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Abstract 
Motivation: Models of molecular evolution aim at describing the evolutionary processes at 

the molecular level. However, current models rarely incorporate information from protein 

structure. Conversely, structure-based models of protein evolution have not been 

commonly applied to simulate sequence evolution in a phylogenetic framework and they 

often ignore relevant evolutionary processes such as recombination. A simulation 

evolutionary framework that integrates substitution models that account for protein 

structure stability should be able to generate more realistic in silico evolved proteins for a 

variety of purposes.  

Results: We developed a method to simulate protein evolution that combines models of 

protein folding stability, such that the fitness depends on the stability of the native state 

both with respect to unfolding and misfolding, with phylogenetic histories that can be 

either specified by the user or simulated with the coalescent under complex evolutionary 

scenarios including recombination, demographics and migration. We have implemented 

this framework in a computer program called ProteinEvolver. Remarkably, comparing 

these models with empirical amino acid replacement models, we found that the former 

produce amino acid distributions closer to distributions observed in real protein families, 

and proteins that are predicted to be more stable. Therefore, we conclude that evolutionary 

models that consider protein stability and realistic evolutionary histories constitute a better 

approximation of the real evolutionary process. 

Availability: ProteinEvolver is written in C, can run in parallel, and is freely available 

from http://code.google.com/p/proteinevolver/. 

Contact: marenas@cbm.uam.es, ubastolla@cbm.uam.es 

Supplementary information: Supplementary data are available at Bioinformatics online. 

http://code.google.com/p/proteinevolver/
mailto:marenas@cbm.uam.es
mailto:ubastolla@cbm.uam.es
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1 Introduction 

The simulation of molecular evolution is commonly used to mimic real world processes, 

allowing the study of complex systems that are analytically intractable or to understand the 

mechanisms by which an evolutionary process is modified (Arenas, 2012; Arenas, 2013; 

Hoban et al., 2012). A key mechanism in the simulation of molecular sequences is the 

substitution or replacement process. Markov substitution/replacement models are 

commonly used in population genetics and molecular evolution to mimic evolutionary 

processes at the molecular level (see for a review Liò and Goldman, 1998). Nevertheless, 

most substitution models assume that sites evolve independently, and they cannot 

incorporate information on the structural and functional role of amino acids within 

proteins, which is determined by the interactions of different sites. It is known that these 

interactions may lead to non-independent evolution since the evolutionary rate at a site is 

influenced by substitutions at neighboring sites (e.g., Berard and Gueguen, 2012 and 

references therein). Moreover, the conformational diversity of proteins may also influence 

their molecular evolution (Javier Zea et al., 2013; Juritz et al., 2013). Models of evolution 

that incorporate structure are therefore of increasing importance (Anisimova and Liberles, 

2007; Wilke, 2012). Recently, structurally constrained models of protein evolution have 

been introduced to represent folding stability of a target structure as a proxy for fitness 

(reviewed in Liberles et al., 2012). These models have been studied assuming a neutral 

fitness landscape (e.g., Bastolla et al., 2003; Bastolla et al., 2006; Bastolla et al., 1999; 

Parisi and Echave, 2001; Rastogi et al., 2006; Taverna and Goldstein, 2002a; Taverna and 

Goldstein, 2002b) and as a function of population size (e.g., Goldstein, 2011b; Grahnen et 

al., 2011; Mendez et al., 2010). However, these models have been seldom used to obtain 

evolutionary insights from real data, probably because of the lack of widely available and 

easy-to-use software.  
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Furthermore, proteins simulated under a given substitution process might be unrealistic if 

common evolutionary processes are ignored. For example, recombination constitutes a 

fundamental evolutionary force at the molecular level (Posada et al., 2002) that can affect 

the estimation of different evolutionary parameters, like molecular adaptation (by 

increasing the number of false positively selected sites) (Anisimova et al., 2003; Arenas 

and Posada, 2010a; Kosakovsky Pond et al., 2008), substitution rate (lack of molecular 

clock) (Schierup and Hein, 2000) or ancestral states (Arenas and Posada, 2010b). 

Similarly, population genetics processes such as demographic changes, population 

structure and migration may influence evolutionary histories. For example, branches are 

short when the population size undergoes a bottleneck (e.g., Slatkin, 1996) and deme sizes 

in structured populations may influence the topology of genealogical trees since lineages 

are assumed to be in the same deme to coalesce (e.g., Neuhauser and Tavaré, 2001). These 

aspects could influence the number of substitutions and evolutionary trajectories generated 

in the simulations, which consequently influence the simulated data (Posada, 2001). In our 

view, it is important that a simulation framework allows reproducing and testing these 

evolutionary features in order to be able to address wider biological questions.  

 

In this study, we have implemented structurally-constrained substitution models (hereafter, 

SCS models) that allow for site-dependent substitutions, under neutral and non-neutral 

fitness landscapes that depend on protein stability, in the freely available computer 

program ProteinEvolver, which is able to simulate the evolution of proteins and protein-

coding genes along evolutionary histories such as phylogenetic trees or ancestral 

recombinant graphs (ARGs). These phylogenetic histories can be specified by the user or 

simulated through the coalescent with recombination, demographics and migration (see the 

reviews, Nordborg, 2000; Wakeley, 2008). Recently, Grahnen and Liberles introduced the 

computer program CASS that simulates protein sequence evolution under selection to fold 
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into a specific conformation (Grahnen and Liberles, 2012). Our program differs from 

CASS in two main aspects: the representation of the protein structure, which influences the 

way in which we treat misfolding stability, and the possibility to represent a broad variety 

of demographic and evolutionary scenarios (for instance varying recombination rates and 

mutation). Whereas Grahnen and Liberles adopt all-atom representations of side chains, we 

adopt contact matrices, which are less precise but allow a statistical mechanical treatment 

of the ensemble of misfolded conformations that is computationally affordable (and 

actually very fast with our approximation) (e.g., Bastolla et al., 2005a; Bastolla et al., 

2005b). Misfolding stability is important because, if only the unfolded state is considered, 

selection tends to artificially favor very hydrophobic sequences. Therefore, the structural 

approach taken by the two programs is complementary, and each of them may be suited to 

address different kinds of biological questions.  

Through extensive simulations we compared the SCS models with commonly used 

empirical amino-acid substitution models using as a benchmark 10 well-known protein 

families. We found that sequences simulated under our SCS models produce amino acid 

distributions closer to the observed ones. Furthermore, the folding stability of the native 

state, assessed by building structural models by homology and predicting their stability 

with a method different from the one adopted in the simulations, is significantly larger for 

proteins simulated under the SCS model. We conclude that substitution models that 

incorporate protein structure information are better approximations to the real evolutionary 

process and may provide more meaningful evolutionary inferences than site-independent 

substitution models. 

 

2 Methods and algorithms 

We simulate protein evolution in two main steps. First, the genealogy is either specified by 
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the user or it is simulated using the coalescent optionally modified with recombination, 

migration and demographics. Second, protein-coding genes and protein sequences are 

evolved along this genealogy under a given substitution or replacement model.  

2.1 Simulation of genealogies 

Genealogies are simulated according to the standard coalescent process (Kingman, 1982) 

modified with recombination (Hudson, 1983), demographics and migration (Hudson, 

1998). Recombination can be either homogeneous or heterogeneous (recombination 

hotspots and coldspots) across the sequence following the algorithm developed by Wiuf 

and Posada (2003). Note that the simulation of recombination events leads to reticulate 

nodes and, consequently, to an ARG (Griffiths and Marjoram, 1997). Demographics 

include growth rate and demographic periods by following the algorithms implemented in 

Arenas and Posada (2007; 2010a). Gene flow among subpopulations can be specified 

under island, stepping-stone or continent-island migration models (e.g., Hudson, 1998). In 

addition, longitudinal samples or population/species trees, among other capabilities, can 

also be specified (see Table S1; supplementary material). 

 

2.2 Evolution of proteins along phylogenies 

After the phylogenetic history has been specified, a protein structure and a sequence are 

assigned to the root (the most recent common ancestor -MRCA-, or grand most recent 

common ancestor -GMRCA- in case of recombination). Then, the protein is evolved along 

the phylogeny going forward in time from the root to the tips (see, Yang, 2006) according 

to the SCS model, generating a protein for all internal and terminal nodes in the phylogeny.  

 

Overall, for a given branch the SCS models perform five steps. (i) The number of 

substitutions is computed considering the branch length (number of expected substitutions 
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without considering structural constraints) and the length of the protein  (number of amino 

acids). (ii) A mutation is introduced according to the instantaneous rate matrix (the relative 

rates of change can be used to determine mutational sites). (iii) The folding free energy of 

the mutated protein structure is computed. (iv) The selective effect of the mutation is 

evaluated; it will be accepted or rejected depending on the fixation probability associated 

with the change of fitness (see next section). (v) If the mutation is rejected, the process 

goes to “(ii)” and a new mutation is introduced. If the mutation is accepted, then it the 

mutation is fixed and it becomes a substitution. The five-step process is repeated until the 

number of mutations or substitutions (i) is completed. In this way, fixed mutations 

(substitutions) result in differences among proteins from different evolutionary lineages. 

 

2.2.1 Substitution models based on the stability of the protein structure 

Evaluation of the structural stability of mutated proteins. 

We evaluate the folding stability of a given mutated protein taking into account the 

stability against unfolding and against misfolding. Initially, we estimate the stability of the 

mutated sequence folded into the target structure at the simulation temperature using a 

contact-based free energy function. The contact matrix Cij takes the value 1 if residues i 

and j are ‘close’ (<4.5Å) in space and 0 otherwise. This matrix has been shown sufficient 

to accurately reconstruct the three-dimensional structure of the protein (Vendruscolo et al., 

1997). We assume that the free energy of a protein with sequence A folded into the contact 

matrix C is given by the sum of its pairwise contact interactions: 

 (1)
 

where U(a,b) is the contact interaction matrix that expresses the free energy gained when 

amino acids a and b are brought into contact determined in (Bastolla et al., 1999). For 

proteins that fold with two-state thermodynamics, i.e. for which only the native structure 
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and the unfolded structure are thermodynamically important, stability against unfolding is 

defined as the free energy difference between the folded and the unfolded states, estimated 

as ∆G~E(A,Cnat)+sL. Here Cnat is the native structure, L is the protein length, s is an 

entropic parameter and sL is the free energy of the unfolded state for proteins with two-

states thermodynamics. We use s = 0.074, a value that was determined fitting the above 

equation to a set of 20 experimentally measured unfolding free energies, yielding a 

correlation coefficient r = 0.92. The correlation coefficient between the predicted and the 

observed stability effect of mutations is larger than 0.8 using only two fit parameters, 

which is comparable to state-of-the-art atomistic methods such as Fold-X (Guerois et al., 

2002).  

 

Stability against unfolding is however not sufficient to characterize protein stability. We 

also have to check the stability against compact, incorrectly folded conformations of low 

energy that can act as kinetic traps in the folding process and, in many cases, result in 

pathological aggregations. Stability against misfolding is achieved by natural proteins by 

increasing the energy of key contacts that are frequently found in alternative structures, 

which is termed negative design (Berezovsky et al., 2007; Minning et al., 2013; Noivirt-

Brik et al., 2009) to distinguish it from the positive design that favors protein stability by 

strengthening native interactions. Therefore, stability against misfolding may be influenced 

by mutations at positions that are distant in the native structure. Stability against misfolded 

structures is difficult to estimate, and most models of protein evolution do not consider it 

despite its importance being increasingly recognized (Krishna et al., 2004; Mendez et al., 

2010; Zheng et al., 2013). Here we do consider the set of alternative compact matrices of L 

residues that can be obtained from non-redundant structures in the Protein Data Bank. This 

procedure, called threading, guarantees that the contact matrices fulfill physical constraints 

on chain connectivity, atomic repulsion, and hydrogen bonding (secondary structure), 
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which are not enforced in the contact energy function. The free energy of this misfolded 

ensemble is often estimated with the Random Energy Model [REM, (Derrida, 1981)]: 

(2)
 

where E(A,C) is the mean and 2 is the variance of the energy of alternative compact 

structures (Goldstein, 2011a). This formula holds for temperatures above the freezing 

temperature at which the entropy of the misfolding ensemble vanishes. At lower 

temperatures the free energy maintains the same frozen value (Derrida, 1981). A recent 

study showed that the third moment of the energy cannot be neglected (Minning et al., 

2013), so that the free energy of the misfolded ensemble can be computed as   

where we denote with Uij=U(Ai,Aj) the contact free energy between residues i and j, and 

with <Cij> the contact-specific mean value of the contact between the pair of residues i and 

j in a large set of compact protein structures of the same length L as the target structure.
 

In the present work, we have reduced considerably the computation time
 
approximating the 

above free energy (Minning et al., 2013) with one that only depends on pairs of residues, 

(3)
 

The quantities only depend on the set of alternative contact 

matrices and on protein length L, and they are pre-computed before the simulation starts.  

In this way, we can evaluate how the misfolded free energy changes upon mutation 

performing only order L operations for computing when the 

residue at the mutated site i changes from amino-acid a to b. Thus, the stability of the 

native state is finally evaluated as the difference in free energy between the native, the 
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unfolded and the misfolded states, . 

The statistical properties of alternative contact matrices are computed from a large set of 

protein structures, distributed with the ProteinEvolver package, that can be modified by the 

user. Supplementary Figure S5 shows the histogram of the lengths of the alternative 

structures. 

Note that, even if the two configurational entropies per residue  (unfolded ensemble) and 

 (misfolded ensemble) act additively, the free energy may not simply depend on their 

sum, since it is only that determines the freezing temperature of the misfolded ensemble.   

Relationship between protein stability and fitness. 

Once we have defined protein stability, for modeling protein evolution we still have to 

define how protein stability influences fitness. Our program provides two alternatives. The 

simplest possibility is a neutral fitness landscape where the fitness is a binary variable and 

all proteins with stability above a given threshold, i.e. are considered viable and 

equally fit, whereas all proteins below threshold are considered lethal and therefore 

discarded.  We choose as threshold the folding free energy of the protein sequence A0 in 

the Protein Data Bank . This choice implies that the neutral SCS model 

is not sensitive to variations of the entropy parameters and it is little sensitive to variations 

in temperature. 

Alternatively, we can consider a non-neutral scenario in which the probability of mutations 

being fixed depends on population size. In this case, there will be segregating variation in a 

population. Here, the fitness landscape is modelled in such a way that fitness is an 

increasing function of stability, and in particular it is proportional to the fraction of protein 

that is in the native state (Goldstein, 2011a), 

 (4)
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fi
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f jis t h e fit n es s of t h e m ut a nt, N  is t h e eff e cti v e 

p o p ul ati o n si z e a n d a  =  2  or  1  f or a  h a pl oi d  or  di pl oi d  p o p ul ati o n,  r es p e cti v el y. Gi v e n  t h e 

pr o b a bilit y  of  fi x ati o n, t h e s u c c e ssi o n of  m ut a nt  fi x ati o ns c a n  b e  d e pi ct e d  as  a  M ar k o v  

pr o c ess,  i n w hi c h  t h e g e n ot y p e  of  t h e e v ol vi n g  li n e a g e m o v es  fr o m o n e  s e q u e n c e  t o 

a n ot h er  o n e  a c c or di n g  t o t h e m ut ati o n  a n d  fi x ati o n pr o b a bi liti es. B ot h t h e n e utr al a n d n o n -

n e utr al s c e n ari o s ar e f or m all y e q ui v al e nt t o a M o nt e C arl o pr o c ess i n st atisti c al m e c h a ni cs, 

as dis c us s e d b y S ell a a n d Hir s c h ( 2 0 0 5). T h e m ai n diff er e n c e b et w e e n t h e m is t h at i n t h e 

n e utr al c as e, e v ol v e d pr ot ei ns att ai n t h e mi ni m u m st a bilit y c o m p ati bl e wit h vi a bilit y 

( w hi c h i n t his c as e is a p ar a m et er of t h e m o d el), as dis c us s e d b y T a v er n a a n d G ol dst ei n 

( 2 0 0 2 b), w h er e as i n t h e n o n-n e utr al s c e n ari o st a bilit y i n cr e a s es wit h p o p ul ati o n si z e, a n d it 

als o d e p e n ds, i n a n o n -tri vi al w a y, o n t h e st atisti c al pr o p erti es of t h e m ut ati o n pr o c ess 

( M e n d e z et al. , 2 0 1 0). T h er ef or e, n e utr al si m ul ati o ns d e p e n d o n f e w er p ar a m et er s a n d t h e y 

ar e m or e r o b ust w hil e n o n -n e utr al o n es all o w t o e x pl or e m or e bi ol o gi c al q u esti o ns.   

 

2. 2. 2 Si m ul ati o n of t h e S C S m o d el al o n g a n a n c estr al r e c o m bi n ati o n gr a p h  

S C S  m o d els ar e sit e -d e p e n d e nt, s o t h e si m ul ati o n a cr o ss a n A R G is n ot str ai g htf or w ar d, 
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since recombination events put together in the same sequence sites that have been evolving 

independently along different lineages. In order to evolve the protein as a whole across the 

ARG, we adapted the algorithm developed by Arenas and Posada (2010a) to evolve codons 

“broken” by recombination (see Figure 1). The protein evolution occurs from the ancestral 

to the descendant nodes (see, Yang, 2006). However, if the evolutionary process reaches a 

recombinant node (Figure 1, nodes in grey), a protein is assigned to such a node (Figure 1, 

step 3), but at this point the evolutionary process continues along another path (Figure 1, 

step 4) because its parental recombinant node remains empty (without an assigned protein). 

This is forced to occur because in the parental recombinant node there is no information 

about the protein, since the evolutionary process did not reach it yet. Later, the 

evolutionary process reaches the parental recombinant node (Figure 1, step 5) and, at this 

point, there are entire proteins assigned to both recombinant nodes. Therefore, now there is 

a combination of the material according to the recombination breakpoint. This combination 

results in a new protein (Figure 1, step 6) that continues the evolutionary process along its 

descendant branch.  

 

3 Fit of the SCP models to real protein families 

We studied 10 protein families in order to compare the performances of the integrated SCS 

models versus the empirical amino acid substitution models. Also, we estimated the 

temperature and entropic parameters that best reproduce the observed data.  

 

We randomly selected 10 different protein families (Table 1) from the Pfam Database 

(http://pfam.sanger.ac.uk/) subject to two requirements: the Pfam seed alignment must 

possess at least 10 proteins and at least one representative structure included in the Protein 

Data Bank (PDB, http://www.rcsb.org/pdb/). For each protein family we downloaded the 

http://pfam.sanger.ac.uk/
http://www.rcsb.org/pdb/
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s e e d ali g n m e nt a n d it s p h yl o g e n eti c tr e e fr o m t h e Pf a m  d at a b as e, a n d c h o s e a 

r e pr es e nt ati v e str u ct ur e fr o m t h e P D B. A mi n o a ci d p o siti o ns n ot i n cl u d e d i n t h e pr ot ei n 

str u ct ur e w er e tri m m e d fr o m t h e ali g n m e nt. T h e e m piri c al a mi n o a ci d r e pl a c e m e nt m o d el 

t h at fitt e d b est e a c h ali g n m e nt w as esti m at e d wit h Pr ot T est ( A b as c al et al. , 2 0 0 5) ( s e e 

T a bl e 1).  

 

F or e a c h pr ot ei n f a mil y, w e si m ul at e d 2 0 0 r e ali z ati o ns of t h e e v ol uti o n ar y pr o c ess u n d er 

t h e b est-fitt e d e m piri c al a mi n o a ci d s u bstit uti o n m o d el al o n g t h e Pf a m  tr e e. W e als o 

p erf or m e d 2 0 0 r e ali z ati o ns u n d er t h e n e utr al S C S m o d el a n d t h e fit n e ss S C S m o d el usi n g 

t h e r e pr es e nt ati v e P D B str u ct ur e. F or b ot h n e utr al a n d fit n e ss S C S m o d els w e e x pl or e d 2 7 

c o m bi n ati o n s of t h e t h er m o d y n a mi c p ar a m et er s t e m p er at ur e ( T = 1. 7 5, 1. 5 0, 1. 3 0), 

c o nfi g ur ati o n al e ntr o p y p er u nf ol d e d r esi d u e ( s u = 0. 0 2 5, 0. 0 5, 0. 0 7 5) a n d c o nfi g ur ati o n al 

e ntr o p y p er misf ol d e d r esi d u e ( s c= 0. 0 2 5, 0. 0 5, 0. 0 7 5), p erf or mi n g a t ot al of 1 1, 0 0 0 

si m ul ati o ns. F o r t h e fit n es s S C S m o d el w e as s u m e d a n eff e cti v e p o p ul ati o n si z e N = 1 0 0 
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o v er all si mil ar n u m b er of s u bstit uti o n e v e nt s ( T a bl e S 2; s u p pl e m e nt ar y m at eri al) b e c a u s e 

t h e y w er e a p pli e d al o n g t h e s a m e br a n c h l e n gt hs. 
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t h e r m o d y n a mi c c o n diti o n s  
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weights 

  

wi
proportional to the number of aligned residues (excluding gaps) in column i of 

the alignment and summing up to one. The smaller the quantity , the closer the 

observed and simulated distributions are. 

 

Remarkably, we found that sequences simulated under the neutral SCS model are always 

closer to the observed distribution than sequences simulated under the empirical 

substitution model (see Figures 2 and S1; supplementary material). Varying the 

temperature or the configurational entropy parameters did not affect the divergence of the 

neutral SCS simulations, as it could be expected since the difference between the estimated 

 and the neutral threshold  is independent of the entropic parameter and it 

depends only weakly on temperature.   

 

On the other hand, the divergence of the fitness SCS model clearly depended on the 

particular thermodynamic parameters (see Figures 2 and S2; supplementary material). The 

average agreement between predicted and observed site-specific amino acid distributions 

in the fitness SCS model reached a minimum for the combination of entropic and 

temperature parameters (see Figure S3, minimum in the left plot), where its value was 

similar to the one produced by the neutral model that used as threshold the free energy of 

the sequence in the PDB (Figure S3, right plot). These optimal thermodynamic parameters 

were achieved for T(su+sC)=0.16. Interestingly, for some protein families, the fitness SCS 

model with optimal parameters was significantly less divergent from the observed 

distribution than the neutral SCS model (see Figure 2). However, for some protein families 

the fitness SCS model with the ‘worst’ parameter values had a similar divergence from the 

observed sequences as the empirical substitution models. These findings indicate that the 

neutral SCS model is more robust, and suggest that it should be used by default, whereas 
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the fitness SCS model may be used for refinement with well calibrated thermodynamic 

parameters, as shown in Figure S3 (left). Comparisons between real sequence families, 

SCS simulations and simulations based on empirical amino acid substitution models are 

shown as sequence logos in Figure S6 (supplementary material). 

 

3.2 Structural assessment of simulated proteins respect to the real proteins 

We also assessed how much a simulated protein sequence fits a representative protein 

structure of its family by using homology modeling techniques (Marti-Renom et al., 2000). 

For each protein family, 200 sequences simulated under the neutral SCS model and under 

the best-fit empirical site-independent substitution model, were modeled using the 

Modeller software (Eswar et al., 2006; Sali and Blundell, 1993). For each simulated 

sequence, 20 structural models were generated and they were assessed through their 

discrete optimized protein energy (DOPE) score (Shen and Sali, 2006), an effective energy 

function designed for selecting the best model built by Modeller. Note that this energetic 

score is independent from the one used in the SCS models. Then, we selected the 

sequence-structure pair with the lowest DOPE energy, whose sequence identity with the 

template is reported in Table S3 (supplementary material). We computed the DOPE 

energies for the experimentally known sequence-structure pair and for the best structural 

models of proteins simulated with the neutral SCS model and the best-fit empirical 

substitution model. Clearly, proteins simulated with the SCS model resulted in better 

sequence-structure pairs than proteins simulated with the empirical amino acid substitution 

model (see Figures 3 and S4; supplementary material). This result is not surprising, since 

we observed that the DOPE score was correlated with the contact energy of the native 

structure for proteins simulated under the SCS model. However, the two empirical energy 

functions were derived under different assumptions, therefore the DOPE score may be 
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regarded as another confirmation of the quality of our models. Of course it is expected that 

models based on substitution matrices, which do not take into account the structure, 

produce proteins that are less stable than proteins simulated under SCS conditions. 

Nevertheless the explicit proof of this expectation is a necessary test to assess the necessity 

of SCS approaches. 

 

4 Software implementation 

We implemented the algorithms described above in the program ProteinEvolver. The full 

list of capabilities of ProteinEvolver is shown in the Table S1. ProteinEvolver is written in 

C, it can be run in parallel using MPI and it is freely available under the GNU GPL license 

from http://code.google.com/p/proteinevolver/. The package includes executables, source 

code, a detailed documentation and several practical examples (including the files and 

settings to mimic the evolution of the real proteins described and analyzed in the previous 

section).  

 

5 Discussion 

During protein evolution, interactions within the protein structure lead to correlated 

evolution, since the rate at which a site experiences change is influenced by replacements 

at neighboring sites. To adequately model these correlations, we developed the simulation 

framework ProteinEvolver that integrates structure-based models of protein evolution and 

evolutionary histories that can be simulated under diverse evolutionary scenarios such as 

recombination (including hotspots and coldspots), migration and demographics. 

Importantly, our SCS models consider both the stability against unfolding and the stability 

against misfolding, which is difficult to estimate since it requires the use of a set of 

alternative conformations, and it is frequently neglected in simulations of protein evolution 

http://code.google.com/p/proteinevolver/
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despite the importance of negative design. Moreover, our approximation of the free energy 

of the misfolded state (Minning et al., 2013) allow us to estimate the effect of each 

mutation on both unfolding and misfolding performing a number of computations that 

grows only linearly with the number of amino acids. As a consequence, these models can 

be applied along long phylogenetic histories. 

The recently developed CASS tool (Grahnen and Liberles, 2012) can simulate protein 

sequence evolution accounting for selection to fold into a specific conformation. CASS is 

based on an all-atoms representation of the protein and adopts an atomistic force fields, 

which can make it more accurate than our contact-matrix based method (although it is 

known that contact matrices allow to reconstruct all atoms coordinates with precision), but 

limits its treatment of the misfolded ensemble, which is important to avoid bias towards 

hydrophobic sequences that are often unrealistically favored by energy functions, although 

additional considerations in the latter might avoid this effect. An important characteristic of 

CASS, not included in our program, is that it allows selecting for structures that bind a 

target molecule, therefore allowing investigating an important aspect of protein function 

(which is, nevertheless, intimately related with structural stability (e.g., Lukatsky et al., 

2007)). 

Another important feature of our framework, that is not present in the CASS approach, is 

that it allows modeling evolutionary mechanisms other than point mutations, such as 

recombination, which has been shown to be a key element in protein engineering (Carbone 

and Arnold, 2007) and could affect structural constraints (Archer et al., 2008; Simon-

Loriere et al., 2009). For example, Xu et al. (2005) have shown that recombination may 

influence structural divergence. In addition, we can simulate molecular evolution in 

population genetics scenarios including demographics, population structure and migration, 

which allows to address a wide range of biological problems by investigating how these  

evolutionary scenarios influence the properties of the evolved sequences by altering the 



 18 

underlying genealogies and the properties of the substitution process, which in non-neutral 

fitness landscapes strongly depend on population size. But also the opposite, how including 

or ignoring structural considerations can affect population genetic inferences (i.e., 

inferences on recombination, demographics or migration). 

 

We assessed the performance of the SCS models versus more traditional empirical 

replacement matrices. For all 10 protein families studied and tested combinations of 

temperature and configurational entropy parameters, the neutral SCS model always 

simulated sequences with amino acid frequencies closer to the observed ones than the best-

fit empirical amino acid replacement model. On the other hand, the fitness SCS model may 

outperform the neutral model under optimal thermodynamic parameters, but it is very 

sensitive to the correct choice of parameters. Consequently, we recommend the use of the 

neutral SCS substitution model by default since it is more robust, while the fitness SCS 

model should be only used with the default thermodynamic parameters, in which case it 

may simulate more realistic proteins for some protein families. This difference stems from 

the fact that the non-neutral model optimizes protein stability when the population size is 

large, and it may bias the evolutionary process if the thermodynamic model is not reliable. 

On the other hand, we think that this dependence on parameters is reassuring, since it 

shows that the agreement between observed and simulated distributions that 

ProteinEvolver achieves is not a trivial result.  

 

The benefits of using the SCS substitution models instead of the empirical substitution 

models were also observed by evaluating the adequacy between the simulated sequence 

and its best homology model with the DOPE energy. In particular, we found that the DOPE 

energy from proteins simulated by the SCS neutral model was always more negative (more 

stable three dimensional proteins) than proteins simulated under the empirical substitution 
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model, although, not surprisingly, less negative than the energy of the experimentally 

observed sequence-structure pair. These findings were expected because the empirical 

models consider independent sites and therefore they are unable to account for physical 

interactions that promote stability (e.g., Pollock et al., 2012; Rodrigue et al., 2005). 

Nevertheless, they constitute a minimal test that indicates the consistency of SCS models 

and confirms the limitation of empirical substitution matrices.  

 

The consideration of structural information should result in more sensitive and more 

accurate representations of molecular evolution than those based on sequence data alone 

(Wilke, 2012). Our structure-based models could help for a more realistic benchmarking of 

methods trying to take into account site-dependency induced by protein structure (e.g., 

Grahnen et al., 2011; Nasrallah et al., 2011) and the important influences of the unfolded 

and misfolded configurations on the protein stability (Bastolla and Demetrius, 2005; 

Mendez et al., 2010; Zheng et al., 2013). At the population level, the framework may help, 

for example: (i) to evaluate the range of proteins that one may expect to observe in 

different populations (where these populations can change their sizes with time and can 

exchange migration), (ii) to validate analytical frameworks (for example, methods for the 

inference of ARGs, ancestral protein reconstruction, recombination breakpoints and 

recombination rates, from proteins or protein-coding genes while accounting for structural 

constrains) or even (iii) to infer evolutionary parameters of interest and carry out model 

choice in an Approximate Bayesian Computation (ABC) approach (Beaumont et al., 2002); 

for example, estimate recombination rates or select among different demographic and 

migration models from protein data while accounting for structural information. At the 

molecular level, the framework may help, for example, to study the influence of 

recombination events on the structure-based stability of the resulting proteins or to perform 

structurally constrained substitution model choice by using ABC. 
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Figures 

 
Figure 1. An example of protein evolution along the ARG. White and grey circles 

correspond to coalescence and recombination parental nodes, respectively. (1) Starting 

from the GMRCA, the protein is evolved along branches according to the SCS substitution 

model and the branch lengths. (3) The process encounters a recombinant node and because 

its parental node has not been assigned to a protein yet, the evolutionary process continues 

towards other direction (4). (5) Later, the process encounters the parental recombinant 

node, and because the other parental has already been assigned to a protein, (6) it combines 

the two proteins according to the recombination breakpoint. 

 

Figure 2. Improvement of the Kullback-Leibler distance to the real protein alignments of 

the simulated alignments by the neutral and fitness SCS models with respect to the 

empirical amino acid substitution model. The “y” axis indicates decline of the distance of 

the neutral and fitness (best and worst conditions) SCS models respect to the distance of 

the empirical model. Note that the neutral SCS model was overall more robust than the 

fitness SCS model under different thermodynamic conditions (see Figures S1A and S1B). 

On the other hand, the fitness SCS model under the best conditions (see Figures S2A, S2B 

and S3, left plot) could improve the neutral model in half of protein families, however the 

worst conditions may lead to results without any improvement respect to the empirical 

model. 

 

Figure 3. DOPE energy computed in the simulated proteins under the empirical and the 

neutral SCS substitution models and in the native protein, for the protein family 

“Phototactive yellow proteins”. Note that the DOPE energy is unnormalized with respect to 

the protein size and therefore scores from different proteins cannot be compared directly. 
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Tables 

 
Table 1. Protein families collected from the Pfam database. For each family, the table 

indicates the Pfam code, sample size, UniProt entry for a protein sequence with a PDB 

structure, the PDB code, number of amino acids and the empirical amino acid substitution 

model that better fits the dataset [+G indicates variable substitution rate across sites 

according to a gamma distribution, +I indicates a proportion of invariable sites and, +F 

indicates amino acid frequencies]. 

 

Entry Protein family Pfam 
code 

Sample 
size 

Uniprot 
entry 

PDB 
code 

Protein 
length 

Best-fit amino 
acid model 

1 Phototactive 
yellow 
proteins 

PF00
989 

49 PYP_HAL
HA 

2PHY 125 WAG +G +F 

2 Triosephospha
te isomerases  

PF00
121 

56 TPIS_TR
YBB 

1TTI 243 RtREV +I  +G 
+F 

3 Rubredoxins PF00
301 

43 RUBR2_P
SEOL 

1R0F 54 WAG +I +G 

4 Kinesins PF00
225 

87 KAR3_Y
EAST 

3KAR 346 LG +I +G +F 

5 Phage 
lysozymes 

PF00
959 

18 LYS_BPT
4 

1OV5 164 Blosum62 +G 
+F 

6 Ferredoxins PF05
996 

62 PCYA_S
YNY3 

3NB8 248 WAG +I +G 

7 DNA ligases PF13
298 

136 B1L4V6_
KORCO 

3P4H 118 WAG +G 

8 Heat shock 
proteins 

PF00
012 

33 DNAK_E
COLI 

2KHO 605 RtREV +G +F 

9 Oxysterol-
binding 
proteins 

PF01
237 

153 KES1_YE
AST 

1ZHT 438 LG +I +G +F 

10 Retroviral 
aspartil 
proteases 

PF00
077 

50 POL_FIV
PE 

3OGQ 116 RtREV +I +G 
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