. Zhou et al. [42] proposed a blockchain-based reputation system in
the e-commerce environment. In this model, users’ reputation scores are generated
and updated by all ratings of their transactions weighted by practical transaction
characteristics such as transaction duration, amount, and previous reputation scores
to prevent unfair rating and collusion attacks. However, they do not measure the
performance of their system to determine whether or not it is usable in real-world
applications. Li et al. [43] proposed a reputation system for e-commerce applications
based on Ethereum blockchain. They built anonymous credentials constructed from
two-step blind signatures and the ZKP method. The claimed results show that the
system resisted multiple and abnormal rating attacks. The model satisfies the rat-
ing and identity privacy, and unlinkability properties. This model relied on a single
certificate authority entity to register the users and provide them with identities.
However, the certificate authority’s structure raises the concern of a SPOF. Table
2.3 provides a summary of the comparison between our work and existing studies.

Table 2.3: Comparison between our work and existing studies

Properties

Work
[35]

Work
[36]

Work
[37, 38, 39]

Work
[40, 41, 42]

Work
[43]

Our
system

Decentralization ✓ ✓ ✓ ✓ ✓ ✓

Authentication ✓ ✓ ✓ ✗ ✗ ✓

Anonymity ✓ ✓ ✗ ✗ ✓ ✓

Reputation computation ✗ ✗ ✓ ✓ ✓ ✓

Resist to SPOF ✗ ✗ ✗ ✗ ✗ ✓

Performance evaluation ✗ ✓ ✗ ✗ ✓ ✓

2.5 Summary

Blockchain technology is gaining significant attention from individuals and organiza-
tions of nearly all kinds and dimensions. It is capable of transforming the traditional
industry with its features, which include decentralization, anonymity, persistency,
and auditability. This chapter highlighted the importance of blockchain technology,
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and it’s core concepts. We presented a literature review pertinent to our research
work dealing with IoT data trading and reputation systems.
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Chapter 3

Towards a Trustful

Game-Theoretic Mechanism for

Data Trading in the

Blockchain-IoT Ecosystem

In this chapter, we formulate the data market structure in section 3.1, followed by
non-cooperative game theoretic approach for data trading in section 3.2. Section 3.3
discusses the Nash equilibrium solutions. Section 3.4 discusses the mechanism design,
while section 3.5 presents experimental results of the model. Finally, conclusion is
drawn in section 3.6.

3.1 Data Market Structure

Figure 3.1 shows the high-level architecture of the proposed data market. At a high
level, data buyers and a data aggregator (DA) register themselves to the certificate
authority (CA) to obtain a legal identity. The CA issues certificates (digital identities
contained in X.509 digital certificates) to each entity. In this market, continuous
data records are generated through IoT devices and made for sale by data owners
(DOs). The latter grant access permission to the DA to aggregate, package, and
sell data records on their behalf according to a smart contract-based agreement.
The DA informs all the buyers about the packages available for sale through the
blockchain network. Buyers simultaneously reply with their bids, which include the
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2. Data aggregator: we assume that DA is a trusted entity, acting on behalf of
DOs, involves in technical and operational tasks, such as deriving data records
value based on DOs’ privacy risk, data encryption, coding a smart contract, and
blockchain operations. This is reasonable because performing these technical
tasks for senior citizens equipped with IoT devices would be extremely difficult.

3. Certificate authority: we assume the CA to be fully trusted. This is reasonable
since the CA is a government agency responsible for managing the identities
and credentials of a data aggregator and buyers.

4. Data buyers: we assume that the data buyers do not share their bidding val-
ues among each other, and their behavior is non-cooperative with the goal of
maximizing their benefit.

3.1.2 Process details of the proposed system

Figure 3.2 describes the sequence diagram of the interaction between DA and buyers.
Once DA and buyers obtained their certificates, the DA creates different packages
based on data types received from DOs. For example, a package D = {rt1, r

t
2, . . . , r

t
m}

may contain smart TV records or energy records. The DA encrypts and stores data
records in a secure indexed database, and generates a decryption key. Once this is
completed, the DA sends the index of the records to the blockchain. Afterward, the
DA publicizes the packages to the blockchain network. Data buyers are the end-
users who purchase the data. Let B = {1, 2, . . . , b} be the set of data buyers in
our system. Each data buyer is indexed by i ∈ B. Each data buyer i submits its
bid βti =

(

gi, v
t
i(x)

)

to the blockchain network, where gi and vti are total required
quantity and reserved value, respectively. We denote x as the traded amount of
records from package D in the market at time t. In this model, a limited number
of records will be traded at each time t, until buyers fulfill their total demand gi.
The traded amount of records x can be defined by the CA or can be based on an
agreement between players inside the market. For example, assume that a package
consists of 10 million energy records about TV usage. Utility companies (i.e, buyers)
are usually interested in different quantities, maybe one company is interested in
one thousand records, while another company is interested in one million records,
and in each auction period a hundred number of records are going to be sold. Thus,
companies are going to keep competing with each other and biding simultaneously at
each period (stage) until obtaining the desired quantity. Finally, after receiving the
asking price for data records to be traded and bids from buyers, the smart contracts
run as follow:
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Figure 3.2: Sequence diagram describes the interaction between DA and buyers.

1. In the first sub-stage, the winner determination smart contract retrieves the
trust score of buyers from blockchain. The trust score is determined by DA
and buyer i’s previous trading experiences. Then, the smart contract will
remove the bids which are less than the trust threshold. This is done to ensure
untrustworthy buyers will not have a chance to get the data. Then, smart
contract will run the scoring rule and announce the winner.

2. In the second sub-stage, the payment allocation smart contract will run to
determine the payment. In the payment stage, we impose a penalty on the
payment of the winning buyer with respect to his/her trust score. The winner
i receives data records and a decryption key. Simultaneously, the DA receives
a payment amount pi.
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3.1.3 Data Value

The value of data will be derived based on DOs’ privacy risk. DOs may have different
privacy attitudes, and as a result, they may set different values for their data records.
For instance, some DOs may be concerned about their privacy and would allow a
user to access a small portion of data in exchange for a few dollars, whereas others
may not be concerned about privacy and they ask for a higher price. The DA derives
the privacy risk Ωw(r

t
w) of a DO w as follows [13]:

Ωw(r
t
w) = PC(rtw)× SL(r

t
w) ∀PC, SL ∈ [0, 1] (3.1)

where PC(rtw) denotes privacy concern of DO w, and SL(rtw) denotes the sensitivity
level of data [13]. The DA derives the privacy risk values Ωw,q(r

t
w) of each w. Each

DO w is described by a privacy risk value Ωw(r
t
w) as well as a value of data Vw(r

t
w).

Therefore, there is mapping Z between the privacy risk and the value of data that
Z = [Ωw(r

t
w) → Vw(r

t
w)]. The data values may vary for each DO. In order to find

the final value of data records for each data type, we calculate the average value of
data records as follows:

V̄ t =

(∑m

w=1 Vw(r
t
w)

m

)

(3.2)

where m is the total number of DOs which participate in selling data for a specific
data type. Once the data aggregator announces the final value of the data to DOs,
they can either accept or reject it 〈Accept, Reject〉. If the DO w decides to accept
the final value then DA collects the data for further processing.

3.1.4 Data Aggregator Utility

For DA j, we define a cost function Cj(r
t
w) representing the total cost incurring

from operation, maintenance and electricity bill for the data records rtw at period
t. It can be noticed that such cost increases with the size of data records, yielding
an increasing and strictly convex cost function. We choose a quadratic function to
model the cost function as follows [44]:

Cj(r
t
w) = a(rtw)

2 + b(rtw) + c (3.3)

where a, b, c ≥ 0 are constants. These parameters are dependent on the type of
operation, maintenance, and electricity bill incurred to the DA. The utility function
of DA is modeled by revenue of selling data records minus the cost:
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Uj =
T
∑

t=1

Rj(r
t
w)− Cj(r

t
w) (3.4)

subject to xtw ≤ rtw (3.5)

Eq. (3.5) ensures that the DA trades no more than the agreed upon amount of
records. Significant notation is summarized in Table 3.1 for the clarity of readers.

Table 3.1: Notations.

Notation Description
w Data owner (DO) w ∈ W = {1, 2, . . . ,m}
j Data aggregator (DA)
rtw Infinite data records rtw of Do w at time t
i Buyer i ∈ B = {1, 2, . . . , b}
x Trading amount of records x

Ωw(r
t
w) Privacy risk

Vw(r
t
w) Value of data

V̄ t Average value of data records
Cj(r

t
w) Cost function

Uj Utility function for the DA
ui(β

t
i , β

t
−i) Utility function for buyer i for one-shot game

vti(x(β
t
i , β

t
−i)) The buyers’ valuation functions vti

Ui Overall utility of buyer i
G One-shot game
S(βi) Scoring rule funtion for buyer i bid
GT
ψ Finite repeated game with discount factor ψ

Trtn(j, i) Total trust DA has about a given buyer i

T
yi
indirect Indirect trust
pi(β̄i) Payment of the winner buyer i

3.2 A Repeated Game Theoretic Approach for Data

Trading Between Buyers

In this section, we present a non-cooperative game for data buyers in the infinite
repeated horizon. A repeated game is one where the buyers repeatedly play the
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same one-shot game in each time period (called a stage game) in which they play
simultaneously [45]. We first formulate the utility function for a one-shot game G.
Then, using the one-shot game definition as a building block, we then proceed to de-
fine finitely GT and infinitely repeated games G∞ that capture repeated interactions
among the different buyers. We consider a data market setting for one-shot game
G = 〈B,Ai, ui〉, where B is set of buyers. Each buyer i has an action set Ai. An
action profile β = (βi, β−i) consists of the bid of buyer i and bids of other buyers,
denoted by β−i = (β1, ...., βi−1, βi+1, ..., βb) ∈ A−i. In addition, each buyer i has a
real-valued, one-shot game utility function ui : Ai → R, which maps every action
profile β ∈ A into a utility for buyer i, where A denotes the cartesian product of the
action spaces Ai, written as A =

∏B

i=1Ai.

3.2.1 Data Buyers Utility

We assume a buyer i, who needs a number of records from package D of a specific
type, knows his own valuation of the current traded amount of records, but not those
of his opponents. On receiving the required amount of records, the buyers pay the
price pti

(

x(βti , β
t
−i)
)

, conditional on winning records, given the other buyers bid βt
−i.

If the game G is played only once, the utility function for the buyer i is the difference
between valuation for traded amount of records and payment. The utility function
ui of buyer i for one-shot game is:

ui(β
t
i , β

t
−i) =

∑

t

vti
(

x(βti , β
t
−i)
)

− pti
(

x(βti , β
t
−i)
)

(3.6)

where vti is buyer i’s valuation for the trading amount of records x. It represents how
much the requested records are worth to the buyer i. The buyer i hopes to pay a
smaller price pi then his estimated value vi. The buyers’ valuation functions vti are
drawn independently from the following equation:

vti(x(β
t
i , β

t
−i)) = vti

(

x

(

1 + log
(

βti(ϕ), β
t
−i(ϕ)

)

)

)

(3.7)

where ϕ denotes the satisfaction rate of buyer i (0 ≤ ϕ ≤ 1). The log function
modifies the buyers’ valuation in proportion to their satisfaction rate. This means
that if buyer i is not satisfied with the quality of obtained records at stage t, the
valuation of the buyer i in next stage decreases as show in in Figure 3.3. We assume
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that the satisfaction rate of buyers i ∈ B is 1 at the beginning. After receiving
records at stage t, the buyer measures the quality of the records and updates the
satisfaction rate. The buyers use the average of satisfaction rates as their valuation
for the next stage. Figure 3.3 describes they way valuations are affected by the
satisfaction rates.

Figure 3.3: Valuation function. This example shows that the valuation vi of buyers
B decreases on the basis of the satisfaction rate ϕ. Note that this example does not
take into account the average of all satisfaction rates.

In the next stage, the game G structure stage does not change. Buyers will
continue bidding until they obtain the total quantity they needed. The overall utility
of buyer i in the repeated game GT

ψ is:

Ui = (1− ψ)
T
∑

t=1

ψt−1ui(β
t
i , β

t
−i) (3.8)

where ψ is a discounted factor and βt
−i denotes the set of bids submitted by the buyers

other than i at stage t. We assume that future utilities are discounted proportionally
at some rate (0 ≤ ψ ≤ 1). ψ = 1

1+r
, where r is the interest rate. We used fictitious

play as type of learning for the buyers [46, 47]. Each buyer i starts with some belief
about what are the bids of other buyers. Each buyer i updates his/her beliefs based
on what he/she observed in the iteration of GT

ψ . More formally, let ηti(β−i) denotes
the number of times buyer i has observed (β−i) in the previous stages. So, buyer i
assesses other buyers bid using fictitious learning as follow [46, 47]:
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σti(βi) =
ηti(β−i)

∑

β−i∈A−i η
t
i(β−i)

(3.9)

where σti(βi) is the probability that is proportional to the time it was played in the
past. This means that buyer i forecasts buyer −i’s bid at time t to be the empirical
frequency distribution of past G. Given buyer i’s belief about other buyers play,
he/she chooses the bid at time t to maximize his/her utility [46, 47]:

βti ∈ arg max
βi∈A−i

(βi, σ
t
i) (3.10)

3.3 Nash Equilibrium Solutions

The Nash equilibrium (NE) of a game is an action profile (list of actions — one for
each buyer) with the property that no player can increase his utility to achieve higher
benefits by choosing a different action given the other buyers’ actions. To maximize
the utilities, the buyers adjust their bids to reach the equilibrium. This means that
if a NE exists for the game, then all buyers i ∈ B are expected to converge to the
state represented by the equilibrium. So, each buyer i aims to choose the strategy
or action that maximizes its utility function to determine the best outcome. In
addition, the players in the one-shot game choose their own bids independently and
simultaneously and try to maximize their expected utility. There are two types of
strategies or actions available for players: pure strategies and mixed strategies. Pure
strategy defines an action that a player wants to take with positive probability from
a given set of strategies in the game. In contrast, a mixed strategy for a player is
a probability distribution over his/her pure-strategy choices. In our model, we will
prove that the pure strategy equilibrium exists for the proposed one-shot game. The
objective function of the players is to maximize their utilities. Before finding the
NE of our one-shot game G, we first define formally the best response and NE. For
the sake of clarity, we are dropping t notations, referring to the time, since we are
dealing with a one-shot game.

Definition 1 (Best response [48]). Assuming all the buyers i ∈ B are rational, a
buyer i played his/her bid

(

β∗

i

)

as best response to the other buyers’ β−i played action
(

β∗

−i

)

such that:

β∗

i ∈ BR

(

β−i

)

iff ∀βi ∈ Ai, ui

(

β∗

i , β−i

)

≥ ui

(

βi, β−i

)

(3.11)
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Definition 2 (Nash equilibrium [48]). The NE is a profile of actions, one for each
buyer, such that each action is the best response to the other buyers actions. Specif-
ically, an action profile β is said to be NE, if:

β∗ = 〈β∗

1 , β
∗

2 , ...., β
∗

n〉 is a NE iff ∀i, β∗

i ∈ BR

(

β∗

−i

)

(3.12)

We will first define the existence of NE for the finite repeated game, which can
be viewed as a generalization of the equilibrium concept for the one-shot game. We
should point out here that we won’t be able to construct subgame perfect nash
equilibrium (SPNE) i.e., induced normal form - backward induction, which is the
standard solution for finding NE. SPNE works only when the utility function is
continuous and only applies to finite games. However, in our model, the utility
function of buyers in (3.6) introduces a discontinuity in utilities. This means that
the ui could be zero at some stage t for buyer i, or it could have non-zero value.
Hence, we will use the following approach to finding the NE in every one-shot game
with a discontinuous utility setting. Next, we will leverage the results by using the
Folk theorem in the infinitely horizon setup to find NE.

Theorem 1. A Nash equilibrium exists in the proposed non-cooperative game G =
〈B,Ai, ui〉.

Proof. The Nash equilibrium exists only when the following conditions are satisfied
[49]:

1. Ai ⊆ R
m, (i = 1, ...., b) is a non-empty, compact and convex subset of Euclidean

space.

2. ui = Ai → R
b is upper semi-continuous in β and quasi-concave in βi ∀i.

Obviously, the first condition can be satisfied since Ai is defined by a set of bidding
vectors in which all the values are between zero and the maximum bidding of buyers.
So, it is a nonempty, compact and convex subset of the Euclidean space Rb. To show
that ui = Ai → R

b is upper semi-continuous, we first define the following property
[50]:

Definition 3. ui(βi, β−i) is upper semi-continuous at βi0 if ∃βi as a neighborhood
such that:

lim
βi→βi0

sup ui(βi, β−i) ≤ ui(βi0, β−i) (3.13)
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For a jump point of ui in a given range ∆β, we define [50]: βi0 = βi+∆β such that
p1 ≤ p2, pt(βi, β−i) = p1, and pt(βi0, β−i) = p2. This means that ui function is upper
semi-continuous because rational buyers i ∈ B attempt for a higher utility around the
discontinuity point. Only the quasi-concave property remains to be proved. Taking
the derivatives of (3.6) with respect to βi, we get:

∂ui

∂βi
=
v
(

x(β−i)
)

ln(10)βi
− 1 (3.14)

∂2ui

∂β2
i

= −
v
(

x(β−i)
)

ln(10)β2
i

(3.15)

Since ∂ui
∂βi

=
v

(

x(β
−i)
)

ln(10)βi
− 1 > 0 and ∂2ui

∂β2
i

= −
v

(

x(β
−i)
)

ln(10)β2
i

< 0, the utility function ui is

concave with respect to βi, hence it is quasi-concave in βi [44], thus we get:

ui((1− λ)β
x
i + λβ

y
i , β−i) ≥ min{ui(β

x
i ), ui(β

y
i ), β−i} (3.16)

where βxi and βyi belong to the buyer i action set Ai. Therefore, ui is a quasi-concave
in βi ∀i. Thus, we have proved the existence of the NE.

Theorem 2. The NE of game G = 〈B,Ai, ui〉 is unique.

Proof. The uniqueness proof is to show that the best response function of each buyer
β∗

i is a standard function. Based on best response Definition 3.11 and using Eq.
(3.14), the best-response is achieved when the first derivative of ui is equal to 0, thus
we have:

∂ui

∂βi
=
v
(

x(β−i)
)

ln(10)βi
− 1 = 0 (3.17)

and we obtain:

β∗

i = f(β) =
v
(

x(β−i)
)

ln(10)
(3.18)

A function f(β) is a standard function [51], if the following properties are satisfied:

1. Positivity: f(β) ≥ 0;

2. Monotonicity: For all β and β̂, if β ≥ β̂, then f(β) ≥ f(β̂);

3. Scalability: For all µ > 1, µf(β) ≥ f(µβ);
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f(β) satisfies the three above properties of a standard function.
Positivity: The best-response function in (19) is always positive, so f(β) ≥ 0 posi-
tivity property is set up.
Monotonicity: Assuming β ≥ β̂, then

f(β)− f(β̂) =
v
(

x(β − β̂)
)

ln(10)
≥ 0 (3.19)

we have f(β)− f(β̂) ≥ 0, in which f(β) is monotonically increasing function.
Scalability: For all µ > 1 we have,

f(β) = µ
v
(

x(β−i)
)

ln(10)
f(β) =

µv
(

x(β−i)
)

ln(10)
(3.20)

So, for all µ > 1, µf(β) ≥ f(µβ) thus, scalability property holds. Therefore, there
exists a unique NE in the above one-shot game G, which can be viewed as the finite
repeated game GT

ψ .

If the stage-game of a finitely repeated game has a unique NE, then we can
consider that constant action for each buyer i, always play the stage-game best
response irrespective of the past history. The infinitely repeated games requires
different setup than finitely repeated games since it dose not have a terminal point.
Before finding the NE of infinitely repeated game G∞

ψ , we need to formally define
the minmax value, enforceable and feasible utility as follows:

Definition 4 (Minmax value [48]). Considering stage-game G = 〈B,Ai, ui〉, the
minmax value νi for each buyer i is:

νi = min
β
−i

max
βi

ui(βi, β−i) (3.21)

It represents the amount of utility buyer i receives when the other buyers play minmax
strategies and buyer i plays the best response.

Definition 5 (Feasible [48]). Given a set of utility vector U = (u1, u2, ..., un), U is
said to be feasible if the convex hull of U is expressed as:

H = Conv{u ∈ R+ | ∃β ∈ R+, Ui =
∞
∑

t=1

ui} (3.22)

25



First, we need to apply Definition 5 to the set of utilities in a stage game G.
Then, the convex hull of U will be determined by the convex combination between
all utility vectors. Note that convex hull H of the vector utilities is achievable with
pure strategies. In other words, a utility profile is feasible if it is a convex, and convex
combination of the outcomes in G.

Definition 6 (Enforceable [48]). A utility vector U is said to be enforceable, if:

U = {ui ≥ νi, ∀i ∈ B} (3.23)

The set of feasible and enforceable utilities is E = H ∩ U . Therefore, any set
of feasible and enforceable utilities in E∞ (Infinitely repeated game), ET (Finitely
repeated game), and Eψ (Discounted repeated game) are always included in E .

Theorem 3. A Nash equilibrium exists in infinitely repeated game G∞

ψ = 〈B,Ai, Ui〉,
if U is enforceable and feasible in E , such that for each buyer i, we have ui ≥ νi [52].
Then Eψ −−→

ψ→0
E .

Proof. According to [53], there exists NE in discounted infinitely repeated game.
There can be many NE in the infinitely repeated games G∞ even if the stage game
only has a unique NE.

3.4 Mechanism Design

In this section, we design a truthful mechanism to determine the winner allocation
and corresponding payment for the proposed one-shot game G (possibly G → GT )
and implement it in form of smart contracts. The process of developing a mechanism
design faces two primary challenges. One is how to determine the winner buyer and
allocation. The other is how much the winner buyer should pay for the records. This
section addresses these two issues by using a scoring function based on the trust score
to evaluate the buyer’s bid and announce the winner. Furthermore, we consider a
penalty for the winner if he/she is not fully trusted with respect to his/her trust
score. Given the reservation price pj(x) and the submitted bids, the smart contracts
will return the winner allocation and payment rules.
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3.4.1 Winner allocation stage

In winner allocation stage, each data buyer i ∈ B submits his/her bid βi =
(

gi, vi(x)
)

simultaneously to the blockchain at stage t. The valuation vi(x) for the traded
amount of records offered in all stages is unknown to the DA. In this model the
winner allocation stage includes two steps. In the first step, after receiving bids from
buyers, the smart contract collects the trust score of buyers who participated in
the bidding process and eliminates buyers whose trust score is less than a threshold
T . The T is determined based on the average of data sensitivity SL(rtw) ∀w ∈ W ,
which is obtained through Eq. (3.1). In the second step, the scoring function S(βi)
is calculated for each buyer i ∈ B according to the following scoring rule:

S(βi) = βi × Tr
t
n(j, i) (3.24)

subject to βi ≥ pi (3.25)

where Trtn(j, i) measures the total trust DA has about a given buyer i, which is
computed using the current satisfaction Trc and previous trust score Trtn−1(j, i) as
shown in Eq. (5.10). In case DA does not have a prior trust for buyer i, we take
indirect trust T yiindirect into account. The total trust function is defined as follows:

Trtn(j, i) =


















α× Trc + (1− α)× Trtn−1(j, i), if Tr(.) > 0

α× Trc + (1− α)× T yiindirect, if Tr(.) = 0

(3.26)

Here α is a relative weight that changes based on the accumulated deviation defined
in Eq. (3.30, 3.31) and (3.32). The Trc function measures how much DA j is
satisfied about data buyer i. It represents the satisfaction score for the most recent
transaction between j and i (0 ≤ Trc ≤ 1).

Trc = Satc ×
(1− e−λV al

v
n(j,i))

1 + ξvn(j, i)
(3.27)

Here Satc is a feedback-based factor (e.g., review score) for the current transaction
n reflecting the way DA j rates data buyer i [54].
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Satc =











0, if j is totally unstatisied with i,

1, if j is totally statisied with i,

∈ (0, 1), otherwise.

V alvn(j, i) is a recent value fluctuation between the previous and current value V alc.
Here, λ is the decay constant and it controls the trust value. The Trc value reaches
1.0 with larger V alvn(j, i) and decreases slowly with smaller V alvn(j, i). For example, if
the transaction’s value is insignificant and current satisfaction is high, this will have
little effect on overall trust. On the other hand, if the value of the transaction is
high, and current satisfaction is high, the overall trust will be increased significantly.

V alvn(j, i) =|V al
v
n−1(j, i)− V alc| (3.28)

ξvn(j, i) = K × V al
v
n(j, i) + (1−K)× ξvn−1(j, i) (3.29)

Here ξvn(j, i) represents the accumulated value deviation for the history of all trans-
actions. The α is relative weight which gives higher weight to the recent n [54]. The
weight of α changes based on the accumulated deviation ξnt (j, i) [54].

α = threshold+K ×
δtn(j, i)

1 + ξtn(j, i)
(3.30)

δtn(j, i) =|Tr
t
n−1(j, i)− Trc| (3.31)

ξtn(j, i) = K × δ
t
n(j, i) + (1−K)× ξtn(j, i) (3.32)

Here K is some user-defined constant factor which controls to what extent we will
react to the recent error δtn(j, i) [54]. So, if we increase the value of K, then we
give more significance to the recent deviation than accumulated deviation [54]. The
threshold is used to prevent α from saturating to a constant value. T yiindirect value is
computed when DA j does not have a prior trust relationship and experience with
buyer i. The DA requests other entities’ y ∈ Y to provide their rating about the
target buyer i. So, the DA will have the capability and experience to truthfully judge
the data buyer for the first transaction. The indirect trust function is:

T
yi
indirect =

Y
∑

y=1

Pyi
Pyi +Nyi

(3.33)
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where, Pyi denotes positive feedback of entity y (0.5 ≤ Pyi < 1), and Nyi termed
as negative feedback (0 ≤ Nyi ≤ 0.5). So, T yiindirect represents the total number
of positive and negative feedbacks for buyer i. Based on Eq. (3.24), the buyer
with the highest score wins the game at stage t. If the buyers have an equally
high trust score, we randomly selected the winner. After that, allocation rule will
apply X : R+ → [0, 1], meaning that with the score bid profile S(βi), buyer i gets
the records with probability X

(

S(βi)
)

and makes a payment of pi(β) ∈ R, which
indicates the amount that buyer i must pay. Furthermore, allocation rules have to
satisfy the feasibility constraint as follows:

t
∑

i∈B

X
(

S(βi)
)

≤ x ∀β (3.34)

Eq. (3.34) restricts the allocation of records for the winner not to be more than the
traded amount at stage t. Other buyers will modify their bids accordingly for the
next stage of the game. Buyer i ∈ B will continue bidding until obtaining the total
quantity he/she requested.

gi ≥
∞
∑

t

x (3.35)

3.4.2 Payment Stage

In the payment stage, we consider a penalty for the winner if he/she is not fully
trusted i.e., a trust score less than 1. If the winner is fully trusted which implies
(Trtn(j, i) = 1), he/she will not be punished. The trust is calculated based on Eq.
(5.10). The payment rule of winning buyer β̄i is:

pi(β̄i) = β̄i − ui

(

1 + log
(

Trtn(j, i)
)

)

(3.36)

The above equation provides assurances that buyer i is punished only on its stage
utility ui and will not be charged more than its bid. Algorithm 1 describes the winner
allocation as well as the payment stage.
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Algorithm 1 Winner allocation and payment stages

Input: Submitted bids βi and reservation price pj for stage t
Output: Winner allocation X

(

S(β̄i)
)

, payment pi(β̄i), current satisfaction score
Satc

Stage 1: Winner allocation stage

1: for each βi(gi, vi(x)) and pj do
2: Calculate the Trtn(j, i)

3: if Trtn(j, i) ≥ T then

4: Calculate the S(βi) = βi × Tr
t
n

5: else

6: Remove βi Eliminating bids less than thershold T
7: end if

8: end for

9: S(β̄i) = max
(

S(βi), i = 1 to b
)

10: X
(

S(β̄i)
)

= 1 Allocation for the highest score
11: X

(

S(βi)
)

= 0, i = 1 to b

Stage 2: Payment stage
12:

13: Calculate the stage utility ui for winner i

14: pi(β̄i)←− β̄i − ui

(

1 + log
(

Trtn(j, i)
)

)

15: Leave current satisfaction score (Satc) for winner i

Return

(

X
(

S(β̄i)
)

, pi(β̄i), Satc

)

3.5 Evaluation of Results

In this section, we evaluate the model and analyze the results using different prop-
erties such as computational efficiency, bidding learning process, truthfulness, in-
dividual rationality, and budget balance. In our experiments, all the results were
conducted using a Windows 10, 3.78 GHz Intel Core 7 with 6 GB RAM. For the
evaluation of the model, since the record price is decided by the number of DOs
w ∈ W based on their privacy risk, we choose reasonable values for our experiments.
We assigned a privacy risk value that is uniformly distributed between 0 and 1 to re-
flect the privacy attitude of the different DOs. Then, we calculate the average value
of the data. We assumed that the data records cost varies between 0 and 1, which
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is incurred by DA. We vary the number of buyers for evaluating the performance of
our proposed data market.

3.5.1 Computational Efficiency Analysis

We evaluate the property of computational efficiency property, which means that
winning determination and the payment stages in Algorithm 1 must be solved within
a polynomial time. The computation complexity of the Algorithm 1 is O(n), where
n is the number of bidders. In the winning allocation stage, the for loop runs for all
submitted bids and then calculates the trust score and scoring rule. The computa-
tional complexity of the for loop takes O(n). The max operation will take O(n), and
allocations will take O(1). In the payment stage, each statement will take O(1) to
finish. Therefore, the computational complexity of the proposed system is bounded
by O(n) time complexity at the most. We select 10, 50, 100, 150, 200, 250 and
300 buyers for the experiment, respectively. Figure 3.4 shows the running time of
Algorithm 1 under various numbers of buyers. These results indicate that Algorithm
1 completes the computation in almost linear time, as demonstrated in the time
complexity analysis given above. Therefore the computational efficiency property is
satisfied.

Figure 3.4: Computationally efficient property.
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3.5.2 Budget Balance Analysis

We verify the budget balance property. Budget balance means at each stage t,
the buyer’s payment is higher than the reservation price (asked-price) of the data
aggregator. As shown in the payment stage described in Algorithm 1, the buying
price for the winner, taking into account the penalty, is greater than the selling price
βi ≥ pi. To verify the property of budget balance, we repeatedly run the game until
stage 20 as shown in Figure 3.5. We can see that the curve line representing the
buyer’s payment is higher than of the asking price. Since we are imposing a penalty
in the payment stage, definitely we satisfy the property of budget balance.

Figure 3.5: Budget balance property.

3.5.3 Individual Rationality Analysis

We evaluate the property of individual rationality in which each winning buyer i
must receive a non-negative stage utility ui ≥ 0. Similarly, DA utility must be
non-negative Uj ≥ 0. The stage utility is ui = 0 for buyers who are not selected
in the winning determination stage. Even by imposing a penalty on the winning
buyer in the payment stage, the winning buyer has non-negative ui. For example, in
the worst-case scenario, let’s assume that the buyer trust score is 0.1. The payment
would be the same as the bidding price. So, the buyer’s utility is non-negative.
Figure 3.6 shows the average utility for the buyers and DA. We can observe that the
winning buyer receives non-negative utility considering penalty in each stage. It can
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Figure 3.7: Learning process.

data buyers competing with each other repeatedly. For each box plot, the central
mark indicates a median of utilities. The upper whiskers show the highest utility and
the lowest whiskers show the lowest utility at each stage. The outliers are indicated
by a (◦) symbol.

(a) (b) (c)

Figure 3.8: Boxplot presenting the bid learning processing using fictitious play.
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3.5.5 Truthfulness Analysis

We evaluate the property of truthfulness in which each winning buyer i must bid
their true valuation. Let’s assume the following two cases:

1. We define β̃i as overbid from the valuation, and β∗

i as the best response, and
ũi and ūi as their stage utilities, respectively. Buyer i is the winner when
submitting either β̃i or β

∗

i at stage t. However, overbidding creates extreme
penalties with respect to trust scores in the payment stage in our model, which
leads the winning buyer to pay more and gain less utility than if he/she plays
their best response. The best response scheme given by Eq. 3.11 is incentive-
compatible, when buyer i is repeatedly best-responding, in which case other
buyers are incentivized to do the same to maximize their utilities. In other
words, a buyer i ∈ B cannot increase its utility by overbidding, since he/she
will be punished severely.

2. Buyer i will lose the game G if he/she bids lower than their valuation (under-
bidding), otherwise would win if he/she reported the true valuation and played
their best response.

Therefore, buyer i cannot increase its utility by providing untruthful bidding
(overbidding and under-bidding), no matter what the other buyers’ bid. For the
experiment, we select two buyers; the first buyer bids truthfully while the other bids
untruthfully. To provide a consistent environment for comparison, we set the trust
score for both buyers to 0.7 and ask price to 50, 48, 41, 40, and 30, respectively.
Figure 3.9 (a) is the result when winner buyer i is biding his/her true valuation and
pays the price pi at stage t. Figure 3.9 (b) is the result when buyer i bids untruthfully.
We can see that buyer i receives zero payment when he/she is underbidding, which
means that he/she receives zero utility. At stages 3 and 4, he/she is overbidding,
and he/she is the winner. However, we can see that the winner is paying much more
than if he bids truthfully. Truthfulness property provides the best possible utility
for the buyers and ensures there is no incentive for a buyer to bid untruthfully.

3.6 Summary

While the economic value of IoT data is increasing, it is not very well known how
these data can be conceptualized, measured, and monetized in IoT data markets that
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Chapter 4

Performance Analysis of

Blockchain-based IoT Data

Trading Systems

In this chapter, we discuss the existing challenges of blockchain-based data trad-
ing systems in section 4.1. Section 4.2 discusses the data trading model based on
blockchain. In section 4.3, the implementation setup using Hyperledger Fabric is
presented followed by the system performance analysis and results in section 4.4.
Finally, conclusion is discussed in section 4.5.

4.1 Introduction

According to a report from MarketsandMarkets [14], the data market will grow to
229.4 billion dollars by 2025. With massive number of IoT devices and applications,
the total amount of data created by IoT devices will reach 847 ZB per year by
2021 [10]. Indeed, data are becoming the most valuable asset in use as well as
in trade. Such valuable data received considerable attention from organizations to
tailor their services to potential consumers and make a profit. As a result, various IoT
applications and devices such as smartphones, wearable devices have brought great
convenience to people, while producing huge amounts of data. Data have become a
valuable asset, which creates a new business called data trading. Currently, there
are several data trading systems, e.g., CitizenMe, Datacoup, DataExchange, Factual,
and Terbine, to name a few. These systems suffer from two main concerns. First,
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they fail to clearly explain where or with whom the owner’s data are being shared,
and often data change ownership illegally [6]. Second, aggregating large-scale data in
storage platforms is subject to cyber attacks [55]. To address these issues, researchers
propose blockchain systems as a means of providing people the ability to track and
control their data securely [56, 57, 58]. In blockchain systems, the transactions
are secure, tamper proof as well as transparent to all data owners and brokers [6].
Furthermore, several studies propose data encryption methods to reduce the risk of
data breaches [59, 60, 61].

While all of the above-mentioned studies consider blockchain and encryption
methods to achieve private and secure data trading, researchers paid little attention
to the performance measures of these systems. This research aims at evaluating the
performance of the blockchain-based data trading systems based on throughput (i.e.,
number of completed transactions per second in blockchain), latency, elapsed time
(amount of time needed to query the assets), and resource consumption analysis.
Transactions are an important part of the blockchain. To find out how well the
system is adding the number of confirmed transactions to the blockchain network,
we need to measure and analyze the throughput metric. By default, the underlying
data structure of a blockchain does not support an effective method of querying the
stored data. To overcome this limitation, we modeled the data in JSON format
through CouchDB. The latter supports deploying indexes within the smart contract
to make queries more efficient in massive datasets. Indexes enable a database to
be queried faster and more efficiently compared to regular queries without indexes.
Applying blockchain in data trading systems is not a straightforward task due to
high resource consumption. Hence, measuring resource consumption is also impor-
tant for the efficient management of systems, such as CPU, memory, etc., as well as
the successful execution of transactions in the blockchain. Therefore, this research
demonstrates a scenario of a blockchain-based data trading system based on Hyper-
ledger Fabric and analyzes its performance measures using Hyperledger Caliper. The
main contributions of this chapter are as follows:

❼ We analyze and evaluate the performance of the blockchain-based data trad-
ing system using Hyperledger. Our work measures and analyzes transaction
throughput, latency, elapsed time, and resource consumption (memory con-
sumption, CPU utilization, and disc read/write operations) unlike existing re-
search.

❼ We used a real dataset to emulate a real-life data trading scenario and show
that the proposed system can be easily deployed on IoT devices at a low cost.

38





Each buyer i ∈ {1, 2, . . . , B} submits its bid to the auctioneer who tries to match
buyers and sellers. If buyer i is declared a winner, it receives the search token and
decryption key from seller j to obtain the required data. Then, seller j receives the
agreed upon payment amount. The winning buyer i will utilize the token to request a
search through the blockchain. The smart contract, which is stored in the blockchain,
will use the token and return the search result to buyer i. A smart contract specifies
rules and conditions in a digital format, containing protocols within which the par-
ticipants perform on these promises. A smart contract is a script (e.g., Solidity in
Ethereum and Golang in Fabric) which defines the set of assets available to transfer
and the type of transactions permitted. All smart contracts have a unique address
and are stored in the blockchain. The model assumes that the data sellers have the
skill and ability to perform these operations on the blockchain network. More for-
mally, blockchain-based data trading systems is composed of following polynomial
algorithms [62, 63]:

1. KeyGenSetup(1λ) −→ SK: It is run by seller j and takes security parameter
λ. It outputs the encryption key SKj.

2. Encrypt(SK,D) −→ C: It is run by the seller j to encrypt data. Given the
encryption key of seller SKj, and data set D, it outputs a ciphertext data set
C.

3. DataPolicyRules([r1, r2, ..., rn]) −→ P : It is run by the seller j to define data
access control policy rules. Given the set of rules rn, and data set D, it outputs
the data policy P . Inside the smart contract, the seller j can specify access
control policy P for his/her data such as what data can be used for, and when
it can be used.

4. CreateIndex(SK,D, C,P) −→ I: It is run by the seller j to create the index
I. Given the encryption key of seller SKj, and encrypted data set C, and access
policy rules P , it outputs the searchable index I.

5. Trapdoor(SK,Q) −→ TQ: It is run by the seller j to create trapdoor for the
authorized buyer i. Given the encryption key of seller SKj, and query (e.g.,
keyword) Q, it outputs the trapdoor TQ.

6. Search(I, T Q) −→ S: It is run by buyer i and evaluated by smart contract (1
or 0). Given the search index I, and trapdoor TQ, it outputs the search result
S, including the list of the encrypted data set C.

40



7. Eval(I, T Q) −→ π: Given index I, and trapdoor TQ, it evaluates the search
function and outputs the correctness proof π.

8. Verify(TQ,S, π) −→ True or False: Given trapdoor TQ, search S, and proof
π, it outputs the (inculding ciphertext C), and correctness proof π. It outputs
True if the result is valid (correct) and False otherwise.

9. Decrypt(SK, C) −→ D: Given the encryption key SK, and ciphertext data
set C, it outputs the decrypted data set D to buyer i.

The key principles of the proposed data market are data ownership, transparency,
and access control. Algorithm 2 presents the scheme construction pseudo-code for
the blockchain-based data trading system.

4.3 Implementation Setup Using Hyperledger Fab-

ric

To implement the data trading system we use the Hyperledger platform. Hyperledger
was established to address some of the concerns posed by permissionless blockchains.
Under the Hyperledger umbrella, various purpose-specific systems and tools are being
built for use-cases ranging from finance to the IoT, manufacturing, and supply chain
management [64]. Hyperledger Fabric is one of the tools that offer permissioned
distributed ledger technology allowing specific entities to participate [64]. Some of
the main components of Hyperledger Fabric are as follows:

❼ Ledger: Immutable data storage tool that keeps the records of the transactions.

❼ Organization: A Fabric network might contain one or multiple organizations.
Organizations host peers and other components of the network and each main-
tains a copy of the ledger. A single organization in a Fabric called Org1 and
uses the domain name org1.example.com.

❼ Peer: A Fabric network might contain one or multiple peers. Peers execute
transactions and host in the Docker containers. Peers can be committer or
endorser. All peers are committers by default. Peers receive orders in form
of a block of transactions from the Orderer. Upon receiving a new block, the
peer validates the transactions. Peers can take up the additional responsibility
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Algorithm 2 Scheme construction for blockchain-based data trading system

Input: Encryption key SK, document set D, cipher-text data set C, submitted bids
and asking price, query Q
Output: Winning buyer, payment, index I, document set D, smart contract

1: for each j ∈ N do

2: SK ← (1λ) // Calculate KeyGenSetup function and create the encryption key SK
3: C ← (SK,D) // Encrypt the data set D
4: P ← ([r1, r2, ..., rn]) // Define the access policy rules for the data set D
5: Signj the data access policy P
6: I ← (SK,D, C) // Create the index I for the data set D
7: Add the encrypted data set D to database
8: if SCj exists then
9: Update new information for seller j in SCj
10: else

11: Add/append SCj and index to the blockchain for seller j
12: end if

13: Submit the ask price for data D to the blockchain
14: end for

15: for each i ∈ B do

16: Submit the bidding price to the blockchain
17: Smart contract runs the auction mechansim
18: Smart contract announces the winners and payments
19: end for

20: for each matching pair i and j do

21: Seller j receives the payment
22: TQ ← (SK,Q) // Create the trapdoor TQ for the authorized buyer i
23: Add the TQ to the smart contract SCj
24: Share the TQ and index I to buyer i
25: S ← (I, T Q) // Buyer i requests search using the TQ and index I
26: if Verify = 1 then

27: D ← (SK, C) // Decryption process
28: else

29: Invalid
30: end if

31: end for

of endorsing transactions (endorsers). An endorser simulates the transaction
by running the chain code and appending the results with its cryptographic
signature (referred to as endorsement) before returning it to the application.
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verify the transactions based on the predefined endorsement policy. Every chaincode
contains an endorsement policy. It specifies which peers to execute chaincode and
endorse (verify) the results for the transaction to be deemed valid. For example, it
checks if the transaction proposed is in the correct format and the signature is valid,
etc. The endorsed transaction is then returned to the application containing the re-
sult. Then, the application verifies the results if the endorsement policy is satisfied.
Then, the orderer finalizes all the transactions in the network, seeks consensus (Solo
consensus protocol), and creates a new block. Next, the orderer distributes the new
block to all peers for the final validation. Finally, the peers validate the transactions
and append them to the block. Since we only used one ordering node, Solo was
chosen. Furthermore, we utilized CouchDB to model data on the ledger as JSON
format. CouchDB enables us to deploy indexes in the chaincode to make queries
efficient, thus empowering us to query large datasets.

4.4 Performance Analysis

The Fabric network we deployed for the experiment consists of two organi-
zations (Org0, Org1), each consisting of one peer (peer0.org1.example.com,
and peer0.org2.example.com), each consisting of one database
(couchdb.org1.example.com, and couchdb.org2.example.com), and one orderer
node (orderer.example.com) hosted inside a Docker container. We run the Hy-
perledger Caliper benchmark framework [65] over the implementation of Fabric to
analyze our system performance on Ubuntu Linux Intel Core(TM) i7-3610QM CPU
@2.30GHz with 6 GB RAM. Hyperledger Caliper allows users to execute, measure,
and verify the performance of blockchain networks with predefined use cases [65].
The Hyperledger Caliper report file in an HTML format contains the performance
of the blockchain network. Data is visualized via Python from various viewpoints
for the readers’ better understanding. Fig. 4.3 shows the data generation process.
We used a real dataset UK-DALE [66] to emulate a real-life data trading scenario.
The UK-DALE dataset contains five houses’ energy usage consumption, measured
by an IoT-based smart meter device. To make the data trading happen on the
blockchain network, we converted the IoT data (energy consumption records) to a
JSON file (key-value). We created three samples (assets) from UK-Dale dataset
and stored them in CouchDB for our experiments. The results may change over
different runs under different workloads. Therefore, the experiment itself must be
repeatable. We run our experiments for eight rounds on the blockchain network to
ensure the repeatability of the experiment. We measured our system performance
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Elapsed time: The amount of time that each buyer needs to interact with
the blockchain network to query data from chaincode. This metric measures how
much time it takes for the buyer to get query result from database. Therefore, it is
necessary to know the availability of the system in different requests.

It is important to test the system performance under different workloads. The
workload is representative of the actual production usage. It is related to the amount
of time and computational power used to complete a given task (e.g., amount of time
and computing resources used to create a new transaction on the blockchain). We
define the following workloads for our proposed system:

❼ Open workload: Opening accounts and testing the writing performance of the
ledger.

❼ Query workload: Querying accounts and testing the reading performance of
the ledger.

❼ Transfer workload: Data trading between accounts and testing the transaction
performance of the ledger.

Table 4.1: Summary of Performance with 500 and 1000 Transactions

Name Succ Fail
Send Rate
(TPS)

Max
Latency (s)

Min
Latency (s)

Avg
Latency (s)

Throughput
(TPS)

Open 500 0 50 6.38 3.37 9.75 38.5
Query 500 0 50 1.99 0.30 1.14 48
Transfer 500 0 50 0.79 0.14 0.46 50
Open 1000 0 50 12.41 8.32 10.36 48
Query 1000 0 50 4.12 0.78 2.24 38.2
Transfer 1000 0 50 3.67 0.34 2.00 50

Table 4.1 summarize the performance of the network with 500 and 1000 transac-
tions using 50 transactions per second (TPS) for opening, querying, and transferring
workloads, respectively. From the results in Table 4.1, we see that the average la-
tency results for the 500 and 1000 transaction under the open workload is 9.75 and
10.36 seconds, respectively. The latency timer starts from the point of submitting
the transaction and the result is available in our blockchain network. To evaluate
the average latency blockchain network in more detail, we consider different sending
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Table 4.3: Retrieval the assets from CouchDB

Asset Size (MB) Max Latency (s) Avg Latency (s) Throughput
3.2MB 8.24 5.11 600.13
5.4MB 12.47 6.44 719.9
7.4MB 17.75 8.01 815.7

peer chaincode query -C $CHANNEL_NAME -n

ledger -c ’{"Args":["QueryAssets",

"{\"selector\":{\"owner\":\"user3\"}]}’

Query 2:

peer chaincode query -C $CHANNEL_NAME -n

ledger -c ’{"Args":["QueryAssets",

"{\"selector\":{\"docType\":\"asset3\",

\"owner\":\"user3\"}, \"use_index\":

[\"indexOwnerDoc\", \"indexOwner\"]}"]}’

Figure 4.6 shows running times of test queries without index and with index.
From Figure 4.6, we can observe that querying with index takes less elapsed time
compared with querying without index. In general, queries without index will have
a longer elapsed time. Indexes allow a database to be queried without having to ex-
amine every row with every query, thus making them run faster and more efficiently.

Finally, tables 4.4, 4.5, 4.6 and 4.7, 4.8, 4.9 show the resource consumption
for open, query, and transfer workloads with 500, and 1000 transactions, respec-
tively. Memory displays the amount of memory used by the docker container on
each test round. Memory(MAX) measures the maximum resources spent on a trans-
action, and memory(AVG) measures the average resources spent on all transactions.
CPU displays the amount of CPU used by the docker containers during the test
round. CPU(MAX) measures the maximum resources spent on a transaction, and
CPU(AVG) measures the average resources spent on all transactions. For both 500
and 100 transactions, the resource consumption for open and query workloads reveals
that CouchDB consumes the most memory and CPU, followed by the peers. The
memory and CPU usage metrics indicate that with the increasing number of trans-
actions from 500 to 1000, memory and CPU usage increases relatively. The network
usage is conducted based on the traffic input and traffic output parameters. The ma-
jority of the network traffic is occupied by the orderer since it seeks the consensus in
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Table 4.4: Resource Consumption for Open Workload with 500 Transactions

Type Name Memory (Max) Memory (Avg) CPU% (Max) CPU% (Avg) Traffic Input Traffic Out Disc Read/Write
Docker peer0.org2.example.com 56.5MB 54.1MB 3.12 2.58 2.6MB 1.2MB 0B & 7.6MB
Docker peer0.org1.example.com 27.1MB 21.2MB 3.8 1.45 2.2MB 1.1MB 0B & 7.2MB
Docker orderer.example.com 6MB 5.4MB 1.22 0.14 2.1M 3.4M 0B & 4.6MB
Docker couchdb.org2.example.com 71.1MB 67.9MB 35.3 22.9 3.1MB 2.9MB 0B & 3.4MB
Docker couchdb.org1.example.com 68.5MB 65.7MB 31.1 20.4 3.1MB 2.9MB 0B & 3.1MB

Table 4.5: Resource Consumption for Query Workload with 500 Transactions

Type Name Memory (Max) Memory (Avg) CPU% (Max) CPU% (Avg) Traffic Input Traffic Out Disc Read/Write
Docker peer0.org2.example.com 32.1MB 28.1MB 2.52 1.18 1.7MB 1.0MB 0B
Docker peer0.org1.example.com 13.1MB 7.4MB 1.8 0.68 1.2MB 0.652B 0B
Docker orderer.example.com 4.1MB 4.1MB 1.01 0.26 1.1MB 0.319B 0B
Docker couchdb.org2.example.com 88.2MB 81.3MB 43.9 30.5 4.4MB 4.1MB 1.2M & 0B
Docker couchdb.org1.example.com 86.1MB 79.4MB 40.8 29.1 4.2MB 3.9MB 1.0M & 0B

Table 4.6: Resource Consumption for Transfer Workload with 500 Transactions

Type Name Memory (Max) Memory (Avg) CPU% (Max) CPU% (Avg) Traffic Input Traffic Out Disc Read/Write
Docker peer0.org2.example.com 32.1MB 28.1MB 2.52 1.18 1.7MB 1.0MB 0B & 7.6MB
Docker peer0.org1.example.com 13.1MB 7.4MB 1.8 0.68 1.2MB 0.652B 0B & 7.2MB
Docker orderer.example.com 9MB 7.1MB 1.04 0.54 614B 153B 0B & 4.6MB
Docker couchdb.org2.example.com 70.6MB 66.7MB 34.3 21.0 2.9MB 2.4MB 0B & 3.3MB
Docker couchdb.org1.example.com 68.1MB 65.3MB 31.1 19.2 2.9MB 2.4MB 0B & 3.1MB



52

Table 4.7: Resource Consumption for Open Workload with 1000 transactions

Type Name Memory (Max) Memory (Avg) CPU% (Max) CPU% (Avg) Traffic Input Traffic Out Disc Read/Write
Docker peer0.org2.example.com 101.9MB 100.2MB 6.8 4.12 3.7MB 3.5MB 0B & 11.7MB
Docker peer0.org1.example.com 91.2MB 88.1MB 6.1 3.39 3.7MB 3.5MB 0B & 11.1MB
Docker orderer.example.com 14.7MB 12.7MB 2.98 1.19 3.4M 7.1M 0B & 8.6MB
Docker couchdb.org2.example.com 107.1MB 100.9MB 47.9 32.6 4.4MB 6.2MB 0B & 5.1MB
Docker couchdb.org1.example.com 101.8MB 98.5MB 46.1 31.2 4.4MB 6.2MB 0B & 4.7MB

Table 4.8: Resource Consumption for Query Workload with 1000 transactions

Type Name Memory (Max) Memory (Avg) CPU% (Max) CPU% (Avg) Traffic Input Traffic Out Disc Read/Write
Docker peer0.org2.example.com 91.8MB 87.1MB 5.41 4.36 2.4MB 2.1MB 0B
Docker peer0.org1.example.com 78.9MB 73.2MB 5.11 4.08 2.2MB 1.8MB 0B
Docker orderer.example.com 12.1MB 10.9MB 2.11 1.51 3.1MB 6.6MB 0B
Docker couchdb.org2.example.com 88.2MB 81.3MB 43.9 30.5 4.4MB 4.1MB 1.4M & 0B
Docker couchdb.org1.example.com 86.1MB 79.4MB 40.8 29.1 4.2MB 3.9MB 1.1M & 0B

Table 4.9: Resource Consumption for Transfer Workload with 1000 transactions

Type Name Memory (Max) Memory (Avg) CPU% (Max) CPU% (Avg) Traffic Input Traffic Out Disc Read/Write
Docker peer0.org2.example.com 91.8MB 87.1MB 5.41 4.36 2.4MB 2.1MB 0B & 11.7MB
Docker peer0.org1.example.com 78.9MB 73.2MB 5.11 4.08 2.2MB 1.8MB 0B & 11.1MB
Docker orderer.example.com 15.1MB 15.0MB 1.03 0.54 2.6MB 3.3MB 0B & 8.6MB
Docker couchdb.org2.example.com 77.2MB 71.3MB 38.9 29.6 4.1MB 3.8MB 0B & 5.1MB
Docker couchdb.org1.example.com 75.5MB 70.1MB 36.2 27.5 4.1MB 3.8MB 0B & 4.7MB



4.5 Summary

IoT devices and data-driven applications are generating huge data. Such valuable
data received considerable attention from organizations to tailor their services to
potential consumers and make a profit. On the other hand, data owners can sell
their private data for profit. Data trading can be used to achieve efficient use of
data resources and increase data valuation. In recent years, several studies focused
on designing data trading systems based on blockchain in which sellers and buyers
can interact securely with each other. However, conflicting issues have been raised
regarding the performance of data trading systems in the blockchain network. This
chapter presents a performance analysis of a blockchain-based data trading system
using Hyperledger Caliper. Specifically, we highlighted the importance of transaction
throughput, elapsed time, and CPU usage as performance parameters for system
design efficiency. The experimental results show that the proposed system can easily
be deployed on IoT devices at a low cost.
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Chapter 5

A Blockchain-based Reputation

System for IIoT Data Ecosystem

In this chapter, we discuss the existing challenges of blockchain-based reputation
system for IIoT data ecosystem in section 5.1. In section 5.2, the blockchain-based
reputation system for IIoT data ecosystem is presented, followed by security analysis
in section 5.3. Section 5.4 presents implementation and experimental results of the
proposed system. Finally, conclusions are drawn and future research directions are
discussed in section 5.5.

5.1 Introduction

In 21st century’s Industry 4.0, IIoT data is considered the most valuable asset in
use as well as in trade [68]. The radically increasing amount of data generated by
IIoT devices has led to the emergence of a new IIoT data ecosystem. In such an
ecosystem, data providers generate an infinite number of data records from various
IIoT applications (e.g., autonomous systems, smart healthcare, etc.) and sell them
to data consumers [69]. Such valuable data received considerable attention from data
consumers to tailor their services to potential consumers and make a profit [70]. Sev-
eral firms, like Terbine and Dfintech, have developed online data trading systems for
monetizing IIoT data. With the tremendous growth of online marketplaces ranging
from e-commerce companies to data marketplaces, the need for a robust intelligent
reputation systems for Industry 4.0 is becoming increasingly vital as more people
and services interact online. The important components of a reputation system are
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product ratings and reviews [71]. These components not only assist consumers with
their purchasing decisions but are also valuable for data providers to build their trust
[72].

However, current IIoT-based data trading systems suffer from three main con-
cerns. To begin, current systems such as CitizenMe, Terbine, Datacoup, DataEx-
change, and Factual, to name a few, use a centralized-based reputation system, which
is vulnerable to data leakage [73], and hence, a distributed blockchain system may
alleviate this problem. Furthermore, because user accounts are not anonymous and
may be traced, the process of posting reviews may reveal personal information about
consumers [36]. Thus, consumers may be reluctant to post a review. On top of
that, reputation systems are vulnerable to a variety of attacks, including White-
washing, Self-promotion, Sybil, Slandering, and Bad-Mouthing, to mention a few.
To address these issues, researchers propose blockchain-based reputation systems
[35, 36, 37, 41, 42, 43] as a means of providing anonymity, transparency, increase
mutual trust, and security for both providers and consumers in Industry 4.0. These
studies focus on the decentralized reputation system with a single certificate author-
ity, which creates the concern of a SPOF. They utilized a consensus mechanism that
is not crash fault-tolerant and cannot continue to operate despite the failures. More-
over, they paid little attention to the performance measures of these blockchain-based
reputation systems to demonstrate their usability in a real IIoT data ecosystem. In
this chapter, the proposed blockchain-based reputation system is capable of avoiding
a SPOF, by allowing the operation to proceed despite the failures. We provide a
detailed performance analysis to ensure the feasibility and usability of the proposed
system in real-world applications. The main contributions of this chapter are as
follows:

❼ To the best of our knowledge, this is the first work to design a blockchain-based
reputation system for the IIoT data ecosystem for Industry 4.0. We propose
an anonymous reputation system for the IIoT data ecosystem by leveraging
a blind Elliptic Curve Digital Signature (ECDSA) and a non-interactive zero-
knowledge proof (ZKP) technique.

❼ We build a blockchain network based on the Raft consensus algorithm. With
Raft, the proposed system is a crash fault-tolerant, which allows the operation
to proceed as planned rather than failing. We further improve the Raft consen-
sus algorithm to avoid SPOF, and link failures. We built a new policy called
RepGossip based on the gossip protocol, which withstands the link failures.
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❼ We demonstrate and provide a comprehensive security analysis of the pro-
posed system which satisfies review completeness, review soundness, review
anonymity, and review unlinkability properties.

❼ We analyze and evaluate the performance of the blockchain-based reputation
for IIoT data ecosystem using Hyperledger Fabric. Unlike existing research, our
work measures and analyzes transaction throughput, latency, memory usage,
and CPU consumption.

5.2 System Model

In this section, we describe the blockchain-based reputation system for the IIoT
data ecosystem which is shown in Figure 5.1. To give the reader an idea about the
involved parties in this system, consider the example in [74] where a transportation
department (i.e., data consumer) in a city would like to acquire information about
traffic conditions, logistics, etc. The department would subscribe to Amazon Data
Exchange which collects IIoT data from different data providers (owners of traffic
IIoT devices with intelligent edge computing). In this example, the data consumer
would benefit from the data to improve decision-making and services while the data
providers trade their data for monetary benefit. The proposed system comprises
several components that interact with one another, as explained below.

1. Data providers: A data provider i ∈ {1, 2, . . . , B} sells data records, which
is generated by IIoT devices for a monetary value. Data records are any type
of records sold by a provider i in a IIoT data ecosystem. Let Xi be the set of
data records, and let xi be a data package xi ∈ Xi. The reputation of a data
provider i is built on the feedback of data consumers.

2. Data consumers: A data consumer j ∈ {1, 2, . . . , N} make purchases from
data provider i, and may leave feedback on his/her purchase.

3. Certificate authority (CA): It is a government agency responsible for authenti-
cating data providers and consumers by registering and issuing certificates to
them. CA maintains a public ledger L based on the Raft consensus protocol.

At a high level, our proposed system works as follows. Data providers and con-
sumers register themselves to the CA. The CA issues certificates (digital identities
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4. Review soundness: A data consumer j is only able to leave exactly one review
per purchase with a valid payment transaction. This ensures that dishonest
consumers can not leave a review.

5. Review completeness: All the reviews must be publicly available and visible in
L for all consumers N and providers B without revealing identities.

5.2.2 System Setup

In this sub-section, we briefly describe the basic definition of bilinear pairing, non-
interactive ZKP technique, and blind ECDSA schema as building blocks of the pro-
posed system. Let G = (G1,G2,GT ) be multiplicative cyclic groups with a bi-
linear paring e : G1 × G2 → GT , g1 and g2 are generators of G1 and G2, and a
prime order q. CA defines a security parameter λ and generates public parame-
ters (G1,G2,GT , g1, g2, q, e,H) for consumers and providers, where H is a collision-
resistant hash function. CA selects H : {0, 1}∗ → Zq, where Zq is a finite field of
order q. Then, CA chooses a random numbers s1, s2 ∈ Z

2
q as private key and computes

gs12 , g
s2
2 → (Q̃, Ũ). The public system parameters are (G1,G2,GT , q, e, g1, g2, Q̃, Ũ ,H).

Definition 7 (Non-interactive ZKP [75]). The non-interactive ZKP is the safest
method of authentication of the entities. It allows entities to validate transactions
on the blockchain network without reviling sensitive information (e.g., password) as-
sociated with the transaction (e.g., Zcash crypto platform is a real-world application
that utilizes ZKP). Formally, given an element e of a language L ∈ NP language,
an entity (prover) is able to convince other entity (verifier) that e belongs to L, i.e.
w is witness for e.

Definition 8 (Blind ECDSA schema [76]). ECDSA is a cryptographic algorithm
used in many blockchain-based such as bitcoin other blockchain systems to secure
transactions and increase efficiency. Blind ECDSA adds an extra layer of security
and anonymity to the standard ECDSA, allowing users to acquire a signature from
signers while preventing the signers from learning any information about the message.
More formally, the blind ECDSA between the recipient r and the signer s is defined
as follows:

❼ Signer s randomly selects an integer n1 from 2 to q − 1.

❼ Signer s computes K1 = n1g1 and send is it to r.
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❼ Recipient r randomly selects an integer n2 from 2 to q − 1.

❼ Recipient r computes K = (kx, ky) = n2K1.

❼ Recipient r selects two distinct primes t1, t2 and computes public key (N, g).

❼ Recipient r encrypts kx and ky and randomly selects r1, r2 ∈ Z
∗

N2.

❼ Recipient r computes C1 = gkxrN1 (modN
2) and C2 = gkyrN2 (modN

2).

❼ Recipient r submits (N, g, C1, C2) to singer s.

❼ Signer s selects r from 2 to N and computes C = (C1C
sk
2 )k

−1

1
(modq)rN(modN2)

and C to recipient r.

❼ Recipient r computes s = k12D
(

C, (p, t)
)

(modq)
(

D(.) decryption algorithm
)

.

❼ Recipient r obtains a blind signature σ = (kx, s).

Significant notation is summarized in Table 5.1 for the clarity of readers.

Table 5.1: Notations.

Notation Description
CA Certificate authority
i Data provider i ∈ {1, 2, . . . , B}
j Data consumer j ∈ {1, 2, . . . , N}
Xi Set of data records
xi A data package
σi Data provider i’s signature
σj Data consumer j’s signature
σCA CA j’s signature
L Ledger

Ct
j,n(xi) Review score of consumer j on provider i’s data package
ξtj,n Accumulated value deviation for the history of all transactions
Ri Total reputation score of data provider i
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5.2.3 System Registration

Each data provider i and data consumer j register themselves to CA to obtain
anonymous credentials. Provider i and consumer j choose a secret key si ∈ Z

2
q,

sj ∈ Z
2
q and computes gsi1 , Q̃

si → (Mi, M̄i), g
sj
2 , Ũ

sj → (Nj, N̄j), respectively. Then,
provider i and consumer j generate a ZKP [75] πsi , πsj , respectively as follows:

si :Mi = gsi1 ∧ M̄i = Q̃si (5.1)

sj : Nj = g
sj
2 ∧ N̄j = Ũ sj (5.2)

Then, provider i and consumer j send their public keys, signatures and proofs
(Mi, M̄i, σi, πsi), (Nj, N̄j, σj, πsj) to CA, respectively. Afterward, CA checks the va-

lidity of proofs πsi , πsj , and e(Mi, Q̃)
?
= e(g1, M̄i), e(Nj, Ũ)

?
= e(g2, N̄j) for provider

i and consumer j, respectively. CA ignores when the proofs are invalid. Otherwise,
CA issues and signs the certificates for provider i and consumer j as follows:

σCA(Mi, M̄i, σi, πsi)→ Certi (5.3)

σCA(Nj, N̄j, σj, πsj)→ Certj (5.4)

The CA stores σCA(Mi, M̄i, σi, πsi), σCA(Nj, N̄j, σj, πsj) in the blockchain and send
the Certi, Certj to provider i and consumer j, respectively.

5.2.4 Payments

In the payment stage, the provider i sends its account (e.g., wallet address) and the
price of data package xi to the consumer j. When a data consumer j decides to
purchase the data package xi from provider i, consumer j can transfer the money
anonymously via secure payment channels such as Bolt, and Zerocash. For example,
Bolt anonymous payment channel scheme includes a tuple of probabilistic algorithms
(KeyGen, Initi, Initj, Refund,Refute, Resolve) [77]. At beginning, data provider i
and consumer j generate their public and private keys using bilinear pairing cryptog-
raphy, as discussed in section 5.2.2. Then, both execute the Initi, Initj algorithms
to initiate the private channel to drive tokens. Next, they send the tokens alongside
a transaction to the payment network. If the transaction succeeds, the provider i
receives Establish protocol, and customer j receives Pay protocol. The data con-
sumer j runs the Pay protocol to process the payment. Afterward, data consumer
j runs the Refund algorithm to end the payment channel, and data provider i runs

60



Refute algorithm to revoke the tokens. Then, provider i generates a transaction
proposal (TxProposal) that contains of the payload (includes all of the metadata
about a transaction), and txID, certificates, along with a cryptographic signature
of himself and consumer j on the transaction header, and eventually submits the
transaction to the CA. A payment transaction proposal P looks as follow:

P =

(

txID, σi, σj, Certi, Certj, pType, payload

)

(5.5)

where TxID is the unique transactionID, σi, σj, Certi, Certj are signatures, and
certificates of provider i and consumer j, respectively. pType is the type of payment
(Zerocash, Bolt, etc.). Afterward, once CA receives the transaction proposal, CA
checks TxID 6∈ L, and verifies the Certi, and Certj and its corresponding σi, and
σj digital signatures from L. If the transaction satisfies the requirements then, CA
adds the P to the ledger L.

5.2.5 Reputation Computation and Verification

Once the payment transaction p is appended to the blockchain, and the consumer
j received the anonymous rating token toj from CA. Consumer j has the option to
leave a review score for the data package xi. C

t
j,n(xi) represents the review score of

consumer j has upon provider i based on its recent transaction n in the time t. The
review score function is defined as follows:

Ct
j,n(xi) = Satc ×

(1− e−ΩV altj,n)

1 + ξtj,n
(5.6)

V altj,n = |V altj,n̄ − V alc| (5.7)

ξtj,n = K × V altj,n + (1−K)× ξtj,n̄ (5.8)

Satc is a rating score between [0, 1] for the current transaction n reflecting the way
consumer j rates provider i. If Satc = 0, then consumer j is totally unstatisied
with provider i. If Satc = 1, then consumer j is totally statisied with provider i.
V altj,n is a recent value fluctuation between the previous and current value V alc.
Here, Ω is the decay constant and it controls the review score. The Ct

j,n(xi) value
reaches 1.0 with larger V altj,n and decreases slowly with smaller V altj,n. We consider
such a value fluctuation to make the review score fair. This makes sense because
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private or sensitive data is more valuable than public data. For example, suppose
the value of the transaction is trivial (e.g., data package contains public data), and
the current satisfaction of consumer j is high. In that condition, the review score
will not significantly impact the overall reputation. On the other side, if the value
of the transaction is high (e.g., data package contains private data), and the current
satisfaction of consumer j is high. Then, the review score of consumer j will have
a considerable impact on the overall reputation data provider i ∈ B. ξtj,n represents
the accumulated value deviation for the history of all transactions [54]. K is a
constant parameter that determines how much to react with respect to the recent
value fluctuations V altj,n [54]. Once consumer j calculate the review score Ct

j,n(xi).
Then, consumer j signs the review score and generates a transaction proposal as
follows:

T =

(

txID,Certj, σj, toj,
(

Ct
j,n(xi)

)

)

(5.9)

Afterward, once CA receive the transaction proposal from consumer j, CA runs
Algorithm 3 to verify the transaction. If the transaction satisfies the requirements
then, CA adds the T to the ledger L. The, CA calculate the review scores of all
consumers N as follow:

Ri =
N
∑

j=1

(

Ct
j,n(xi)

N

)

(5.10)

where Ri is the total reputation score of data provider i, which is computed using
the current review score Ct

j,n(xi). CA announces or updates the total reputation Ri

of data provider i ∈ B and append it to the L. After several transactions, the data
provider i ∈ B obtains a complete view of his/her total reputation.

5.3 Security Analysis

In this section, we provide a security analysis of the proposed system which satisfies
the properties of the review anonymity, review unlinkability, correctness, soundness,
and completeness.

Lemma 1. The proposed system satisfies the review anonymity property.

Proof. To achieve full anonymity in our system, we utilized an interactive identifi-
cation protocol based on the ZKP. This strategy ensures that consumers who post
review scores remain anonymous. Its security analysis has been proven in [75].
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Algorithm 3 Reputation computation and verification stage

Input: T =

(

txID,Certj, σj, toj,
(

Ct
j,n(xi)

)

)

Output: L, Ri

1: for each j ∈ N do

2: Calculate the Ct
j,n(xi)← Satc ×

(1−e
−ΩV altj,n )
1+ξtj,n

3: Calculate the V altj,n ← |V al
t
j,n̄ − V alc|

4: Calculate the ξtj,n ← K× V al
t
j,n + (1−K)× ξtj,n̄

5: end for

6: Submit T =

(

txID,Certj, σj, toj,
(

Ct
j,n(xi)

)

)

to CA

7: Check TxID 6∈ L
8: From L, verify Certj
9: Verify the σi digital signature
10: Add T → L

11: Calculate the Ri ←
∑N

j=1

(

Ct
j,n(xi)

N

)

12: Announce the Ri

13: Add/update Ri → L

Lemma 2. The proposed system satisfies the review unlinkability property.

Proof. Let’s assume that there is an adversary A node in CA that can link two
reviews of the same consumer. An adversary A receives transaction T to verify the
review and add the review to the ledger L. All these parameters in T are blinded
because of the blind ECDSA schema and ZKP method. Therefore, the proposed
system satisfies the review unlinkability property. Blind ECDSA security analysis
has been proven in [76].

Lemma 3. The proposed system satisfies the review correctness property.

Proof. A payment is completed when the data provider i ∈ N submits the payment
transaction P to the CA. Upon the verification transaction P , the CA will add the
P to the L. More formally, Pr

[

P −→ L
]

= 1. Then, CA generates the rating
token for the consumer j. Thus, the proposed system satisfies the review correctness
property.
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Lemma 4. The proposed system satisfies the review soundness property.

Proof. We assume two attack scenarios. First, adversary A is a third party attacker
and does not have a legal identity in the system and wants to leave multiple reviews.
Second, the adversary A is a dishonest entity against which wants to leave multiple
reviews. In the first scenario, without a valid payment transaction in L, valid certifi-
cate, and valid token, a third-party attacker A would not be able to leave reviews.
In the second scenario, due to forgery resistance of ECDSA schema dishonest entity
A cannot leave multiple reviews. If a A signs two reviews using the same token, then
the two signatures will be linked, and CA can detect this misbehavior. Furthermore,
tokens generated by CA can only be used once. If the identical token is provided to
CA, the transaction will be revoked.

Lemma 5. The proposed system satisfies the review completeness property.

Proof. A review is completed when the data consumer i ∈ B submits the transaction
T to the CA. Upon the verification transaction T using Algorithm 3, the CA will
add the T to the ledger L. More precisely, Pr

[

T −→ L
]

= 1. Then, CA calculates
the aggregated review scores Ri and publish it in L. Therefore, the proposed system
satisfies the review completeness property.

5.4 Implementation and Experimental Results

In this section, first, we present our experiment settings. Then, we describe the
Raft consensus mechanism and its transaction workflow on Hyperledger Fabric. Af-
terward, we present our implementation and experiments. Finally, the performance
of the proposed system is analyzed based on the transaction latency, throughput,
and CPU consumption metrics. We used Hyperledger Fabric blockchain for our im-
plementation. According to a penetration test report on Hyperledger Fabric from
Tevora Threat Research Group [78], no severe vulnerabilities were discovered that
may lead to an attack. They determined Fabric core security architecture other
critical components were natively secure by both design and default. The Fabric
uses a data isolation approach and secure channels to preserve users’ data privacy.
While the traditional technique protects privacy by requiring a login password, this
method poses security problems. We instantiate one organization (.org1) consisting
of a certificate authority (ca.org1) node, five orderer nodes, and two peers nodes
on the Ubuntu Linux 20.04.3, Intel Core(TM) i7-3610QM CPU @2.30GHz with 16
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gets a quorum of the votes. A leader is always assumed to act honestly. When the
existing leader fails, a new leader needs to be selected. Then, a new term starts in
the network with the leader election. The raft algorithm divides time into terms.
The terms are numbered sequentially with integers. If the election is completed
successfully, the term keeps going with normal operations under leader supervision.
Then, the leader is responsible for the log replication. It receives requests from
clients. Each client request consists of transactions that the network will perform.
The leader transmitted the transactions to the followers to process and add to the
ledger L once the transactions were verified to be authentic.

5.4.2 Experimental Results

Link failures

The links between leader and followers can have a high failure rate. As result,
leader elections fail in such a network environment because of a lack of received
RequestsVotes (a message sent by a candidate to start an election and ask each node
for their vote) and RequestVoteReplies, and the chances of the candidates to win the
leader elections will decrease significantly. We built a new policy called RepGossip
which withstands the link failures. In RepGossip, we used Fabric’s private channel
for the communication between leaders and followers to maintain confidentiality.
Then, we implement a gossip protocol for each node on the private channel to ensure
that messages are disseminated to all of the nodes. For example, if a candidate
sets up an election procedure, and broadcasts a message to the nodes. Recipient
nodes propagate that message through the whole network. As a result, a message
is disseminated to all the nodes in the blockchain network and will significantly
reduce the link failures. Figure 5.3 shows the only link failures of the network using
RepGossip policy, ReplicaRV [81] policy, and without using any policy (Raft itself).
To acquire an accurate result, we used 200 trials, as ReplicaRV [81]. Figure 5.3
depicts that with RepGossip policy number of link failures reduced significantly
compared to ReplicaRV [81], and Raft itself.

Single point of failure

The Raft consensus mechanism is crash fault-tolerant, which provides high level of
resiliency in the blockchain network. Even if some nodes fail, it correctly takes
responsibility and reaches a consensus. It can tolerate F number of crash nodes
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non-interactive ZKP technique to provide confidentiality and anonymity in the rep-
utation system for the IIoT data ecosystem. Furthermore, we propose a reputation
computation model which computes the review score of data consumer has upon
data provider based on their recent transaction. The experimental results show that
the proposed system reduces the computational cost significantly in user registration,
review generation, and review verification phases compared to recent studies.
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Chapter 6

Blockchain-based Reputation

System For IoT Data Ecosystem:

A Utility Maximization Approach

In this chapter, we introduce a utility maximization approach for blockchain-based
reputation system for IoT data ecosystem in section 6.1. In section 6.2, a system
evaluation is presented. Finally, we summarized this chapter in section 6.3.

6.1 System Model

To provide the reader an idea about the high-level overview of our system, we en-
vision that most marketplaces, such as AWS data exchange, Amazon, eBay, etc.,
will soon integrate blockchain-based reputation systems into their platforms [83]. In
such a case, users will use Web 3.0 applications to process their transactions (reviews,
payments, etc.) on those platforms. With the rise of blockchain-based reputation
systems, the need for interaction models becomes critical. Thus, we propose a de-
centralized blockchain-based reputation system for IoT data ecosystem as shown in
Figure 6.1.

In this system, the users are the data providers (data seller) and the data con-
sumers (data buyers). A data provider j ∈ B sells IoT data records, which is
generated by IoT devices for a monetary value. Let Dj be the set of data records,
and let dj be a data package dj ∈ Dj. For example, a data package consists of
one million climate data records (e.g., temperature, humidity, atmospheric pressure,
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Table 6.1: Notations.

Notation Description
CA Certificate authority
B Set of data providers {1, 2, . . . , j}
N Set of data consumers {1, 2, . . . , i}
λ Security parameter
CEi Certificate for data consumer i
CEj Certificate for data provider j
H Collision-resistant hash function
Dj Set of data records
dj A data package
σj Data provider j’s signature
σi Data consumer i’s signature
πsj Data provider j’s ZKP proof
πsj Data consumer i’s ZKP proof
σCA CA’s signature
L Ledger
Ci Strategy profile of consumer i
Aj Strategy profile of provider j
Ui Consumer i’ utility (credibility score)
Uj Provider j’ utility (Reputation score)

erators of G1 and G2, and a prime order q. Each data provider j and data consumer
i request to register in the blockchain network. Provider j and consumer i choose a
secret key sj ∈ Z

2
q, si ∈ Z

2
q and CA computes g

sj
1 , Z̄

sj → (Yj, Ỹj), g
si
2 , W̄

si → (Ki, K̃i),
respectively. Then, data provider j and consumer i generate a non-interactive ZKP
[75] πsj , πsi , respectively as follows:

sj : Yj = g
sj
2 ∧ Ỹj = Z̄sj (6.1)

si : Ki = gsi1 ∧ K̃i = W̄ si (6.2)

Then, provider j and consumer i send their public keys, signatures and proofs
(Yj, Ỹj, σj, πsj), (Ki, K̃i, σi, πsi) to CA, respectively. We used the ECDSA for our
signature schema [84]. More formally, the signing operation on a message m : {0, 1}∗

using ECDSA is defined as follows [84]:
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❼ Select s random number s ∈ Z
2
q as private key.

❼ Compute the public key gs11 = rx.

❼ Compute R = rx mod q.

❼ Compute m̄ = H(m).

❼ Compute S ← a−1.(m̄+ r.x) mod q.

❼ Signature output σ = (R, S).

Afterward, CA checks the validity of proofs πsj , πsi , and e(Y j, Z̄)
?
= e(g1, Ỹj),

e(Ki, W̃ )
?
= e(g2, K̃i) for provider j and consumer i, respectively. CA ignores when

the proofs are invalid. Otherwise, CA generates and signs σCA the certificates CEj
and CEi for provider j and consumer i, respectively. Finally, the CA stores the in-
formation in the blockchain, and sends the certificate CEj, and CEi to data provider
and data consumer, respectively. Algorithm 4 describes the registration process for
providers and consumers on the blockchain.

Algorithm 4 Blockchain Registration

Input: Public parameters (G1,G2,GT , q, e, g1, g2, Z̄, W̄ )

Output: Certificates CEj, CEi, ledger L

1: sj ∈ Z
2
q → g

sj
1 , Z̄

sj → (Yj, Ỹj) //Provider j’s key generation

2: si ∈ Z
2
q → gsi2 , W̄

si → (Ki, K̃i) //Consumer i’s key generation

3: πsj ≡ sj : Yj = g
sj
2 ∧ Ỹj = Z̄sj //Provider j’s ZKP

4: πsi ≡ si : Ki = gsi1 ∧ K̃i = W̄ si //Consumer i’s ZKP

5: e(Y j, Z̄)
?
= e(g1, Ỹj) //Proof validation

6: e(Ki, W̃ )
?
= e(g2, K̃i) //Proof validation

7: Verify the σj, and σi digital signatures
8: CEj ← σCA(Yj, Ỹj, σj, πsj) //Issuing certificate

9: CEi ← σCA(Ki, K̃i, σi, πsi) //Issuing certificate
10: CA adds CEj, CEi → L //Storing certificates in ledger
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6.1.2 Data Providers Utility

In this subsection, we formulate the utility function of data providers. Each data
provider j chooses a strategy (action) #»aj ∈ Aj to maximize its reputation score and to
increase their competitive advantage. The reputation score is a rating value (score)
given by the data consumer after finishing the transaction. In addition, each provider
j has a utility function Uj : Aj → R, which maps every strategy #»aj = [a1, a2, a3, a4, a5]
into a utility for data provider j. Each strategy consists of different factors such as
product discount a1, product quality a2, product awareness a3, service quality a4, and
product diversity a5 [85]. The data providers compete with each other by choosing
the strategy that maximizes their reputation and attract more consumers to their
products. We drop the vector notation ( #») for the simplicity. Since the reputation
score of a provider j depends on the rating score given by consumer i. Given a
strategy choice aj by any provider j ∈ B, the utility function is as follow:

Uj(a
t
j, a

t
−j) =

∑

t

(

rtji(a
t
j, a

t
−j)× ci

)

×
√

r̄tjy(a
t
j, a

t
−j) (6.3)

where rij is current rating score (0 ≤ rij ≤ 1) for data package purchased. #   »a−j =
[a1, a2, a3, a4, a5] is the strategies of other data providers. r̄jy indicates a indirect
rating score of other entities’ y ∈ Y upon target data provider j. The indirect rating
score function is:

r̄jy =
Y
∑

y=1

pjy

pjy + njy
(6.4)

where pjy, denotes positive feedback of entity y (0.5 ≤ pjy < 1), and njy denotes as
negative feedback (0 ≤ njy ≤ 0.5). We consider indirect rating score r̄jy, when the
data consumer does not have previous experience (for the first transaction).

6.1.3 Data Consumers Utility

Review credibility measures the degree of accuracy of the rating score that consumer
i provides to provider j. Generally, trustworthy consumers provide accurate ratings
while untrustworthy consumers provide inaccurate ratings. The objective of each
data consumer j is to maximize its credibility cti to increase the impact of their
rating score on the reputation of data provider i. We define a strategy profile #»ci =
[c1, c2, c3] ∈ Ci for data consumers, which maps the strategy to the credibility score.
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Each strategy consists of multiple factors such as credibility accuracy c1, credibility
completeness c2, and credibility timeliness c3 [86]. These factors are controlled, and
assessed by CA. In addition, each consumer i has a utility function Ui : Ci → R,
which maps every strategy #»ci into a payoff. The utility function of consumer i is
modeled as follows:

Ui(c
t
i, c

t
−i) = αji ×

cti
∑N

i=1 c
t
−i

(6.5)

where αji represents the provider’s assessment of the consumer’s credibility. In other
words, how credible is the consumer’s review from the provider perspective. The
assessment of αji may take values such as low (0 ≤ αji ≤ 0.4), medium (0.4 ≤ αji ≤
0.6), and high (0.6 ≤ αji ≤ 1). The aim of each data consumer i is to maximize its
credibility cti to increase the impact of the his/he rating score on the reputation of
data provider j.

6.1.4 Adaptive Learning Mechanism

In this subsection, we model the interaction between the data providers and the data
consumers as an adaptive learning mechanism. Data providers can learn and update
their strategies to maximize their benefits over time. Meanwhile, data consumers
can update their strategies to increase their credibility scores. The main goal of the
design is to maximize the social welfare between each data provider and the data
consumer as follows:

Usw = max{Uj + Ui} (6.6)

We propose an adaptive learning algorithm that is aware of utilities and the occur-
rence of strategies for data providers and data consumers, as shown in Algorithm 5.
We calculate the number of occurrences of strategies and utilities at each time for
data providers and data consumers, respectively as follows:

Ōj =
B
∑

j=1

h(atj, a
t
−j) +

B
∑

j=1

Uj(a
t
j, a

t
−j) (6.7)

Ōi =
N
∑

i=1

h(cti, c
t
−i) +

N
∑

i=1

Ui(c
t
j, c

t
−i) (6.8)
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h(.) is number of occurrences of strategies for data providers and data consumers.
Ōj and Ōi represent the number of occurrences of strategies plus the utilities at the
each time. These functions assist data providers and data consumers in identifying
which strategies are frequently utilized alongside the utilities for these actions.

Algorithm 5 Adaptive Learning Algorithm

Input: Aj, Ci

Output: Ōj, Ōi

1: for each B and N do

2: Calculate the utility of each provider Uj(a
t
j, a

t
−j)

3: Calculate the utility of each consumer Ui(c
t
i, c

t
−i)

4: end for

5: Smart contract returns the review and credibility scores
6: Scores adds to ledger L
7: for all j ∈ B do

8: Calculate Ōj ←
∑B

j=1 h(.) +
∑B

j=1 Uj(.)

9: Observe the result of Ōj

10: Update the #»aj ∈ Aj
11: end for

12: for all j ∈ B do

13: Calculate Ōi ←
∑N

i=1 h(.) +
∑N

i=1 Ui(.)
14: Observe the result of Ōi

15: Update the #»cj ∈ Ci
16: end for

6.2 Implementation and Experimental Results

In our experiments, all the results were conducted using Ubuntu 20.04.4 LTS, 4.70
GHz, Intel Core i7 with 16 GB RAM. We implemented our blockchain netwrok on the
Hyperledger Fabric. On top of that, we used Hyperledger Caliper for the performance
analysis of the proposed system. We used The Raft consensus mechanism due to its
fault-tolerance and high performance. Readers may refer to [87] to gain a better
understanding of Raft and its components. The security analysis of non-interactive
ZKP is discussed in [75], which satisfies the completeness and soundness properties.
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ECDSA can withstand multiple attacks on the elliptic curve, hash function, and other
attacks discussed in [84]. The security analysis of Hyperledger Fabric is discussed
in [88], which satisfies the accountability, fairness, completeness, and consistency
properties. Table 6.2 shows the configuration parameters of our system.

Table 6.2: Experimental setup.

Parameter(s) Configuration
Transactions per second (TPS) 50, 100, 200, 300, 400, 800 TPS

H function SHA256
Total transactions 1000

Elliptic curve y2 ≡ x3 + ax+ b over Zq (prime256v1)
Consensus Raft

No. of the organization One (Org0)
No. of the peer nodes Two (Peer0, and Peer1) nodes
No. of the orderer Five (Orderer 0, 1, 2, 3 and 4) nodes

Certificate Authority One node

6.2.1 Evaluation of Results

We used our adaptive learning Algorithm 5 in repeated interactions between data
providers and data consumers overtime. We selected some reasonable arbitrary values
for the first interaction. We consider ten interactions with 100 trails. We used a box-
plot presentation to demonstrate the data providers’ learning process. The center
mark in each box plot represents the median of data provider reputation scores. The
upper whiskers depict the highest reputation score and the lowest whiskers show the
reputation score at each interaction. Outliers are denoted by a (◦) symbol. Figure
6.2 shows the adaptive learning process among 10, 25, 50, and 100 data providers.
From Figure 6.2, we can see that after each repeated interactions, data providers
update their strategies (increasing their reputation score) based on the previous
interaction’s outcome and observation of other providers j ∈ B. In Figure 6.2 (a),
we can see the reputation score between 10 buyers is between 0.35 to 0.45. In Figure
6.2 (b), the reputation score rises gradually as the number of data consumers rises.
In Figure 6.2 (c), and Figure 6.2 (d) reputation score reaches to a range between
0.75 to 0.80 with 50 data providers and reaches between 0.87 to 0.89 with 100 data
providers, respectively. We can see that as the number of data suppliers grows, so
do the reputation scores. With increased data providers, the number of strategies
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workloads. Figure 6.4 (c) shows memory and CPU consumption in 800 TPS. In Fig-
ure 6.4 (c), we can see that the maximum memory that CA consumes is 46.71MB,
and the average memory is 44.59MB. The peer0 and peer1 nodes consume 37.12MB
and 33.15MB memory on average, respectively. The orderer nodes, respectively (or-
derer0, orderer1, orderer2, orderer3), consume 32.59MB, 30.59, 20.59, and 27.59.
Peer nodes utilize somewhat more CPU than other nodes due to the fact that they
host ledgers and smart contracts. Peer0 and peer1 use 9.81%, and 7.13% of CPU on
average. Orderer0 uses 7.07%, orderer1 uses 6.43%, orderer2 uses 6.53%, orderer3
uses 5.91% of CPU on average. CA uses 6.83% of CPU on average. The performance
analysis results show that our blockchain network consumes low resources in terms
of CPU and memory.

6.3 Summary

With the rapid expansion of online data marketplaces, the necessity for a reputation
system is becoming increasingly important. In recent years, researchers developed
blockchain-based reputation systems to overcome the challenges of centralization,
review anonymity, and cyber attacks. Unfortunately, they do not concentrate on the
strategic interaction models between data consumers and providers in blockchain-
based reputation systems. This chapter proposed a utility maximization approach
between data consumers and providers to address the gap. We proposed an adaptive
learning mechanism in which data providers seek to maximize their reputation scores
by learning from the reviews’ outcomes and adjusting their strategies. Meanwhile,
data consumers seek to increase their credibility scores by updating their review
accuracy, completeness, and timeliness strategies. We implemented our system on the
Hyperledger Fabric blockchain. We analyzed and measured our system performance
under transaction throughput, transaction latency, memory, and CPU metrics.
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Chapter 7

Conclusions and Future Works

In this chapter, the conclusions of this research are drawn and the future works are
summarized.

7.1 Conclusions

First, the research studies the trustful and transparent system for IoT data market
place in chapter 3. Specifically, we proposed a trustful data trading framework using
the game theory approach in an infinitely repeated horizon to enable secure and
efficient data trading between buyers and sellers. To model the data market, this
research proposed a non-cooperative infinity repeated game model between rational
data buyers. In each stage of the game buyer participates, holds a bid for a traded
amount of records, and seeks to maximize his expected utility through learning from
the outcome of previous stages considering discounted rate for the future utility.
We proved NE and uniqueness of our model which derived theoretically for one-
shot (stage game), finite and infinite horizon, respectively. In addition, this model
imposes a penalty on those buyers who do not have a good reputation and decrease
their chance of winning to preserve the data owner’s privacy.

Second, this research investigates the performance analysis of blockchain-based
data trading systems in chapter 4. The radically increasing amount of data generated
by IoT devices has led to the emergence of a new data trading market. In recent
years, blockchain technology has been used to build private and secure modern data
trading systems. Most of the research in this area describes models of blockchain-
based trading systems for ensuring transparency, encryption, privacy, and security
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of traded data. However, the literature lacks studies about performance models to
demonstrate their usability in a real data trading market. This research addresses
this shortcoming by providing a detailed performance analysis of blockchain-based
data trading systems to ensure their feasibility, usability, and data availability, which
are important aspects for their functional deployment in real data trading markets.
Through experimental results, we evaluate the performance of the blockchain-based
data trading system using Hyperledger Fabric and its benchmark framework Hyper-
ledger caliper.

Third, this research investigates a blockchain-based reputation system for IIoT
data ecosystem in chapter 5. IIoT devices generate and collect massive amounts
of industrial data. Monetizing the flood of data generated by the IIoT devices has
enabled the creation of the IIoT data ecosystem where individuals and businesses
may sell and trade data. With the rapid expansion of the online data trading in-
dustry, the necessity for a reputation system is becoming increasingly important as
more individuals and services connect online. In recent years, researchers have pro-
posed blockchain-based reputation systems as a means of offering anonymity, secu-
rity, transparency, and mutual trust for both providers and customers in Industry 4.0.
Unfortunately, they focus on the decentralized reputation system with a single cer-
tificate authority, which creates the concern of a SPOF. Moreover, researchers paid
little attention to the performance measures of these blockchain-based reputation
systems to demonstrate their usability in a real IIoT data ecosystem. This research
proposes a robust blockchain-based reputation system capable of avoiding failures
by enhancing the Raft consensus mechanism. We provide extensive security analysis
and simulation experiments to demonstrate the performance of the blockchain-based
reputation system for the IIoT data ecosystem using different metrics, such as trans-
action throughput, latency, and resource consumption.

Finally, this research proposes a blockchain-based reputation system where mar-
ket players can maximize their utility while engaged in the IoT data ecosystem in
chapter 6. Blockchain technology has been used to build private and secure IoT data
markets and trading systems. Reputation of the trading parties is an important
attribute that affect their profitability and trading prosperity. However, current rep-
utation systems are prone to malicious manipulation. Such an issue can be avoided
by registering all reputation scores in the blockchain which guarantees transparency,
encryption, privacy, and security. To this end, this research proposes a blockchain-
based reputation system where market players can maximize their utility while en-
gaged in the IoT data ecosystem. We also propose an adaptive learning mechanism
that allows the data providers and consumers to enhance their reputation and review
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credibility scores. We provide extensive experiments to ensure our system satisfies
the feasibility, usability, and availability properties. These properties are essential
for functional deployment in real IoT data markets.

7.2 Future Works

This section presents some promising ideas for improving and expanding this re-
search.

➤ In chapter 3, there could be condition that same data buyer wins every time,
because no other buyer has a higher score. This a limitation of our system. We
completely understand that this might lead to “starvation” of other buyers who
are eager to win deals but unable to reach the highest score. One suggestion
would be to gradually increase their score based on the number of attempts that
they failed to acquire the data. In other words, if the buyer keeps bidding and
not successful, the system, for example, should consider increasing the buyer’s
score after a number of consecutive attempts. Our plan is develop efficient
mechanism to tackle this limitation.

➤ In chapter 3, if the data buyers have an equally high trust score, our system
randomly selects the winner. Although this is not necessary the best approach,
it solves the contention such a scenario arise. However, a more suitable solution
could be examined such as considering the history of transactions or other
reviews that can be accounted. We plan to implement and examine such a
approach to evaluate its effectiveness.

➤ There could be a condition in chapter 4, where data sellers sell the same data
many times (e.g., in separate markets) and buyers resale the purchased data.
We intend to create systems to prohibit data sellers and buyers from reselling
the data.

➤ Improve System Performance: We plan to develop a more extensive blockchain
network with more ordering nodes and peer nodes to reduce latency and in-
crease throughput. We plan to compare our improved raft consensus mecha-
nism to other existing consensus mechanisms such as proof-of-activity, proof-of-
work, proof-of-stake, and proof-of-authority in terms of energy, network latency,
and consensus time.
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➤ Transaction Scalability: Processing transaction depends on different compo-
nents such as hardware, block length, docker cluster, nodes, etc. In a real-
life system, Bitcoin processes 7 tps and Ethereum 30 tps, whereas centralized
databases process around 1,500 tps on average (e.g., visa). Hyperledger Fab-
ric can process more than 3,000 tps because of its consensus mechanism. We
plan to improve the transcation scalability by improving the Raft consensus
mechanism.

➤ Additional Commenting: Our blockchain-based reputation system does not
have the commenting feature in which consumers can leave comments alongside
their review score. We plan to add additional commenting features to our
system.

➤ Reward Mechanism: It is always vital to incentivize data users to post a review.
Rewarding consumers encourage them to provide feedback on the product. We
intend to develop an efficient and secure rewarding mechanism to encourage
data consumers to leave a review score on the purchased data packages.

➤ Online Blockchain-based Reputation Systems for the Health Sector: People
seeking medical advice and services frequently struggle to acquire credible in-
formation regarding the quality and competence of health-care providers such
as doctor and hospital. We intend to apply our reputation systems and inte-
grated into the health sector.
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A decentralised location-based reputation management system in the iot using
blockchain. IEEE Internet of Things Journal, 2022.

93



[39] Goncalo Sousa Mendes, Daniel Chen, Bruno MC Silva, Carlos Serrao, and Joao
Casal. A novel reputation system for mobile app stores using blockchain. Com-
puter, 54(2):39–49, 2021.

[40] Soojin Lee and Seung-Hyun Seo. Design of a two layered blockchain-based rep-
utation system in vehicular networks. IEEE Transactions on Vehicular Tech-
nology, 71(2):1209–1223, 2021.

[41] Tonghe Wang, Jian Guo, Songpu Ai, and Junwei Cao. Rbt: A distributed
reputation system for blockchain-based peer-to-peer energy trading with fairness
consideration. Applied Energy, 295:117056, 2021.

[42] Zhili Zhou, Meimin Wang, Ching-Nung Yang, Zhangjie Fu, Xingming Sun,
and QM Jonathan Wu. Blockchain-based decentralized reputation system in
e-commerce environment. Future Generation Computer Systems, 124:155–167,
2021.

[43] Meng Li, Liehuang Zhu, Zijian Zhang, Chhagan Lal, Mauro Conti, and Mamoun
Alazab. Anonymous and verifiable reputation system for e-commerce platforms
based on blockchain. IEEE Transactions on Network and Service Management,
18(4):4434–4449, 2021.

[44] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimiza-
tion. Cambridge university press, 2004.

[45] Dinh Thai Hoang, Xiao Lu, Dusit Niyato, Ping Wang, Dong In Kim, and Zhu
Han. Applications of repeated games in wireless networks: A survey. IEEE
Communications Surveys & Tutorials, 17(4):2102–2135, 2015.

[46] David K Levine. Learning in games, 2001.

[47] Drew Fudenberg and David Levine. Learning in games. European economic
review, 42(3-5):631–639, 1998.

[48] Kevin Leyton-Brown and Yoav Shoham. Essentials of game theory: A concise
multidisciplinary introduction. Synthesis lectures on artificial intelligence and
machine learning, 2(1):1–88, 2008.

[49] Partha Dasgupta and Eric Maskin. The existence of equilibrium in discontinuous
economic games, i: Theory. The Review of economic studies, 53(1):1–26, 1986.

94



[50] Yunpeng Wang, Walid Saad, Zhu Han, H Vincent Poor, and Tamer Başar. A
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