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Abstract

Smoothed Particle Hydrodynamics (SPH) is a numerical method commonly used in Computational Fluid Dynamics (CFD) to
simulate complex free-surface flows. Simulations with this mesh-free particle method far exceed the capacity of a single
processor. In this paper, as part of a dual-functioning code for either central processing units (CPUs) or Graphics Processor
Units (GPUs), a parallelisation using GPUs is presented. The GPU parallelisation technique uses the Compute Unified Device
Architecture (CUDA) of nVidia devices. Simulations with more than one million particles on a single GPU card exhibit
speedups of up to two orders of magnitude over using a single-core CPU. It is demonstrated that the code achieves
different speedups with different CUDA-enabled GPUs. The numerical behaviour of the SPH code is validated with a
standard benchmark test case of dam break flow impacting on an obstacle where good agreement with the experimental
results is observed. Both the achieved speed-ups and the quantitative agreement with experiments suggest that CUDA-
based GPU programming can be used in SPH methods with efficiency and reliability.
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Introduction

In the study of fluidmechanics, computational fluid dynamics (CFD)

has become commonplace in industry and academic research to

investigate flows of great complexity. The rapid improvement of

computational resources has lead to the development and application

of a variety of mesh-based techniques including finite elements

methods, finite volume and finite difference discretisations. In recent

years, numerous meshless methods have appeared and grown in

popularity as they can be applied to problems that are highly nonlinear

in arbitrarily complex geometries and are difficult for mesh-based

methods. Of the meshless techniques now available, smoothed particle

hydrodynamics (SPH) is proving popular and robust.

As a Lagrangian method, SPH does not require a computa-

tional mesh, and has attracted considerable interest during the

last decade in a variety of fields, in particular, the study of free-

surface flows. Originally invented for astrophysics during 1970s

[1,2], it has been applied to many different fields of fluid

dynamics and solid mechanics. Instead of using a mesh, the SPH

method uses a set of interpolation nodes placed arbitrarily within

the fluid. This gives several advantages in comparison to mesh-

based methods when simulating nonlinear flow phenomena. The

method uses discrete approximations to interpolation integrals to

transform differential equations of fluid dynamics into particle

summations. More complete reviews on standard SPH can be

found at [3] and [4].

The SPH method is capable of dealing with problems involving

large deformation such as free-surface flows, deformable bound-

aries, moving interfaces, wave propagation and solid simulation

[5,6]. However, a short period of physical time for these

applications requires a large computational time when running

on a single central processing unit (CPU) due to the large number

of interactions for each particle at each timestep. This has

hindered the development of SPH and its use by industry for real

problems. Hence, with the objective of performing simulations

that are industrially relevant, the ability to perform computations

involving millions of particles is essential. However, this is only

possible if some form of hardware acceleration is employed.

With present technologies, there are two main options for

implementing hardware acceleration for CFD calculations: (i)

using high-performance computing (HPC) on supercomputers

consisting of thousands of CPU cores, or (ii) using the novel

computing architectures such as Graphics Processing Units

(GPUs) borrowed from the computer games industry. GPUs are

designed to treat large data flows and to render pixels at a several

tens of frames per second. From a computational point of view

they are highly efficient thanks to their multi-threading capability.

Due to the inexorable development of the video games market and
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multimedia, their computing power with streaming multi-proces-

sor technology has increased much faster than CPUs.

Thus, GPUs appear to be an accessible alternative to accelerate

SPHmodels using a powerful parallel programming model where the

graphics cards are used as the execution devices. Their performance

can be compared with large cluster machines. Another important

advantage is the cost and ease-of-maintenance of GPUs in

comparison with large multi-core HPC systems.

The capability of GPUs to simulate SPH was demonstrated by the

pioneering work of Harada [7]. Previously, only parts of the SPH

scheme had been implemented on the GPU device, but in [7] the

entire SPH computation was performed on the GPU. In that paper,

the acceleration of SPH achieved was satisfactory where 60,000

particles were simulated in real time.When conducting tests involving

260,000 particles they obtained speedups of over 28 using a GPU

compared to a CPU. The method proposed was implemented using a

GeForce 8800GTXGPU card and developed before the appearance

of the nVidia Compute Unified Device Architecture (CUDA). It is

worth noting that CUDA is both a programming environment and

language for parallel computing specifically for nVidia GPUs. Thus

Harada’s work represents a significant advance even when most of its

limitations can now be addressed using the advanced GPU

programming features introduced in the latest versions of CUDA.

More recent work using GPUs for SPH can be found in [8], where

the authors computed free-surface flows in coastal environments

using a GeForce GTX280. In the work by Hérault and co-workers

[8,9] the speed-up achieved was on the order of 60 for a calculation

involving more than 600,000 particles. In the fields of other meshless

methods, one of the most recent implementing GPU flow solvers was

performed for vortex particle methods [10], where the new solver was

almost 30 times faster than their single-core CPU code.

SPHysics is an SPH numerical model developed in a collaborative

effort amongst researchers at the Johns Hopkins University (US), the

University of Vigo (Spain) and the University of Manchester (UK)

(http://www.sphysics.org). Written initially in FORTRAN, a

complete description of the software is found in the SPHysics user’s

guide [11]. The SPHysics group has focused its research mainly on

wave propagation and interaction with coastal structures, both in 2D

[12–14] and 3D [15–18]. Although the method allows a fine

description of the flow in the nearshore areas, its main drawback is its

high computational cost, so that the model cannot be efficiently

applied over large domains. Hence, hardware acceleration must play

an integral role in the development and application of SPH, and

GPUs represent an accessible route for this objective. As a result the

combined CPU-GPU code named DualSPHysics has been devel-

oped starting from the SPH features implemented in the FORTRAN

SPHysics code. DualSPHysics was designed from the outset to use

SPH for real engineering problems with software that can be run on

either CPUs or GPUs. This DualSPHysics package can be freely

downloaded from www.dual.sphysics.org and different applications

can be viewed at http://www.vimeo.com/dualsphysics/videos.

In this paper, the solver is presented describing the main

performance optimization techniques to implement SPH models

using the GPU architecture. The GPU code will be shown to

achieve up to two orders of magnitude speed-up compared to the

CPU code. In addition, the numerical results will be validated with

experimental data in order to show how the technique combines

the accuracy of the CPU model presented in previous works with

the efficiency of GPU programming.

Methods

The description of the SPH formulation is beyond the aim of

this paper; for a complete review about the main features of this

technique the reader is referred to [3,4,13,19,20]. Here, we will

provide a brief description of the method for solving the governing

equations expressing conservation of mass and momentum. In the

SPH formalism, the fluid domain is represented by a set of points

(particles) scattered in a non-uniform arrangement which is

modified each time step according to the governing dynamics.

Thus, the physical properties of particles (mass, density, pressure,

position, velocity) can change throughout the simulation due to the

interaction of neighbouring points. This interaction depends on a

weighting function, herein referred to as the smoothing kernel.

These smoothing kernels must obey several key properties [19],

namely, positivity inside a defined zone of interaction, compact

support (i.e zero value outside that zone), normalization (partition

of unity) and monotonically decreasing with distance. For most of

the kernels, the weighting function vanishes for inter-particle

distances greater than 2 h. Although, there is a wide variety of

possible weighting functions (see [20] for a complete description),

all the calculations shown in the present manuscript were carried

out with a quintic (Wendland) kernel [21,22].

SPH Form of the Governing Equations
The momentum conservation proposed by [19] has been used

to determine the acceleration of a particle (a) as the result of the

particle interaction with its neighbours (particles b):

dva

dt
~{

X
b

mb
Pb

r2b
z

Pa

r2a
zPab

� �
+aWabzg, ð1Þ

where, v is velocity, P is pressure, r density, m mass,

g= (0,0,29.81) ms22 the gravitational acceleration and Wab the

kernel function that depends on the distance between particle a

and b.

Pab is the viscous term according to the artificial viscosity

proposed in [19]:

Pab~

{a cabmab
rab

vab: rabv0

0 vab :rabw0

8<
: ð2Þ

with mab~
hvab

:rab
r2
ab

zg2
; where rab =ra2rb, vab=va2vb; being ra and

va the position and the velocity corresponding to particle a;

cab~0:5(cazcb)is the average speed of sound, rab~(razrb)=2
the mean density, g2 = 0.01 h2, and a=0.01 a parameter

according to [14,15].

Alternative viscosity treatments have been considered in the

literature; [23] proposed the laminar viscosity to solve problems

involving low Reynolds number flows; [13] adapted the Sub-

Particle Scale (SPS) approach to weakly compressible SPH; [24]

proposed a different approach where viscosity depended on

vorticity. Finally, [25] presented an overview on numerical

modelling of complex turbulent free surface flows within the

SPH context. Evidently, there are viscosity models in SPH that are

more sophisticated than the artificial viscosity approach of

equation (2). For free-surface flows, Monaghan and Kajtar [26]

note that the parameter a in the artificial viscosity model can be

related to the Reynolds number in the following manner

Re~(gD)
1=2D

�
v where D is a characteristic water depth and

v~
1

8
ahccab for a Wendland kernel.

The GPU scheme developed here for millions of particles allows

the investigation of the global effect of implementing different

GPUs in CFD: Validation for SPH Methods
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viscosity models. However, their implementation and assessment

of their accuracy is not the focus of this study, and hence artificial

viscosity is sufficient for the simulations presented herein.

The mass of each particle is constant, so that changes in fluid

density are computed by solving the conservation of mass or

continuity equation in SPH form [19]:

dra
dt

~
X
b

mbvab:+aWab ð3Þ

The equations are closed by using Tait’s equation of state to relate

pressure to density [27,28]:

Pa~B
ra
r0

� �c
{1

" #
, ð4Þ

where c=7 and, B~c20r0=c being r0 = 1000 kg m23 the reference

density and co~c roð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LP=Lrð Þ

p ��
ro

the speed of sound at the

reference density.

In SPH schemes where pressure depends on density through an

equation of state, the formulations are referred to as Weakly

Compressible SPH (WCSPH). Alternatively, other authors have

considered incompressible formulations solving a pressure-Poisson

equation giving rise to strictly incompressible SPH (ISPH)

methods. Numerous authors [29,30,31] have compared both

methods and generally obtained improved pressure fields with the

incompressible approach. Other authors [32], however, concluded

that WCSPH performs at least as well as ISPH and in some

respects even better. In terms of efficiency, WCSPH does not solve

the Poisson equation which is computationally expensive;

however, ISPH generally produces a pressure field with reduced

pressure fluctuations so larger time steps are possible with ISPH.

Overall, the efficiency of both methods is similar and WCSPH is

adopted in the present study. It should be noted for the WCSPH

approach, that the speed of sound must be slowed artificially to

run simulations in reasonable times since the time step derived

from the Courant condition is too small when realistic speeds of

sound are used. Thus, following [33], the speed of sound must be

at least ten times faster than the maximum fluid velocity to keep

density variations within acceptable levels of less than 1%.

Density Filters and XSPH correction
In WCSPH simulations, unphysical oscillations can be observed

in the pressure field which is caused by the stiff equation of state (4)

and inaccuracies in the kernel summation procedure itself (1,3). A

straightforward and computationally inexpensive method to

smooth these pressure oscillations is to perform a filter over the

density of the particles and to re-assign a new density to each

particle as done in [13,34] following [35,36].

The Shepard filter [13,33] is, possibly, the simplest correction to

the density field. In the present work, the filter is applied every

Nf = 30 time steps as described in [4], although different values of

Nf can be considered [34].

For the velocity field, each particle is moved according to the

velocity in its neighbourhood, using the XSPH variant [37]. The

parameter e=0.5 was chosen following previous research

[4,11,12,14,15,16,17] as it prevents particle penetration as stated

in [37]. In general, the influence of XSPH is limited when dealing

with gravity dominated problems, especially for variables such as

water height that correspond to the mean movement of large

volumes of fluid. Other variables, e.g. pressure near boundaries,

are more sensitive to the actual value of e. Local pressure depends

on density according to Eq. 4 and density, itself, depends on the

distance between particles according to Eq. 3. When e=0, the

velocity of each particle is not smoothed using the XSPH

correction, so it is possible that this is fluctuating unphysically in

comparison with the surrounding velocity field of its neighbours.

Hence, a single particle can approach a boundary at high velocity,

giving rise to an unrealistic increase in density and, hence,

pressure. For e values on the order of 0.5, the velocity of every

particle is influenced by the movement of its neighbourhood and

the possibility of a single particle moving much faster than its

neighbours is smaller, reducing the appearance of spikes in

pressure.

Time stepping
As mentioned above, the physical quantities (velocity, density,

position and density) change each time step due to particle

interactions. In SPH time integration schemes must be at least

second order since the particle represent computation points

moving according to the governing dynamics. In particular, a

Verlet [4,13,14,16,38,39] algorithm will be used in the present

work.

A time-step control which depends on the CFL (Courant-

Friedrich-Levy) condition, the forcing terms and the viscous

diffusion term [37] will be considered. The variable time step Dt
will be calculated according to [33].

Boundary conditions
In this work, boundary particles are used to create a repulsive

force to prevent fluid particles from penetrating the limits of the

domain or solid objects. Herein, we will use ‘dynamic’ boundary

conditions previously employed in [4,11,12,14,15,16,39]. These

boundary particles satisfy the same equations of continuity and

state as the fluid particles, but their positions remain unchanged or

are externally imposed. This type of boundary condition is easy to

implement due to its computational simplicity where the

interactions fluid-boundary can be calculated inside the same

loops as fluid particles. For complex boundaries, the choice of this

boundary condition is justified due to the difficulty to calculate

normal and tangent vectors for arbitrary geometries [33].

Implementation on CPU and GPU
The SPH scheme presented in the previous section is

implemented in the DualSPHysics code. The new code was

developed starting from the former Fortran SPHysics model and

implemented using both the C++ and CUDA programming

languages. The code can then be executed either on the CPU or

on the GPU since all computations have been implemented both

in C++ for CPU simulations and in CUDA for the GPU

simulations. The philosophy underlying the development of

DualSPHysics is that most of the source code is common to

CPU and GPU which makes debugging straightforward as well as

the code maintenance and new extensions. This allows the code to

be run on workstations without a CUDA-enabled GPU, using only

the CPU implementation. On the other hand, the resulting codes

should be necessarily different since code developers have

considered efficient approaches for every processing unit. As

explained below, the same programming strategy can be efficient

on a CPU but inefficient on a GPU (or vice versa). Thus,

comparisons between the performances of both approaches are

more reliable since appropriate optimisations have been consid-

ered for every case.

The code is organised in three main stages that are repeated

each time step: (1) creating a neighbour list; (2) computing particle

interactions for momentum and continuity conservation equations;

GPUs in CFD: Validation for SPH Methods
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and (3) time integration referred to as a system update herein.

Figure 1 shows the scheme of the different implementations on

CPU and GPU.

CPU Implementation
The CPU implementation is shown in the upper panel of

Figure 1. The iterative process of the SPH implementation is

shown in the figure using the long thick black arrow connecting

system update and neighbour list.

During the first step the neighbour list is generated. The cell-

linked list described in [40] is implemented. This process can be

divided into different operations: (i) domain division into square

cells of side 2h, (or the size of the kernel domain) following [41], (ii)

determining the cell to which each particle belongs, (iii) reordering

the particles according to the cells, (iv) ordering all arrays with data

associated to each particle and, finally, (v) generating an array with

the position index of the first particle of each cell. This linked list is

described in more detail in [40]. This means that a list of

neighbours for each particle is not created, only a list of particles is

generated. Thus, for a particle located inside a cell, only the

interactions with the particles of neighbouring cells need to be

considered. In this way the number of calculations per time step is

reduced from N2 operations (being N the number of particles) to

approximately N?logN or less.

Secondly, the force computation is performed so that all particle

interactions are solved according to the SPH equations. Each

particle interacts with all neighbouring particles located at a distance

less than 2 h. Only particles inside the same cell and adjacent cells

are candidates to be neighbours. Kernel symmetry, and hence

kernel gradient asymmetry, avoids unnecessary repetition of particle

interactions leading to a minor improvement in performance.When

the force interaction of one particle with a neighbour is calculated,

the force of the neighbouring particle on the first one is known since

they have the same magnitude but opposite direction. Thus, the

number of adjacent cells to search for neighbours can be reduced if

the symmetry in the particle interaction is considered, which

reduces the computational time [11,40].

Finally, the time step is computed and the quantities at step n+1
are calculated from the quantities that are already known at step n.

GPU Implementation
Computational runtime increases dramatically with the number

of particles in the SPH simulations. Hence, parallelisation methods

are essential to run simulations with a huge number of particles in

a reasonable execution time. GPUs constitute a suitable hardware

for scientific tasks where mathematical calculations are carried out

using large sets of data. Consequently, DualSPHysics merges the

accuracy, stability and reliability shown by the former SPHysics

code with the performance enhancement available from GPUs

and CUDA. The work presented in [42] introduced the

framework to implement SPH codes using the best techniques

and performance optimizations on GPU. That work focused on

identifying suitable algorithms for efficient parallelization since a

proper and full use of all the capabilities of the GPU architecture is

not straightforward. As an initial step, the implementation focused

on solving the particle interactions on a GPU using CUDA and

the next step was the implementation of the neighbour list and the

time integration in order to develop an entire GPU-SPH model.

Different neighbour lists were analysed in [40] for the SPHysics

code. Apart from a non-negligible improvement in the perfor-

mance of the model, the work also showed that computing particle

interactions (step 2 mentioned above) is the most expensive SPH

procedure in terms of computational runtime. This influences the

development of a GPU code.

In a first approach, it is possible to keep the other two steps

(neighbour list and system update) on the CPU. However, this is

less efficient since particle data and neighbour list information

must be transferred between both processing units each time step,

which consumes hundreds of clock cycles. The most efficient

option is keeping all data in the memory of the GPU where all

processes are parallelised. Only output data requires transfer from

GPU to CPU. This process is rarely carried out (one out of one

hundred time steps at most) and only represents a low percentage

of the total runtime.

A preliminary version of the DualSPHysics code with a total

GPU implementation was presented in [43]. The lower panel of

Figure 1 represents the GPU implementation. Initially, data is

allocated on CPU, so there is a single memory transfer (from CPU

to GPU). In all subsequent calculations, the three main steps are

Figure 1. Flow diagram showing the differences of the CPU and GPU implementations. Implementation only based on CPU is represented
in the upper part and CPU/GPU implementation is shown in the lower part of the figure.
doi:10.1371/journal.pone.0020685.g001
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then performed on the GPU device. All the sequential tasks and

operations that involve a loop over all particles are performed

using the parallel architecture of the GPU cores. To save (or

output) data, a new memory transfer is needed (from GPU to

CPU). If saving data is not required all particle information

remains on the GPU memory and is only updated each time step.

The neighbour list creation follows the procedure used on a

CPU, but with several differences. Reordering the particles

according to the cells they belong is computed using the optimised

radixsort algorithm provided by CUDA. Figure 2 shows a simplified

schematic diagram of the method used to generate an array of

particle labels ordered according to cells and an array with the

position index of the first particle in each cell. Four separate arrays

are used: Id, Cell, IdSort and CellBegin with a superscript *

denoting sorted arrays. The array Id (array of particle labels) is the

starting point with particles randomly located in the domain,

where the order of this array corresponds to the list of particles

inherited from the previous timestep. The neighbour list is created

according to the following steps:

(i) Particles are stored according to the cells, so the array

IdSort is created.

(ii) The array Cell is also created where an entry gives the cell

to which the particle of the same index in Id belongs, e.g.

Id(2) = particle 3 which is located in Cell 6 hence Cell(2)

= 6. Cell labels are depicted in green colour in Figure 2.

(iii) Using radixsort, array Cell is reordered following the order

of the six cells and Cell* (reordered Cell) is used to reorder

IdSort according to the cells the particles belong.

(iv) Once IdSort* is generated, all the arrays with particle

information (Id, Position, Velocity, Density...) are ordered

giving rise to the new arrays (Id_new, Pos_new, Vel_new,

Dens_new...) considering that Id_new [i] = Id [IdSort* [i]

]. For example, Id_new [2] = Id [IdSort* [2] ] = Id [7]

= 4, in Figure 2 a blue circle marks the particle 4 and a red

circle marks the 7th position.

(v) Finally, CellBegin is created with the indexes (position in

data arrays) of the first particle of each cell. Indexes have

been written in red colour in Figure 2. For example the

first particle of the cell number 2 is the particle 7, whose

position index is 3 in all particle property arrays, so the

second value of CellBegin, which corresponds to cell

number 2, will be 3. In this way, the amount of particles in

the cell k will be CellBegin[k+1]-CellBegin[k].
The system update associated with time integration can be

parallelised easily on a GPU. Example pseudocode is shown in

Figure 3 where similarities between the CPU and GPU versions

Figure 2. Example of the Neighbour list procedure.
doi:10.1371/journal.pone.0020685.g002

GPUs in CFD: Validation for SPH Methods
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are clearly evident and demonstrates the advantages of a using

C++ and CUDA when developing code. The new time step is

computed according to [11] where the maximum and minimum

values of different variables (force, velocity and sound speed) are

calculated. This calculation is optimised using the reduction

algorithm (also provided by CUDA). Reduction algorithm allows

obtaining the maximum or minimum values of a huge data set

taking advantage of the parallel programming in GPUs.

As mentioned above, the particle interactions of the force

computation are a key process that must be implemented in

parallel in order to improve the performance of the model. The

use of the shared memory of the GPU was analysed to reduce the

access to the global memory of the GPU. However, when the SPH

code is implemented entirely on the GPU, this technique is not

viable. For example, when the number of particles is large, the size

of shared memory is not enough to allocate the properties of all the

particles belonging to the same cell. Particle interactions can be

implemented on the GPU for only one particle using one

execution thread to compute the force resulting from the

interaction with all its neighbours. This technique presents several

limitations mainly due to the Lagrangian nature of the method.

On the one hand, the workload of threads inside one block is not

balanced since particles can have different numbers of neighbours.

On the other hand, code divergence can appear since when the

possible neighbours of a particle are evaluated, some of them are

definite neighbours (rijƒ2h) and the force computation is

performed while other particles are not neighbours (rij§2h) and
no computation is performed. Note that according to the link list

described in [11,40] the potential neighbours are all particles

located in adjacent cells. Nevertheless, only those particles at

distances less than 2 h from the target particle are real neighbours.

An important difference here from the CPU part of the

DualSPHysics code is that the symmetry of the particle interaction

cannot be applied on a GPU implementation since each thread is

responsible for the interaction between a target particle and its

neighbours, so that each thread must be the only one that

computes the forces exerted on that particle. The access to the

global memory of the device is irregular because there is no way to

organise the data to get a coalescent access for all the particles. If a

second thread tried to modify those forces, as could occur when

considering particle kernel symmetry, it would generate erroneous

results when both threads accessed simultaneously the same

variable. This effect can be mitigated by synchronising the threads

but it would dramatically reduce the performance of the model.

An example of the similarity of the C++ and CUDA codes for this

illustrative point is shown in Figure 4.

Results

In this section, we investigate the performance of the Dual-

SPHysics code with a standard free-surface benchmark test for

SPH flows, a dam-break experiment, in order to demonstrate the

Figure 3. Pseudocode of the System update procedure implemented on CPU and GPU.
doi:10.1371/journal.pone.0020685.g003

Figure 4. Pseudocode of the Particle interaction procedure implemented on CPU and GPU.
doi:10.1371/journal.pone.0020685.g004

GPUs in CFD: Validation for SPH Methods
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reliability, capability, accuracy and efficiency of the CPU-GPU

solver. The test case was simulated to analyse the agreement

between numerical and experimental data examining the effect of

the number of particles.

The experiment for validation
The experiment described in [44] consists of a dam break flow

impacting with an obstacle. This experiment is considered a

valuable benchmark for the SPH free-surface flow community

(http://wiki.manchester.ac.uk/spheric/index.php/Test2).

The experimental configuration is depicted in Figure 5. The

tank is 3.22 m long, 1 m wide and 1 m tall. The volume of water is

initially confined at one end of the tank in a volume 1.228 m long,

1 m wide and 0.55 m tall and is released instantaneously at the

start of the simulation. With the removal of the retaining wall, the

fluid floods the dry bed of the tank due to gravity.

The experiment [44] provides water heights and pressure

measurements at different locations. Three vertical height probes

(H1, H2, and H3) were used to determine the water height during

the experiment. H3 was placed in the position of the water

reservoir and the other two were placed at different locations along

the tank (Figure 5). Pressures exerted on the obstacle initially

facing towards the water were also sampled to detect the water

impacts.

Figure 5. Experimental configuration of the [44] experiment and measeurement positions for the experimental data: Side view, top
view and location of pressure sensors.
doi:10.1371/journal.pone.0020685.g005

GPUs in CFD: Validation for SPH Methods

PLoS ONE | www.plosone.org 7 June 2011 | Volume 6 | Issue 6 | e20685



Numerical results
The SPH simulations were carried out using the DualSPHysics

code. Three simulations with a different number of particles are

analysed: (i) 10,000 particles (h = 7.561022 m), (ii) 100,000

particles (h = 3.07561022 m) and (iii) one million particles

(h = 1.3561022 m). Figure 6 shows different instants of the SPH

simulation using one million particles. The fluid simulation

performed by DualSPHysics (left panel) is close to the experiment

(right panel). The first instant (t = 0.32 s) reproduces the dam

release. Just after t = 0.40 s, water hits the obstacle. Then, the fluid

splits with an upward-moving jet formed after impact while the

rest of the fluid surrounds the obstacle (t = 0.56 s and t = 0.64 s).

The last frame (t = 2.0 s) shows a splash due to the reflected wave

generated after hitting the left wall.

Water depth comparison
Numerical depth probes were computed to compare with the

experimental measurements. These numerical probes constitute a

set of points where the mass is computed as an interpolation of the

mass of the neighbouring fluid particles. Points do not correspond

to the physical positions of particles, thus the interpolated mass at

the location p is calculated following:

mp~

P
b

mbWpbP
b

Wpb
, ð5Þ

where b denotes all the fluid neighbouring particles around point

p, mb is the mass of each fluid particle b and Wpb is the kernel

function calculated in terms of the distance between the positions

of the fluid particle and the node p.

This procedure, which has been used previously by the authors

[12,15] is based upon the fact that there is an abrupt change in

mass at the free surface. Thus, a reference value of mass, 0.5 mb,

was chosen to determine the maximum height. Note that all

particles b have exactly the same mass and hence the position of

the free surface corresponds to the point where the calculated

mass, mp, equals 0.5 mb . Therefore, given a particular location in

space, the highest elevation where the interpolated mass, mp, is

higher than the reference mass is considered to be the water height

at that location. Water heights were computed at different instants

and compared with the experimental data.

Different SPH simulations were carried out using DualSPHysics

with different resolutions (numbers of particles). Figure 7 summa-

rises the experimental and numerical water heights calculated at

the three probes located before the obstacle (H1, H2 and H3). The

black line corresponds to the experimental water height data, the

green line corresponds to the simulation using 10,000 particles, the

blue line corresponds to the simulation with 100,000 particles and

the red line corresponds to one million particles.

The water column collapse is observed during the first two

seconds. This dam break is clearly shown by the probe at H3,

where the water level decreases during this period and by the other

probes where the water arrives sequentially (first at H2 and then at

H1). After 1.75 s the reflected waterwave moves to the right after

hitting the left wall. The reflected wave hits the right wall and a

second incoming wave hits the obstacle for a second time on the

right side (a second maximum in the water level is detected by H3

at 3.8 s, later by H2 at 4.6 s and by H1 at 4.8 s). The SPH results

reproduce properly the dam evolution observed in the experiment.

However, some differences are now addressed between numerical

and experimental results. During the second incoming wave, the

numerical signal is slightly delayed in comparison with the

experimental one. This difference increases when the number of

particles decreases. The same validation case was previously used

in [45], showing similar differences. The authors related these

deviations to the interaction with the boundary during the impact

on the back and front walls, concluding that SPH could be

overestimating the boundary effect on the flow. The treatment of

boundary conditions is still an open field in SPH and new research

should be conducted ([46]).

The agreement between experimental wave heights and SPH

results can be quantified considering two statistical parameters;

amplitude AF and phase PF:

AF~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i~1

Fnum
i

� �2,XN
i~1

F
exp
i

� �2
vuut , ð6Þ

Figure 6. Different instants of the SPH simulation for the
testcase. Right snapshots correspond to figures from [44].
doi:10.1371/journal.pone.0020685.g006
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PF~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i~1

Fnum
i {F

exp
i

� �2,XN
i~1

F
exp
i

� �2
vuut , ð7Þ

where Fi is the magnitude to be analysed (water elevation in this case),

num refers to numerical values, exp to experimental values and N is

the number of samples. These parameters were previously used in

[4,14] to determine the accuracy of the SPHysics model.

The values of these parameteres are presented in Table 1. A perfect

agreement between the signals would result in AF R1 and PF R0. All

amplitude values (AF) shown in Table 1 are close to unity showing the

good agreement between the SPH simulation and the experiment. In

addition, the best results are obtained using the highest number of

particles. This implies the convergence of the numerical model when

increasing the resolution. Furthermore, the delay between the

numerical and the experimental signals observed in Fig. 7 can also

be studied in terms of the phase parameter, whose value is never close

to zero. Nevertheless, PF is observed to decrease when increasing the

resolution showing the convergence of the model.

Pressure comparison
Pressure was also measured experimentally. Different pressure

sensors (Figure 5) were used to collect the experimental pressure

on the obstacle. The pressure on the front side of the obstacle (P1

and P2) was computed by DualSPHysics to analyse the validity of

the model to predict the forces exerted by the fluid on the

Figure 7. Experimental and numerical water heights measured at the three probes.
doi:10.1371/journal.pone.0020685.g007

Table 1. Statistical comparison between the positions of the
free-surface measured in the experiment (exp) and calculated
by DualSPHysics (num).

Height
Gauge

Number of
particles Amplitude Phase

H1 10 k 1.71 1.49

100 k 1.27 1.04

1 M 1.04 0.80

H2 10 k 1.71 1.51

100 k 1.28 1.07

1 M 1.02 0.81

H3 10 k 1.46 1.17

100 k 1.18 0.88

1 M 1.00 0.68

In bold are shown the best agreements.
doi:10.1371/journal.pone.0020685.t001
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structure. Numerical pressures were computed at the positions

where the experimental sensors were located.

As mentioned above, the dynamic boundary particles evolve

according to the same conservation equations and state equation

as the fluid ones. This allows the density and pressure to be

computed for these particles at each time step. The interpolation

described in Eq. 5 was used to calculate pressures at the positions

where experimental sensors were located:

Pp~

P
b
PbWpbP
b
Wpb

: ð8Þ

Note that only boundary particles were used to calculate pressure.

Thus, b denotes all the boundary neighbouring particles around

sensor point p, Pb is the pressure of each boundary particle b and

Wpb is the kernel function calculated in terms of the distance

between the positions of the boundary b and the node p.

The comparison between experimental and numerical pressures

is shown in Figure 8. The numerical values correspond to the

simulation with one million particles since this resolution provided

the most accurate results when computing water heights. A close

agreement between both signals can be observed for this

resolution. In Figure 8, the maximum experimental and numerical

peaks, which correspond to the main water impact on the obstacle,

coincide in time although their magnitude is different. This

behaviour is consistent with other SPH simulations (e.g. [18]).

Even, the presence of a secondary peak at approximately 4.5

seconds is also detected by the numerical simulation, although it is

a slightly delayed with respect to the experimental one. Table 2

shows the differences in phase and amplitude between experi-

mental and numerical results calculated with Eqs. (6) and (7). A

similar comparison was carried out in [30], where the accuracy of

WCSPH and ISPH approaches was analysed.

Finally, all the results presented in this validation were obtained

using single precision, which was enough to reproduce accurately

the water elevation and pressure measured in the experiments. A

study using double precision can also be carried out since the latest

CUDA-enabled GPU cards present improved support for double

precision. The preliminary results here show that the differences

with single precision calculations are smaller than the uncertainties

in experimental results, thus using double precision is not

necessary.

Efficiency using GPU
Once the code has been validated and the accuracy of the

numerical results has been assessed, the efficiency of using a GPU

can be analysed. The test case described in the previous section is

simulated both on a CPU and a GPU to analyse the performance

of DualSPHysics code.

The CPU implementation on C++ is carried out on different

CPUs (IntelH CoreTM i7 940 at 2.93, Intel Xeon X5500 at

2.67GHz and Intel Xeon E5620 at 2.4GHz). The GPU element of

the DualSPHysics code is run on four different cards: GTX 260,

TESLA M1060, GTX 285 and GTX480 (see Table 3 for general

specifications).

Figure 8. Experimental and numerical pressures using one million particles.
doi:10.1371/journal.pone.0020685.g008

Table 2. Statistical comparison between the pressure values
measured in the experiment (exp) and calculated by
DualSPHysics (num).

Pressure
Gauge

Number of
particles Amplitude Phase

P1 1 M 1.07 0.46

P2 1 M 1.04 0.56

doi:10.1371/journal.pone.0020685.t002

Table 3. General specifications of the different GPUs.

Number
of cores

Processor
clock

Memory
space

Maximum
number of
particles using
DualSPHysics

GTX 260 192 1.24 GHz 0.875 GB 4.75 million

TESLA
M1060

240 1.36 GHz 4 GB 21.72 million

GTX 285 240 1.48 GHz 1 GB 5.43 million

GTX 480 480 1.40 GHz 1.5 GB 8.14 million

doi:10.1371/journal.pone.0020685.t003
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Firstly, the profiling of the execution time of the SPH processes

in DualSPHysics is analysed to justify the implementation

approach described above. Thus, Figure 9 represents the CPU

runtime distribution of the three main SPH steps; neighbour list

creation (NL), particle interaction (PI) and system update (SU).

Considering different numbers of particles (np), the particle

interaction always takes 98–99% of the total computational time.

This was the justification for applying GPU parallelism to this

process considered initially to accelerate the code. NL and SU take

0.6–0.8% and 0.4% respectively, however keeping these steps on

the CPU is less efficient due to the cost of data transfer between

CPU and GPU at each time step. In this way, the three processes

are parallelised and the whole SPH simulation is implemented on

the GPU.

Figure 10 shows the new time distribution once the NL, PI and

SU are performed entirely on the GPU device. Particle interaction

times range from 81% (low resolution) to 92% (high resolution) of

the total runtime. The percentage of computational time used for

NL and SU is larger than observed for CPU calculations, although

it decreases when increasing the resolution.

The performance of different simulations of the same testcase is

presented for 3.0 seconds of physical time. The performance was

analysed for different resolutions by running calculations with

different numbers of particles. Figure 11 shows the number of time

steps computed per second calculated for different devices (i.e.

CPUs and GPUs) using different programming languages. For the

sake of clarity the scale of the Y-axis (time steps computed per

second) is logarithmic.

For one million particles, the performance of a CPU ranges

from 0.18 to 0.22 time steps per second, while 4.02–14.42 time

steps per second can be computed with a GPUs. The whole

computation takes more than 5 days on the IntelH CoreTM i7 (best

CPU result) and less than 2 hours on the GTX 480 (best GPU

result), resulting in a speedup of 64 (experience has shown with

other similar test cases not reported here that this speedup can be

even higher). Although the TESLA M1060 card presents some of

the highest computational specifications in terms of memory

(4 GB), the GTX 480 card provides the best efficiency. The GTX

480 belongs to the new FERMI technology and presents the

maximum number of cores of the GPUs used in this work (see

Table 3). GTX 480 is 2.4 times faster than the GTX 285 and 2.8

times faster than the TESLA card. Note that the obtained

performance corresponds to the best approaches and optimised

codes for CPU and GPU.

Figure 9. Computational runtime distribution on CPU (Intel i7).
doi:10.1371/journal.pone.0020685.g009

Figure 10. Computational runtime distribution on GPU (Tesla M1060).
doi:10.1371/journal.pone.0020685.g010
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The results depicted in Figure 11 are computed without saving

output data to the CPU. When a real simulation is studied, some

information will be saved to analyse the numerical results. To

analyse the cost of saving data, three hundred output files are

saved in binary format during a simulation on the TESLA M1060

card representing three seconds of physical time. The time

dedicated to save those data, at a sampling frequency of 100 Hz,

only takes around 0.01% of the total simulation.

Finally, some authors [10] have pointed out the existence of

differences in accuracy when using CPUs and GPUs, especially for

simulations involving high Re numbers. In the present study both

approaches have shown the same accuracy when compared with

experimental results.

Discussion

A CPU-GPU solver named DualSPHysics has been developed

to deal with free-surface flow problems requiring high computa-

tional cost. The model was developed from the classical SPHysics

FORTRAN code, inheriting the properties of stability and

accuracy of its predecessor. The code can be run as either a

CPU code or a GPU code depending on the availability of

hardware. The model has been demonstrated to be both accurate

and efficient when dealing with a gravity-dominated flow problem.

The code was validated using a dam break impacting with an

obstacle. This experiment, which is a classical benchmark for the

free-surface flow SPH community (http://wiki.manchester.ac.uk/

spheric/index.php/Test2), provides water elevation and pressure

data sampled at different locations. Simulations carried out for

different resolutions showed a close agreement between numerical

and experimental results. In addition, the numerical results were

observed to converge to the experimental ones when increasing

the resolution (the number of particles), both for free-surface

elevations and pressures.

In terms of efficiency, we have demonstrated that simulations

with a large number of particles can be simulated on a personal

computer equipped with a CUDA-enabled GPU card taking

advantage of the performance and memory space provided by the

new GPU technology. This means that research can be conducted

with available cheap technology for problems that previously

required high-performance computing (HPC). The speedups

obtained in this work reveal the possibility to study real-life

engineering problems at a reasonable computational cost. For the

validation case chosen here, the GPU parallel computing can

accelerate serial SPH codes by almost two orders of magnitude,

e.g. the FERMI card is 64 times more efficient than the best CPU

single-core. Experience has shown that the speedup varies from

one test to another with even greater speedup achievable than

found here. The achieved performance can be compared to the

large cluster machines, which are expensive and hard to maintain.

For example, according to [47], where the authors simulated

complex flows on the IBM supercomputer Blue Gene/L at Ecole

Polytechnique Fédérale de Lausanne (EPFL–Switzerland), it

would be necessary to use around 100 cores to equal the speedup

achieved by only a single CUDA-enabled Fermi Card.

Finally, for simulations requiring several million particles the

immediate future for GPU computing should focus upon multi

GPU implementations, since the memory requirements are still a

Figure 11. Performance of DualSPHysics code.
doi:10.1371/journal.pone.0020685.g011
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limitation for a single GPU. The SPHysics team has made

significant advances in that direction but the efficiency of the

communication between GPUs is still an open question.
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47. Maruzewski P, Le Touzé D, Oger G, Avellan F (2010) SPH high-performance

computing simulations of rigid solids impacting the free-surface of water. Journal

of Hydraulic Research, 48 Extra Issue: 126–134. doi:10.3826/jhr.2010.0011.

GPUs in CFD: Validation for SPH Methods

PLoS ONE | www.plosone.org 13 June 2011 | Volume 6 | Issue 6 | e20685


