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Abstract

New network architectures of communication systems are required to support and

connect the next generation of wireless networks. This thesis focuses on unmanned aerial

vehicles (UAVs) as integral components of future wireless networks. Specifically, this

work addresses the optimization problem of association between the wireless access points

(WAPs) and UAVs, aiming to maximize the total weighted sum rate. This optimiza-

tion problem is subjected to fulfilling quality of service (QoS), number of links, available

bandwidth, fairness, and coverage constraints. To address this challenge, a centralized

algorithm with reduced complexity is proposed for solving the association problem. The

results demonstrate that this algorithm’s solution offers excellent performance compared

to suboptimal alternatives and approach the exhaustive search technique while signifi-

cantly reducing computational complexity.

Furthermore, the channel assignment in the context of UAVs-supported wireless net-

works is investigated. By selecting from a pool of channels provided by a main core

network, a joint optimization problem is formulated. The objective here is to find an

optimal solution for the association problem between WAPs and UAVs, maximizing the

total weighted sum rate using a max-min total sum data rate optimization approach.

This formulation incorporates considerations of QoS, a maximum number of links, and

available bandwidth constraints. It is important to note that the formulated problems

are Non-deterministic polynomial time (NP)-hard and become computationally intensive

as the number of WAPs increases.

In addition, this work analyzes the effects of hardware impairments (HWIs) on UAVs

and ground station (GS) communication systems since HWIs are inherent in practical

communication systems. To this end, the average ergodic capacity of the system is derived

by considering the Rician fading channel conditions between the UAV and the GS. The

analysis considers the average over a random three-dimensional trajectory movement,

including the angle of arrival and the distance between the UAVs and the GS. Additionally,

asymptotic analysis is conducted for cases where the transmit power of the UAVs and the
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number of GS antennas become exceptionally large. Extensive MATLAB simulations are

provided to validate the gained results.

In the same context, this thesis further investigates the employment of UAVs-assisted

over-the-air computation (OAC) communication systems. OAC is a technique that enables

data aggregation from numerous nodes with limited bandwidth. UAVs can serve as fusion

centers (FCs) in OAC, allowing for rapid data aggregation from massive number of sensors.

Nonetheless, the presence of HWIs and imperfect Channel State Information (CSI) pose

challenges to OAC. While prior studies assumed ideal hardware and perfect CSI, this

study investigates the joint impact of HWIs and imperfect CSI on the average square

error (MSE) performance of OAC. By considering a common channel estimation approach

that utilizes reference signals from the FC, a closed-form expression for MSE is derived,

revealing the negative impact of HWIs and channel estimation error. Analytical and

simulation results demonstrated the presence of MSE floors, even at high signal-to-noise

ratio (SNR) levels, indicating the need for system designs to mitigate the effects of HWIs

and the significance of accurate channel estimation.
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Chapter 1

Introduction

1.1 Introduction and Motivation

Since 2020, the global deployment of fifth-generation (5G) wireless communication net-

works has provided advanced features such as massive connectivity, ultra-reliability, and

guaranteed low latency. However, it is anticipated that 5G alone will not be able to

meet the growing demands beyond 2030 [4,6]. Consequently, fifth-generation and beyond

(5G+) cellular networks are expected to address the challenges and expectations associ-

ated with near-future communication networks and cater to high-end user requirements.

5G+ networks will be expected to increase the potential number of connected devices,

network coverage, and availability while also extending the battery life of mobile devices

by reducing power consumption. Therefore, developing new technologies is crucial to

achieving these objectives [7, 8]. The progression of mobile networks can be observed in

Fig. 1.1.

To meet the performance expectations and overcome the limitations of current ter-

restrial cellular systems, new technologies can be utilized in 5G+ wireless communica-

tion alongside existing techniques. These include massive multiple-input multiple-output

(mMIMO) [9, 10], millimeter wave (mmWave) communications [11], ultra-dense network

(UDN), index modulation (IM), non-orthogonal multiple access (NOMA), terahertz (THz)

1



Figure 1.1: The progression of mobile networks [4].

communications, alternative/advanced waveforms, and novel antenna technologies [12,13].

Along with these technologies, unmanned aerial vehicles (UAVs) have emerged as a re-

markable addition. They provide a unique avenue to address various challenges and offer

innovative solutions in the field [14].

In wireless communication networks, UAVs can be effectively utilized as flying base

stations (BSs). The implementation of flying BSs offers numerous advantages, including

mobility, versatility, cost-effectiveness, and the ability to adjust altitude, which have con-

tributed to increasing the popularity of UAVs. Therefore, UAVs can serve the purpose

of providing connectivity in terrestrial wireless networks. Depending on factors such as

coverage area and weather conditions, UAVs can hover at altitudes ranging from a few

hundred meters to 20 kilometers. This capability allows UAVs to enhance network cover-

age and provide additional capacity in urban areas or extend network coverage to remote

rural regions that are challenging to reach [15–17]. The freedom of navigation and ability

to circumvent obstacles enhances the ability of UAVs to establish reliable communication

links with ground users. Consequently, UAVs have garnered considerable attention from

both academia and industry as promising solutions to achieve comprehensive network

coverage [18,19] in dense environments.
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UAVs have the potential to serve in low power networks, particularly in applications

like the Internet of things (IoT), where devices operate at low power levels and communi-

cate over short distances. In this context, UAVs can function as wireless relays, enhancing

the connectivity and coverage of ground-based wireless devices [20–23]. Additionally, in

certain locations and countries, the cost of building an entire cellular infrastructure can

be prohibitively high. Consequently, opting for UAVs instead of costly towers and infras-

tructure emerges as a favorable alternative.

Besides the features and benefits of UAVs, it is accompanied by several challenges [24].

One of the main challenges that face using the UAVs is the association with the users.

Secondly, both fixed-wing and rotary-wing UAVs must adhere to strict constraints re-

garding size, weight, and power. These limitations inherently restrict communication,

sensing, and endurance capabilities. Thirdly, strong line-of-sight (LoS) links between the

air and ground components unavoidably result in significant interference [25]. However,

this interference can be effectively utilized to extract valuable target information, includ-

ing details such as location, velocity, and direction. Finally, the introduction of flexible

UAVs placement and trajectory introduces an additional degree of optimization, making

the design of the system more complex. Moreover, unlike conventional UAVs-enabled

communications that primarily focus on maximizing data rates, UAVs-assisted systems

require the incorporation of sensing performance metrics, such as detection probability

and estimation/recognition accuracy, as well as efficient cooperative mechanisms. This

entails considerations of sensing signal processing, including echo signal processing and

clutter interference suppression [26]. Consequently, designing UAVs-assisted systems to

achieve high situational awareness and coordination among the UAVs presents a new and

challenging problem that needs to be addressed.

1.2 Objectives and Contributions

The significance of this topic, coupled with the existing gaps in the current literature,

impelled us to pursue the following objectives:
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1. Investigating the association problem between wireless access points(WAPs) and

UAVs and proposing low complexity algorithms to maximize the total weighted sum

rate of the system where each wireless access point (WAP) is granted a certain weight

under practical operational conditions, such as allowing each WAP to connect with

more than one unmanned aerial vehicle (UAV) and dealing with WAPs distributed

in different coverage areas.

2. Exploring the joint optimization problem of channel assignment, utilizing the avail-

able pool channels provided by the main core network. Furthermore, addressing

the issue of fairness among WAPs by finding the maximum minimum total sum

data rates, ensuring equitable allocation of resources and promoting fairness in the

system.

3. Studying the ergodic capacity performance of UAV wireless communication systems

under the impact of HWIs and providing mathematical expressions for the average

ergodic capacity considering the averaging over the channel parameters.

4. Studying the combined effect of channel estimation errors, including both amplitude

and phase estimation errors, as well as HWIs on the performance of UAV-assisted

over-the-air computation (OAC) systems. In addition, developing mathematical

frameworks to quantify the average mean squared error (MSE).

This study treats some of the important challenges of using UAVs in wireless systems,

and it presents new techniques and solutions for improving the system performance. The

main contributions of the study can be summarized as follows:

1. A resource allocation algorithm that maximizes the total weighted sum rate is pro-

posed. Furthermore, the complexity analysis of the presented algorithm is con-

ducted. This algorithm considers practical operational conditions including allowing

each WAP to connect with multiple UAVs, managing WAPs distributed across dif-

ferent coverage areas, and ensuring fairness between WAPs is studied. The obtained

results here have been published in [27].
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2. A novel algorithm is proposed for low complexity, high spectral efficiency, and fair

resource allocation in UAV networks. This algorithm aims to achieve fairness among

WAPs by finding the maximum minimum total sum data rate. This algorithm

considers the utilization of channels assigned from a pool of channels provided by

the core network. The obtained results here have been published in [28].

3. The ergodic capacity performance of UAV wireless communication systems under

the effect of the HWIs is investigated. Analytical expressions are obtained for the

average ergodic capacity while averaging over the Rician parameter and the distance

between the UAVs and the ground station (GS). Furthermore, an asymptotic anal-

ysis of the system performance is conducted, specifically examining the behavior of

the system when the transmitted power and the number of GS antennas become very

large. This analysis provides valuable insights into the system’s performance char-

acteristics and its scalability under high-power and multi-antenna configurations.

The obtained results here have been published in [29].

4. The performance of the UAV-assisted over-the-air (OTA) computation systems un-

der joint effects of imperfect CSI and non-ideal transceivers is studied. More specif-

ically, the influence of these factors on the average MSE is analyzed. Furthermore,

mathematical frameworks of the average MSE are obtained. This analysis provides

a deeper understanding of the impact of these factors on the overall system perfor-

mance and helps in designing robust and efficient UAV-assisted OTA computation

systems.

1.3 Thesis Organization

The organization of the remaining sections of the thesis is as follows:

Chapter 2 introduces some relevant background on UAVs wireless communication

systems. First, it explores the core concepts of integer linear programming (ILP) and

the Hungarian algorithm with illustrative examples. Next, the classification of UAVs is
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studied focusing on their unique characteristics and functionalities. Also, various models

relevant to UAV-assisted wireless communication systems are explained, including UAV-

based path loss (PL), HWIs, and fading channel distribution. Finally, the related work

section is introduced.

Chapter 3 presents a resource allocation algorithm for UAV networks, aimed at re-

solving the association problem between WAPs and UAVs while considering practical op-

erational conditions to maximize the system total sum rate. The chapter begins with an

introduction, followed by the presentation of the system model and problem formulation.

Subsequently, the proposed algorithm is thoroughly explained, along with an analysis of

its complexity and evaluation of its performance.

Chapter 4 introduces a less complex algorithm to Max-min the resource allocation

between WAPs and UAVs taking into account the utilization of channels assigned from

a pool of channels provided by the core network to maximize minimum total sum data

rates. The chapter begins with an introduction, then it presents the system model and

discusses the problem formulation. Subsequently, the proposed algorithm is thoroughly

explained, including an analysis of its complexity and performance evaluation.

Chapter 5 studies the impact of HWIs on the ergodic capacity performance of UAV-

GS wireless communication systems. The chapter begins with an introduction. Then,

the considered UAV-GS system model is then presented, followed by a detailed discussion

on the signal model considering the presence of HWIs at the transmitter and receiver.

Furthermore, the chapter analyzes the system performance, providing an approximation

of the average ergodic capacity in the presence of HWIs. Asymptotic analysis is also con-

ducted to gain further insights. The analytical findings are validated through simulations,

and the results are thoroughly discussed.

Chapter 6 studies the joint impact of channel estimation errors and HWIs on the MSE

performance of UAV-assisted OTA computation communication systems. The chapter

begins with some context for the study. The UAV-assisted OTA computation system

model is then explained, followed by a discussion on the signal model considering non-ideal
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transceivers. Additionally, the chapter investigates the system performance by providing

an approximation of the average MSE under the presence of HWIs for both perfect and

imperfect CSI. The theoretical results are further validated by computer simulations, and

the obtained results are presented.

Chapter 7 serves as a summary of the obtained results, along with highlighting poten-

tial avenues for future research in this field.
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Chapter 2

Background and Preliminaries

2.1 Integer Linear Programming (ILP)

A mathematical optimization or feasibility problem in which some or all of the decision

variables are integers is known as an integer programming problem. A common subcat-

egory of integer programming is integer linear programming (ILP), which has a linear

objective function and may have additional constraints apart from requiring that certain

variables be integers. Integer programming falls into the category of NP-complete prob-

lems. One of Karp’s 21 NP-complete problems is the specific case of 0-1 ILP, in which

the unknowns are binary and only the constraints must be satisfied. It takes exponen-

tially long to be solved in the worst case. Therefore, the ILP technique can help solve

optimization problems, where the computational complexity depends on the number of

constraints and variables [30]. The ILP can be written as:

Objective: min
w

rw, (2.1)

subject to Kw ≤ v,

w ≥ 0,

where K is a m × n matrix , r is an n-dimensional row vector, v is an m-dimensional

column vector, and w is an n-dimensional column vector of unknown variables.
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Table 2.1: Monthly demand for each product

Product Month 1 Month 2 Month 3
P1 100 120 110
P2 80 70 90
P3 75 85 80

Table 2.2: Production capacity per machine per month

Machine P1 P2 P3
M1 70 60 50
M2 50 60 70

Many algorithms, such as the branch and bound method and the cutting plane method,

are used to solve ILP problems. The branch and bound method manages optimization

by segmenting the solution space, setting bounds, and eliminating non-optimal subsets,

thus identifying the best solution. In contrast, the cutting plane method tackles these

problems by progressively refining the solution space using additional linear constraints,

known as cutting planes. This method is particularly effective when traditional methods

prove inefficient due to the complexity of the problem [31,32].

2.1.1 Integer Linear Program Example

This section provides an illustrative example to clarify the formulation of the optimization

problem. Suppose a company produces three products (P1, P2, P3) using two machines

(M1, M2). The company has forecast the demand for each product for the next three

months, knows the production capacity of each machine per month, and knows the storage

capacity for its products. it is also assumed that each machine cannot operate for more

than 160 hours per month owing to maintenance requirements. The goal is to plan

production for the next three months to meet demand without exceeding either machine’s

production capacity, operation hours, and storage capacity while also minimizing the

unused production capacity based on the details outlined in tables 2.1-2.5.
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Table 2.3: Max operation hours per machine per month

Machine Max Hours
M1 160
M2 160

Table 2.4: Time in hours to produce one unit of each product

Product Time
P1 1.5
P2 2
P3 2.5

Table 2.5: Storage capacity

Product Capacity
P1 100
P2 100
P3 100

• The decision variables are defined as:

1. xijk = units of product i produced by machine j in month k.

2. sik = units of product i stored in month k.

• The objective function targets minimizing the unused production capacity (Z) and

is given as:

minimize Z =
∑
i

∑
j

∑
k

(Cijk − xijk).

• The constraints can be summarized as:

1. Production Capacity (C): The production cannot exceed the machine capacity.

xijk ≤ Cijk ∀i, j, k.

2. Operating Hours (T ): The operation hours of each machine should not exceed
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160 hours. ∑
i

(xijk · Ti) ≤ 160 ∀j, k.

3. Demand (D): The production plus any stored units from the previous month

should meet the demand.

xijk + sik−1 = Dik + sik ∀i, k.

4. Storage: The storage cannot exceed 100 units.

sik ≤ 100 ∀i, k.

5. Non-negativity and Integer Constraints:

xijk, sik ≥ 0 and integer ∀i, j, k.

The comprehensive problem formulation is expressed as follows:

Objective: min Z =
∑
i

∑
j

∑
k

(Cijk − xijk).

subject to: xijk ≤ Cijk ∀i, j, k.∑
i

(xijk · Ti) ≤ 160 ∀j, k.

xijk + sik−1 = Dik + sik ∀i, k.

sik ≤ 100 ∀i, k.

xijk, sik ≥ 0 and integer ∀i, j, k.
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2.2 Hungarian Algorithm

The Hungarian algorithm, also known as the Munkres algorithm, efficiently solves the

assignment problem in polynomial time. This algorithm has numerous applications in

combinatorial optimization, such as the Traveling Salesman problem [33]. The Hungarian

algorithm comprises four steps. The first two steps are executed once, while the third

and fourth steps are repeated until an optimal assignment is found. The input for the

algorithm is an n×n square matrix with non-negative elements. The steps are as follows:

1. Subtract row minima: subtract the smallest entry in each row from each entry in

that row.

2. Subtract column minima: Subtract the smallest entry in each column from each

entry in that column.

3. Cover all zeros with a minimum number of lines: using the smallest possible number

of lines, draw lines over rows and columns in order to cover all zeros in the matrix.

If the number of lines is equal to the number of rows in the square matrix, stop

here. Now, choose a set of zeros so each row and column has only one selected

zero. Remove any dummy rows or columns that have been added. The zeros in the

final matrix correspond to the optimal assignment in the original matrix. If this

condition is not met, proceed to step four.

4. Create additional zeros: Find the smallest element, denoted as c, that is not covered

by a line. Subtract c from all uncovered elements in the matrix, and add it to any

element that is covered twice. Then, return to step three.

Finally, it is worth mentioning that the worst-case time complexity for the Hungarian

algorithm is O(n3). The following example illustrates these steps.
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2.2.1 Hungarian Algorithm Example

Assuming that there is five people (P1, P2, P3, P4, P5) and five jobs (X1, X2, X3, X4, X5).

Considering that one job can only be assigned to one person. The matrix shows the cost

of assigning each person to each job. The objective of this problem is to minimize the

total cost of the job-person assignment. The original cost matrix size is 5 × 5, and it’s

given in table 2.6.

Table 2.6: Job-Person assignment cost matrix

P1 P2 P3 P4 P5

X1 12 40 13 35 18
X2 83 65 76 92 90
X3 70 38 70 67 99
X4 84 45 28 90 39
X5 61 88 85 10 16

The following steps show how to find the lowest cost of the job-person assignment

problem.

1. Step 1: subtract row minima - this step subtracts the minimum value of each row

from all other values in that row. The resulting matrix is shown in table 2.7.

Table 2.7: The matrix after row minima subtraction

P1 P2 P3 P4 P5

X1 0 28 1 23 6 (-12)
X2 18 0 11 27 25 (-65)
X3 32 0 32 29 61 (-38)
X4 56 17 0 62 11 (-28)
X5 51 78 75 0 6 (-10)

2. Step 2: subtract column minima - this step subtracts the minimum value of each

column from all other values in that column. The resulting matrix is shown in table

2.8.
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Table 2.8: The matrix after column minima subtraction

P1 P2 P3 P4 P5

X1 0 28 1 23 0
X2 18 0 11 27 19
X3 32 0 32 29 55
X4 56 17 0 62 5
X5 51 78 75 0 0

-6

3. Step 3: cover all zeros with a minimum number of lines - this step draws the

minimum number of lines required to cover all zeros in the matrix. As illustrated

below, four lines are necessary for complete coverage as shown in table 2.9.

Table 2.9: Zero-covered matrix

P1 P2 P3 P4 P5

X1 0 28 1 23 0 x
X2 18 0 11 27 19
X3 32 0 32 29 55
X4 56 17 0 62 5 x
X5 51 78 75 0 0 x

x

4. Step 4: create additional zeros - this step, since the number of lines drawn is less

than five, selects the smallest uncovered number, which is 11. Then, it subtracts this

number from all uncovered elements and adds it to the elements that are covered

twice. The resulting matrix is table 2.10.

Table 2.10: The matrix after additional zero creation

P1 P2 P3 P4 P5

X1 0 39 1 23 0
X2 7 0 0 16 8
X3 21 0 21 18 44
X4 56 28 0 62 5
X5 51 89 75 0 0

Now, depending on the result, the algorithm revisits step 3 again
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5. Step 3: cover all zeros with a minimum number of lines - this step draws the

minimum number of lines required to cover all zeros in the matrix. The updated

matrix is presented in table 2.11.

Table 2.11: Updated zero covered matrix

P1 P2 P3 P4 P5

X1 0 39 1 23 0 x
X2 7 0 0 16 8
X3 21 0 21 18 44
X4 56 28 0 62 5
X5 51 89 75 0 0 x

x x

6. Step 4: create additional zeros - this step, since the number of lines drawn is less

than five, selects the smallest uncovered number, which is 5. Then, it subtracts this

number from all uncovered elements and add it to the elements that are covered

twice. The resulting matrix is shown in table 2.12.

Table 2.12: The matrix after new additional zero creation

P1 P2 P3 P4 P5

X1 0 44 6 23 0
X2 2 0 0 11 3
X3 16 0 21 13 39
X4 51 28 0 57 0
X5 51 94 80 0 0

Now, depending on the result, the algorithm revisits step 3 again.

7. Step 3: cover all zeros with a minimum number of lines There are 5 lines required

to cover all zeros as shown in table 2.13

16



Table 2.13: The matrix after coverage of new zeros

P1 P2 P3 P4 P5

X1 0 44 6 23 0 x
X2 2 0 0 11 3 x
X3 16 0 21 13 39 x
X4 51 28 0 57 0 x
X5 51 94 80 0 0 x

Now that there are five lines and each row and column has a zero. Then, these zeros

cover the optimal assignment as in table 2.14.

Table 2.14: The candidate cost matrix

P1 P2 P3 P4 P5

X1 0 44 6 23 0
X2 2 0 0 11 3
X3 16 0 21 13 39
X4 51 28 0 57 0
X5 51 94 80 0 0

Based on this, the corresponding optimal values can be calculated from the original

cost matrix, as shown in Table.2.15.

Table 2.15: The cost matrix.

P1 P2 P3 P4 P5

X1 12 40 13 35 18
X2 83 65 76 92 90
X3 70 38 70 67 99
X4 84 45 28 90 39
X5 61 88 85 10 16

Finally, the optimal value found to be 12+76+38+39+10= 175.
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2.3 UAV-based Path Loss Model

Considering that UAVs are distributed in a horizontal parallel plane relative to the users

at a specific height hd above ground level, the air-to-ground (ATG) -PL channel model is

employed. This is in contrast to conventional terrestrial communications, which typically

utilize the log distance PL model. As a result, the wireless link between UAVs and users

primarily exhibits a vertical orientation. Consequently, the following subsection focuses

on discussing the ATG -PL.

2.3.1 Air-to-Ground Path Loss Model

This work uses the ATG -PL model from [15], which has been commonly assumed in the

literature. This ATG model considers two propagation scenarios:

1. LoS receivers, where the sub-cell sites are positioned in LoS or near- LoS conditions

with respect to the UAVs.

2. Non-line-of-sight (NLoS) receivers, where the sub-cell site coverage relies on reflec-

tions and refractions for signal propagation.

The probability of LoS is the crucial factor influencing PL in the ATG model. This

probability is determined by the surrounding circumstances as well as the orientation of

the UAVs and sub-cell Sites. The probability of LoS can be formulated as in [34]

P (LoS) =
1

1 + α exp[−β(180
π
θ − α)]

, (2.3)

where α and β are constants related to the environment (rural, urban, etc.), and θ =

arctan
(
hD

s

)
is the angle between the user and the UAV, where s =

√
(x− xD)2 + (y − yD)2

represents the horizontal distance between the user and the UAV. The location of the user

and UAV are denoted as (x, y) and (xD, yD, hD), respectively. The average PL is given as
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in [34]

PL(d)|dB = 10 log

(
4πfcd

c

)γ

+ ηLoS P (LoS) + ηNLoS P (NLoS), (2.4)

where PL(d)|dB represents the free space PL in dB, the carrier frequency is fc, c is the

speed of light, γ is the PL exponent, and d =
√
hD

2 + s2 is the distance between the UAV

and user. ηLoS and ηNLoS represent the additional losses of the LoS and NLoS links, and

P (NLoS) = 1− P (LoS).

2.3.2 Hardware Impairments

In practical wireless communication systems, the presence of HWIs is a common occur-

rence. These HWIs arise due to the numerous electrical devices and circuits involved

in the physical transceiver implementations, causing various forms of signal distortion.

Consequently, the distortions of the signal result in a mismatch between the intended

signal and the actual transmitted signal [5, 35]. To provide a clearer depiction of the

imperfect radio frequency (RF) components responsible for these HWIs, refer to Fig. 2.1.

This figure illustrates how the real and imaginary components of the original baseband

complex signal, denoted as x, are separated into in-phase/quadrature-phase (I/Q) signals.

Subsequently, after undergoing some signal processing, these signals are up-converted to

the desired RF and transmitted. As a consequence, instead of transmitting the original

signal x, a modified signal x̃ is sent over the channel.

Throughout the transmission process, the signal undergoes distortion at various stages

due to imperfections in the hardware. Initially, at the transmitter, the intended signal x

is processed by digital-to-analog converters (DACs) to convert the digital signal into an

analog one. Similarly, at the receiver, analog-to-digital converters (ADCs) are employed

for the reverse conversion process. However, these conversions introduce sampling fre-

quency offset distortions and quantization errors. The adoption of low-resolution ADCs

exacerbates these distortions, as high-resolution ADCs would result in increased overhead

and power consumption. Subsequently, the I/Q signals are filtered and mixed with their

respective versions that are 90 degrees out of phase, referred to as the local oscillator

19



Figure 2.1: The RF transmitter block diagram in the communication systems.

(LO). The LO frequency corresponds to the carrier frequency (fc) of the RF signal. This

mixing process further contributes to the overall distortion experienced by the signal.

The second source of distortion occurs due to imperfections in the I/Q mixer, LO,

and phase shifter, collectively referred to as I/Q imbalance and phase noise. In an ideal

scenario, the LO should provide a precise 90-degree phase shift between the I/Q branches

of the signal, with equal gain. However, due to non-idealities in the LO, there may be a

phase imbalance between the I/Q branches of the transmitter and/or receiver signals as

the provided phase shift deviates from the intended 90 degrees. These imperfections also

leads to gain mismatch, also known as amplitude imbalance, which are slight variations

in the amplitudes of the I/Q branches of the signal at the transmitter and/or receiver.

Fig. 2.1 provides an illustration of these effects, where ϕ represents the phase difference

and g denotes the gain mismatch between the I/Q branches.

In this figure, the I signal is represented by cos (2πfct), and the Q signal is represented

by g sin (2πfct+ ϕ). Consequently, the combined impact of gain and phase imbalances is

referred to as I/Q imbalance, as the I/Q branches are not identical and exhibit different

gains. This I/Q imbalance can significantly degrade the system’s performance.

Finally, both the power amplifier (PAMP) at the transmitting end and the low noise

amplifier at the receiving end are vital components in the RF chain. Conventionally,

these components are engineered to achieve maximum efficiency within their saturation
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Figure 2.2: A communication system can be modeled with or without considering (HWIs).
HWIs [5].

region. However, they also represent the principal sources of non-linear distortion in

communication systems. In real-world scenarios, when the PAMP operates within its

non-linear region, it induces both amplitude and phase distortions in the transmitted

signal. A PAMP’s non-linear distortion is typically defined by amplitude-to-amplitude

and amplitude-to-phase distortion functions, as indicated in [36–38]. Consequently, x̃

emerges as the final RF signal for transmission rather than the original signal x.

2.3.3 Hardware Impairment Model

Wireless communication channels are typically represented as linear filters that receive

an analog input signal from the transmitter. These filters introduce distortion, which is

then measured at the receiver in the presence of additive white Gaussian noise (AWGN).

Fig. 2.2 depicts an analog channel with and without HWIs [5]. On the transmitter side,

the non-ideal hardware output represents the HWIs and can be modeled as an additive

distortion noise characterized in (2.5) [5, 39]

x̃ =
√

Pκt x+ ηt. (2.5)
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Here, the actual transmitted signal is denoted as x̃ instead of the intended signal x,

where E{|x|2} = 1. The transmitter’s HWI factor is denoted as κt, which lies within

the range (0, 1). The complex transmitter additive distortion noise is represented by

ηt ∼ CN (0, (1 − κt)P ), where P denotes the transmitted power. It is important to note

that this distortion noise term is independent of the signal x.

The power of the distortion is directly proportional to the input power P [40–42], with

the proportionality constant of (1−κt). This distinguishes it from the conventional AWGN

at the receiver, which remains independent of the input power. In scenarios with high

signal-to-noise ratio (SNR), where the AWGN is negligible, the distortion noise becomes

a significant limiting factor affecting performance. Similarly, the impaired signal at the

receiver can be expressed as in (2.6)

y =
√
Pκrκt h x︸ ︷︷ ︸

Desired signal

+
√
κr h ηt + ηr︸ ︷︷ ︸

Distortion noise

+ w︸︷︷︸
AWGN

. (2.6)

Here, h represents the complex channel gain between the transmitter and the receiver.

The receiver’s HWI factor is denoted as κr, while the complex receiver additive distortion

noise is represented by ηr ∼ CN
(
0, (1−κr)P |h|2

)
. Additionally, the AWGN is represented

by w ∼ CN (0, σ2
w). Therefore, the power of the distortion is directly proportional to the

input power P . In the case of perfect HWI, where there is no HWI, κr = κt = 1,

ηr = ηt = 0, and the transmitted signal x̃ remains x.

The HWI factor κt plays a crucial role in determining the level of HWIs, and it is

directly associated with the error vector magnitude (EVM). EVM is a widely used metric

for quantifying the distortion level in practical transceiver hardware. It is defined as

the square root of the ratio between the average distortion power and the average signal

power [1]. Furthermore, the quality of the transmitted signal, including its modulation

quality, is closely linked to the EVM. This implies that specific EVM requirements must

be met to ensure a sufficiently high quality of the transmitted signal [2].

For the transmitted signal x in the model defined in equation (2.5), the EVM can be
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Table 2.16: EVM requirements [1–3]

Modulation scheme Required EVM HWI factor κt

QPSK 17.5 % 0.970
16-QAM 12.5 % 0.984
64-QAM 8 % 0.994
256-QAM 3.5 % 0.999

expressed as in (2.7) [5]

EVM =

√
E{ηt}

P E{|x|2}
=

√
(1− κt)P

P
=

√
1− κt. (2.7)

Table 2.16, along with the relationship presented in equation (2.7), illustrates the direct

correlation between hardware quality and the quality of the transmitted signal. For in-

stance, according to the long-term evolution (LTE) standard, if 64-quadrature amplitude

modulation (QAM) is to be supported, the transmitter hardware must satisfy the require-

ment EVM ≤ 0.08. This corresponds to κt = 1 − EVM2 ≥ 0.994. On the other hand, if

the transmitter only needs to support 16-QAM modulation, the LTE standard specifies

a requirement of EVM ≤ 0.125, corresponding to κt ≥ 0.984 [1, 2]. While practical LTE

transceivers typically support 64-QAM modulation, EVM values exceeding 0.08 can be

of interest to UAV-based systems as they allow for more relaxed hardware design con-

straints. The EVM is a crucial metric that is commonly specified on the data sheets of

RF transceivers. It provides valuable information about the quality and performance of

the transceiver hardware.

2.4 Channel Models

Wireless communication systems rely on the inherent randomness of signal propagation,

as signals spread in all directions and follow diverse paths before reaching their intended

destination. This randomness introduces several challenges. One such challenge is the

occurrence of fading, which arises from multiple copies of the transmitted signal reaching

the receiver at different times and encountering varying levels of attenuation. Additionally,
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factors like PL and shadowing deteriorate the transmitted signal due to the distance

between the source and destination, as well as the presence of obstacles. The field of

statistical modeling of fading channels has garnered significant attention since the advent

of wireless communication systems. [43–53].

2.4.1 Rayleigh Fading Channel Distribution

The Rayleigh distribution is widely used as a model for multipath fading channels that

lack a direct LoS path, often referred to as fast fading [54]. The probability density

function of the Rayleigh distribution can be expressed as

f(x) =
x

σ2
exp

(
− x2

2σ2

)
x ≥ 0, (2.8)

where σ is the scale parameter of the distribution.

2.4.2 Ricean Fading Channel Distribution

Rician distribution is a statistical model that describes fast-fading channel realizations by

incorporating two parts: a deterministic part representing the LoS signal, and a Rayleigh-

distributed part representing the scattered signal. The Rician parameter, denoted as KRc,

represents the power ratio between the LoS part and the Rayleigh-distributed part. The

fading channel can be expressed as in [55–57]

g =

√
KRc

KRc + 1
ḡ +

√
1

KRc + 1
gRy, (2.9)

where the LoS channel part is represented by ḡ = [1, e−j 2πd
λ

sin(θ), · · · , e−j(M−1) 2πd
λ

sin(θ)],

and the scattered channel part is represented by gRy ∼ CN (0, IM) . The antenna spacing

is represented by d, the wavelength is represented by λ, and the arrival angle is represented

by θ. It is worth mentioning that when KRc = 0, the Rician channel has only a Rayleigh

distribution of the scattered signal. When KRc → ∞, the Rician channel has LoS channel

24



part only. The probability density function of the Rician distribution can be expressed

as [58]

f(x) =
1

2σ2
exp

(
−x2 + v2

2σ2

)
I0

{xv
σ2

}
x ≥ 0, (2.10)

where v2 represents the average power of the LoS part, σ2 represents the power in the scat-

tered component, and I0(v) denotes the modified Bessel function of the first kind. When

studying UAV-assisted wireless communication systems, the most appropriate channel

model is Rician fading because, in the open space, the LoS links for UAV communication

are readily available. Where the Rician factor KRc incorporates the impact of scattering

and reflections from the surrounding environment.

2.5 Classification of UAVs

UAVs are widely recognized with diverse attributes and characteristics which are em-

ployed to do different functionalities. So it is beneficial to categorize them based on these

criteria such as UAV types, altitude, weight, size, controlling methods, structures and

configuration, speed and power utilizing methods. This section provides an explanation

of the UAV classifications.

2.5.1 Type-based Classification

UAVs can be classified into two main types based on their design: fixed-wing UAVs and

rotary-wing UAVs. The difference is that fixed-wing crafts require forward motion to

produce lift. Fixed-wing UAVs are more efficient because the lift surfaces are larger, and

the speed of the lift surface is uniform. They are faster than rotary UAVs because they are

optimized to fly in one direction, so they are streamlined in that direction, whereas rotary

UAVs are designed for omnidirectional movement. Fixed-wing UAVs are more energy

efficient because their lift surface faces less drag, and they have more inertia carrying

them forward, allowing them to glide. Whereas rotary UAVs have very little inertia in
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their propellers compared to the turbulent drag forces they face [59,60].

2.5.2 Altitude-based Classification

Unlike conventional wireless communication systems, UAVs have the ability to adjust their

altitude. By raising the UAVs altitude, a wider area can be covered [61]. Considering

the altitude, UAVs can be categorized into high-altitude and low-altitude groups [62,63].

A high-altitude UAV possesses the capability to remain in the stratosphere for extended

periods, offering wider coverage. On the other hand, a low-altitude UAV operates within

the troposphere for shorter durations, allowing for quick and effortless deployment. Low-

altitude UAVs are characterized by their compact size and high mobility, contrasting with

the quasi-stationary nature of high-altitude ones [64–66]. Moreover, the deployment of

high-altitude UAV poses greater complexity compared to their original use-case of extend-

ing Internet coverage to vast regions lacking cellular networks. However, incorporating

them into cellular communications introduces a higher vulnerability to network outages

due to substantial inter-cell interference [67,68].

2.5.3 Control Method-based Classification

UAVs can be categorized based on their controlling methods, which include manual control

and autonomous control. These categories can be further subdivided into various types,

such as full-control and semi-controlling methods [69]. Full and semi-controls can be

organized into five types. The first type involves direct control by a pilot, commonly

seen in manned aircraft and helicopters. In the second type, the operator can be located

anywhere on the ground, remotely controlling the UAV. The third and fourth types involve

the intelligent shifting of complete control from humans to software, achieved through

embedded commands that enhance compatibility and efficiency. The fifth type holds

significant importance in cooperative mission strategies where UAVs operate in swarms.

These types of control methods are predominantly utilized in military applications.
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2.6 Wireless Networking with UAVs

5G and 5G+ systems are expected to handle enormous amounts of data, necessitating

a large amount of bandwidth. Meeting theses high-bandwidth demands requires the use

of shorter wavelength waves and can be achieved through LoS propagation. However,

maintaining LoS is more challenging than lower frequency propagation. Consequently,

terrestrial systems are conventionally utilized to provide network coverage in areas with

complex propagation environments, and satellite links are used where terrestrial systems

are unavailable.

LoS propagation is facilitated by high-altitude UAVs. These UAVs are capable of

providing broadband wireless service, covering regions up to 20 kilometres in radius.

This reduces the need for terrestrial BSs in suburban and remote rural locations. When

compared to satellites, which require costly launches, high altitude UAVs are considered

more cost-effective [70]. Consequently, the concept of an integrated network architecture

combining air-based networks using UAV and GS networks has recently gained popularity

among research groups. The use of UAVs in wireless communications offers cost-effective

support for existing cellular networks, enabling rapid and smooth service recovery and

traffic offloading in crowded locations [71].

The ability of UAVs to carry telecommunications equipment helps them to operate

as a flying BSs for mobile cellular communication networks. In addition to adding extra

capacity, these Ariel BSs can provide all of the features of the traditional mobile cell.

UAV BSs are simple to set up and maintain; therefore, they can be helpful in the early

phases of rebuilding connectivity in devastated areas. UAVs can be used to establish a

connection with existing infrastructure, such as cellular networks, ensuring accurate, high-

throughput, and low-latency communication with ground operators. This introduces new

challenges, such as determining the optimal altitude of the UAVs to maximize cover-

age, minimizing the transmitted power required to cover a specified target region, and

determining the optimal deployment of the UAVs [72].
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Furthermore, regulators of the operators of UAVs can decide whether to deploy the

UAVs based on climate conditions. Weather-tolerant drones, equipped with built-in WiFi

chips to ensure uninterrupted connectivity during inclement weather, exemplify practical

required characteristics of UAVs that can operate under varied weather conditions [73].

Artificial intelligence can also be employed to predict weather conditions and optimize

UAVs performance [74]. As mentioned in the previous discussion, the impact of adverse

weather on UAVs can be mitigated or at least managed, which is not possible with mi-

crowave links. Another advantage of UAVs is that they can be viewed as a cost-effective

method to enhance coverage in rural areas lacking infrastructure [75]. UAVs can also help

to sustain communication in case of unexpected emergencies such as existing infrastructure

failure due to catastrophes such as earthquakes, tsunamis, flooding, or landslides [76–78].

Due to the high likelihood of UAV-ground LoS channels, the high altitude and mobility

of UAVs, the swap limits of UAVs, and the need to ensure specific quality-of-service

(QoS) requirements, wireless communication involving UAVs significantly differs from

terrestrial counterparts. The significance of establishing an ATG network in 5G+ wireless

communications is growing. However, associated challenges must be addressed, such as

ATG channel modelling, resource allocation, optimal deployment, energy efficiency, path

planning, and network security. In the subsequent chapters, this thesis will formulate and

attempt to solve some of these crucial concerns.

2.7 Related Work

In recent years, the use of UAVs in wireless communication has attracted attention from

both research and industry sectors. In [79], a method is introduced for deploying UAVs

to deliver wireless services to ground users, explicitly focusing on minimizing the total

transmit power needed to meet users’ data rate requirements. This approach seeks to

determine the optimal coverage area and UAV locations that would minimize the required

transmit power.
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The authors in [80] proposed an approach grounded in online learning for the dynamic

assignment of transmission power. Their aim is to minimize total power consumption

while QoS requirements are met within a spectrum-sharing multi-tier 5G environment.

Furthermore, their scheme incorporates an approximation mechanism for the Q-value, ef-

fectively reducing the state/action space and enhancing the learning process’s convergence

speed. In [81], a framework was proposed for optimizing wireless networks that are pow-

ered by UAVs. The authors examined the flight time limitations of UAVs and explored

two unique communication scenarios involving UAVs. Firstly, they aimed to maximize the

average data service provided to ground users, taking into account the maximum hover

times achievable by the UAVs. Secondly, they sought to minimize the average hover time

required by UAVs to service the users while adhering to specific load requirements fully.

In [82], UAVs are leveraged to serve as a GS. This study aimed to determine the

optimal positioning of the aerial GS to improve the system performance. The signal to

interference and Noise Ratio (SINR) serves as a QoS metric for the system. Furthermore,

in [83], the authors addressed the 3D placement and association problems of drone-BSs.

They considered several constraints, including data rate, the maximum bandwidth of

each drone-GS, and LoS. They proposed two scenarios, a network-centric scenario aimed

to maximize the total number of served users regardless of their required rates and a

user-centric scenario aimed to maximize the total sum rate.

The association problem between UAVs and users is a crucial concern when deploying

UAVs in wireless communication networks. In addressing this issue, one scenario pre-

sented in [84] focused on serving the maximum possible number of users without explicitly

considering the total sum rate. The study proposed two greedy solutions, a centralized

solution and a distributed one. The centralized approach aimed to reduce the power con-

sumption within the system, while the distributed aimed to minimize the latency. The

choice between centralization and distribution was based on the specific optimization ob-

jective required for the system. Another approach was presented in [85], focusing on a

fully distributed algorithm that aimed to maximize the number of associated users while

considering QoS requirements in a Heterogeneous Networks context. This work intro-
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duced a wholly distributed algorithm that operated without the need for coordination

between the base stations. The algorithm sought to efficiently associate users with the

available base stations, taking into account their QoS requirements.

Moreover, the association problem between UAVs and users with the objective of

maximizing the total sum rate of the system was investigated in [34]. This study consid-

ered various constraints, including the maximum supported bandwidth and the maximum

number of links per network flying platform (NFP)-hub. The goal was to determine the

optimal associations between NFP-hubs and small cells (SCs) that would yield the highest

overall sum rate while adhering to these constraints. In addition, the association problem

between UAVs and users was examined in [86], with the objective of maximizing the sum

data rate while minimizing inter-cell interference. This study focused on the interference

between UAVs rather than between users. Moreover, a practical constraint related to the

backhaul data rate was taken into account. To address this Non-deterministic polyno-

mial time (NP)-hard problem, the authors proposed a heuristic algorithm as a solution

approach. Considering the mentioned objectives and constraints, this algorithm aimed to

provide efficient associations between UAVs and users.

Furthermore, it is widely recognized that the presence of HWIs has a detrimental

effect on the overall system performance. Studies have demonstrated that the imbalance

between the I/Q significantly impacts system performance, especially when combined

with imperfect CSI [87, 88]. In related works [89, 90], researchers thoroughly examined

the influence of phase noise and I/Q imbalance on multicarrier communication systems.

Their investigations revealed that these physical impairments severely degrade the system

performance. To mitigate these effects, the authors propose an algorithm to compensate

for phase noise and I/Q imbalance. In [91], the authors specifically focused on the impact

of HWIs on systems aided by large intelligent surfaces. Their findings demonstrated

that HWIs impose limitations on both the spectrum efficiency and energy efficiency of

the system, even when the number of transmit antennas and large intelligent surface

reflectors is infinitely large. Notably, this study assumed a deterministic channel model.
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In [92], the authors analyzed the performance of a reconfigurable intelligent surface

in the presence of HWIs. The study concluded that the adverse effects resulting from

the modeling of HWIs are particularly evident in the implementation of robust reconfig-

urable intelligent surface-aided systems. Furthermore, the work presented in [93] revealed

a significant decrease in the capacity of large intelligent surfaces aided communication

systems due to the presence of HWIs. This highlights the adverse impact that HWIs can

have on the performance of communication systems employing large intelligent surfaces

technology.

In [94], the authors studied the impact of hardware impairments on the performance

of a UAV-based NOMA system that serves two ground users simultaneously. The outage

probability and ergodic capacity expressions are derived. The results showed that HWIs

can invert performance outcomes between near and far users at high transmission-power

levels. This study provides valuable insights for designing and optimizing UAV-based

systems under the effect of the HWIs. In [95], the performance of NOMA systems that

incorporate satellite and terrestrial networks, focusing on the impact of HWIs was dis-

cussed. This study employs a UAV to relay signals from a satellite to a pair of ground

users, with the goal of enhancing spectral efficiency. The results showed that the perfor-

mance is affected by many parameters, such as the number of antennas on the satellite,

the transmit SNR, and the level of HWIs. They also showed that increasing the number

of antennas can improve the system’s performance.

In [96], the authors studied the outage performance of UAV-aided NOMA technolo-

gies in downlink IoT networks under the impact of HWIs where a UAV is employed as a

dynamic GS to establish communication links with two users. This work identifies several

key system parameters that significantly affect the achievable ergodic capacity. These

parameters include the transmit SNR at the UAV, power allocation strategies, and the

level of HWIs in the system. In [97], the effects of HWIs and imperfect channel esti-

mation were investigated on cache-enabled UAV-relaying networks. The results showed

that HWIs and imperfect channel estimation introduce an error floor dependent on the

channel estimation error factor, HWIs distortion factor, and QoS requirements. More-
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over, the diversity order of the error floor for cached/relaying links equals the number of

cached/relaying UAV nodes.

In [98], a cell-free massive mMIMO that serves UAVs and users, which are equipped

with a single antenna and considering the presence of HWIs in both the UAVs and users

system was studied. Consequently, these devices experience a combination of spatially-

correlated Rician and Rayleigh fading channels while establishing communication links

with flying BSs. A novel technique called block quadratic transformation was presented

to enhance the overall energy efficiency of the system. The results demonstrated two key

findings. Firstly, when UAVs experience severe HWIs, it is more beneficial to operate

them at higher altitudes. Secondly, when UAVs operate at lower altitudes, they have a

minimal impact on the spectral efficiency of users.

The existing literature showcases numerous works that have addressed various resource

allocation problems in the context of 5G. However, it is important to note that these works

often employ different system models and problem formulations, which may not directly

align with the specific context and problem at hand. Additionally, the solutions proposed

in these studies may not be directly applicable to the current problem being addressed.

Many of these works primarily focus on utilizing Non-NFP to enhance network coverage

and address other related concerns. Therefore, while these previous works provide valu-

able insights, a tailored approach is necessary to address the specific resource allocation

problem under consideration.

It has been found that although the work in the literature has introduced exciting results,

there are still some points that need to be addressed. For instance, the complexity of the

proposed work remains high, and there is an opportunity to reduce it. Moreover, more

practical conditions need to be considered, such as allowing each WAP to be connected

to more than one UAV, dealing with WAPs distributed in different coverage areas, and

ensuring fairness between WAPs, where no WAP can be left without a connection. These

points have motivated us to revisit the association problem between the UAVs and WAPs.

In addition, the impact of HWIs on UAV-GS communication is still an ongoing area
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of research. For instance, it is necessary to address factors such as the average ergodic

capacity of the system, considering the average over a random three-dimensional trajec-

tory movement, including the angle of arrival and the distance between the UAV and

GS. Furthermore, it is important to study the effect of HWIs on the OTA. These aspects

require further investigation to better understand and mitigate the impact of HWIs on

UAV-GS and OTA systems and improve overall system performance.
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Chapter 3

Less Complex and Higher Spectral

Efficiency Resource Allocation

Algorithm for Unmanned Aerial

Vehicles Networks

3.1 Introduction

The vision of next-generation wireless communications must without a doubt include

supporting and providing very high data rates, exceptionally low latency, a manifold

increase in GS handling capacity, and significant improvements in QoS of the users’ data

stream relative to the existing wireless networks [99,100].

In traditional ground network design, the fixed location of the GS is typically deter-

mined to guarantee a level of network coverage. At the same time, the users’ requirements

change continuously, which limits the ability of the ground network to tackle all these re-

quirements. As such, blocking can affect the network at peak demand cases. This is

because the network engineers make the design relying on the average utilization needs

while overutilization can happen over and over [7,86]. Furthermore, the fixed BSs are sig-
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nificantly influenced by any dispersion and scattering weather conditions, which ultimately

affect the system’s transmission quality and require expensive infrastructure. On the other

hand, the utilization of aerial platforms such as UAVs, balloons, and drones has recently

emerged as a promising solution to overcome these challenges by offering stable, cost-

effective, and efficient techniques with inherent attributes that are quite advantageous,

such as versatility, flexibility, and altitude adaptability. UAVs also can support dense net-

works, and work in rural areas that do not have the necessary infrastructure [64,81,101].

There are many potential applications for UAV-assisted networks such as cellular

networks, vehicular networks, device-to-device networks and disaster management. Also,

the UAVs can play a critical role in building UAV-assisted network architectures for

climate-induced, meteorological and geophysical disasters [102]. Moreover, the UAV-

assisted wireless network can provide critical network connectivity to first responders for

disaster management, which enables them to efficiently deliver emergency services. In the

case of disaster forecasting applications, the interaction between the UAVs and the wireless

sensor networks can be useful in developing early warning systems for areas where network

infrastructure does not exist [102,103]. There are many resource management challenges

for a successful deployment of UAV-assisted wireless networks such as spectrum efficiency

for subchannel allocation, user association problem, power management, deployment cost,

and deployment time [104,105].

The association problem between UAVs and WAPs has been reviewed in the literature.

In [84], the authors found the solution for the association problem of SCs and UAVs to

maximize the network’s total sum rate and the number of users by considering UAV-

related constraints. The research in [106] proposed a solution to the association problem

using UAVs as hubs to support the communication between the core network and SCs.

The authors analytically showed its relation to the generalized assignment problem and

proved it to be NP-hard. In [81], uplink user devices’ power was optimized along with

their association with the GS and UAV using an iterative approach that satisfies the

constraint of SINR.
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The authors in [107] investigated the resource allocation problem in a multi-UAV aided

IoT-NOMA system. They aimed to maximize the system capacity by jointly optimizing

the channel assignment, the uplink transmits power of IoT nodes, and the altitudes of

the UAVs. On the other hand, the authors in [108] applied convex relaxation to the

resource allocation problem while, at the same time, considering the space-air-ground

heterogeneous networks. Then, they used Lagrange dual decomposition and the convex

procedure method to provide a near-optimal solution for the problem. After that, they

proposed a lower-complexity algorithm to solve the problem.

In [61], an optimization approach was proposed to find the maximum radio coverage

in the ground for low low-altitude platforms (LAPs). They introduced a mathematical

relation for the LoS between LAPs and receivers in the ground. A unified algorithm

was proposed in [109] that achieved an optimum association between the SCs and the

UAVs to maximize the overall sum rate depending QoS, number of links, and bandwidth

availability of the network. Their work presumed that a maximum of one UAV could be

associated with each small cell (SC). However, the fairness condition where some SCs can

be left without association was not considered in their work. In addition, the complexity

of this work is still high and needs to be decreased, but in comparison to the related

work in the literature, their work has less complexity (the comparison between their work

and the previous work in the literature can be found in the complexity analysis section

in [109].

Compared to the existing work in the literature, the proposed studies the association

problem between the WAPs and UAVs considering more practical operational conditions

such as allowing each WAP to be connected to more than one UAV, dealing with WAPs

distributed in different coverage areas, and tackling fairness between WAPs, where no

WAP can be left without connection. In addition, this work maximizes the total weighted

sum rate of the system where each WAP can be granted a certain weight [27]. In this

regard, this chapter proposes a centralized algorithm to find a suboptimal solution with

very low complexity. Results show that the total weighted sum rate of the proposed

algorithm outperforms the counterpart in the literature and is very close to the optimal
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Figure 3.1: Graphical representation of UAVs, WAPs and the core network.

solution with a noticeable reduction in the system complexity.

Chapter Organization: The system model and problem formulation are described in

Section 3.2. The proposed algorithm is presented in Section 3.3. Next, the time complexity

analysis is given in Section 3.4. Then, the performance evaluation is discussed in Section

3.5. The chapter concludes in Section 3.6.

3.2 System Model and Problem Formulation

3.2.1 System Model

As shown in Fig. 3.1 a heterogeneous wireless network is presented. It is composed

of three groups of wireless nodes: UAVs, WAPs and the core network. The UAVs are

mediators that function as a hub to extend frontal connectivity between the WAPs and

the core network. UAVs can be a practical solution to spread coverage in areas that do

not have the required infrastructure [81]. Therefore, the association between the WAPs

and UAVs is significant to enhance the overall network performance.

In this chapter, the UAVs are placed at a determined height at different locations based

on the result in [61] that determines the altitude and the associated optimal coverage.
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Each UAV and WAP shares the required important information such as each WAP’s

weight, SINR, number of links, data rate, and bandwidth with the core network. This

work assumes that all UAVs and WAPs have various numbers of links (channels). This

forms different coverage areas, where the channels in each coverage area are orthogonal

on the other coverage areas (different frequencies for each channel).

The system has X UAVs and Y WAPs pairs with all possible cases (X <=> Y ).

UAVs are represented as U = u1, u2,. . . , ux, and WAPs are represented as S = s1, s2,. . . ,

sy. In contrast to the system model in [109], each WAP can associate with more than one

UAV. Moreover, the system guarantees fairness by conditioning at least one connection

for each WAP. In addition, the WAPs are distributed across different coverage areas.

To facilitate the implementation of the centralized algorithm, UAVs can share the

control information (required bandwidth, required data rate, and SINR) with the core

network for association purposes. Based on the control information, the system can

specify the association between WAPs and UAVs. However, this does not include the

data information. Finally, this work applies a weighted objective function to solve the

optimization problem.

3.2.2 Problem Formulation

The proposed algorithm aims to maximize the total sum rate of the association problem

between UAVs and WAPs by considering some practical constraints. This study explores

the QoS, fairness, coverage, available bandwidth and the number of links supplied by each

UAV.

• Coverage area : This work uses the altitude constraints to determine the optimal

coverage area depending on the maximum allowed PL (PLmax) as in [61]. PLmax

can be calculated as

PLmax=
A

1+a exp (−b[θ−a])
+20 log(R sec θ)+B, (3.1)
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where a and b are the S-curve parameters, R is the radius of the coverage zone, θ

is the elevation angle between the UAV and the WAP, A = ηLoS − ηNLoS, and

B = 20 log
(
4πf
c

)
+ ηNLoS. Here, η is the mean value of the excessive path loss, f

is the carrier frequency, and c is the speed of light. Based on the UAVs altitudes

and the WAPs locations, the coverage area can be defined as

Cx,y =

1, if sy in the coverage area of ux,

0, otherwise.

(3.2)

Note that during the movement of WAPs and UAVs, some WAPs may fall out of

coverage of certain UAVs, while others may become covered. This study targets

spectral efficiency resource allocation during the coherence time, over which the

channel impulse response is essentially invariant. Certainly, considering the speed

of the UAV and its impact on coherence time is an interesting aspect to address in

future work.

• Association : If the WAP lies in the coverage area of the UAV, then the required

data rate of sy to associated with ux is Rx,y. Shannon capacity is used to calculate

Rx,y. Then, the data rate provided by each ux can be found as
∑

Y
y=1WyRx,yLx,yCx,y

and the total sum rate over all UAVs is
∑

X
x=1

∑
Y
y=1WyRx,yLx,yCx,y. Here, Wy is

the yth WAP connection weight and Lx,y is the association between sy and ux and

can be defined as [110]

Lx,y =

1, if sy is connected with ux,

0, otherwise.

(3.3)

• QoS: The SINR between sy and ux is defined as

SINRx,y =
Px,yPL(dx,y)∑X

k=1,k ̸=x Pk,yPL(dk,y) + σ2
x

, (3.4)
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where Pk,y is the transmitted power from uk to sy, and σ2
x represents the noise

power at the uk, dx,y is the distance between ux and sy, and PL is the total PL. The

SINRx,y should be guaranteed to be greater than the minimum required SINRmin.

Therefore, the QoS constraint can be expressed as

Lx,yCx,ySINRmin ≤ SINRx,y, ∀ x, y. (3.5)

• Bandwidth : The bandwidth constraint can be written as

Y∑
y=1

Lx,yCx,ybx,y ⩽ Bx , ∀ x, (3.6)

where Bx represents the maximum available bandwidth for each UAV. bx,y is the

requested bandwidth between UAV associated with WAP.

• Number of links : The number of links Nx constraint for each UAV can be written

as

Y∑
y=1

Lx,yCx,y ⩽ Nx , ∀ x. (3.7)

Next, the number of links Ny constraint for each WAP can be written as

X∑
x=1

Lx,yCx,y ⩽ Ny , ∀ y. (3.8)

• Fairness: To guarantee that each WAP has at least one association, the fairness

constraint is formulated as

X∑
x=1

Lx,yCx,y ⩾ 1 , ∀ y. (3.9)

The final formulation for the objective function and all the previous constraints can be

written as
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max
Lx,y

X∑
x=1

Y∑
y=1

WyRx,yLx,yCx,y (3.10 a)

s. t.

Lx,yCx,ySINRmin ≤ SINRx,y , ∀ x, y. (3.10 b)

Y∑
y=1

Lx,yCx,ybx,y ⩽ Bx , ∀ x. (3.10 c)

Y∑
y=1

Lx,yCx,y ⩽ Nx , ∀ x. (3.10 d)

X∑
x=1

Lx,yCx,y ⩾ 1 , ∀ y. (3.10 e)

X∑
x=1

Lx,yCx,y ⩽ Ny , ∀ y. (3.10 f)

Lx,y ∈ {0, 1} , ∀ x, y. (3.10 h)

Cx,y ∈ {0, 1} , ∀ x, y. (3.10 i)

The formulated function is an integer linear programming problem that requires expo-

nential time to be solved numerically [111]. This problem can be reduced to an NP-hard

problem [106] or even a maximum knapsack problem [110]. The next section proposes an

algorithm to obtain a suboptimal solution, which is then discussed and compared with

the existing algorithm in the literature.

3.3 The Proposed Algorithm

The Hungarian method is a centralized optimization algorithm that can solve the one-

to-one assignment problem (which is not the case in the studied WAPs-UAVs association

problem). Moreover, it required a polynomial time to complete the matching between the

elements which motivated us to exploit this algorithm in this work [33].
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In this section, a suboptimal extended Hungarian algorithm with less complexity is pro-

posed to solve the UAVs and WAPs association problem. In comparison with the existing

literature, the presented algorithm is able to treat new constraints related to the practical

operational conditions (as shown in the problem formulation). This section also discusses

the presented algorithm performance when relaxing the bandwidth constraint.

To expedite the implementation of the centralized algorithm, the UAVs has the ability

to share the required monitoring information (bandwidth, data rate, and SINR) with the

core network for association purposes. Based on this information, the system determines

the association between WAPs and UAVs. However, the data information is excluded

in this process. The main goal of the presented algorithm is to extend the Hungarian

algorithm to solve the unbalanced association problem between UAVs and WAPs when

the total number of links is larger than the number of UAVs or vice versa. The centralized

solution is used to move all information from the UAVs and WAPs to a central location.

The proposed algorithm maximizes the total sum rate depending on the information from

UAVs and WAPs, such as (SINRx,y, SINRmin, bx,y, Nx, Ny, Bx, Cx,y and Rx,y).

The Hungarian algorithm achieves the optimal solution in only a one-to-one matching

scenario, which is not present in this case [109]. Therefore, to make the problem compat-

ible with the Hungarian algorithm, an unbalanced association approach is utilized. The

proposed algorithm (Algorithm 1) can be briefly explained as follows:

1. Lines (4-12): The algorithm checks the constraints (coverage area, SINR, bandwidth

and the number of links in UAVs), then fills the M matrix of the UAVs and WAPs

with (Rx,y or 0s) depending on the constraints.

2. Line(14): Each row of the M matrix will be repeated by the number of UAV links.

i.e., UAVlink(x) times.

3. Lines (15-19) If the M matrix is not square. In this case, if the total number of

UAVs’ links is less than the number of WAPs, the algorithm adds the difference

between the two numbers as dummy rows. On the other hand, the algorithm adds
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the difference as dummy columns if the total number of UAVs’ links is more than the

number of WAPs. (the Hungarian algorithm works only with the square matrix, and

it achieves the best path cost). It is worth mentioning that the number of WAPs is

much more than the number of UAVs in real communicating systems. The proposed

algorithm is applicable in either case. This advantage makes it applicable to other

association problems where the number of members in each association group can

take any value.

4. Line (20) Calls the Hungarian algorithm to find the association between UAVs and

WAPs and then updates the M matrix with the association between UAVs and

WAPs (by replacing the associated pairs by 0s).

5. Line (22) Calculates the total bandwidth(x) of the associated edges.

6. Lines (24-27) Compare the result in line (22) with the BandWidth(x). If the total

bandwidth(x) is less than the BandWidth(x), then the algorithm completes the as-

sociation and updates the number of available UAVs and WAPs links. On the other

hand, if the total bandwidth(x) is more than BandWidth(x), then the algorithm

applies lines (28-38) to find the new association.

7. Repeat starting from step 2 until all WAPs are assigned, no more available band-

width or links at the UAVs.

The proposed algorithm calculates the maximum weighted sum rate of the association

problem between UAVs and WAPs, it can be found on the last page of this chapter.

Here, the obtained value is very close to the optimal one but with a noticeably reduced

complexity.

3.3.1 Optimal Solution

Here, it is assumed that the bandwidth for all UAVs is very high. i.e., the bandwidth

constraint is removed. In this case, the proposed algorithm achieves the performance of
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the optimal exhaustive search solution. Here, lines 28-42 of the algorithm will be skipped.

This would not be the case if there is a shortage of the available bandwidth at some

UAVs. In that case, the associations will be revisited based on the lines 28-42 in order to

maximize the total weighted sum rate.

3.3.2 The Proposed Algorithm Example

This example provides a clear depiction of the proposed algorithm’s functionality. Under

the premise that each WAP can create multiple connections with UAVs, and assuming

that the WAPs are distributed across different coverage areas. An important aspect of

this algorithm is to ensure that no WAP takes more than one connection, if there are

any WAPs that have not been assigned to the connection, the goal of this initiative is

to maximize the total weighted sum rate of the system. The considered scenario entails

three UAVs and five WAPs, and the algorithm operates according to the following steps:

1. Step 1: The core network gathered essential data, encompassing factors such as

coverage area, desired data rates, bandwidth requirements, SINR between UAVs and

WAPs, maximum available bandwidth and links for each UAV, and the minimum

SINR threshold, as demonstrated in tables 3.1-3.6 :

Table 3.1: The coverage area.

WAP1 WAP2 WAP3 WAP4 WAP5
UAV1 1 1 1 1 1
UAV2 1 0 1 1 1
UAV3 1 1 0 1 1

Note: If a WAP is located within the coverage area of the UAV, it is assigned a

value of 1. Otherwise, it is assigned a value of 0.

Also, this example assumes that the maximum available bandwidth in each UAV=

60 MHz and SINRmin= 2.

2. Setp 2: The proposed algorithm verifies all constraints, and if they are satisfied,

it updates Table 3.4 with the data rate between UAVs and WAPs. However, if any
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Table 3.2: The SINR (dB) between the UAVs associated with the WAPs.

WAP1 WAP2 WAP3 WAP4 WAP5
UAV1 3 4 6 3 2
UAV2 4 3 5 1 2
UAV3 6 7 3 2 5

Table 3.3: The requested bandwidth (MHz) between the UAVs associated with the WAPs.

WAP1 WAP2 WAP3 WAP4 WAP5
UAV1 15 17 18 20 17
UAV2 16 61 18 15 23
UAV3 15 14 19 18 17

Table 3.4: The requested weighted data rate of the WAPs associated with the UAVs.

WAP1 WAP2 WAP3 WAP4 WAP5
UAV1 15 18 25 20 17
UAV2 16 19 18 15 40
UAV3 15 14 19 18 17

Table 3.5: Number of links of the WAPs.

WAP1 WAP2 WAP3 WAP4 WAP5
2 1 1 1 2

Table 3.6: Number of links of the UAVs.

UAV1 4
UAV2 3
UAV3 3

constraint is not satisfied, the algorithm assigns a value of 0 to the corresponding

entry in Table 3.4 that fails to meet the constraint. This can be achieved through

the following:

• First, the algorithm checks the coverage area in Table 3.1 between the UAVs

and WAPs. After examining the coverage area, it is observed that WAP2 is

not within the coverage area of UAV2 and WAP3 is not within the coverage

area of UAV3. As a result, the algorithm assigns a value of 0 to these entries

in Table 3.4, as demonstrated in Table 3.7
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Table 3.7: The updated data rate after coverage area check.

WAP1 WAP2 WAP3 WAP4 WAP5
UAV1 15 18 25 20 17
UAV2 16 0 18 15 40
UAV3 15 14 0 18 17

• Second, the algorithm compares the SINR values in Table 3.2 with the mini-

mum required SINRmin = 2 between each UAV and WAP. After examining the

SINR values, it is observed that only the connection between UAV2 and WAP4

does not satisfy the minimum required SINR. As a result, the algorithm assigns

a value of 0 to the data rate between UAV2 and WAP4, as demonstrated in

Table 3.8

Table 3.8: The updated data rate after SINR check.

WAP1 WAP2 WAP3 WAP4 WAP5
UAV1 15 18 25 20 17
UAV2 16 0 18 0 40
UAV3 15 14 0 18 17

• Similarly, for the maximum available bandwidth = 60 MHz and requested

bandwidth between the UAVs and WAPs in Table 3.3. It can be observed that

the value between UAV2 and WAP2 exceeds the maximum available value

then, the algorithm replaces the data rate value between UAV2 and WAP2

with 0, as demonstrated in Table 3.9.

Table 3.9: The updated data rate after maximum available bandwidth check.

WAP1 WAP2 WAP3 WAP4 WAP5
UAV1 15 18 25 20 17
UAV2 16 0 18 0 40
UAV3 15 14 0 18 17

3. Setp 3: The algorithm reconstructs Table 3.9 by adding rows for each link that the

UAV has. In this example, as illustrated in Table 3.5, UAV1 has 4 links. Therefore,

46



the row corresponding to UAV1 will be repeated 4 times. Similarly, for UAV2, its

row will be repeated 3 times, and for UAV3, its row will be repeated 3 times. The

reconstructed table is presented in Table 3.10.

Table 3.10: The updated data rate after the rebuild process.

WAP1 WAP2 WAP3 WAP4 WAP5
UAV1 15 18 25 20 17
UAV2 16 0 18 0 40
UAV3 15 14 0 18 17
UAV1 15 18 25 20 17
UAV2 16 0 18 0 40
UAV3 15 14 0 18 17
UAV1 15 18 25 20 17
UAV2 16 0 18 0 40
UAV3 15 14 0 18 17
UAV1 15 18 25 20 17

4. Setp 4: The Hungarian algorithm works with square matrices in order to determine

the optimal path cost. However, in this example, the matrix is not square, the

algorithm addresses this by converting it into a square matrix. This conversion is

done by adding dummy columns based on the number of links in the UAVs and the

WAPs, as demonstrated in Table 3.11.

Table 3.11: The updated data rate for Hungarian algorithm.

WAP1 WAP2 WAP3 WAP4 WAP5
UAV1 15 18 25 20 17 0 0 0 0 0
UAV2 16 0 18 0 40 0 0 0 0 0
UAV3 15 14 0 18 17 0 0 0 0 0
UAV1 15 18 25 20 17 0 0 0 0 0
UAV2 16 0 18 0 40 0 0 0 0 0
UAV3 15 14 0 18 17 0 0 0 0 0
UAV1 15 18 25 20 17 0 0 0 0 0
UAV2 16 0 18 0 40 0 0 0 0 0
UAV3 15 14 0 18 17 0 0 0 0 0
UAV1 15 18 25 20 17 0 0 0 0 0

Then the proposed solution calls the Hungarian algorithm to find the optimal as-
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sociation between UAVs and WAPs,. Following that, the algorithm reverts the

matrix back to its initial state, prior to repeating the rows, while considering the

best candidates for optimal associations, as demonstrated in Table 3.12.

Table 3.12: The association candidates after applying Hungarian algorithm.

WAP1 WAP2 WAP3 WAP4 WAP5
UAV1 15 18 25 20 17
UAV2 16 0 18 0 40
UAV3 15 14 0 18 17

5. Step 5: To complete the selection of these association candidates, the algorithm

checks the available bandwidth of each UAV and compares it with the requested

bandwidth for these association candidates. By referring to Table 3.3, the algorithm

conducts essential computations to ensure the fulfillment of bandwidth constraints.

Specifically, in this case, the maximum available bandwidth is 60 MHz. To illustrate

further, the association candidates for UAV1 entail a total requested bandwidth of

55 MHz (i.e., UAV1 is associated with WAP2, WAP3 and WAP4). For UAV2, the

total requested bandwidth amounts to 39 MHz (i.e., UAV2 is associated with WAP1

and WAP5).

Afterward, the algorithm proceeds to assess the available bandwidth in each UAV.

If the total requested bandwidth is lower than the available bandwidth of the UAV,

the algorithm proceeds to finalize the association between the WAPs and updates

both the number of available links in the UAVs and the maximum available band-

width in each UAV. However, if the total requested bandwidth exceeds the available

bandwidth, the algorithm follows alternative steps to determine the optimal rate

and ensure efficient association.

In this example, it is determined that the requested bandwidth is lower than the

available bandwidth. Consequently, the algorithm successfully finalizes the associ-

ation process and proceeds to update the available bandwidth in each UAV, along

with the number of links for each UAV and WAP. Upon completing the association
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and implementing the bandwidth updates, the summarized updates are as follows:

The newly available bandwidth for UAV1 is 5 MHz, for UAV2 is 21 MHz, and for

UAV3 is 60 MHz. Furthermore, the revised number of available links for each UAVs

and WAPs is updated as presented in the tables 3.13-3.14.

Table 3.13: Number of links of WAPs after the update.

WAP1 WAP2 WAP3 WAP4 WAP5
1 0 0 0 1

Table 3.14: Number of links of the UAVs after the update.

UAV1 1
UAV2 1
UAV3 3

Note: If any WAP or UAV has completed their links, the corresponding data rate

value will be replaced with 0, as demonstrated in Table 3.15.

Table 3.15: The updated data rate after association .

WAP1 WAP2 WAP3 WAP4 WAP5
UAV1 15 0 0 0 17
UAV2 0 0 0 0 0
UAV3 15 0 0 0 17

6. Step 6: The process keeps repeating, beginning from step 2 until all WAPs are

assigned successfully and there is no more unused bandwidth or available links left.

3.4 Complexity Analysis

It is known that the worst-case time complexity for the exhaustive search algorithm is

exponential. For the proposed solution, the worst time complexity of the worst case is

polynomial and given by O(V X3), where V is a maximum number of links in all WAPs.

This can be explained as follows:
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• The for loops in lines 4-12 require a complexity of O(XY ).

• The while loop in line 13 requires a complexity of O(V ).

• Repeating of the UAVs in lines 14-19 requires a complexity of O(V XY ).

• The Hungarian algorithm in line 20 requires a complexity of O(V X3).

• Updating the matrix and calculating the bandwidth in lines 21-22 require a com-

plexity of O(V XY ).

• The for loop in lines 23-41 requires a complexity of O(V X2).

Therefore, the overall worst-case time complexity is: O(XY ) + O(V ) + O(V XY ) +

O(V X3) + O(V XY ) + O(V X2) =O(V X3). Considering V = 1 as in [109] which has

the lowest time complexity in the literature, then the worst case time complexity of the

presented algorithm becomes O(X3). This is much less than the time [109] which is

O(X3Y 3).

3.5 Performance Evaluation

The Gurobi optimization tool [112] is used to find the solution for the exhaustive search

algorithm of (3.10 a). UAVs and WAPs are randomly distributed under different coverage

areas. PLmax= 105, σx=1, Pt= 5 watts, 3 ≤ Nx ≤ 6, 1 ≤ Ny ≤ 4, SINRmin= -5 dB,

1 ≤ Wy ≤ 5. f= 2 GHz, ηLoS= 1 dB, ηNLoS= 20 dB, a= 9.61, b= 0.16, and R=

1000 m. Simulations were performed using three different bandwidth levels at each UAVs

(high: Bx= 250MHz, medium: Bx= 120MHz, and low: Bx= 80MHz).

Fig. 3.2 shows the total sum rate of the exhaustive search and the proposed algorithms

for a fixed number of 20 UAVs and the number of WAPs in the range of 50 to 120. The

results are plotted for three different cases, including high, medium, and low bandwidth.

As it can be seen, for a varying number of WAPs, the proposed algorithm has exactly

the same performance in terms of the sum rate as the exhaustive search when removing
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Figure 3.2: Total sum rate with different number of WAPs for exhaustive algorithm and
the proposed algorithm at 20 UAVs.

the UAVs bandwidth constraints (high bandwidth level). For the remaining two levels,

starting with the case where the number of WAPs range from 50 to 70, it can be noted that

the proposed algorithm performance almost approaches the exhaustive search algorithm.

However, there is a slight decrease in the performance of the proposed algorithm for

the medium and low level of bandwidths when the number of WAPs is above 70. This

can be explained by noting that as the number of the WAPs increases, lines 28-42 will be

visited more times in the proposed algorithm rather than re-running the whole process

as in the exhaustive search algorithm. This ends up by reducing the complexity with

only a minor reduction in the performance, which is not the case in the high bandwidth

scenario. However, the weighted sum rate gap in all three cases is less for a lower number

of WAPs, e.g., 50 WAPs compared with 100 WAPs. This is due to the fact that when the

same bandwidth is used to associate higher numbers of WAPs, the sum rate gap becomes

greater compared to the case where the same bandwidth is used to associate a smaller
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Figure 3.3: Total sum rate with different number of UAVs for exhaustive algorithm and
the proposed algorithm at 120 WAPs.

number. Finally, for the medium and low bandwidth curves, the performance saturates

as the number of the WAPs increases. This is because not all UAVs’ links will be used

due to the bandwidth constraint. Also, the saturation point shifts to the right when the

bandwidth increases.

Fig. 3.3 shows the total weighted sum rate for a fixed number of 100 WAPs when

the number of UAVs varies between 20 and 40. It can be noticed that for a varying

number of UAVs, the proposed algorithm performance is similar to that of the optimal

exhaustive search for the high bandwidth case. In contrast to the high bandwidth case,

there is a slight difference in the performance of the proposed algorithm for the medium

and low bandwidth levels when the number of UAVs is small. This slight degradation

of performance is due to the decreased bandwidth of UAVs. However, as the number of

UAVs is increased to 30 and above, the proposed solution performance approaches the

optimal one in all cases. This is due to the fact that, for the fixed number of the WAPs,
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the bandwidth tends to increase with the increasing number of the UAVs and attains a

sufficiently large bandwidth to approach the optimal solution. Moreover, compared to

Fig. 3.2, it can be observed that the sum rate gap is larger when the number of UAVs

is small, and with the increasing number of UAVs, the bandwidth becomes sufficient to

decrease the sum rate gap. However, in the case of 40 UAVs and 120 WAPs, the Gurobi

optimization tool takes around 33672 seconds running time, which is a very long time

compared to the presented algorithm (which takes around 93 second). Here, the used

computer processor is Intel Xeon E3-1225V2 @ 3.20 GHz and the RAM is 8 GB.

3.6 Conclusion

This work studies the association problem of the UAVs with WAPs to maximize the sum

rate with some consideration such as each UAV’s bandwidth, coverage area, the minimum

required SINR, the number of providing links from UAVs, the number of connections from

WAPs, and fairness constraints. This work proposes an extended centralized Hungarian

algorithm to find a suboptimal association between the UAVs and WAPs. The obtained

results show that the proposed algorithm has noticeably lower computational complexity

than the work in the literature. It even reaches the exhaustive search algorithm perfor-

mance when the available bandwidth at the UAVs is very high.
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Algorithm 1 The Proposed Algorithm

1: Input: (SINRmin, weight(y), UAVlink(x), UAVs(X), WAPs(Y ), SINR(x, y),
WAPLink(y), Coverage(x, y), BandWidth(x), bandwidth(x, y), rate(x, y)).

2: Let M(x, y) be a new matrix ▷ M(x, y) is the (weight(y).rate(x,y))between UAV(x)
and WAP(y).

3: H = M.
4: for i = 1 to x do
5: for j = 1 to y do
6: if BandWidth(x) > bandwidth(x, y) and SINR(x, y) >= SINRmin and

Coverage(x, y) == 1 then.
7: M(x, y) = weight(y)rate(x, y).
8: else
9: M(x, y) = 0.
10: end if
11: end for
12: end for
13: while MaxLink̸= 0 do ▷ MaxLink : The maximum number of links in all WAPs.
14: Repeat UAVs ▷ Each UAV will be repeated by the number of links it has and

updates the matrix (M).
15: if size(M, 2) > size(M, 1) then
16: Make(M) as a square matrix by adding the difference value between size(M,2)

and size(M,1) as dummy.
17: else
18: Make(M) as a square matrix by adding the difference value between size(M,1)

and size(M,2) as dummy.
19: end if
20: Call Hungarian algorithm (M) .
21: Update the matrix(H) by edge that associates
22: Calculate the total bandwidth(x) in each row in edge matrix(H) that associate.
23: for x = 1 to size(BandWidth(X) do
24: if BandWidth(x) > total bandwidth(x) then
25: BandWidth(x) = BandWidth(x)− total bandwidth(x)
26: UAVlink(x) = UAVlink(x)− 1
27: WAPLink(y) = WAPLink(y)− 1
28: else
29: [x, y]= Max value from column(x) ▷ [x, y] is the element’s location
30: while check == false do
31: if UAVlink(x)̸=0 and BandWidth(x) > bandwidth(x, y) then
32: BandWidth(x) = BandWidth(x)− bandwidth(x, y)
33: UAVlink(x) = UAVlink(x)− 1
34: WAPLink(y) = WAPLink(y)− 1
35: check = True
36: else
37: [x, y] == 0,
38: end if
39: end while
40: end if
41: end for
42: MaxLink = MaxLink− 1
43: end while
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Chapter 4

Less Complex Algorithm to

Max-Min the Resource Allocation

for Unmanned Aerial Vehicles

Networks

4.1 Introduction

sixth-generation (6G) wireless communication networks promise to increase network cov-

erage, the ability to transfer large amounts of data with exceptional speed, the number

of connected devices, and the network availability. It is also expected that 6G networks

will enhance the spectral and energy efficiency [6, 113]. Existing terrestrial cellular sys-

tems provide communication services using BSs at fixed locations. Building a complete

cellular infrastructure in some regions and countries can be very expensive. In some

situations, ground BSs suffer from limited coverage, which leads to poor communication

quality. Furthermore, weather conditions reduce the communication quality of the ground

BSs [114,115].

In 6G wireless communication, new technologies can be applied to overcome the exist-
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ing terrestrial cellular systems limitations and satisfy the performance expectations of the

communication system. UAVs are one of these technologies, which can be used as flying

BSs. Low power networks, in which devices use low power to communicate over a short

distance, can efficiently utilize the UAVs. i.e., when there is no need to increase network

coverage. As a result, UAVs can be used as wireless relays to increase the coverage of

a network and the connectivity of ground-based wireless devices [21, 23]. Thus, these

flying BSs can be used to provide connectivity for the terrestrial networks. Due to UAVs’

mobility, flexibility, cost-effectiveness, and ability to adapt their altitude, UAV-BSs are

able to avoid the obstacles and provide additional capacity for urban areas. Also, they

can provide network coverage in hard-to-reach rural areas [100, 114]. Moreover, due to

the high altitude at which UAVs are found, LoS communication is greatly facilitated. For

example, in vertical or slant-free space optic links, the effect of atmospheric turbulence

decreases with altitude [116].

There are many resource management challenges for a successful deployment of UAV-

assisted wireless networks such as spectrum efficiency for sub-channel allocation, user as-

sociation problem, power management, deployment cost, and deployment time [104,105].

The association problem between UAVs and WAPs has been studied in the literature.

The authors in [86] studied the users-UAVs association problem to maximize the sum

data rate along with minimizing the inter-cell interference. They considered the re-usable

channel pool to solve the association problem while taking into account the interference

with neighboring cells. The authors in [106] formulated the association problem of SCs

and UAVs to maximize the sum data rate while taking into consideration the UAVs’

data rate, bandwidth and the number of links. They also showed that the SCs-UAVs

association problem is an NP-hard problem.

Centralized and distributed algorithms were proposed in [109] to optimize the SCs

- UAVs association with the objective of maximizing the total sum rate. The authors

took into consideration the QoS constraint, the UAV’s number of links, and available

bandwidth. One of this work’s limitations is that it did not consider the fairness condition,

where some SCs can be associated with the minimum data rate. Another limitation is the
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fixed number of links for each UAV. Additionally, the complexity of the work in [109] is

still high and ought to be decreased, but in comparison to related work in the literature,

this work has less complexity (the comparison between their work and the nearest previous

work in the literature can be found in the complexity analysis section in [109]).

Compared to the existing work in the literature, this chapter examines the association

problem between WAPs and UAVs, considering more practical operational conditions,

such as dealing with WAPs distributed in different coverage areas. This study also tackles

the issue of fairness between WAPs by formulating a max-min optimization problem. In

addition, this work maximizes the total weighted sum rate of the system, and so each

WAP can be granted a certain weight. In this regard, this chapter proposes a centralized

algorithm to find a sub-optimal solution at very low complexity. Moreover, the proposed

algorithm assigns the channels among the pool of channels provided by the main core

network. The obtained result results show that the proposed algorithm outperforms its

counterparts in the literature and that it approaches the optimal solution with a noticeable

reduction in system complexity.

Chapter Organization: The system model and problem formulation are described in

Section 4.2. The proposed algorithm is presented in Section 4.3. After that, time com-

plexity analysis is provided in Section 4.4. Then, the system performance is evaluated in

Section 4.5. Finally, this work is concluded in Section 4.6.

4.2 System Model and Problem Formulation

4.2.1 System Model

As shown in Fig. 4.1, a heterogeneous wireless network is studied, which contains WAPs,

UAVs and a core network. Each UAV works as a flying BSs to provide connectivity

to the WAPs. This work assumes that the UAVs are deployed at the best pre-defined

altitude, and they are distributed at different locations in a specific coverage area [61].

To facilitate the implementation of the centralized algorithm, UAVs can share the control
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information (required bandwidth, required data rate, and SINR) with the core network

for association purposes. Based on the control information, the system can specify the

association between WAPs and UAVs. However, this does not include the data. Finally,

the proposed work applies a weighted objective function to solve the optimization problem.

This work investigates a system with Y UAVs and X WAPs (X <=> Y ) where the

set of UAVs are represented as a vector U = [u1, u2,. . . , uy], and the set of WAPs are

represented as vector S = [s1, s2,. . . , sx]. This system model can be considered as a similar

model to the one in [109]. However, the main difference between the used system model

and the one in [109], The difference is that this approach applies channel assignments from

the channel pool provided by the core network and distributes them to UAVs depending

on the number of users and the maximum data rate between UAVs and WAPs. The

system also tackles the fairness between the WAPs through finding the max-min total

sum data.

4.2.2 Problem Formulation

The proposed algorithm aims to find the best association between UAVs and WAPs. This

work enables the core network (while utilizing the best channel assignment) to distribute

links between UAVs to maximize the minimum total sum rate subject to some practical

constraints. These constraints are the QoS, the maximum number of links, and the

available bandwidth of each UAV.

• Association : Assuming that the sx WAP is in the coverage area of the uy UAV,

then the data rate Rx,y between sx and uy can be calculated using the Shan-

non’s capacity. Therefore, the provided data rate by each uy can be found as∑
X
x=1WxRx,yLx,y. Also, the total sum-rate over all UAVs can be calculated as∑
X
x=1

∑
Y
y=1WxRx,yLx,y. Here, Wx is the xth WAP connection weight and Lx,y de-
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Figure 4.1: Graphical representation of UAVs, WAPs and the core network.

notes the association between sx, and uy that can be defined as

Lx,y =


1, if sx is connected with uy,

0, otherwise.

(4.1)

• QoS : The SNR between sx and uy can be defined as

SNRx,y =
Px,yPL(dx,y)

σ2
y

, (4.2)

where Px,y is the transmit power from uy to sx, σ
2
y is the noise power at uy, dx,y

is the distance between uy and sx, and PL is the path loss (function of dx,y). The

SNRx,y should be greater than the minimum required SNRmin. Therefore, the QoS

constraint can be defined as

Lx,ySNRmin ≤ SNRx,y, ∀ x, y. (4.3)

• Bandwidth : The bandwidth constraint can be written as

X∑
x=1

Lx,ybx,y ⩽ By , ∀ y, (4.4)
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where By represents the maximum available bandwidth for uy, and bx,y denotes the

sx requested bandwidth from uy.

• Number of links: Let N denotes the total number of available links (channels)

at the core network. Thus, the total number of associations can not exceed N as

Y∑
y=1

X∑
x=1

Lx,y ⩽ N. (4.5)

Moreover, each WAP can only be associated to a single UAV. This constraint can

be written as
Y∑

y=1

Lx,y ⩽ 1 , ∀ x. (4.6)

Taking into consideration the previously mentioned constraint, the association problem

between the WAPs and UAVs can be written as

Objective: max min
Lx,y

X∑
x=1

Y∑
y=1

WxRx,yLx,y. (4.7a)

Subject to: Lx,ySNRmin ≤ SNRx,y , ∀ x, y. (4.7b)

X∑
x=1

Lx,ybx,y ⩽ By , ∀ y. (4.7c)

Y∑
y=1

X∑
x=1

Lx,y ⩽ N. (4.7d)

Y∑
y=1

Lx,y ⩽ 1 , ∀ x. (4.7e)

Lx,y ∈ {0, 1} , ∀ x, y. (4.7f)

This problem is an ILP that can be solved numerically to get the optimal solution with an

exponential upper-bound computational complexity [111]. Hence, this problem is an NP-

hard problem as explained in [106, 109]. The proposed work in [106, 109] shows that the

formulated problem is equivalent to the generalized assignment problem. This equivalent
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relation along with the fact that the formulated problem can be reduced to a maximum

knapsack problem [110] proves the NP-hard complexity of the formulated problem. The

following section explains the proposed algorithm that obtains a sub-optimal solution but

with much less complexity.

4.3 The Proposed Algorithm

This section proposes a channel assignment centralized algorithm with low complexity to

find a sub-optimal solution to the association problem in 4.7. The proposed algorithm

aims to solve the unbalanced association problem between the UAVs and the WAPs. More

specifically, this algorithm does the best assignment of the available channel pool at the

core network (i.e., distributes them between the UAVs), and calculates the total sum rate

by maximizing the minimum data rate at each WAP. The channel assignment centralized

algorithm (Algorithm 2) can be explained as follows:

1. Line(1): The UAVs share some control information (SNRmin, W , N , U, S, SNR,

B, b, R) with the core network.

2. Lines (3-4): The algorithm calculates the average value for each row in matrix M ,

then it finds the minimum average which is used as a threshold to keep the entries

of M or replace them by 0s.

3. Lines (5-13): The algorithm checks if all constraints are satisfied for each entry in

M , if not, then Mx,y = 0.

4. Lines (14-15): The algorithm calculates the maximum value of each row in the

matrix M and reorders its rows in descending order depending on the maximum

values.

5. Lines (17-20): The algorithm checks if the UAVs have free links or all WAPs are

connected. Thus, if any of the UAVs has free links and not all the WAPs are
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connected, then the lines (22-41) will be applied. Otherwise, the algorithm will

stop.

6. Lines (22-32): The algorithm calculates the total sum rate by taking the maximum

value on each matrix M row, and comparing the requested WAP bandwidth of the

selected value with the bandwidth of the candidate UAV. If the WAP bandwidth is

less than the candidate UAV bandwidth, then the algorithm completes the associa-

tion and updates the number of available UAVs, the number of links, and the total

sum rate. Otherwise, the algorithm applies lines (33-37).

7. Repeat points 5 and 6 until all WAPs are assigned, no more available bandwidth,

or all UAVs links are used.

It is worth mentioning that if the available bandwidth at all UAVs is high (i.e., when

removing the bandwidth constraint). The lines 30-39 of the algorithm will be ignored. In

this case, the presented algorithm achieves the exact optimal exhaustive solution. The

proposed algorithm 2.

4.3.1 The Proposed Algorithm Example

This section presents an illustrative example to clarify the methodology of the proposed

algorithm. Assuming 4 UAVs and 4 WAPs, the algorithm follows the following steps to

find the best association :

1. Step 1: The core network acquired the necessary data including SNRmin, required

data rates, bandwidth and SNR between UAVs and WAPs, and maximum available

bandwidth at each UAV. Additionally, it determined the number of available links

within the core network that can support the connection, as demonstrated in the

tables 4.1-4.3:
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Table 4.1: The SNR (dB) between the WAPs associated with the UAVs.

UAV1 UAV2 UAV3 UAV4
WAP1 3 4 6 3
WAP2 4 1 5 2
WAP3 6 7 3 2
WAP4 3 4 6 3

Table 4.2: The requested bandwidth (MHz) of the WAPs associated with the UAVs.

UAV1 UAV2 UAV3 UAV4
WAP1 15 17 18 20
WAP2 16 41 18 15
WAP3 15 14 19 18
WAP4 15 17 18 20

Table 4.3: The requested weighted data rate of the WAPs associated with the UAVs.

UAV1 UAV2 UAV3 UAV4
WAP1 15 18 25 20
WAP2 20 14 13 15
WAP3 15 14 24 16
WAP4 3 3 7 4

Also, this example assumes that the maximum available bandwidth for each UAV=

40 MHz, SNRmin= 2 and the maximum number of links at the core network = 8.

2. Step 2: Firstly, the algorithm calculates the average value for each row in Table

4.3 as demonstrated in Table 4.4.

Table 4.4: The average data rate of the WAPs associated with the UAVs.

UAV1 UAV2 UAV3 UAV4 The average
WAP1 15 18 25 20 19.50
WAP2 20 14 13 15 15.50
WAP3 15 14 24 16 17.25
WAP4 3 3 7 4 04.25
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Next, it finds the minimum value from the average column and designates it as

the threshold value. If any value in Table 4.4 is less than the threshold value, the

algorithm replaces it with 0. In this example, the minimum value is 4.25, resulting

in a threshold of 4.25. Upon examination, it is observed that the rates between

WAP4 and UAV1, UAV2, and UAV4 are below the threshold. Consequently, the

algorithm replaces these rates with 0 as demonstrated in Table 4.5, while keeping

the other values unchanged.

Table 4.5: The updated data rate of the WAPs associated with the UAVs.

UAV1 UAV2 UAV3 UAV4
WAP1 15 18 25 20
WAP2 20 14 13 15
WAP3 15 14 24 16
WAP4 0 0 7 0

3. Setp 3: The proposed algorithm will now verify all the constraints and update

Table 4.5 with the data rate between UAV and WAP if the constraints are met.

If the constraints are not satisfied, the algorithm will assign a value of 0 to the

corresponding entry in Table 4.5. This can be achieved through the following:

• First, the algorithm compares the SNR values in Table 4.1 with the SNRmin = 2

between each WAP and UAV. Based on the SNR values in Table 4.1, it is

clear that only the connection between WAP2 and UAV2 does not meet the

minimum required SNR. Consequently, the algorithm assigns a value of 0 to

the data rate between UAV2 and WAP2, as demonstrated in Table 4.6.

Table 4.6: The updated data rate of the WAPs associated with the UAVs.

UAV1 UAV2 UAV3 UAV4
WAP1 15 18 25 20
WAP2 20 0 13 15
WAP3 15 14 24 16
WAP4 0 0 7 0
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• Second, for the maximum available bandwidth = 40 MHz and requested band-

width between the WAP and UAV in Table 4.2. It can be observed that the

value between UAV2 and WAP3 is above the maximum available value, then,

the algorithm replaces the data rate value between UAV2 and WAP2 with 0

as demonstrated in Table 4.7.

Table 4.7: The updated data rate of the WAPs associated with the UAVs.

UAV1 UAV2 UAV3 UAV4
WAP1 15 18 25 20
WAP2 20 0 0 15
WAP3 15 14 16 24
WAP4 0 0 7 0

4. Step 4: The algorithm finds the maximum value for each row in Table 4.7. It is

observed that the maximum value in row 1 is 25, in row 2 is 20, in row 3 is 24, and

in row 4 is 7 as demonstrated in Table 4.8.

Table 4.8: The updated data rate considering the maximum values.

UAV1 UAV2 UAV3 UAV4 The Max
WAP1 15 18 25 20 25
WAP2 20 0 0 15 20
WAP3 15 14 16 24 24
WAP4 0 0 7 0 7

Subsequently, the algorithm proceeds to rearrange the rows of Table 4.8 in descend-

ing order based on their respective maximum values as demonstrated in Table 4.9.

Table 4.9: The updated data rate after rearranging the rows.

UAV1 UAV2 UAV3 UAV4
WAP1 15 18 25 20
WAP3 15 14 16 24
WAP2 20 0 0 15
WAP4 0 0 7 0

5. Step 5: In order to guarantee the assignment of all WAPs, the algorithm examines

the associations of each WAP. If any WAP is found to have only one candidate
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association, such as WAP4 in this case, the algorithm prioritizes the association

with that particular WAP. Consequently, the algorithm reorganizes Table 4.9 based

on this update. As a result, WAP4 is moved to the top of Table 4.9, as demonstrated

in Table 4.10.

Table 4.10: The updated data rate after guaranteeing the assignment.

UAV1 UAV2 UAV3 UAV4
WAP4 0 0 7 0
WAP1 15 18 25 20
WAP3 15 14 16 24
WAP2 20 0 13 15

6. Step 6: In order to finalize these association candidates, the algorithm must assess

the available bandwidth for each UAV in relation to the requested bandwidth for

the UAV associated with the WAP.

Using Table 4.2, the algorithm performs the necessary calculations to guarantee

bandwidth constraint satisfaction, in this case, the maximum available bandwidth

=40 MHz. In this example, the total requested bandwidth for the candidate asso-

ciations with UAV1 is 16 MHz (i.e., UAV1 is associated with WAP2). In UAV3,

the total requested bandwidth is 36 MHz (i.e., UAV3 is associated with WAP1 and

WAP4), while in UAV4 it is 18 MHz (i.e., UAV4 is associated with WAP3).

Following that, the algorithm proceeds to examine the available bandwidth for each

UAV. If the total requested bandwidth is less than the available bandwidth, the

algorithm will finalize the association of WAPs and update both the number of

available links in the core network and the maximum available bandwidth for each

UAV. Otherwise, the algorithm applies the steps in lines (22-41) again. In this ex-

ample, the requested bandwidth is found to be less than the available bandwidth. As

a result, the algorithm successfully completes the association process and proceeds

to update the available bandwidth for each UAV, as well as the number of links in

the core network. After completing the association and updating the bandwidth,

the updates are summarized as follows: The new available bandwidth for UAV1

66



is 24 MHz, for UAV2 is 40 MHz, for UAV3 is 4 MHz, and for UAV4 is 22 MHz.

Additionally, the revised number of available links in the core network is now 4.

7. The algorithm continues to repeat, starting from step 3, until all WAPs are suc-

cessfully assigned, and there is no remaining available bandwidth or links. This

approach ensures the efficient allocation of resources and guarantees the assignment

of all WAPs.

4.4 Complexity Analysis

It is well known that the worst-case time complexity of the exhaustive solution is expo-

nential. For the presented algorithm, the worst-case time complexity is polynomial and

given by O(NXY 2). This can be explained as follows:

• Calculating the average value in lines 3-4 requires a complexity of O(XY ).

• The loops in lines 5-13 require a complexity of O(XY ).

• Calculating the maximum value in lines 14-15 requires a complexity of O(XY ).

• The loop in line 17 requires a complexity of O(N).

• The loop in lines 22-39 requires a complexity of O(XY 2).

Therefore, the overall worst-case time complexity of the proposed algorithm can be cal-

culated as O(XY )+O(XY )+O(XY )+O(NXY 2) = O(NXY 2) which is much less than

the exponential time complexity.

4.5 Performance Evaluation

This section compares the performance of the presented algorithm with an exhaustive

search. The work assumes that the UAVs and WAPs are randomly distributed in the
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Figure 4.2: Total sum rate with different number of WAPs for exhaustive algorithm and
the proposed algorithm at 10 UAVs.

same coverage area. σ2
y = 1, Pt= 5 watts, SNRmin= -5 dB. Simulations were performed

using two different bandwidth levels at each UAVs (high: Bx= 250 MHz, and low: Bx=

80 MHz). The fminimax function in Matlab [117] is used to find the solution for the

exhaustive search algorithm solution of (4.7a).

In Fig. 4.2, the total sum rate of the proposed algorithm is plotted and compared against

the exhaustive search method. Here, the number of UAVs is fixed to 10, and the number

WAPs varies from 50 to 120. Two different cases are considered that are the high and low

bandwidth. As the figure shows, the performance of the proposed algorithm is exactly the

same as the exhaustive search for the high bandwidth case (i.e., without considering the

UAVs bandwidth constraints). For the low bandwidth case, it can be clearly seen that

the solution of the proposed algorithm approximately approaches the exhaustive search

algorithm when the number of WAPs ranges from 50 to 70. On the other hand, considering

the case in which the number of WAPs is more than 70, the performance of the proposed
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Figure 4.3: Total sum rate with different number of UAVs for exhaustive algorithm and
the proposed algorithm at 100 WAPs.

algorithm slightly decreases for the low bandwidth case. This can be understood by

noticing that as the number of the WAPs increases, lines 33-37 of the proposed algorithm

will be executed more times rather than re-running the whole process as in the exhaustive

search algorithm. As a result, the complexity of the system is reduced without much

degradation in the system performance. Finally, the performance saturates for the low

bandwidth curve as the number of the WAPs increases. Fig. 4.3 shows the total sum rate

for a fixed number of WAPs when the number of UAVs varies between 2 and 14. The

result here agrees with the result in Fig. 4.2 where for a varying number of UAVs, the

proposed algorithm performance is similar to that of the optimal exhaustive search for the

high bandwidth case. In contrast to the high bandwidth case, there is a slight difference

in the performance of the proposed algorithm for the low bandwidth case. On the other

hand, the performance saturates in the high bandwidth case for both the proposed and the

exhaustive algorithms when the number of UAVs reaches 10. This is because for a fixed

number of WAPs, the bandwidth tends to increase when the number UAVs is increased
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and it achieves a sufficient large amount to reach the optimal solution. Finally, to show

the reduction in the system complexity, the simulation is run when the system has 10

UAVs and 120 WAPs. The exhaustive algorithm takes around 41253 seconds running

time, which is a very long time compared to the proposed algorithm which takes around

17 seconds. Here, the used computer processor used is Intel Xeon E3-1225V2 @ 3.20 GHz

and the RAM is 8 GB.

4.6 Conclusion

This work proposed a simplified algorithm that jointly optimizes the channel assignment

from the pool of channels and max-min the total sum rate. The obtained results show

that the proposed algorithm approaches the performance of the exhaustive search with

much lower computational complexity. Moreover, it can reach the performance of the

exhaustive search algorithm when the available bandwidth at the UAVs is very high.

More practical operation conditions such as the movement of the UAVs and the power

constraints will be considered in future work.
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Algorithm 2 The Proposed Algorithm

1: Input:
(
SNRmin, W , N , U, S, SNR, B, b, R

)
.

2: Let MX,Y be a new weighted matrix such that Mx,y = WxRx,y.
3: Let ZX be a new vector such that zx is the average value of each row on the matrix

M
4: Let A be a new variable such that A is the minimum value of the vector Z
5: for x = 1 to X do
6: for y = 1 to Y do
7: if By > bx,y && SNRx,y >= SNRmin && Mx,y > A then.
8: The value of Mx,y Unchanged
9: else
10: Mx,y = 0.
11: end if
12: end for
13: end for
14: Let K be a new vector such that kx is the max value of each row in M
15: Rearrange theM matrix rows descending based on the descending sort of theK vector

values.
16: Improve = true
17: while Improve do
18: Let T be a new variable such that T is the summation of all element in matrix M
19: if N == 0 ∥ T == 0 then
20: Improve = false
21: end if
22: for x = 1 to X do
23: Let c be a new variable such that c is the location of the maximum value in

row x
24: if Bc > bx,c then
25: Bc = Bc- bx,c
26: N=N−1
27: Let TSM be a new variable such that TSM is the total sum rate
28: TSM=TSM+ Max(Mx,:)
29: M(x, :) = 0
30: if N == 0 then
31: Improve = false
32: end if
33: else
34: Mx,c = 0
35: Repeat lines 14-15
36: Improve = true
37: break;
38: end if
39: end for
40: end while
41: Display TSM
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Chapter 5

Capacity Analysis of UAV

Communications Under the

Non-ideal Transceiver Effects

5.1 Introduction

Compared to current wireless networks, 6G wireless communication networks need to

support lower latency, higher data rate, and greater QoS for all data streams [6, 113]. In

conventional terrestrial network architectures, the fixed locations of the BSs are usually

determined to guarantee a certain level of network coverage. However, static BSs are

greatly affected by blockage, dispersion, and unpredictable weather conditions, which ul-

timately affect the system performance [81]. In contrast, aerial technologies like drones,

balloons, and UAVs have demonstrated promising potential in addressing these challenges

by offering reliable, economical, and environmentally-friendly solutions with built-in ad-

vantages, including versatility, adaptability, and altitude flexibility. UAVs can also assist

dense networks and operate in rural areas with a lack of adequate infrastructure [86].

In particular, cellular-connected UAVs hold enormous potential in achieving genuinely

remote UAV operations with indefinite range, practical UAV monitoring and control,
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high-capacity payload transmission, and cellular-enhanced positioning [118].

The work in [119] designed a UAV-assisted IoT system that relies on the shortest flight

trajectory of the UAVs in order to maximize the amount of information gathered from IoT

nodes. Additionally, the optimum trajectory and throughput within a specific coverage

region were determined using a deep reinforcement learning-based method. The work

in [120] provided a projectile motion trajectory for the communication between the UAV

and GS. The optimal data rate was obtained using the Genetic algorithm, and the effect

of the projection angle on the transmission rate was analyzed. The work in [121] analyzed

the UAVs-GS cooperative network in which each communication link has unique channel

conditions. It showed the height-dependent outage performance of the network when

implementing the decode and forward protocol at the ground relays, and they derived the

lower bound for the end-to-end outage probability.

However, these works sidestepped the HWIs at the transmitters and receivers, while in

practical communication systems, HWIs have a significant effect on system performance.

The HWIs are caused by a variety of factors, including power amplifier non-linearity,

in-phase quadrature-phase imbalance, analog imperfections, phase noise, and timing and

frequency synchronization issues [122,123]. The work in [124] studied the impacts of HWIs

on intelligent reflecting surfaces enabled multiple-input single-output (MISO) wireless

communication system. This work showed that the ergodic capacity always reaches a

finite limit, which depends only on the levels of transceiver HWIs. The work in [125]

studied the performance of intelligent reflecting surfaces-assisted integrated satellite-UAV

-terrestrial networks under the effects of the HWIs. This work obtained a closed-form

expression for the outage probability and concluded that a higher level of impairment

would result in worse system performance.

After reviewing the literature, it found that no work has studied the effects of the

HWIs on UAV-GS communication. Motivated by the importance of this topic, this work

studies the effect of the HWIs on the ergodic capacity. This work provides an analytical

derivation for the average ergodic capacity considering the averaging over the Rician
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parameter, the distance between the UAV and the GS. This work also assumes that the

GS has multiple antennas. This work also provides an asymptotic analysis of the system

performance when the transmitted power and the number of GS antennas become very

large.

Chapter Organization: Section 5.2 presents the system model. Section 5.3 discusses

the system performance analyses. Section 5.4 discusses the simulation results. Finally,

Section 5.5 concludes the work.

Notations : Scalar, column vector, and matrix are represented using a normal letter,

lower-case bold-face, and capital-case bold-face, respectively. E{·}, ∥ · ∥, and (·)H are

used for statistical expectations, Euclidean second norm, and Hermitian, respectively.

An identity matrix and a zero vector are represented by I and 0, respectively. A circu-

larly symmetric complex Gaussian vector with 0 mean vector and ϵ covariance matrix is

represented by z ∼ CN (0, ϵ).

5.2 System Model

5.2.1 Channel Model

This work considers a single-antenna UAV transmitting data to a GS equipped with M -

antennas as illustrated in Fig. 5.1. The assumption is that theUAV moves in a random

3D trajectory within a spherical space with radius r, and this is done such that the GS

is fixed on the surface of the 3D sphere while the UAV flies within this domain. The

channel vector between the GS and the UAV is g =
√
βh, where β = l−α, l is the

distance between the UAV and the GS , α1 is the path loss exponent, and h ∈ CM×1 is

the fast fading channel. The fast fading channel realizations are modeled as Rician fading

channels consisting of two components: The deterministic component corresponds to the

LoS signal and the Rayleigh distribution of the scattered signal. The Rician parameter K

1α can be modeled as a non-increasing function of θ, and the latter has a slight effect on α. Based on
that, α can be considered independent of θ, depending only on the environmental conditions [121,126].
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Figure 5.1: System model: single-antenna UAV communicates with a GS equipped with
M -antennas.

represents the ratio of the LoS component power to the Rayleigh-distributed component

power.

The fading channel is given as in [55–57]

h =

√
K

K + 1
h̄+

√
1

K + 1
hw, (5.1)

where h̄ = [1, e−j 2πd
λ

sin(θ), · · · , e−j(M−1) 2πd
λ

sin(θ)], is the LoS channel component, and hw ∼

CN (0, IM) is the diffused channel component. Here d represents the antenna spacing, λ

represents the wavelength, and θ represents the angle of arrival.For simplicity, d = λ/2 is

set in this chapter. The altitude of the UAV can significantly influence the propagation

characteristics of the U2G link. This is because the LoS path condition and the environ-

ment between the UAV and the GS change with θ. It is worth mentioning that this work

assumes that the UAV moves in a random three-dimensional trajectory, and therefore,

the K parameter is a random variable and not a constant. Moreover, α is also a random

variable and not a constant. Both K and α are random variables that depend on each
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other. The performance analysis section discusses this in detail.

5.2.2 Hardware Impairments Model

The HWIs are caused by a variety of factors, including power amplifier non-linearity, in-

I/Q - phase imbalance, analog imperfections, phase noise, as well as timing and frequency

synchronization issues. The aggregate effects of these factors can be modeled as additive

Gaussian noises at both the transmitter and receiver based on the analytical tractability

and experimental validation done in [5,127,128]. Having established the origins of HWIs,

their effects can be discussed on the system model in greater detail.

The transmitted signal is x̃ instead of the intended signal x, and it can be written as

x̃ =
√
Pκt x+ ζt, (5.2)

where x has a normalized power , P represents the transmitted power, κt ∈ (0, 1] repre-

sents the transmitter’s HWIs parameter and ζt ∼ CN (0, (1− κt)P ) represents the trans-

mitter’s complex HWIs noise.

The impaired signal at the receiver can be given as

y =
√

Pκrκt g x︸ ︷︷ ︸
designated signal

+
√
κr g ζt + ζr︸ ︷︷ ︸
HWIs noise

+ w︸︷︷︸
AWGN

, (5.3)

where g is the channel between the transmitter and the receiver, κr ∈ (0, 1] is the receiver’s

HWI parameter, ζr ∼ CN
(
0, (1− κr)P |g|2

)
is the complex receiver additive HWIs noise,

and w ∼ CN (0, σ2
w) is the receiver AWGN. The distortion power is therefore proportional

to the input power P . This makes the additive HWIs term different from typical receiver

noise, which is independent of the input power. The terms κt and κr refer to the hardware

quality factors that can be effectively measured using the EVM stated on the data sheets

of the RF transceivers [5], as well as references therein. In the case of ideal hardware,

κr = κt = 1 and ζr = ζt = 0.
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5.3 Performance Analysis

This section analyzes how the HWIs affect the system’s performance. The received signal

at the GS from the UAV can be written as:

r =
√
κrβhx̃+ ζr + n, (5.4)

where, r ∈ CM×1, n ∼ CN (0, σ2
nIM) is the AWGN at the GS receive antennas, ζr ∼

CN (0M,Cζ) is HWIs noise at the GS, the parameter κr ∈ (0, 1] determines the quality of

the GS hardware, and the covariance matrix Cζ can be given as

Cζ = (1− κr)Pβdiag
(
|h(1)|2, |h(2)|2, · · · , |h(M)|2

)
, (5.5)

where h(m) denotes the mth element of h. By substituting x̃ in (5.4) the following result

is obtained

r =
√

κrκtPβ hx︸ ︷︷ ︸
designated signal

+
√
κrβhζt + ζr︸ ︷︷ ︸

HWIs noise=ζc

+ n︸︷︷︸
AWGN

. (5.6)

The transmitter and receiver HWI noises in (5.6) can be added together as

ζc ∼ CN (0M,Cζc), (5.7)

where the covariance matrix can be given as

Cζc = (1− κrκt)Pβdiag
(
|h(1)|2, |h(2)|2, · · · , |h(M)|2

)
. (5.8)

Now, to detect the transmitted signal, a liner maximum ratio combining detector is applied

at the GS. From (5.6), and using the receive combining vector w = h ∈ CM×1, the received

signal r = wHr can be given as :
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r =
√

κrκtPβwHhx︸ ︷︷ ︸
designated signal

+
√
κrβw

Hhζt +wHζr︸ ︷︷ ︸
HWI noise

+ wHn︸︷︷︸
AWGN

. (5.9)

Based on this, the received signal-to-distortion plus noise ratio (SDNR) Γ at the GS can

be calculated as

Γ =
κrκtPβ∥h∥4

hHCζch+ ∥h∥2σ2
n

. (5.10)

Accordingly, the instantaneous ergodic capacity can be written as

R(h, K, l) = log2

(
1 +

κrκtPβ∥h∥4

hHCζch+ ∥h∥2σ2
n

)
. (5.11)

As (5.11) shows, increasing the level of HWIs causes a noticeable degradation in the

instantaneous ergodic capacity level. This can be explained by noting that smaller values

of κr and κt minimize the numerator and at the same time maximize the denominator.

The term (1− κrκt) is included in hHCζch.

Lemma 5.3.1 Assuming Rician fading conditions with a given Rician factor, impaired

UAV and GS transceivers, and fixed UAV-GS distance, the average ergodic capacity of the

UAV-GS communication can be approximated as

R̄(K, l) ≈ log2

(
1 +

κtκrPβ (MK2 + 4(M + 1)(K + 1))

(K2 + 3K + 2)σ2
n + Pβ(1− κtκr)(K2 + 8K + 8)

)
. (5.12)

Proof: Using Jensen’s inequality [56], the average capacity in (5.11) can be further

approximated as

E {log2(1 + Γ)} ≈ log2

(
1 +

κrκtPβE {∥h∥4}
E {hHCζch+ ∥h∥2σ2

n}

)
. (5.13)

Now, the second and fourth moment-generating functions of the Rician random vari-

able will be obtained. From [129], E{|h|2} = (K +2)/(K +1) and E{|h|4} = (K2+8K +

8)/(K + 1)2.
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The numerator can be obtained as follows

E
{
∥h∥4

}
= M

(
M

(
K

K + 1

)2

+ 4
M + 1

K + 1

)
. (5.14)

Next, the denominator can be expressed as follows

E
{
hHCζch

}
= (1− κrκt) P β × E

{
hHdiag

(
|h(1)|2, |h(2)|2, · · · , |h(M)|2

)
h
}

= (1− κrκt)PβM

(
K2 + 8K + 8

(K + 1)2

)
. (5.15)

E
{
∥h∥2

}
= M (K + 2)/(K + 1) . (5.16)

Substituting (5.14) and (5.15) in (5.13) results in (5.12) and this concludes the proof.

From [130], the probability density function (PDF) of a random distance l between

UAV and the GS when the UAV moves within a spherical space with radius r is given as

fL (l) =
3l2

r3
− 9l3

4r4
+ 3l5

16r6
, 0 ≤ l ≤ 2r. Based on this, the expected value of E[β−1] = E[lα]

can be calculated as

E[lα] =
∫ 2r

0

lα
(
3l2

r3
− 9l3

4r4
+

3l5

16r6

)
dl

= 12(2r)α
(

2

3 + α
− 3

4 + α
+

1

6 + α

)
. (5.17)

Now, considering the average distance between the UAV and the GS over a sphere of

radius r, the capacity in (5.12) can be rewritten as

R̄(K) ≈ log2

1+ κtκrP
(
MK2 + 4(M + 1)(K + 1)

)(
12(2r)α

(
2

3+α − 3
4+α + 1

6+α

)
(K2 + 3K + 2)σ2

n+P (1− κtκr)(K2 + 8K + 8)
)
.

(5.18)

The LoS conditions between UAV and GS change as the angle of arrival θ changes.

This means that the height of the UAV affects the propagation characteristics of the

LoS communication link (i.e., the Rician parameter is heavily influenced by the UAV’s
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elevation angle relative to the GS ) [131,132]. It is apparent that a largerK is accompanied

by a higher LoS contribution and fewer multipath scatters at the receiver when θ =

π
2
. Furthermore, when θ = 0 the communication link encounters the worst multipath

conditions. The Rician parameter can be modeled as in 2 [121]

K(θ) = k0 · exp
[
2

π
ln

(
kπ

2

k0

)
θ

]
, (5.19)

where the parameters k0 and kπ
2
depend on the frequency and environmental conditions.

Assuming that θ has a uniform PDF distribution in the interval [0, π
2
] and considering

(5.19), the PDF of K can be given as

fK(k) =


1

kln

(
kπ
2

k0

) k0 < k < kπ
2

,

0 k < k0 or k > kπ
2
.

(5.20)

Based on that, the first moment-generating function of K can be calculated as

K̄ = E[k] =
∫ kπ

2

k0

1

ln
(

kπ
2

k0

)dk =
kπ

2
− k0

ln
(

kπ
2

k0

) . (5.21)

The second moment can then be calculated as

K̄2 = E[k2] =

∫ kπ
2

k0

k

ln
(

kπ
2

k0

)dk =
k2

π
2
− k2

0

2 ln
(

kπ
2

k0

) . (5.22)

Now, the dependency of the Rician fading parameter on the evaluation angle in (5.18) is

discussed.

Lemma 5.3.2 When the system faces hardware impairments, the Rician fading condi-

tions, and the trajectory variables of the UAV the average ergodic capacity of the UAV

-GS communication can be approximated as in (5.23).

2The normal range of the Rician parameter k0 = 1 ≤ K ≤ kπ
2
= 10 (this depends on the frequency

and environmental conditions).

80



R̄ ≈ log2

1+
κtκrP

(
MK̄2 + 4(M + 1)(K̄ + 1)

)(
12(2r)α

(
2

3+α − 3
4+α + 1

6+α

)
(K̄2 + 3K̄ + 2)σ2

n+P (1− κtκr)(K̄2 + 8K̄ + 8)
)
 .

(5.23)

Now, as (5.18) and (5.23) show, increasing the level of HWIs causes a noticeable degra-

dation to the ergodic capacity level. This can be explained by noting that smaller values

of κr and κt minimize the numerator, maximizing at the same time the value of the de-

nominator. Also, the effect of the HWIs appears clearer at shorter distances because it

has an exponential effect on the system performance.

5.3.1 Asymptotic Analysis

This section shows the asymptotic behavior of the ergodic capacity in (5.23).

• Transmit power: When P → ∞, the ergodic capacity enters the saturation region

and can be given as

R̄ ≈ log2

(
1 +

κtκr

(
MK̄2 + 4(M + 1)(K̄ + 1)

)
(1− κtκr)(K̄2 + 8K̄ + 8)

)
. (5.24)

Now, if the system has perfect hardware conditions (i.e., κt = κr = 1 ), the system

does not enter the saturation region and R̄ → ∞ when P → ∞.

• Number of antennas at the GS: It is apparent that when M → ∞ then R̄ → ∞

and the system does not enter the saturation region as in the case of increasing the

power. This means that if the system is under the effect of the HWIs, increasing

the number of antennas might be a better solution than increasing the transmitting

power to boost the ergodic capacity. However, when applying the power scaling law

where the transmitted power P = Pt

M
, the system performance is upper bounded as

(Pt is the transmitted power in this case)
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R̄ ≈ log2

1 +
κtκrPt

(
K̄2 + 4(K̄ + 1)

)
12(2r)α

(
2

3+α
− 3

4+α
+ 1

6+α

)
×

(K̄2 + 3K̄ + 2)σ2
n

 . (5.25)

• HWIs level: When κt = 0 or κr = 0, the ergodic capacity R̄ → 0. If the system has

perfect hardware conditions (i.e., κtκr → 1), the ergodic capacity can be given as

R̄ ≈ log2

1 +
P
(
MK̄2 + 4(M + 1)(K̄ + 1)

)
12(2r)α

(
2

3+α
− 3

4+α
+ 1

6+α

)
×

(K̄2 + 3K̄ + 2)σ2
n

 . (5.26)

5.4 Results and Analysis

In this section, extensive computer simulations were conducted to validate the presented

analytical results. This section uses the first and second moments of the Rician factor

(K̄ and K̄2), and the average of the channel factor E[β−1] between the UAV and the GS

over a sphere with radius r. Unless otherwise specified, the UAV transmit power P = 30

dBm, the noise power σ2
n = −40 dBm, and the path loss exponent α = 2.5. However, the

analyses are general and not restricted to these particulars.

Fig. 5.2 plots the ergodic capacity against the transmitted power at different levels of

HWI. The curves prove that the presented analytical results obtained in (5.23) align well

with the simulation results. It shows that, due to the HWIs, the performance saturates

in the high-power region and that there can be no further improvement upon increasing

the transmitted power. This can be explained by noting that the term (K̄2 + 3K̄ + 2)σ2
n

in (5.23) vanishes in the high-power region. Consequently, the average ergodic capacity

saturates at R̄ ≈
(
1 +

κtκr(MK̄2+4(M+1)(K̄+1))

(1− κtκr)(K̄2 + 8K̄ + 8)

)
. In contrast, the capacity increases

without limit for an ideal system.

Fig. 5.3 plots the ergodic capacity against HWI levels at different numbers of GS
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Figure 5.2: The ergodic capacity vs. the transmitted power when M= 10, σ2
n = 10−6 and

r = 75 m at different levels of HWIs.

antennas. As in Fig. 5.2, the accuracy of the presented analysis is also confirmed here

since the simulation results match strongly with the analytical ones. This figure shows

the negative impact of the HWIs on the system performance. Fortunately, increasing the

number of GS antennas can alleviate the HWI effects. For example, the ergodic capacity

decreases from 14.2 to 6.5 when M=32 (this is 54% degradation), while it decreases from

11 to 3.9 when M=4 (this is 65%). This can be interpreted from (5.18) and (5.23), where

increasing the level of HWIs causes a noticeable degradation to the ergodic capacity level.

In this case, the smaller values of κr and κt minimize the numerator while maximizing

the value of the denominator. It is worth mentioning that this degradation can be com-

pensated by adding more antennas since R̄ → ∞ when M → ∞, and the system does

not enter the saturation region as it does when increasing the power, as explained in the

asymptotic analysis section.

Fig. 5.4 shows the effect of the HWIs when considering spherical regions with different
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Figure 5.3: The ergodic capacity vs. the transmitted power when r = 50 at different
levels of HWIs .

radii. As the figure shows, increasing the level of the HWIs causes more degradation to

the system performance for all radius values; this can be explained by (5.23) where 2r is

raised to the power of α. The degradation is more noticeable in smaller radius values.

This is because the distances have an exponential effect on the system performance. For

example, when r = 50 the capacity decreases from 12.4 to 6 at κ = 0.95 while it decreases

from 7.5 to 5.5 when r = 200.

Fig. 5.5 plots the ergodic capacity against the number of GS antennas at different

levels of HWIs. The result in this figure agrees with the ones in Fig. 5.2, where increasing

the level of the HWIs causes more degradation to the system performance. However,

increasing the number of transmitting antennas does not lead to performance saturation

as in the case of increasing power. Moreover, as expected from the analytical analysis,

increasing the number of GS antennas improves system performance.
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Figure 5.4: The ergodic capacity vs. HWIs level at different trajectory radii when P = 10
dBW, σ2

n = 10−6, and M= 10.
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Figure 5.5: The ergodic capacity vs. the number of GS antennas when P = 30 dBm and
r = 75 at different levels of HWIs.
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5.5 Conclusions

This work analyzes the average ergodic capacity of UAV-GS communication in the pres-

ence of HWIs, specifically when the UAV moves in a random three-dimension trajectory.

This work derives an approximate expression for the ergodic capacity and validated the

obtained results using simulations. The obtained results demonstrated that the HWIs

can dramatically affect the system’s performance and lead the system to enter a satura-

tion region where no more improvement can be obtained when the transmitted power is

increased. This saturation region can be alleviated by increasing the number of trans-

mitting antennas at the GS. This work assumed perfect knowledge of the channel’s state

information; future works can consider imperfect channels’ state information conditions

and other metrics of the system performance such as the bit error rate.
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Chapter 6

Hardware Impairments Effects on

Over the Air System Assisted by

Unmanned Aerial Vehicles

6.1 Introduction

OAC has attracted attention due to its efficient data aggregation capabilities across a

massive number of distributed sensor nodes with finite bandwidth [133, 134]. This tech-

nique utilizes the superposition property of wireless channels to calculate the sensing data

by simultaneous transmissions from the sensors. As such, OAC can provide an effective

solution for the IoT and machine-to-machine technologies by tackling the latency and

bandwidth consumption issues [135]. In this context, UAVs can be utilized as fusion

centers (FCs), enabling ultrafast data collection from numerous sensor nodes and paving

the way for widespread sensing and environmental monitoring applications e.g., disaster

alarms [136]. Here, smart sensors can send their readings over a wireless channel to the

UAV, which reconstructs each sensor reading and calculates the desired measurements.

Nevertheless, in practical communication systems, channel estimation is a significant

challenge when it comes to deploying OAC. The reason for this is that data fusion experi-
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ences heightened MSE due to the estimation error. In addition, HWIs affect the channel

estimation accuracy [87]. As a result, the combined data is distorted due to amplitude

errors in CSI, and synchronization issues in the signals transmitted from multiple nodes

occur due to phase errors. The effect of channel estimation errors on OAC systems was

discussed when using the random sequence-based synchronization approach [137]. How-

ever, this approach forces nodes to transmit identical data several times, resulting in a

reduction in the achievable sum rate. In the same context, it was shown in [138] that the

performance of OAC systems is degraded due to the unfavorable channel conditions of

wireless devices.

However, these studies overlooked the impact of HWIs at both transmitters and re-

ceivers. In reality, HWIs significantly influence the performance of communication sys-

tems. These impairments can be attributed to a range of factors, including power am-

plifier non-linearity, in-phase quadrature-phase imbalance, analog imperfections, phase

noise, and timing and frequency synchronization issues [139]. The work in [140] examined

the performance of reconfigurable intelligent surface assisted integrated satellite- UAV-

terrestrial networks under the influence of HWIs. This research derived a closed-form

expression for the outage probability, concluding that a higher level of impairment leads

to a noticeable decline in the system performance.

In practical communication systems, both transmitters and receivers need to create

carrier signals with precise and consistent frequencies. Typically, these frequencies are

generated by a local crystal, producing a low-frequency sine wave or a reference clock,

which is then amplified to the required carrier frequency by a circuit called a phase-locked

loop. However, due to inherent differences in these crystals, slight frequency variations

occur across different devices, resulting in frequency offsets. These offsets fluctuate due

to environmental factors like temperature and induce a rotational effect on transmitted

signals, leading to phase drift over time and potentially adverse impacts on intended trans-

mission. Thus, it is of critical importance to consider phase errors caused by frequency

offsets when examining system performance under imperfect CSI conditions [141,142].
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In contrast to current work in the literature, this chapter discusses the performance degra-

dation in data fusion within UAV-assisted OAC systems caused by imperfect CSI and

non-ideal transceivers. Motivated by the importance of this topic, this study investigates

the combined impact of HWIs and imperfect CSI on the performance of UAV-assisted

OAC. As a result, mathematical frameworks are developed to calculate the average MSE

for both perfect and imperfect CSI of the impaired signal. The obtained results are then

validated through computer simulations.

6.2 System Model

6.2.1 Channel Model

This work studies a UAV-assisted-OAC wireless communication system as illustrated in

Fig. 6.1, where the UAV serves as an fusion center (FC) that communicates with M

sensors, each equipped with one antenna. The sensors gather time-varying measurements

and transmit them to the FC, which then calculates the average of the data received from

the sensors. The ith sensor coordinates at the tth time slot are represented by (ri[t], θi[t], 0)

. Here, ri[t] is the distance between the ith sensor and the zero point Q, and θi[t] is the

angle considering the x-coordinate line on the xy-coordinate plane. The FC’s coordinates

are represented by (ρ,Θ, L) where L is the UAV altitude, and hence, the distance between

the origin and the FC is d =
√

ρ2 + L2. The further presumption is that the FC is situated

in the far-field region. (i.e., d > ρ ≫ R), and that the nodes are evenly and arbitrarily

positioned inside a circular area with a radius R. Moreover, during any time slot t, a group

of active nodes, K, is chosen at random to simultaneously transmit operating OAC. As

a result, the PDFs for ri[t] and θi[t] can be described as fri[t](r) =
2r
R2 and fθi[t](θ) =

1
2π
,

with r ∈ [0, R] and θ ∈ [−π, π].

The desired function at the FC at instant t is f [t] = 1
K

∑K
i=1 si[t] where E{si[t]} = 0

and Var{si[t]} = 1. The sensing data si[t] is presumed to be independent for various i
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Figure 6.1: System model: UAV-Assisted over-the-air computation system.

and t. Now, the incoming signal at the FC can be given as

y[t] =
K∑
i=1

hi[t]bi[t]si[t] + w[t], (6.1)

where hi[t] is the complex channel between ith sensor and the FC at t time slot. hi[t]

is influenced by ground-to-air channels that are predominantly line-of-sight (LoS) [143].

Therefore, hi[t] can be represented as hi[t] =
1

li[t]
e−j

2πli[t]

λ where li[t] is the distance from

the ith sensor to the FC at time slot t. Due to the assumption of LoS channels, the

path-loss exponent of 2 is used for the squared envelope. The distance li[t] is computed

as li[t] =
√
ρ2 + r2i [t]− 2ρri[t] cos(φ− θi[t]) + L2. Additionally, bi[t] represents the ith

sensor transmit coefficient, and w[t] is the receiver AWGN following a complex normal

distribution with a zero mean and σ2 variance.

Given that the group of active nodes, K, is arbitrarily chosen for every time slot, hi[t]

is independent for various i and t. The channel hi[t] is a composite random variable that

encompasses path loss and phase difference based on the distance li[t] [144]. Without loss

of generality, it is assumed that |h1[t]| ≤ |h2[t]| ≤ · · · ≤ |hK−1[t]| ≤ |hK [t]|. In reference
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to [145], the OAC transmit coefficient is determined by bi[t] =
√
pi[t](ĥ

∗
i [t]/|ĥi[t]|) where

pi[t] stands for the ith sensor transmit power. Additionally, ĥi[t] represents the ith sensor

estimated version of hi[t], while (·)∗ indicates the complex conjugate. By employing the

channel inversion technique [145], [146], the transmit power for the ith sensor is calculated

as pi[t] = P |ĥ1[t]|2/|ĥi[t]|2 where P is a constant and |ĥ1[t]| = mini∈K |ĥi[t]|. The FC

retrieves the mean of the desired data, expressed as [145]

f̂ [t] =
y[t]

K
√

α[t]
=

∑K
i=1 hi[t]bi[t]si[t]

K
√

α[t]
+

w[t]

K
√

α[t]
, (6.2)

where α[t] = P |ĥ1[t]|2 is the denoising factor.

6.2.2 Hardware Impairments Model

Many factors contribute towards HWIs, such as non-linear power amplifiers, imbalanced

in-phase and quadrature phases, phase noises, and synchronization problems related to

timing and frequency. These factors collectively result in the addition of Gaussian noises

at transceivers. With the sources of HWIs now established, it allows for a more com-

prehensive analysis of their impact on the system model [5]. The transmitted signal is

represented by s̃, which deviates from the intended signal s. It can be expressed as [5]

s̃ =
√
Eκt s+ ζt, (6.3)

where s has normalized power, E denotes the transmitted power, κt ∈ (0, 1] represents

HWIs parameter of the transmitter, and ζt signifies the transmitter’s complex HWIs

noise which follows a complex normal distribution with a mean of 0 and a variance of

CN(0, (1− κt)E). The impaired signal at the receiver can be described as

y =
√
Eκrκt g x︸ ︷︷ ︸

designated signal

+
√
κr g ζt + ζr︸ ︷︷ ︸
HWIs noise

+ n︸︷︷︸
AWGN

, (6.4)
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where g represents the channel between the transmitter and receiver, κr ∈ (0, 1] is the

receiver’s HWI parameter, ζr is the complex receiver additive HWIs noise following a

complex normal distribution with a mean of 0 and a variance of ∼ CN
(
0, (1−κr)E |g|2

)
,

and n is the receiver AWGN following a complex normal distribution with a zero mean

and σ2
n) variance.

The distortion power is directly proportional to the input power E, making the additive

HWIs term distinct from the typical receiver noise, which is independent of input power.

The terms κt and κr factors refer to the hardware quality at the transmitter and the

receiver, respectively. In the case of ideal hardware, κr = κt = 1 and ζr = ζt = 0.

Considering the HWI model at the transmitter and receiver, the FC retrieves the average

desired data as

f̂ [t] =

√
κtκr

∑K
i=1 hi[t]bi[t]si[t]

K
√

α[t]
+

χ[t]

K
√

α[t]
+

w[t]

K
√

α[t]
, (6.5)

where χ[t] ∼ CN
(
0, (1− κtκr)

∑K
i=1

∣∣(hi[t]bi[t]si[t])
∣∣2). Here, CN

(
µ, σ) is a complex

Gaussian random variable with µ mean and σ2 variance.

6.3 Performance Analysis

6.3.1 Mean Square Error under HWIs and Perfect CSI

This section examines the MSE assuming perfect CSI when the transmitter and receiver

are under the effect of HWIs. As per equation (6.5), the instantaneous MSE for a given

time slot t can be obtained as

MSE[t] =E
[∣∣∣f̂ [t]− f [t]

∣∣∣2] = 1

K2
E

∣∣∣∣∣ y[t]√
α[t]

−
K∑
i=1

si[t]

∣∣∣∣∣
2


=
1

K2

 K∑
i=1

∣∣∣∣∣
√
κtκrhi[t]bi[t]√

α[t]
− 1

∣∣∣∣∣
2
K(1− κtκr)

∑
i∈K

∣∣(hi[t]bi[t])
∣∣2

α[t]
+

σ2

α[t]

 . (6.6)
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Now, by noting that the nodes fading channels hi[t] are independent, the average error in

(6.6) can be calculated as

MSE =
1

K
+

κtκr

K
E

∣∣∣∣∣hi[t]bi[t]√
α[t]

∣∣∣∣∣
2
−

√
κtκr

K
E

[
hi[t]bi[t]√

α[t]
+

h∗
i [t]b

∗
i [t]√

α[t]

]

+
(1− κtκr)

K
E

∣∣∣∣∣hi[t]bi[t]√
α[t]

∣∣∣∣∣
2
+

σ2

K2
E
[

1

α[t]

]
. (6.7)

After some tedious mathematical manipulations, the MSE can be rewritten as

MSE =
1

K
−

√
κtκr

K
E

[
hi[t]ĥ

∗
i [t]

|ĥi[t]|2
+

h∗
i [t]ĥi[t]

|ĥi[t]|2

]
+

1

K
E

[
|hi[t]|2

|ĥi[t]|2

]
+

σ2

PK2
E

[
1

|ĥ1[t]|2

]
.

(6.8)

Now, considering perfect CSI (i.e., ĥi[t] = hi[t]) and assuming the far-field scenario, the

MSE can be calculated as

MSE =
2 (1−√

κtκr)

K
+

σ2

PK2
E
[

1

|h1[t]|2

]
, (6.9)

where it is not easy to calculate the exact value of the expectation in the second term.

Fortunately, an approximation can be computed using the Taylor expansion and exploit-

ing some facts in [147–149]. By assuming that ζ1 = |h1[t]| = mini∈K ζi, the following

approximations for the expectation and variance of ζi can be obtained:

E[ζi] ≈
8d4 −R2d2 + 3R2ρ2

8d5
, Var[ζi] ≈

R2ρ2

4d6
. (6.10)

In addition, E
[

1
ζ21

]
= E

[
1

|h1[t]|2

]
(a)
≈ 1

(E[ζ1])2 , where (a) follows from Var[ζ1] < Var[ζi] ≈ 0 and

assuming the far-field scenario where d ≫ R, and considering ζ1 = |h1[t]| = mini∈K |h[t]|i
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[148]. By utilizing these approximations E [ζ1] can be given as

E [ζ1] ≈ E[ζi] + Φ−1

(
1

K + 1

)√
Var[ζi],

≈ 8d4 −R2d2 + 3R2ρ2

8d5
+ Φ−1

(
1

K + 1

)
Rρ

2d3
. (6.11)

Finally, using (6.9) and (6.11), the MSE can be approximated as

MSE ≈
2(1−√

κtκr)

K
+

σ2

PK2

[
8d4 −R2d2 + 3R2ρ2

8d5
+ Φ−1

(
1

K + 1

)
Rρ

2d3

]−2

. (6.12)

The result in (6.12) shows that, in the impaired system, there is a floor in the MSE even

if the transmit power grows immense due to the effect of the HWIs. This error increases

with higher levels of HWIs. On the other hand, in the case of the ideal system, the MSE

approaches zero.

6.3.2 Mean Square Error under HWIs and Imperfect CSI

Achieving perfect CSI is not feasible in practical communication systems. This work as-

sumes that each node estimates its channel with the FC based on a pilot signal transmitted

from the FC. The ith node estimated channel at time slot t can be obtained as

ĥi[t] = (|hi[t]|+ δi[t])e
j(∠hi[t]+ϵi[t]), (6.13)

where δi[t] is the amplitude error, and ϵi[t] is the phase error. The amplitude error

introduces distortion to the amplitude of the ith signal received by the FC, while the

phase error introduces a synchronization discrepancy between the sensors.

Conditional on the amplitude and phase errors, the MSE in the presence of HWIs can
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be represented as

MSE(δi[t], ϵi[t]) =
1

K
+

1

K
E
[

|hi[t]|2

(|hi[t]|+ δi[t])2

∣∣∣∣δi[t]]
−

√
κtκr

K
E
[

|hi[t]|
|hi[t]|+ δi[t]

∣∣∣∣δi[t]]E[ej ϵi[t] + e−j ϵi[t]| ϵi[t]] +
σ2

PK2 E

[
1

|ĥ1[t]|2

∣∣∣∣δi[t]
]
. (6.14)

The amplitude errors δi[t] ∈ (−∆,∆) can be modeled as independent uniform ran-

dom variables [150], and the phase errors ϵi[t] ∈ [−π, π] can be modeled as Tikhonov

distributions expressed as [151]

fϵi[t](ϵ) =
1

2πI0 (γL)
exp (γL cos ϵ) , (6.15)

where γL depends on the PLL circuit, and I0 is an order zero modified first kind Bessel

function.

Now, considering the PDF of δi[t] and assuming the far-field scenario, the MSE can be

obtained by using the Taylor expansion and by exploiting some facts in [147–149] as

E
[

|hi[t]|2

(|hi[t]|+ δi[t])2

]
≈
∫ ∆

−∆

β(δi[t])
1

2∆
dδi[t] = A, (6.16)

where β(δi[t]) is the conditional expectation and can be calculated as

E
[

|hi[t]|2

(|hi[t]|+ δi[t])2

∣∣∣∣δi[t]] ≈ 1

4d4 ((δi[t])d+ 1)4
×[

4H6(δi[t])
2 +H2

(
2ρ2
(
8δi[t]d+R2(δi[t])

2 + 4
)
− R2δi[t]d+ 12(δi[t])

2ρ4
)
+

ρ4
(
8δi[t]d+ 3R2(δi[t])

2 + 4(δi[t])
2ρ2 + 4

)
+H4

(
8δi[t]d−R2(δi[t])

2+12(δi[t])
2ρ2 + 4

)]
.

(6.17)

and A can be given as

A =
∆2(4L4∆2 − L2(∆2(R2 − 8ρ2) + 8) + ρ2(3∆2R2 − 8) + 4∆2ρ4 +R2) + 4

4(1−∆2d2)3
. (6.18)
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Following the same context, the expectation related to the magnitude in the third term

in (6.14) can be given as

E
[

|hi[t]|
|hi[t]|+ δi[t]

]
≈
∫ ∆

−∆

ξ(δi[t])
1

2∆
dδi[t] = B, (6.19)

where ξ(δi[t]) is the conditional expectation which can be calculated as

E
[

|hi[t]|
|hi[t]|+ δi[t]

∣∣∣∣δi[t]] ≈ 1

8d4 (δi[t]d+ 1)3
[
8L6(δi[t])

2 + L2
(
ρ2
(
32δi[t]d+R2(δi[t])

2 + 16
)

− R2δi[t]d+ 24(δi[t])
2ρ4
)
+ 2ρ4

(
8δi[t]d+R2(δi[t])

2+ 4(δi[t])
2ρ2 + 4

)
+ L4

(
16δi[t]d−R2(δi[t])

2+ 24(δi[t])
2ρ2 + 8

)]
. (6.20)

and B can be given as

B =
∆R2(−L4∆2 + L2(3∆2ρ2 + 1) + 4∆2ρ4 − 2ρ2)

8∆d4(∆2d− 1)2
+

(8L4 + 2ρ2(8L2 +R2)− L2R2 + 8ρ4) tanh−1(∆d)

8∆d5
. (6.21)

Moreover, the expectation related to the phase error ϵi[t] in the third term in (6.14) can

be given as

E[ej ϵi[t] + e−j ϵi[t]] =2 E
ϵi[t]

[
E[ej ϵi[t] + e−j ϵi[t]| ϵi[t]]

]
=

∫ π

−π

cos(ϵ)

πI0 (γL)
exp (γL cos ϵ) d ϵ = 2

I1(γL)

I0(γL)
, (6.22)

where I1 is an order one modified first kind Bessel function.

The expectation in the fourth term in (6.14) can be given as

E

[
1

|ĥ1[t]|2

]
=

1[
8d4−R2d2+3R2ρ2

8d5
+ Φ−1

(
1

K+1

)√
R2ρ2

4d6
+ ∆2

3

]2 . (6.23)

The result in (6.23) is obtained by assuming that ζ̂1 = |ĥ1[t]| = mini∈K(|hi[t]| + δi[t]) =
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mini∈K ζ̂i, and following the same procedures in Section 6.3.1. Hence, the following ap-

proximations are obtained

E[ζ̂i] = E[|hi[t]|] + E[δi[t]] ≈
8d4 −R2d2 + 3R2ρ2

8d5
. (6.24)

Var[ζ̂i] = Var[|hi[t]|] + Var[δi[t]] ≈
R2ρ2

4d6
+

∆2

3
. (6.25)

Combining the previous terms, the MSE can be approximated as

MSE ≈ 1

K
(1 +A−2

√
κrκt B

I1(γL)

I0(γL)
)+

1

K2

σ2

P

[
8d4 −R2d2 + 3R2ρ2

8d5
+ Φ−1

(
1

K + 1

)√
R2ρ2

4d6
+

∆2

3

]−2

. (6.26)

6.4 Results and Analysis

Extensive computer simulations were carried out in this section to confirm the accuracy

of the presented analytical results. Additionally, this section examines the impact of the

HWIs and the imperfect CSI channel estimation on MSE. The wavelength is set at 0.3 m.

The simulation results assume random sensor locations, uniformly distributed on a circle

with radius R = 80 m. The sensors send the data through OAC. The FC positioned at

(d, L) = (1 km, 200 m). Furthermore, the simulations assume that κr = κt, κ =
√
κtκr,

∆ = 10−5, and γL = 15 dB.
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Figure 6.2: MSE versus power with perfect and imperfect CSI, when number of nodes =
100.

Fig. 6.2 illustrates the relationship between the MSE and the transmitted power under

various levels of HWIs. The plotted curves demonstrate a strong agreement between the

simulation and analytical results obtained from (6.12) and (6.26). It is evident that the

performance reaches a saturation point in the high-power region due to the presence of

HWIs and the imperfect CSI, indicating that further enhancements cannot be achieved

by increasing the transmitted power. In the case of perfect CSI, this saturation can be

attributed to the term
2 (1−√

κtκr)

K
, which becomes dominant for smaller values of κt and

κr. In contrast, the performance of the ideal system increases without any constraints.
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Figure 6.3: MSE at different levels of HWIs with perfect and imperfect CSI, when power
= 20 dB.

Fig. 6.3 illustrates the relationship between HWI levels and the MSE for various num-

bers of nodes for both perfect and imperfect CSI. Similar to Fig. 6.2, the simulation re-

sults strongly corroborate the analytical findings, affirming the accuracy of the presented

analysis. The figure highlights the detrimental impact of HWIs on system performance.

However, there is a silver lining: increasing the number of nodes mitigates the effects of

HWIs. For instance, considering the perfect CSI, when the number of nodes is 10, the

MSE increases from 0.0003 to 0.0135, representing a degradation of 97% when the HWIs

level becomes 0.93. Similarly, when the number of nodes is 100, the MSE increases from

99



0.000021 to 0.00135, indicating a 63% degradation. These findings align with (6.12) where

higher HWI levels noticeably degrade the MSE for the small number of nodes. Importantly,

it should be noted that this degradation can be compensated by adding more nodes, as

indicated by the fact that MSE approaches zero as K increases. The same trend can be

seen in case of the imperfect CSI.
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Figure 6.4: MSE versus number of nodes with perfect and imperfect CSI, when power =
20 dB.

In Fig. 6.4, the MSE is plotted as a function of the number of nodes across different

levels of HWIs. The results in this graph are consistent with those shown in previous ones,

demonstrating that higher levels of HWIs lead to a greater decline in system performance.
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However, unlike the scenario with increased power, increasing the number of nodes does

not result in performance saturation. The performance of the system can be significantly

improved by serving more nodes. However, this improvement is decreased in the case of

imperfect CSI.

6.5 Conclusions

This study investigated the MSE of UAV-Assisted- OAC communication under the joint

effects of HWIs and imperfect CSI. This work looked in particular at the way UAVs can

function as the FC and communicate with K nodes. By deriving approximate expressions

for the MSE and conducting simulations, the obtained findings were validated. These

findings emphasize the significant impact of HWIs on the system’s performance, revealing

the presence of a saturation region where increasing the transmitted power no longer leads

to improvements. Furthermore, it was observed that the system’s performance degraded

more severely in the case of imperfect CSI. Notably, it is discovered that enhancing the

system’s performance is possible by increasing the number of nodes. It is important to

mention that this study assumed one antenna per node. Future research could explore

scenarios with multiple antennas at the nodes and consider other performance metrics,

such as bit error rate.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In summary, this thesis studies UAVs systems as a viable solution for the next wireless

communication networks. The study evaluates various factors that dictate the system’s

performance, including aspects such as total sum rates, ergodic capacity, and MSE. A

significant emphasis is placed on addressing the association problem between UAVs and

WAPs to optimize the system performance. The thesis also provides a detailed exami-

nation of the performance of UAV-assisted systems under different scenarios, especially

in the presence of HWIs. These investigations consider both perfect and imperfect CSI

by offering an in-depth exploration, the thesis illuminates both the potentials and restric-

tions of UAVs in improving wireless communication networks and establishes a strong

foundation for further study and innovation in this area.

Specifically, this study explores the problem of associating UAVs with WAPs with

the goal of maximizing the total sum rate. Various factors are considered in this process,

including the individual bandwidth of each UAV, the coverage area, the minimum required

SINR, the number of links provided by UAVs, the number of connections at WAPs,

and fairness constraints. To address this, an extension of the centralized Hungarian

algorithm was proposed, which facilitates a suboptimal association between the UAVs and
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WAPs. The results of the study indicate that this proposed algorithm significantly reduced

computational complexity compared to other methods in the literature. Remarkably, the

performance of the proposed algorithm aligns with the exhaustive search one when the

available bandwidth at the UAVs is high.

Furthermore, this work introduces a simplified algorithm that optimizes channel as-

signment from a pool of channels while maximizing the total sum rate with a max-min

approach. The results demonstrate that this algorithm is capable of approaching the

performance of the exhaustive search algorithm, again with much lower computational

complexity. Additionally, this thesis evaluated the average ergodic capacity of UAV-GS

communication systems, specifically under the influence of HWIs and while the UAV is

navigating in an arbitrary three-dimensional trajectory. The analytical derivation incor-

porated the averaging over the Rician parameter and the distance between the UAV and

the GS. It obtained an approximate formula for the ergodic capacity and then validated

the obtained results through simulations.

The findings highlight that HWIs can critically degrade the system’s performance,

pushing it into a saturation zone where increasing the transmitted power yields no further

improvements. This saturation region can be mitigated by augmenting the number of

transmitting antennas at the GS. Furthermore, it conducted an asymptotic analysis to

investigate the system’s performance when the transmitted power and the number of

GS antennas are significantly large. Finally, this thesis studied a new communication

system known as OAC assisted with UAV. Particularly, it examined the MSE of UAV-

Assisted-OAC, considering the combined effects of HWIs and imperfect CSI. The focus

was on scenarios where the UAV serves as the FC and communicates with K nodes.

The results emphasized the significant influence of HWIs on the system’s performance,

revealing the existence of a saturation region where increasing the transmitted power no

longer yields improvements. Additionally, it is noticed that imperfect CSI led to more

severe degradation in system performance. Remarkably, it was observed that enhancing

the system’s performance can be achieved by increasing the number of nodes.
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7.2 Future Work

A significant amount of work still needs to be completed, and more challenges need to be

solved for UAVs deployments. One such challenge is resource management. This poses a

significant issue in UAV networks due to various factors, including the complex interplay

between UAV flight duration, energy consumption, path planning, and spectral efficiency.

Additional challenges arise from the high mobility of UAVs and the LoS interference

originating from ATG.

The optimization of three-dimensional UAVs trajectory presents a significant and com-

plex challenge. To determine the path of UAVs in three dimensions, several crucial factors

must be carefully considered. These factors encompass variations in the communication

channel due to mobility, the dynamics of the UAVs themselves, the energy consumption

of the UAVs, and the constraints imposed by flight regulations.

Moreover, it is vital to study interference management techniques to effectively mini-

mize both ATG and air-to-air interference. This can be achieved through the development

of more accurate models of interference in UAV-assisted wireless communication scenarios.

Additionally, exploring the potential of machine learning in enhancing wireless commu-

nication systems that rely on UAVs is essential. Machine learning techniques can enable

UAVs to dynamically adjust their trajectories, thereby improving the QoS for ground

users. Furthermore, the application of machine learning could facilitate the support of a

large number of UAVs and WAPs with manageable computational complexity. Similarly,

by leveraging neural network techniques and data analysis, UAVs can be strategically

deployed based on predictions of ground users’ behavior, such as their mobility patterns

and traffic distribution.

It is also crucial to conduct comprehensive research on security and privacy concerns

within UAV networks. This involves investigating scenarios where UAVs collect and trans-

mit data to users. However, this process carries inherent risks, as malicious individuals

could exploit UAV to gain unauthorized access to sensitive information. They may em-
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ploy tactics such as obstructing network connections, intercepting transmitted data, or

utilizing devices to interfere with the UAV’s communication system.

Therefore, an efficient security management system is necessary to counteract mali-

cious cyber-attacks in UAV networks. In addition to this, the application of quantum

cryptography as a service can be explored for fortified UAVs communication. Given

the limitations of conventional cryptography in ensuring secure communication, quantum

cryptography has emerged as a proficient method for cohesive communication across air

and ground networks. By utilizing a quantum connection, data can be protected with

superior security protocols. Consequently, research focusing on quantum wireless net-

works is expected to witness substantial growth in both academic and industry sectors,

propelled by the potential advantages it provides.
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[17] I. Bucaille, S. Héthuin, A. Munari, R. Hermenier, T. Rasheed, and S. Allsopp,

“Rapidly Deployable Network for Tactical Applications: Aerial Base Station with

107



Opportunistic Links for Unattended and Temporary Events ABSOLUTE Example,”

in MILCOM 2013 - 2013 IEEE Military Communications Conference, pp. 1116–

1120, Nov. 2013.

[18] H. Ahmadi, K. Katzis, and M. Z. Shakir, “A Novel Airborne Self-Organising Archi-

tecture for 5G+ Networks,” in 2017 IEEE 86th Vehicular Technology Conference

(VTC-Fall), pp. 1–5, Sep. 2017.

[19] S. Meng, X. Su, Z. Wen, X. Dai, Y. Zhou, and W. Yang, “Robust drones formation

control in 5G wireless sensor network using mmWave,” Wireless Communications

and Mobile Computing, May 2018.

[20] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet

of things: A survey on enabling technologies, protocols, and applications,” IEEE

communications surveys & tutorials, vol. 17, no. 4, pp. 2347–2376, Jun. 2015.

[21] T. Park, N. Abuzainab, and W. Saad, “Learning How to Communicate in the Inter-

net of Things: Finite Resources and Heterogeneity,” IEEE Access, vol. 4, pp. 7063–

7073, 2016.

[22] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet of Things

for Smart Cities,” IEEE Internet of Things Journal, vol. 1, no. 1, pp. 22–32, Feb.

2014.

[23] A. Ferdowsi and W. Saad, “Deep Learning-Based Dynamic Watermarking for Se-

cure Signal Authentication in the Internet of Things,” in 2018 IEEE International

Conference on Communications (ICC), pp. 1–6, May 2018.

[24] K. Meng, Q. Wu, J. Xu, W. Chen, Z. Feng, R. Schober, and A. L. Swindle-

hurst, “UAV-enabled integrated sensing and communication: Opportunities and

challenges,” IEEE Wireless Communications, pp. 1–9, 2023.

[25] X. Wang, Z. Fei, J. A. Zhang, J. Huang, and J. Yuan, “Constrained utility maximiza-

tion in dual-functional radar-communication multi-UAV networks,” IEEE Transac-

tions on Communications, vol. 69, no. 4, pp. 2660–2672, 2020.

[26] A. Liu, Z. Huang, M. Li, Y. Wan, W. Li, T. X. Han, C. Liu, R. Du, D. K. P. Tan,

J. Lu, et al., “A survey on fundamental limits of integrated sensing and communi-

cation,” IEEE Communications Surveys & Tutorials, vol. 24, no. 2, pp. 994–1034,

2022.

108



[27] H. ALsmadi, H. Alsheyab, M. Alsmadi, E. Mohammed, Y. Alomari, and S. Ikki,

“Less complex and higher spectral efficiency resource allocation algorithm for un-

manned aerial vehicles networks,” IEEE Canadian Journal of Electrical and Com-

puter Engineering, vol. 45, no. 3, pp. 279–284, 2022.

[28] H. Alsmadi, H. Alsheyab, M. Alsmadi, and S. Ikki, “Less complex algorithm to

max-min the resource allocation for unmanned aerial vehicles networks,” in 2022

IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), pp. 1–5, 2022.

[29] H. Alsmadi, E. Saleh, M. Alsmadi, and S. Ikki, “Capacity analysis of uav commu-

nications under the non-ideal transceiver effects,” IEEE Communications Letters,

pp. 1–1, 2023.

[30] L. A. Wolsey, Integer programming, vol. 52. John Wiley & Sons, Sep. 1998.

[31] J. Clausen, “Branch and bound algorithms-principles and examples,” Department

of Computer Science, University of Copenhagen, pp. 1–30, 1999.

[32] M. Fischetti and D. P. Williamson, Integer Programming and Combinatorial Opti-

mization, vol. 4513. Springer, Jun. 2007.

[33] W. Kuhn, “The Hungarian method for the assignment problem,” Naval research

logistics quarterly, vol. 2, no. 1-2, pp. 83–97, Mar. 1955.

[34] S. A. W. Shah, T. Khattab, M. Z. Shakir, and M. O. Hasna, “A Distributed

Approach for Networked Flying Platform Association with Small Cells in 5G+

Networks,” in GLOBECOM 2017-2017 IEEE Global Communications Conference,

pp. 1–7, Dec. 2017.

[35] E. Saleh, M. Alsmadi, and S. Ikki, “Energy efficiency and power allocation optimiza-

tion in hardware-impaired full-duplex access point,” in GLOBECOM 2022-2022

IEEE Global Communications Conference, pp. 3815–3820, IEEE, 2022.

[36] J. Qi and S. Aissa, “Analysis and compensation of power amplifier nonlinearity in

MIMO transmit diversity systems,” IEEE Transactions on Vehicular Technology,

vol. 59, no. 6, pp. 2921–2931, 2010.

[37] M. H. N. Shaikh, V. A. Bohara, A. Srivastava, and G. Ghatak, “Performance

analysis of intelligent reflecting surface-assisted wireless system with non-ideal

109



transceiver,” IEEE Open Journal of the Communications Society, vol. 2, pp. 671–

686, 2021.

[38] H. E. Rowe, “Memoryless nonlinearities with gaussian inputs: Elementary results,”

The Bell System Technical Journal, vol. 61, no. 7, pp. 1519–1525, 1982.

[39] O. T. Demir and E. Bjornson, “The Bussgang decomposition of nonlinear systems:

Basic theory and MIMO extensions [lecture notes],” IEEE Signal Processing Mag-

azine, vol. 38, no. 1, pp. 131–136, 2021.

[40] T. Schenk, RF imperfections in high-rate wireless systems: impact and digital com-

pensation. Springer Science & Business Media, 2008.

[41] P. Zetterberg, “Experimental investigation of TDD reciprocity-based zero-forcing

transmit precoding,” EURASIP Journal on Advances in Signal Processing,

vol. 2011, pp. 1–10, 2011.

[42] M. Wenk, MIMO-OFDM-testbed: challenges, implementations, and measurement

results: challenges, implementations, and measurement results. PhD thesis, ETH

Zurich, 2010.

[43] T. Aulin, “Characteristics of a digital mobile radio channel,” IEEE Transactions on

Vehicular Technology, vol. 30, no. 2, pp. 45–53, 1981.

[44] H. Suzuki, “A statistical model for urban radio propogation,” IEEE Transactions

on Communications, vol. 25, no. 7, pp. 673–680, 1977.

[45] M. Nakagami, “The m-distribution: a general formula of intensity distribution of

rapid fading,” in Statistical methods in radio wave propagation, pp. 3–36, Elsevier,

1960.

[46] Nakagami, “Some considerations on random phase problems from the standpoint

of fading,” The Institute of Electrical and Communication Engineers Proceedings,

vol. 36, no. 11, pp. 595–602, 1953.

[47] M. A. Taneda, J.-I. Takada, and K. Araki, “The problem of the fading model

selection,” IEICE Transactions on Communications, vol. 84, no. 3, pp. 660–666,

2001.

110



[48] M. Yacoub, G. Fraidenraich, and J. Santos Filho, “Nakagami-m phase-envelope

joint distribution,” Electronics Letters, vol. 41, no. 5, pp. 259–261, 2005.

[49] M. D. Yacoub, “Nakagami-m phase-envelope joint distribution: A new model,”

IEEE Transactions on Vehicular Technology, vol. 59, no. 3, pp. 1552–1557, 2010.

[50] N. C. Sagias and G. K. Karagiannidis, “Effects of carrier phase error on EGC

receivers in correlated Nakagami-m fading,” IEEE Communications Letters, vol. 9,

no. 7, pp. 580–582, 2005.

[51] R. K. Mallik, “A new statistical model of the complex Nakagami-m fading gain,”

IEEE Transactions on Communications, vol. 58, no. 9, pp. 2611–2620, 2010.

[52] L. Rayleigh, “XII. on the resultant of a large number of vibrations of the same

pitch and of arbitrary phase,” The London, Edinburgh, and Dublin Philosophical

Magazine and Journal of Science, vol. 10, no. 60, pp. 73–78, 1880.

[53] S. Rice and N. Wax, “Statistical properties of random noise currents,” 1954.

[54] M. K. Simon and M. Alouini, Digital communication over fading channels: A Unified

Approach to Performance Analysis. New York: Wiley, 2001.

[55] J. Liu, J. Dai, J.-Y. Wang, J. Zhao, and C. Cheng, “Achievable rates for full-

duplex massive MIMO systems over Rician fading channels,” IEEE Access, vol. 6,

pp. 30208–30216, 2018.

[56] Q. Zhang, S. Jin, K.-K. Wong, H. Zhu, and M. Matthaiou, “Power scaling of up-

link massive MIMO systems with arbitrary-rank channel means,” IEEE Journal of

Selected Topics in Signal Processing, vol. 8, no. 5, pp. 966–981, 2014.

[57] Q. Ding, Y. Lian, and Y. Jing, “Performance analysis of full-duplex massive

MIMO systems with low-resolution ADCs/DACs over Rician fading channels,”

IEEE Transactions on Vehicular Technology, vol. 69, no. 7, pp. 7389–7403, 2020.

[58] W. Wongtrairat and P. Supnithi, “New simple form for pdf and mgf of rician fading

distribution,” in 2011 International Symposium on Intelligent Signal Processing and

Communications Systems (ISPACS), pp. 1–4, 2011.

[59] K. Nonami, F. Kendoul, S. Suzuki, W. Wang, and D. Nakazawa, Autonomous flying

robots: unmanned aerial vehicles and micro aerial vehicles. Springer Science &

Business Media, 2010.

111



[60] P. Basset, A. Tremolet, and T. Lefebvre, “Rotary wing UAV pre-sizing: past and

present methodological approaches at onera,” Aerospace Lab, no. 8, pp. 1–12, 2014.

[61] A. Al-Hourani, S. Kandeepan, and S. Lardner, “Optimal LAP Altitude for Maxi-

mum Coverage,” IEEE Wireless Communications Letters, vol. 3, no. 6, pp. 569–572,

Dec. 2014.

[62] F. A. d’Oliveira, F. C. L. d. Melo, and T. C. Devezas, “High-altitude plat-

forms—present situation and technology trends,” Journal of Aerospace Technology

and Management, vol. 8, pp. 249–262, 2016.

[63] T. Lagkas, V. Argyriou, S. Bibi, and P. Sarigiannidis, “UAV iot framework views

and challenges: Towards protecting drones as “things”,” Sensors, vol. 18, no. 11,

p. 4015, 2018.

[64] Y. Zeng, R. Zhang, and T. J. Lim, “Wireless communications with unmanned aerial

vehicles: opportunities and challenges,” IEEE Communications Magazine, vol. 54,

no. 5, pp. 36–42, May 2016.
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