
 

Biblioteca Universitaria 

Área de Repositorio 

Institucional 

Tfno.: 986 813 821 

investigo@uvigo.gal 

 

 

   

 

This article has been published in Systematic Biology by Oxford University Press 

 

Accepted manuscript. 

 

Miguel Arenas, Claudia C. Weber, David A. Liberles, Ugo Bastolla, ProtASR: An Evolutionary 

Framework for Ancestral Protein Reconstruction with Selection on Folding Stability, Systematic 

Biology, Volume 66, Issue 6, November 2017, Pages 1054–1064, 

https://doi.org/10.1093/sysbio/syw121   

 

 

 

General rights: 

© The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic 

Biologists. All rights reserved. 

mailto:investigo@uvigo.gal
https://doi.org/10.1093/sysbio/syw121


 

1 

Software for Systematics and Evolution 1 

 2 

ProtASR: An Evolutionary Framework for Ancestral Protein 3 

Reconstruction with Selection on Folding Stability 4 

 5 

Miguel Arenas1,2,3,4,*, Claudia C. Weber6, David A. Liberles5,6, and Ugo Bastolla3 6 

 7 

 8 
1Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal. 9 

2Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 10 

Porto, Portugal. 11 

3Centre for Molecular Biology Severo Ochoa (CBMSO), Consejo Superior de Investigaciones 12 

Científicas (CSIC), Madrid, Spain. 13 

4Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain. 14 

5Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA. 15 

6Department of Biology and Center for Computational Genetics and Genomics, Temple 16 

University, Philadelphia, PA 19122, USA. 17 

 18 

 19 

Email addresses: 20 

MA: miguelmmmab@gmail.com 21 

CCW: claudia.weber@temple.edu 22 

DAL: daliberles@temple.edu 23 

UB: ubastolla@cbm.csic.es 24 

 25 

 26 

Corresponding author: 27 

Miguel Arenas 28 

mailto:miguelmmmab@gmail.com
mailto:claudia.weber@temple.edu
mailto:tuf77157@temple.edu
mailto:ubastolla@cbm.csic.es


 

2 

Instituto de Investigação e Inovação em Saúde (i3S) 29 

University of Porto 30 

Rua Alfredo Allen, 208   31 

4200-135 Porto, Portugal 32 

E-mail address: miguelmmmab@gmail.com 33 

Phone: +351 220408800 Ext. 6153 34 

 35 

 36 

Running head: ASR accounting for structural constraints 37 

Keywords: ancestral sequence reconstruction, protein evolution, molecular adaptation, 38 

phylogenetics, folding stability, protein structure 39 

mailto:miguelmmmab@gmail.com


 

3 

ABSTRACT 40 

The computational reconstruction of ancestral proteins provides information on past biological 41 

events and has practical implications for biomedicine and biotechnology. Currently available 42 

tools for ancestral sequence reconstruction (ASR) are often based on empirical amino acid 43 

substitution models that assume that all sites evolve at the same rate and under the same 44 

process. However, this assumption is frequently violated because protein evolution is highly 45 

heterogeneous due to different selective constraints among sites. Here, we present ProtASR, a 46 

new evolutionary framework to infer ancestral protein sequences accounting for selection on 47 

protein stability. First, ProtASR generates site-specific substitution matrices through the 48 

structurally constrained mean-field substitution model (MF), which considers both unfolding 49 

and misfolding stability. We previously showed that MF models outperform empirical amino 50 

acid substitution models, as well as other structurally constrained substitution models, both in 51 

terms of likelihood and correctly inferring amino acid distributions across sites. In the second 52 

step, ProtASR adapts a well-established maximum-likelihood (ML) ASR procedure to infer 53 

ancestral proteins under MF models. A known bias of ML ASR methods is that they tend to 54 

overestimate the stability of ancestral proteins by under-estimating the frequency of deleterious 55 

mutations. We compared ProtASR under MF to two empirical substitution models (JTT and 56 

CAT), reconstructing the ancestral sequences of simulated proteins. ProtASR yields 57 

reconstructed proteins with less biased stabilities, which are significantly closer to those of the 58 

simulated proteins. Analysis of extant protein families suggests that folding stability evolves 59 

through time across protein families, potentially reflecting neutral fluctuation. Some families 60 

exhibit a more constant protein folding stability, while others are more variable. ProtASR is 61 

freely available from https://github.com/miguelarenas/protasr and includes detailed 62 

documentation and ready-to-use examples. It runs in seconds/minutes depending on protein 63 

length and alignment size. 64 

https://github.com/miguelarenas/protasr
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INTRODUCTION 65 

The reconstruction of ancestral genes is an intriguing and useful application of evolutionary 66 

biology (Chang and Donoghue 2000; Liberles 2007; Merkl and Sterner 2016). Inferred 67 

ancestral sequences provide knowledge about the evolution of life and the molecules that 68 

sustain it, allowing selection, functional change, or evolutionary paths to be studied. Ancestral 69 

sequence reconstruction (ASR) can also be applied to practical problems (Kodra et al. 2007). 70 

For example, ancestral sequences have been used to inform HIV vaccine development. Ideal 71 

sequences should maintain immunogenic properties while minimizing genetic distances to the 72 

descendant circulating target strains (Gao et al. 2003; Doria-Rose et al. 2005; Kothe et al. 2006), 73 

which may rely on the accuracy of ASR (Arenas and Posada 2010). Another example is the 74 

reconstruction of proteins from extinct organisms, such as enzymes with a higher 75 

thermodynamic stability than extant enzymes (Gaucher et al. 2008; Perez-Jimenez et al. 2011; 76 

Hobbs et al. 2012) that can be used for industrial processes (Thomson et al. 2005; Yamashiro et 77 

al. 2010; Alcalde 2015). In order to be useful for scientific inference as well as for practical 78 

applications, ASR methodologies must be unbiased and obtain ancestral sequences with 79 

realistic properties. 80 

 81 

Most of the available software to perform ASR on proteins is based on a single empirical amino 82 

acid exchangeability matrix that is applied to all protein sites and does not consider protein 83 

folding stability (Kosakovsky Pond et al. 2005; Yang 2007; Ashkenazy et al. 2012). Further, 84 

independence between sites is commonly assumed in order to obtain the computationally 85 

tractable ML functions most currently available methods require. However, it is well 86 

established that considering structural constraints yields more realistic substitution models and 87 

evolutionary inferences (Govindarajan and Goldstein 1997; Bastolla et al. 1999; Parisi and 88 
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Echave 2001; Taverna and Goldstein 2002; DePristo et al. 2005; Bastolla et al. 2006; Bloom et 89 

al. 2006; Goldstein 2011; Grahnen et al. 2011; Liberles et al. 2012; Wilke 2012; Arenas et al. 90 

2013; Huang et al. 2014; Arenas 2015; Arenas et al. 2015; Chi and Liberles 2016; Echave et al. 91 

2016; Bastolla et al. 2017) since thermodynamic stability is an important source of selective 92 

constraint (intrinsically disordered proteins aside). Unfortunately, structurally constrained 93 

models of protein evolution are not yet well-established in the phylogenetic pipeline, mainly 94 

due to the complexity of incorporating site-dependence in ML functions. Of course, it would be 95 

more realistic to also incorporate selection on protein function in light of evidence from 96 

experimental studies that suggests relevant factors such as binding (Kachroo et al. 2015). 97 

However, this requires additional knowledge about the protein family, ad-hoc assumptions 98 

about the constraints on the functionally important sites, and how they may change under 99 

functional selection. Compared to structural constraints, it is challenging to formulate general 100 

rules about functional constraints beyond inter-molecular protein binding. 101 

 102 

In order to capture structural constraints while retaining the computational simplicity of the 103 

independent sites models, we recently proposed a mean-field (MF) substitution model (Arenas 104 

et al. 2015) with constraints on the stability of the native state against both unfolding and 105 

misfolding (Minning et al. 2013). We have shown that accounting for stability against both 106 

unfolding and misfolding states prevents the generation of unrealistically high or low 107 

hydrophobicity (Arenas et al. 2015). The MF model is computed as the site-specific 108 

distribution with independent sites that is closest to a site-nonspecific background distribution 109 

(interpreted as arising from mutations alone), and that constrains the average stability of the 110 

native state. The Lagrange multiplier that imposes this constraint is interpreted as the strength 111 

of selection on folding stability. It is the only free parameter of the model, and is optimized by 112 
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ML. The MF model generates site-specific amino acid replacement matrices that can be 113 

incorporated into phylogenetic methods. Comparisons based on both the likelihood corrected 114 

through the Akaike Information Criterion (AIC) and amino acid distributions across sites, 115 

showed that MF models outperform empirical amino acid substitution models as well as other 116 

structurally constrained substitution models for all of the protein families analyzed (Arenas et 117 

al. 2015). 118 

 119 

Here, we study the performance of MF for reconstructing ancestral proteins accounting for 120 

folding stability, a challenge that may be influenced by the MF modelling of selection on 121 

stability. We developed a user-friendly program called ProtASR to perform ASR under MF 122 

models. We applied ProtASR to sequences simulated under site-dependent models of protein 123 

evolution that consider structural constraints, and compared the reconstructed sequences to 124 

those obtained with site-homogeneous models. We found that proteins reconstructed with MF 125 

models are less biased towards higher stability and closer to the folding stability of the 126 

simulated proteins. We applied the new framework to reconstruct the history of the folding 127 

stability of Prokaryotic protein families analyzed in a previous study (Bastolla et al. 2004) and 128 

observed considerable variability in the evolution of thermodynamic properties through time. 129 

  130 

NEW APPROACHES: PROTASR 131 

The program ProtASR performs two main steps, the computation of the average and site-132 

specific replacement matrices with a MF model and their incorporation into an ML ASR 133 

method that we adapted to operate with site-specific matrices. 134 
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(1) In the first step, using the MF model the program computes the site-specific amino acid 135 

frequencies that have minimal Kullback-Leibler divergence from background 136 

frequencies subject to constraint on the stability against unfolding and misfolding. The 137 

selection parameter that imposes this constraint and the background frequencies are 138 

fitted through ML, and site-specific substitution rates are obtained by applying a global 139 

exchangeability matrix (Arenas et al. 2015). 140 

(2) These site-specific substitution matrices and the corresponding global matrix are 141 

incorporated into a modified version of the program PAML (Yang 2007), which allows 142 

both marginal and joint ML ASR. In the first step the global substitution matrix is 143 

applied to optimize the branch lengths for all sites. In the second step, ASR is 144 

performed for each site by considering the branch lengths obtained in the first step. To 145 

be able to meaningfully perform these computations, PAML was modified to 146 

circumvent the step that internally normalizes the rate matrix and sets the average rate 147 

to one. 148 

 149 

The ProtASR user inputs a multiple alignment of protein sequences, a rooted phylogenetic tree, 150 

a PDB file with a protein structure representative of the alignment (see below) and a set of 151 

parameters to define the MF model. These include the environmental temperature, the 152 

configurational entropies per residue for the unfolded and misfolded states, the source of the 153 

background amino-acid frequencies (user-specified, derived from the protein structure or 154 

derived from the alignment) and the exchangeability matrix needed to compute the substitution 155 

rates, which may either correspond to an empirical substitution model or be internally 156 

computed from evolutionary parameters at the nucleotide level (e.g., nucleotide frequencies and 157 

transition/transversion rate ratio). Detailed information and recommendations about the input 158 
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parameters are provided in the software documentation. Computation is efficient and times 159 

range from seconds to minutes depending on protein length and number of sequences (see 160 

Table 1). 161 

 162 

TABLE 1. Protein families studied. For each protein family, the table indicates Pfam code, 163 

gene, UniProt entry for a protein sequence with a PDB structure, PDB code, protein length, 164 

alignment size (number of leaves), sequence identity and the time taken by ProtASR to perform 165 

the ASR under the MF model on an Intel® Core® i7 CPU 2.5GHz processor. 166 

 167 

Entry Protein Family Gene Pfam 
code 

Uniprot 
code 

PDB 
code 

Protein 
length 

Sample 
size 

Seq Id 
(%) 

Computing 
Time (s) 

1 D-ala D-ala 
ligases 

DDL PF07478 DDLB_E
COLI 

1IOV 399 42 39.7 67.3 

2 Chaperone 
proteins dnaK 

DNAK PF00012 DNAK_
ECOLI 

1DKZ 251 38 58.9 35.7 

3 Triosephosphat
e isomerases 

TPIS PF00121 TPIS_EC
OLI 

1TRE 276 32 43.4 42.8 

4 Tryptophan 
synthases  
chain 

TRPA PF00290 TRPA_S
ALTY 

1A50 276 25 47.4 38.5 

5 Thioredoxins I TRXB PF00070 TRXB_E
COLI 

1TDE 375 28 46.4 53.4 

6 SH2 domain SH2 PF00017  1D4T 104 10 69.8 9.3 
 168 

 169 

ProtASR assumes that the input protein structure is representative of the proteins included in 170 

the alignment and therefore, protein sequences should fold into structures. This is a reasonable 171 

assumption since protein structures are typically conserved over the range of protein sequence 172 

divergence in a gene family (Illergard et al. 2009; Pascual-Garcia et al. 2009). To simplify 173 
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computations and reduce potential artefacts from calculated structures that are not protein-like, 174 

ProtASR assumes perfect conservation of the protein structure through the evolutionary history 175 

of the analyzed protein family. Additionally, one sequence in the input alignment must 176 

correspond to the sequence of the input PDB structure (or alternatively, the input alignment and 177 

the sequence of the input PDB file must contain an equal number of sites that are homologous 178 

without gaps) to allow unambiguous alignment between the structure and sequences. 179 

 180 

EVALUATING PROTASR 181 

We have previously shown that MF models yield a higher likelihood and more realistic site-182 

specific amino acid distributions than empirical substitution models and other structurally 183 

constrained models (Arenas et al. 2015). Here, in order to evaluate the application of MF 184 

models to ASR, we assessed the stabilities of ancestral proteins reconstructed under MF and 185 

empirical substitution models, and compared them to those of simulated ancestral proteins. 186 

 187 

Evaluation with data simulated under the structurally constrained model of protein evolution 188 

adopted in ProteinEvolver 189 

As a first benchmark we analyzed the following Prokaryotic protein families: DDL, DNAK, 190 

TPIS, TRPA and TRXB (Table 1). Each family consists of a putative group of homologs with 191 

extant sequences longer than 200 amino acids with members in many bacterial species 192 

(Bastolla et al. 2004), allowing well-supported phylogenies to be generated. The datasets were 193 

downloaded from the Pfam database, realigned with MAFFT (Katoh and Standley 2013) and 194 

ML phylogenetic trees were reconstructed under the JTT substitution model (Jones et al. 1992). 195 

The trees were rooted with an Eukaryotic protein (or an Eukaryotic group) as outgroup. Next, 196 
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for each family we chose one representative protein with a known PDB structure as the root 197 

sequence and evolved it along the inferred phylogeny 50 times with ProteinEvolver (Arenas et 198 

al. 2013). ProteinEvolver employs a similar energy function with structural constraints as MF, 199 

but it is more realistic because it implements a model with site-dependent constraints, while 200 

MF assumes that sites evolve independently to allow its incorporation into likelihood functions. 201 

We ran ProteinEvolver under a site-dependent model with standard parameters suggested in 202 

Arenas et al. (2013). From each simulation we obtained sequences for all internal and tip nodes. 203 

We then used the multiple sequence alignment (MSA) of the tip nodes to perform ASR under 204 

the empirical JTT model and under the MF model with the exchangeability matrix determined 205 

by the same JTT rate matrix. Hence, the structural constraints captured in MF are the only 206 

difference between the two models. As an additional comparison, we performed ASR under the 207 

CAT model implemented in PhyloBayes (Lartillot et al. 2009), which estimates the exchange 208 

rates and amino-acid equilibrium frequency vectors from the data (Lartillot and Philippe 2004). 209 

Due to the computational cost of these calculations, we considered only the TPIS and TRPA 210 

protein families, which had fewer sequences to consider (technical details about ASR with 211 

PhyloBayes are described in Appendix I of the supplementary material). 212 

Subsequently, we estimated the folding free energy of all inferred ancestral sequences by using 213 

the stability model implemented in ProteinEvolver (Minning et al. 2013), which considers the 214 

free energy difference between the native state and both the unfolded and misfolded states. In 215 

these computations, for each sequence of the MSA the native state is identified as the structure 216 

with the lowest contact free energy among a large number of structures available in the PDB 217 

for the studied protein family. Considering multiple structures is particularly important when 218 

analyzing real protein families in order to reduce the bias to assign a lower free energy to 219 

sequences closer to the sequence of the representative protein. The free energy of the misfolded 220 
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state is estimated through a Random Energy Model (REM) based on the mean and the variance 221 

of the contact energy of generic compact contact matrices and on their estimated 222 

configurational entropy (Minning et al. 2013) and the free energy of the unfolded state is 223 

estimated through its configurational entropy. Finally, we calculated the bias (signed difference 224 

between average values) and the Root Mean Square Error (RMSE) of the folding free energies 225 

estimated for the simulated sequences and the inferred sequences derived from both MF and 226 

empirical models. 227 

 228 

For all protein families, ancestral sequences generated through the MF model showed free 229 

energies significantly closer to those of the simulated sequences (that is, smaller RMSE) than 230 

ancestral sequences generated through the empirical model (Figs. 1, 2, S1 and S2, 231 

supplementary material). The improvement of MF models was heterogeneous with respect to 232 

the distance from the reconstructed node to the root (Figs. 1 and S1).  This is consistent with 233 

the expectation that, due to the influence of the substitution model, error increases with 234 

evolutionary distance from extant sequences at tip nodes (e.g., Williams et al. 2006). The error 235 

is largest at the root. MF consistently significantly outperformed the empirical model in terms 236 

of reconstructing the stability at the root (Figs. 2 and S2; Wilcoxon signed-rank test for error p 237 

< 10e-5). Since the root is the sequence of the PDB structure, while other sequences are the 238 

result of simulations, this is an important test that assesses the stability of real protein 239 

sequences. In addition, MF also significantly improved the reconstruction of the stability of 240 

ancestral proteins compared to the CAT model (Fig. S3, supplementary material; Wilcoxon 241 

signed-rank test p < 5.9e-47). 242 

In general, our reconstructed sequences were more stable than simulated or real sequences 243 

(Figs. S1 and S2), a bias also observed in previous analyses (Williams et al. 2006; Goldstein 244 
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2011). Importantly, the MF model reduces this bias when compared to sequences reconstructed 245 

with empirical models (Figs. S1 and S2). While this model explicitly considers the 246 

thermodynamic effects of a substitution, potentially generating more neutral behavior for 247 

destabilizing changes in an already stable protein, it still lacks the segregating deleterious 248 

changes that would be expected to be sampled in any sequence at the tips (or along the tree). 249 

 250 
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 251 

FIGURE 1. RMSE of the computed folding free energy between simulated and 252 

reconstructed ancestral sequences under MF and empirical substitution models. Each 253 

point represents a sequence, and the x-axis represents the evolutionary distance from the root. 254 

Both joint and marginal reconstructions are shown. Note that MF (black squares and circles) 255 

frequently generates ancestral proteins with energies closer (lower RMSE) to the simulated 256 
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proteins, with respect to the empirical model (grey squares and circles), although this effect is 257 

variable among nodes. As expected, the RMSE tends to increase at larger distance from the tip 258 

nodes. Note also the small differences between joint and marginal ASR, which are not 259 

significant. Error bars indicate standard error of the mean over 50 computer simulations. 260 

 261 

 262 
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FIGURE 2. RMSE between the computed folding free energy of the extant and ancestral 263 

sequence at the root –sequence of the PDB– and the corresponding reconstructed 264 

ancestral sequence under MF and empirical substitution models. Both joint and marginal 265 

reconstructions are shown. Note that the MF model always generates ancestral proteins with 266 

energies closer to the extant protein (lower RMSE) compared to the empirical model. Error 267 

bars indicate standard error of the mean over 50 simulations. 268 

 269 

We analyzed the behavior of both MF and empirical models under marginal and joint ASR 270 

reconstructions (Yang 1997). While the joint reconstruction estimates the most likely set of 271 

residues for all internal nodes (the global likelihood is calculated jointly considering all nodes 272 

at once) (Pupko et al. 2000), the marginal reconstruction obtains node by node estimates (the 273 

likelihood is calculated for each node and the global likelihood is obtained from all node-274 

specific values) (Koshi and Goldstein 1996). We found similar results from both joint (RMSE 275 

median error for empirical: 0.0056; median error for MF: 0.005; Wilcoxon signed-rank test p < 276 

10e-14) and marginal reconstructions (median error for empirical: 0.0056; median error for MF: 277 

0.0049; Wilcoxon signed-rank test p < 10e-14). The marginal reconstruction estimates the free 278 

energies slightly more accurately (Figs. 1 and 2).  The difference, assessed by computing the 279 

standard error of the mean over 50 simulations, is significant for the subtraction (Figs. S1 and 280 

S2; Wilcoxon signed-rank test p = 0.00022 for all comparisons) but not for the RMSE.  The 281 

comparison between joint and marginal reconstructions did not depend on the underlying 282 

substitution model, either empirical or MF. 283 

Simulated and inferred ancestral sequences showed that MF and empirical models generally 284 

yield similar sequence divergences (Figs. S4 and S5, supplementary material). Thus, the better 285 

performance of MF in reconstructing the folding stability of ancestral proteins is not due to 286 



 

16 

higher identity between the reconstructed sequences. Nevertheless, the more realistic stability 287 

of the inferred ancestor represents a relevant improvement that addresses an important 288 

limitation of current ASR methods based on ML (see Williams et al. 2006). 289 

 290 

Evaluation with data simulated under an additional structurally constrained substitution model 291 

of evolution 292 

A caveat of the above analysis is that we estimated the stability of reconstructed proteins with a 293 

model similar to the one used to simulate evolution. To analyze whether this similarity explains 294 

the more realistic reconstructions, we also evaluated ProtASR through simulations under the 295 

structurally constrained substitution model utilized by Williams et al. (2006). Briefly, this 296 

model scores the difference in free energy between the native state and the denatured state, 297 

which consists of the unfolded state and misfolded states represented by 50 randomly generated 298 

decoy structures. The free energies are determined through a contact potential with interaction 299 

parameters given by Table VI in Miyazawa and Jernigan (1985), kT = 0.6 kcal/mol and number 300 

of alternative states N = 10e54 (so that 3.4 conformations were available for each of the 104 301 

amino acids). Individual nucleotides in the sequence were randomly mutated with a 302 

transition/transversion bias of two. Proposed mutations were stochastically fixed or rejected 303 

one at a time according to the Moran process (Moran 1958) with effective population size Ne = 304 

10e4 and fitness score f corresponding to the fraction of correctly folded protein, where 305 

f=1/(1+exp(G/kT)). 306 

This model was applied to Human SAP protein (PDB: 1D4T), a member of the SH2 domain 307 

family (Table 1). The sequences were simulated along a randomly chosen tree with 10 terminal 308 

nodes after allowing the branch leading up to the root to burn into the model (that is, letting 309 

sequences evolve until the energy gap reached an asymptote with approximately similar density 310 
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above and below the mean). Next, a neighbor-joining tree was inferred for each simulated 311 

alignment. As described above, we applied ProtASR to the simulated sequences at the tip nodes 312 

under both MF and the empirical model. Then, we estimated the folding free energies of the 313 

simulated and reconstructed ancestral proteins (following the procedure described in the 314 

previous section) and computed the RMSE and the bias between the simulated and estimated 315 

folding free energies. 316 

 317 

ASR under MF generated ancestral sequences with energies closer to the energies of the 318 

simulated sequences compared to the empirical model (Figs. 1, 2, S1 and S2, SH2 at the bottom 319 

right; Wilcoxon signed-rank test for marginal error p < 10e-5). Again, the difference was more 320 

evident for the most ancestral node (Figs. 2 and S2), which displayed significant differences 321 

(assessed by comparing the standard error of the mean to simulations; Wilcoxon signed-rank 322 

test for marginal error p = 0.02673). However, the variation was smaller (a lower proportion of 323 

ancestral nodes present differences between models) than in the above benchmark where we 324 

applied a similar model of protein stability to simulate protein evolution and to compute the 325 

free energy of reconstructed and simulated proteins, suggesting that part (but not all) of the 326 

improvement in reconstructing ancestral stability may be explained by the similarity between 327 

the evolutionary process and the procedure to compute stability. Marginal and joint ASR again 328 

produced similar results (Figs. 1 and 2, bottom right). Divergence between the simulated and 329 

inferred ancestral sequences did not differ between MF and the empirical model (Figs. S4 and 330 

S5, bottom right), as was also seen for the simulations performed with ProteinEvolver. 331 

 332 
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PROTEIN FOLDING THERMODYNAMICS OF ANCESTRAL PROKARYOTIC PROTEINS 333 

To illustrate how ProtASR can be applied to empirical data, we reconstructed the history of the 334 

protein folding thermodynamics of 5 extant Prokaryotic protein families (DDL, DNAK, TPIS, 335 

TRPA and TRXB; Table 1). These protein families allow investigating variations in 336 

thermodynamic properties of orthologous proteins that are likely to be due to the evolutionary 337 

process but not to changes of function (Bastolla et al. 2004). We inferred ancestral protein 338 

sequences for the aligned extant sequences with ProtASR under the MF model, using ML trees 339 

and marginal reconstruction. Using the stability model described in the previous section, we 340 

computed folding free energies for the inferred ancestral and extant sequences. Although we 341 

computed the folding free energy for all nodes, we recommend carefully interpreting internal 342 

nodes with low statistical support (bootstrap values < 0.7). Additionally, note that this is a gene 343 

tree and may differ from the species tree (Maddison 1997; Mallo et al. 2016), and therefore 344 

results should be interpreted at the protein/gene level rather than at the species level. 345 

 346 

We found different levels of variation in free energy depending on the protein family, as well 347 

as the clades within a family (Figs. 3 and S6-S9, supplementary material). All studied protein 348 

families showed periods of increased, conserved and decreased folding stabilities through time 349 

(Fig. 4), consistent with a seascape model of protein evolution (Mustonen and Lassig 2009). 350 

The DDL enzyme family showed decreases in most lineages through time [e.g., remarkable in 351 

the species CAUCR (Caulobacter crescentus) and ZYMMO (Zymomonas mobilis)] (Figs. 3 352 

and 4), a trend also found in TRPA (Figs. 4 and S8). DNAK, TPIS and TRXB had a similar 353 

number of branches with increased and decreased folding stabilities (Fig. 4). The chaperone 354 

DNAK and the Thioredoxin TRXB presented overall low variability in folding energies for all 355 

present and inferred sequences (Figs. 4, S6 and S9). Interestingly, chaperones exhibit signatures 356 
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of strong selective pressure, in particular in endosymbiotic bacteria where they are highly 357 

expressed (Ishikawa 1984; Aksoy 1995; Warnecke and Rocha 2011), presumably to buffer 358 

against destabilizing changes that occur more frequently in small effective populations 359 

(Bastolla et al. 2004). We detected overall positive correlations between the free energy 360 

variation and the branch length (Figs. S10 and S11, supplementary material). 361 

 362 

 363 

FIGURE 3. Folding free energy of the inferred ancestral proteins of the DDL protein 364 

family. The figure shows the ML phylogenetic tree (rooted to distinguish the paralogous genes 365 

DdlA and DdlB) with the following information for every node: Node number n, bootstrap bp 366 
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(only for internal nodes different to the root) and energy E of the corresponding sequence into 367 

the selected protein structure of the PDB. 368 

 369 

 370 

FIGURE 4. Histogram of folding free energy variation in branches (GAncestralSequence - 371 

GRecentSequence) for the studied protein families. A negative free energy variation of a branch 372 
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indicates that the sequence of the ancestral node is more stable than the sequence of the 373 

descendant node. A positive value indicates the contrary. 374 

 375 

DISCUSSION 376 

MF models have previously been shown to more realistically represent the evolutionary process 377 

than empirical amino acid models and other structurally constrained models (Arenas et al. 378 

2015), despite sharing the simplifying assumption of independently evolving sites. Here, we 379 

developed a new tool that applies MF to ASR of proteins. Our program ProtASR infers 380 

ancestral proteins while effectively accounting for stability constraints against both misfolding 381 

and unfolding, and it runs essentially in the same time as empirical models that do not consider 382 

structural constraints. We found that ancestral proteins reconstructed under MF have folding 383 

stabilities closer to those of simulated and extant proteins than proteins reconstructed through 384 

the empirical model or through a CAT model.  It has been previously shown that ancestral 385 

sequences reconstructed with maximum likelihood methods tend to appear more stable than 386 

simulated or real sequences (Williams et al. 2006; Goldstein 2011). We found that this result 387 

also holds when applying MF as a substitution model, but that MF reduces the bias towards 388 

increased stability of reconstructed sequences. This finding is counterintuitive, since one might 389 

expect that the stability constraints considered in the MF model might have further increased 390 

the stability of reconstructed proteins, and it suggests that accounting for protein stability 391 

results in reconstructed ancestral proteins whose stability is more realistic, and not just stronger, 392 

than those obtained in the absence of structural constraints. 393 

We advise users of ProtASR that care should be taken when specifying the input parameters, 394 

such as the temperature, the configurational entropies, or the exchangeability matrix used by 395 
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MF to compute the substitution rates. For first-time users we recommend using the default 396 

parameter values provided in the documentation and examples, since we have tested them on a 397 

variety of protein families (Arenas et al. 2013; Arenas et al. 2015 and the present work). 398 

Our results suggest that ProtASR can be applied to estimate the history of protein stability in 399 

protein families, as we illustrate with five orthologous prokaryotic protein families. We find 400 

that protein stabilities vary through time in a complex manner, and ancestral proteins are not 401 

necessarily more stable than their descendants, contrasting with results obtained with simpler 402 

models (see Williams et al. 2006). Variations of protein stability along branches of the 403 

phylogenetic tree are consistent with a seascape model of protein evolution based on 404 

compensatory changes (Mustonen and Lassig 2009). More specifically, several lineage-specific 405 

biological processes may influence stability variations: (i) changes in effective population size 406 

that modulate natural selection (for instance passing from free living to intracellular lifestyles), 407 

(ii) changes in environmental temperature, which can affect the evolutionary process (at low 408 

temperature proteins evolve more neutrally, since the relationship between the free energy and 409 

the fraction of folded protein is more sigmoidal, and therefore smaller stabilities are sufficient 410 

to fold proteins (Serohijos and Shakhnovich 2014), (iii) changes in mutation rate and in 411 

mutation bias, which can also affect the protein stability that an evolving population can 412 

achieve (Mendez et al. 2010), or most interestingly, (iv) positive selection due to changes in 413 

protein function (e.g., Pascual-Garcia et al. 2009). Such effects, including discussions of how to 414 

model them, have recently been reviewed (Anisimova and Liberles 2012; Chi and Liberles 415 

2016). Another advantage of the present framework is that it considers stability against both 416 

unfolding and misfolding, which may have evolutionary trade-offs (Mendez et al. 2010; Zheng 417 

et al. 2013). Overall, ProtASR is a useful tool in the phylogenetic toolbox, reflecting an 418 
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advance over other methods currently available as software for the important problem of 419 

ancestral sequence reconstruction. 420 

 421 

SUPPLEMENTARY MATERIAL 422 

Supplementary Figures S1-S12, Appendix I and access to the studied data are available at 423 

Systematic Biology online (http://sysbio.oxfordjournals.org/). 424 

 425 

AVAILABILITY 426 

ProtASR is written in C and Perl and it is freely available under the GPL license. Source code, 427 

executable files, a variety of ready-to-use examples and detailed documentation are available 428 

from https://github.com/miguelarenas/protasr. The program DeltaGREM to estimate the folding 429 

free energy against the unfolded and the misfolded state is available at 430 

https://ub.cbm.uam.es/software/Delta_GREM.php and accepts as input a list of protein 431 

structures and, optionally, a MSA or a list of mutations. 432 
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