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ABSTRACT
We construct homology with trivial coefficients of Hom-Leibniz n-algebras.
We introduce and characterize universal (α)-central extensions of Hom-
Leibniz n-algebras. In particular, we show their interplay with the zero-th
and first homology with trivial coefficients. When n = 2 we recover the cor-
responding results on universal central extensions of Hom-Leibniz algebras.
The notion of non-abelian tensor product of Hom-Leibniz n-algebras is in-
troduced and we establish its relationship with universal central extensions.
A generalization of the concept and properties of unicentral Leibniz algebras
to the setting of Hom-Leibniz n-algebras is developed.
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1. Introduction

Algebras endowed with an n-ary operation play important roles, among others,
in Lie and Jordan theories, geometry, analysis, physics and biology. For instance,
this kind of structures were considered to analyze DNA recombination [29].
Leibniz n-algebras and its corresponding skew-symmetric version, named as
Lie n-algebras or Filippov algebras, arose in the setting of Nambu mechanics
[26], a generalization of the Hamiltonian mechanics. The particular case n = 3
has found applications in string theory and M-branes [7,28] and in the M-theory
generalization of the Nahm’s equation proposed by Basu and Harvey [8]. It can
also be used to construct solutions of the Yang-Baxter equation [27], which first
appeared in statistical mechanics [9].

Deformations of algebras structures by means of endomorphisms give rise to
Hom-algebra structures. They are motivated by discrete and deformed vector
fields and differential calculus. Part of the reason to study Hom-algebras is its
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relation with the q-deformations of the Witt and the Virasoro algebras (see
[21]).

In this way, deformations of algebras of Lie type were considered, among
others, in [21,24,25,30,31]. Deformations of algebras of Leibniz type were con-
sidered, among others, in [14,18,20,22,24]. The generalizations of n-ary alge-
bra structures, such as Hom-Leibniz n-algebras (or n-ary Hom-Nambu) and
Hom-Lie n-algebras (or n-ary Hom-Nambu-Lie), have been introduced in [4]
by Ataguema, Makhlouf and Silvestrov. In these Hom-type algebras, the n-
ary Nambu identity is deformed using n − 1 linear maps, called the twisting
maps, given rise to the fundamental identity (n-ary Hom-Nambu identity) (see
Definition 2.1). When these twisting maps are all equal to the identity map,
one recovers Leibniz n-algebras (n-ary Nambu) and Lie n-algebras (Nambu-Lie
algebras).

The topic of central extensions of algebraic structures is also present in many
applications to Physics. For instance, the Witt algebra and its one-dimensional
universal central extension, the Virasoro algebra, often appear in problems with
conformal symmetry in the setting of string theory [19].

Recently in [17] was noticed an important fact concerning universal cen-
tral extensions in the setting of semi-abelian categories, the so called UCE
condition, namely if B is a perfect object of the category and, f : B � A
and g : C � B are central extensions of the category, then the extension
f ◦ g : C � A is central. We show in this paper that the category of Hom-
Leibniz n-algebras doesn’t satisfy UCE condition (see Example 3.7). From this
fact, our aim in this article is to introduce and characterize universal α-central
extensions of Hom-Leibniz n-algebras. In case n = 2 we recover the correspond-
ing results on universal α-central extensions of Hom-Leibniz algebras in [14,15].
Moreover, in case α = id we recover results on universal central extensions of
Leibniz n-algebras in [12]. In case n = 2 and α = id we recover results from
[13].

The article is organized as follows: in section 2 we introduce the necessary
basic concepts on Hom-Leibniz n-algebras and construct the homology with
trivial coefficients of Hom-Leibniz n-algebras. Bearing in mind [10], we endow
the underlying vector space to a Hom-Leibniz n-algebra L with a structure
of (Dn−1 (L) = L⊗n−1, α′)-symmetric Hom-co-representation as Hom-Leibniz
algebras and define the homology with trivial coefficients of L as the Hom-
Leibniz homology HLα∗ (Dn−1 (L) ,L).

In section 3 we present our main results on universal central extensions. Based
on the investigation initiated in [14], we generalize the concepts of (α)-central
extension, universal (α)-central extension and perfection to the framework of
Hom-Leibniz n-algebras. We also extend the corresponding characterizations of
universal (α)-central extensions. Since Hom-Leibniz n-algebras category doesn’t
satisfy UCE condition, characterizations are divided between universal central
and universal α-central (see Theorem 3.9).

In section 4 we introduce the concept of non-abelian tensor product of Hom-
Leibniz n-algebras that generalizes the non-abelian tensor product of Hom-
Leibniz algebras in [15] and the non-abelian tensor product of Leibniz n-algebras
in [12], and we establish its relationship with the universal central extension.

The final section is devoted to develop a generalization of the concept and
properties of unicentral Leibniz algebras in [13] to the setting of Hom-Leibniz
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n-algebras. As a first step we show that the classical result: perfect Leibniz al-
gebras are unicentral, doesn’t hold in the framework of Hom-Leibniz n-algebras
(see Example 5.1) and requires an additional condition (see Proposition 5.4).
The main result in this section establishes that for two perfect Hom-Leibniz
n-algebras, (L, α̃L) and (L′, α̃L′) with both αL, αL′ injective and such that the
universal central extensions

(
uce(L), α̃uce(L)

)
, and

(
uce(L′), α̃uce(L′)

)
satisfy con-

dition (5) (see below), then the following statements hold:

a) If
(
uce(L), α̃uce(L)

) ∼= (uce(L′), α̃uce(L′)

)
, then αL(L)

Z(αL(L))
∼= αL′ (L′)

Z(αL′ (L′)) .

b) If αL(L)
Z(αL(L))

∼= αL′ (L′)
Z(αL′ (L′)) , then

(
uce(αL(L)), α̃uce(L)|

) ∼= (uce(αL′(L′)),

α̃uce(L′)|
)
.

2. Preliminaries on Hom-Leibniz n-algebras

In this section we introduce necessary material on Hom-Leibniz n-algebras, also
called n-ary Hom-Nambu algebras in [2,4,32] or n-ary Hom-Nambu-Lie algebras
in [3].

2.1. Basic definitions

Definition 2.1. A Hom-Leibniz n-algebra is a triple (L, [−, . . . ,−] , α̃) consist-
ing of a K-vector space L equipped with an n-linear map [−, . . . ,−] : L×n −→ L
and a family α̃ = (αi) , 1 ≤ i ≤ n− 1 of linear maps αi : L −→ L, satisfying the
following fundamental identity:

[[x1, x2, . . . , xn], α1(y1), α2(y2), . . . , αn−1(yn−1)] =
n∑
i=1

[α1(x1), . . . , αi−1(xi−1), [xi, y1, y2,, . . . , yn−1], αi(xi+1), . . . , αn−1(xn)]
(1)

for all (x1, . . . , xn) ∈ L×n, y = (y1, . . . , yn−1) ∈ L×(n−1).

The linear maps α1, . . . , αn−1 are called the twisting maps of the Hom-Leibniz
n-algebra. When the n-ary bracket is skew-symmetric, i.e. [xσ(1), . . . , xσ(n)] =

(−1)ϵ(σ) [x1, . . . , xn], σ ∈ Sn, then the structure is called Hom-Lie n-algebra (or
n-ary Hom-Nambu algebra in [1,3], or n-Hom-Lie algebra [23]).

Let x = (x1, . . . , xn) ∈ L×n, y = (y1, . . . , yn−1) ∈ L×(n−1), α̃ (y) =
(α1 (y1) , . . . , αn−1 (yn−1)) ∈ L×(n−1) and define the adjoint representation
as the linear map ady : L −→ L, such that ady (x) = [x, y1, . . . , yn−1], for all
y ∈ L. Then identity (1) may be written as follows:

adα̃(y)[x1, . . . , xn] =

n∑
i=1

[α1 (x1) , . . . , αi−1 (xi−1) , ady (xi) , αi (xi+1) , . . . , αn−1 (xn)]

Definition 2.2. [1] A Hom-Leibniz n-algebra (L, [−, . . . ,−], α̃) is said to be
multiplicative if the linear maps in the family α̃ = (αi)1≤i≤n−1 are of the form
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α1 = · · · = αn−1 = α, and they preserve the bracket, that is, α[x1, . . . , xn] =
[α(x1), . . . , α(xn)], for all (x1, . . . , xn) ∈ L×n.

Definition 2.3. [1] A homomorphism between two Hom-Leibniz n-algebras

(L, [−, . . . ,−] , α̃) and
(
L′, [−, . . . ,−]′ , α̃′

)
where α̃ = (αi) and α̃′ = (α′

i) , 1 ≤
i ≤ n− 1, is a linear map f : L → L′ such that:

a) f([x1, . . . , xn]) = [f(x1), . . . , f(xn)]
′;

b) f ◦ αi = α′
i ◦ f, i = 1, . . . , n− 1

for all x1, ..., xn ∈ L.

We denote by nHomLeib the category of Hom-Leibniz n-algebras. In case
n = 2, identity (1) is the Hom-Leibniz identity (2.1) in [14], so Hom-Leibniz
2-algebras are exactly Hom-Leibniz algebras and we use the notation HomLeib
instead of 2HomLeib.

Example 2.4.

a) When the maps (αi)1≤i≤n−1 in Definition 2.1 are all of them the identity
maps, then one recovers the definition of Leibniz n-algebra [16]. Hence
Hom-Leibniz n-algebras include Leibniz n-algebras as a full subcategory,
thereby motivating the name ”Hom-Leibniz n-algebras” as a deforma-
tion of Leibniz n-algebras twisted by homomorphisms. Moreover it is a
multiplicative Hom-Leibniz n-algebra.

b) Hom-Lie n-algebras are Hom-Leibniz n-algebras whose bracket satisfies
the condition [x1, . . . , xi, xi+1, . . . , xn] = 0 as soon as xi = xi+1 for
1 ≤ i ≤ n − 1. So the category nHomLie of Hom-Lie n-algebras can
be considered as a full subcategory of nHomLeib. For any multiplicative
Hom-Leibniz n-algebra (L, [−, . . . ,−], α̃) there is associated the Hom-Lie
n-algebra (LLie, [−, . . . ,−], α̃), where LLie = L/Lann, the bracket is the
canonical bracket induced on the quotient and α̃ is the homomorphism
naturally induced by α̃. Here Lann = ⟨{[x1, . . . , xi, xi+1, . . . , xn], as soon
as xi = xi+1, 1 ≤ i ≤ n− 1, xj ∈ L, j = 1, . . . , n}⟩.

c) Any Hom-vector space V together with the trivial n-ary bracket
[−,−, . . . ,−] (i.e. [x1, x2, . . . , xn] = 0 for all xi ∈ V, 1 ≤ i ≤ n) and any
collection of linear maps α̃V = (αi : V → V )1≤i≤n−1, is a Hom-Leibniz
n-algebra, called abelian Hom-Leibniz n-algebra.

d) Hom-Lie triple systems [5,32] are Hom-Leibniz 3-algebras L satisfying the
following properties:

• [x, y, z] = −[y, x, z],
• [x, y, z] + [y, z, x] + [z, x, y] = 0,

for all x, y, z ∈ L.
e) 1-dimensional Hom-Leibniz n-algebras over a field K, whose characteristic

in not a factor of n−1, are abelian Hom-Leibniz n-algebras or Hom-Leibniz
n-algebras with any bracket and the collection α̃ = (αi)1≤i≤n−1 contains
at least one trivial map αi, 1 ≤ i ≤ n− 1.

In the sequel we refer to multiplicative Hom-Leibniz n-algebras as Hom-
Leibniz n-algebras and we shall use the shortened notation (L, α̃L) when there
is not confusion with the bracket operation.
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Definition 2.5. Let (L, [−, . . . ,−], α̃L) be a Hom-Leibniz n-algebra. A Hom-
Leibniz n-subalgebra (H, α̃H) is a linear subspace H of L, which is closed for
the bracket and invariant by α̃L, that is,

a) [x1, . . . , xn] ∈ H, for all x1, . . . , xn ∈ H,
b) αH(x) ∈ H, for all x ∈ H (αH = αL|).

A Hom-Leibniz n-subalgebra (H, α̃H) of (L, α̃L) is said to be an n-sided Hom-
ideal if [x1, x2, . . . , xn] ∈ H as soon as xi ∈ H and x1, . . . , xi−1, xi+1, . . . , xn ∈ L,
for all i = 1, 2, . . . , n.

If (H, α̃H) is an n-sided Hom-ideal of (L, α̃L), then the quotient
(
L/H, α̃L/H

)
naturally inherits a structure of Hom-Leibniz n-algebra, which is said to be the
quotient Hom-Leibniz n-algebra.

Definition 2.6. Let (Mi, α̃L|), 1 ≤ i ≤ n, be subalgebras of a Hom-Leibniz n-
algebra (L, α̃L). We call commutator subspace corresponding to the subalgebras
Mi, 1 ≤ i ≤ n, to the vector subspace of L

[M1, . . . ,Mn] = ⟨
{
[x1, . . . , xn], xi ∈ Mσ(i), 1 ≤ i ≤ n, σ ∈ Sn

}
⟩

Definition 2.7. Let (L, α̃L) be a Hom-Leibniz n-algebra. The subspace

Z(L) = {x ∈ L | [x1, . . . , xi−1, x, xi+1, . . . , xn] = 0,

∀xj ∈ L, j ∈ {1, . . . , î, . . . , n}, i ∈ {1, . . . , n}}

is said to be the center of (L, α̃L).
When the endomorphism α : L → L is surjective, then Z(L) is an n-sided

Hom-ideal of L.

Proposition 2.8. [33, Theorem 4.8 (2)] Let (L, α̃L) be a Hom-Leibniz (n+1)-
algebra. Then (Dn(L) = L⊗n, [−,−], α′) is a Hom-Leibniz algebra with respect
to the bracket

[a1 ⊗ · · · ⊗ an, b1 ⊗ · · · ⊗ bn] :=

n∑
i=1

α (a1)⊗ · · · ⊗ [ai, b1, . . . , bn]⊗ · · · ⊗ α (an)

and endomorphism α′ = Dn(L) → Dn(L) given by

α′(a1 ⊗ ...⊗ an) = α(a1)⊗ ...⊗ α(an).

2.2. Homology with trivial coefficients of Hom-Leibniz n-algebras

Let (L, α̃L) be a Hom-Leibniz n-algebra, then L (as a K-vector space) is en-
dowed with a symmetric Hom-co-representation structure [14, Definition 3.1]
over (Dn−1 (L) = L⊗(n−1), α′) as Hom-Leibniz algebras with respect to the
following actions

[−,−] : L ×Dn−1 (L) −→ L
[−,−] : Dn−1 (L)× L −→ L
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given by

[l, l1 ⊗ · · · ⊗ ln−1] := [l, l1, . . . , ln−1]
[l1 ⊗ · · · ⊗ ln−1, l] := − [l, l1, . . . , ln−1]

(2)

and endomorphism α : L → L such that α̃L = (αi), αi = α, 1 ≤ i ≤ n− 1.
Now we construct a chain complex for Hom-Leibniz n-algebras in order to

compute its homology with trivial coefficients. Firstly we recall this complex
for Hom-Leibniz homology [14]. Let (L, [−,−], αL) be a Hom-Leibniz algebra
and (M,αM ) be a Hom-co-representation over (L, [−,−], αL). The Hom-Leibniz
complex (CLα∗ (L,M), d∗) is given by setting CLαn(L,M) := M ⊗ L⊗n, n ≥ 0,
and by differentials the K-linear maps dn : CLαn(L,M) → CLαn−1(L,M) defined
by

dn(m⊗ x1 ⊗ · · · ⊗ xn) = [m,x1]⊗ αL(x2)⊗ · · · ⊗ αL(xn)+

n∑
i=2

(−1)i[xi,m]⊗ αL(x1)⊗ · · · ⊗ α̂L(xi)⊗ · · · ⊗ αL(xn)+

∑
1≤i<j≤n

(−1)j+1αM (m)⊗αL(x1)⊗· · ·⊗αL(xi−1)⊗[xi, xj ]⊗· · ·⊗α̂L(xj)⊗· · ·⊗αL(xn).

The homology of the chain complex (CLα∗ (L,M), d∗) is called homol-
ogy of the Hom-Leibniz algebra (L, [−,−], αL) with coefficients in the
Hom-co-representation (M,αM ) [14] and is denoted by HLα∗ (L,M) :=
H∗(CL

α
∗ (L,M), d∗).

In order to construct the chain complex (nCL
α
∗ (L), δ⋆) which allows the com-

putation of the homology with trivial coefficients of a Hom-Leibniz n-algebra
(L, α̃L), we only need to have in mind that (2) endows (L, α) with a Hom-co-
representation structure over (Dn−1 (L) , α′), so it makes sense the construction
of its Hom-Leibniz complex, hence we define

nCL
α
∗ (L) := CLα∗ (Dn−1 (L) ,L)

thus, by definition, the homology with trivial coefficients for the Hom-Leibniz
n-algebra (L, α̃L) is

nHL
α
∗ (L,K) := HLα∗ (Dn−1 (L) ,L)

and we will use the short notation nHL
α
∗ (L) instead of nHL

α
∗ (L,K).

In particular, we have

nHL
α
0 (L) = HLα0 (Dn−1 (L) ,L) = Coker(d1 : L⊗n → L) = Lab

If L is an abelian Hom-Leibniz n-algebra, then L is endowed with a trivial
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Hom-co-representation structure from Dn−1 (L), then

nHL
α
1 (L) = HLα1 (Dn−1 (L) ,L) =

L ⊗ L⊗(n−1)

α(L)⊗ [L⊗(n−1),L⊗(n−1)]

When L is a Hom-Leibniz 2-algebra, that is, a Hom-Leibniz algebra, then we
have that

2CL
α
∗ (L) = CLα∗ (L,L) ∼= CLα∗+1(L)

(see the proof of Proposition 3.4 in [14]). Thus 2HL
α
k (L) ∼= HLαk+1(L), for all

k ≥ 1. In particular, 2HL
α
0 (L) ∼= HLα1 (L) ∼= Lab. When α = id, then the

corresponding results for Leibniz n-algebras in [10,11] are recovered.

3. Universal central extensions

Definition 3.1. A short exact sequence of Hom-Leibniz n-algebras (K) : 0 →
(M, α̃M)

i→ (K, α̃K)
π→ (L, α̃L) → 0 is said to be central if [M,K, n−1. . . ,K] = 0.

Equivalently, M ⊆ Z(K).
We say that (K) is α-central if [αM(M), n−1. . . , αM(M),K] = 0.

Remark 1. Let us observe that the notion of central extension in case α̃K =
(idK) coincides with the notion of central extension of Leibniz n-algebras given
in [10]. Nevertheless, the notion of α-central extension in case α̃K = (idK) gives
rise to a new notion of central extension of Leibniz n-algebras. In particular,
this kind of central extensions are abelian extensions of Leibniz n-algebras [16].

In case n = 2, we recover the notions of central and α-central extension of a
Hom-Leibniz algebra introduced in [14].

Obviously every central extension is an α-central extension, but the converse
doesn’t hold as the following counterexample shows:

Let (L, α̃L) be the Hom-Leibniz 3-algebra where L is the two-dimensional
vector space with basis {a1, a2}, the bracket operation is given by [ai, ai, ai] =
ai, i = 1, 2 and zero elsewhere, and endomorphism αL = 0.

On the other hand, let (K, α̃K) be the Hom-Leibniz 3-algebra where K is
the three-dimensional vector space with basis {b1, b2, b3}, the bracket operation
is given by [bi, bi, bi] = bi, i = 1, 2, 3 and zero elsewhere, and endomorphism
αK = 0.

The surjective homomorphism π : (K, α̃K) � (L, α̃L) given by π(b1) = 0,
π(b2) = a1, π(b3) = a2, is an α-central extension, since Ker(π) = ⟨{b1}⟩ and
[αK(Ker(π)), αK(Ker(π)),K] = 0, but is not a central extension since Z(K) = 0.

Definition 3.2. A central extension (K) : 0 → (M, α̃M)
i→ (K, α̃K)

π→
(L, α̃L) → 0 is said to be universal if for every central extension (K ′) : 0 →
(M′, α̃M′)

i′→ (K′, α̃K′)
π′

→ (L, α̃L) → 0 there exists a unique homomorphism of
Hom-Leibniz n-algebras h : (K, α̃K) → (K′, α̃K′) such that π′ ◦ h = π.

The central extension (K) : 0 → (M, α̃M)
i→ (K, α̃K)

π→ (L, α̃L) → 0 is said
to be universal α-central extension if for every α-central extension (K ′) : 0 →
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(M′, α̃M′)
i′→ (K′, α̃K′)

π′

→ (L, α̃L) → 0 there exists a unique homomorphism of
Hom-Leibniz n-algebras h : (K, α̃K) → (K′, α̃K′) such that π′ ◦ h = π.

Remark 2. Obviously, every universal α-central extension is a universal central
extension. Note that in the case α̃K = (idK) both notions coincide. In case n = 2
we recover the corresponding notions of universal (α-)central extension of Hom-
Leibniz algebras given respectively in [14, Definition 4.3].

Definition 3.3. A Hom-Leibniz n-algebra (L, α̃L) is said to be perfect if L =
[L, . . . ,L].

Lemma 3.4. Let π : (K, α̃K) � (L, α̃L) be a surjective homomorphism of Hom-
Leibniz n-algebras. If (K, α̃K) is a perfect Hom-Leibniz n-algebra, then (L, α̃L)
is a perfect Hom-Leibniz n-algebra as well.

Lemma 3.5. If 0 → (M, α̃M)
i→ (K, α̃K)

π→ (L, α̃L) → 0 is a universal central
extension, then (K, α̃K) and (L, α̃L) are perfect Hom-Leibniz n-algebras.

Proof. Assume that (K, α̃K) is not a perfect Hom-Leibniz n-algebra, then
[K, . . . ,K] * K, thus

(
K/ [K, . . . ,K] , α̃|

)
, where (α̃|) is the induced natural

homomorphism, is an abelian Hom-Leibniz n-algebra (see Example 2.4 c)).

Consider the central extension 0 → (Kab, α̃|) →
(
Kab × L, α̃| × α̃L

) pr→
(L, α̃L) → 0, then the homomorphisms of Hom-Leibniz n-algebras φ,ψ :
(K, α̃K) → (Kab × L, α̃| × α̃L

)
given by φ (k) =

(
k, π (k)

)
and ψ (k) =

(0, π (k)) (k denotes the coset k + [K, . . . ,K]) are two distinct homomorphisms
of Hom-Leibniz n-algebras such that pr ◦φ = π = pr ◦ψ, which contradicts the
universality of the given extension.

Lemma 3.4 completes the proof. 2

Lemma 3.6. Let 0 → (M, α̃M)
i→ (K, α̃K)

π→ (L, α̃L) → 0 be an α-central ex-
tension and (K, α̃K) is a perfect Hom-Leibniz n-algebra. If there exists a homo-
morphism of Hom-Leibniz n-algebras f : (K, α̃K) → (A, α̃A) such that τ ◦f = π,

where 0 → (N , α̃N )
j→ (A, α̃A)

τ→ (L, α̃L) → 0 is a central extension, then f is
unique.

Proof. Assume that there are two homomorphisms f1, f2 : (K, α̃K) → (A, α̃A)
such that τ ◦f1 = π = τ ◦f2, then f1−f2 ∈ Ker(τ) = N , i.e. f1(k) = f2(k)+nk,
nk ∈ N .

Since (K, α̃K) is a perfect Hom-Leibniz n-algebra, it is enough to show that
f1 and f2 coincide on [K, . . . ,K]. Indeed

f1 [k1, . . . , kn] = [f2 (k1) + nk1 , . . . , f2 (kn) + nkn ] = [f2 (k1) , . . . , f2 (kn)] +A =
f2 [k1, . . . , kn] ,

since a typical summand in A is of the form
[
nk1 , . . . , nkj , f2 (kj+1) , . . . , f2 (kn)

]
which vanishes because N ⊆ Z(A). 2

The category nHomLeib is a semi-abelian category that doesn’t satisfy the so
called in [17] UCE condition, namely if B is a perfect object of the category
and, f : B � A and g : C � B are central extensions of the category, then the
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extension f ◦ g : C � A is central, as the following example shows:

Example 3.7. Let (L, α̃L) be the two-dimensional Hom-Leibniz 3-algebra with
basis {b1, b2}, bracket given by [b2, b1, b1] = b2, [b2, b2, b2] = b1 and zero else-
where, and endomorphism α̃L = (0).

Let (K, α̃K) be the three-dimensional Hom-Leibniz 3-algebra with basis
{a1, a2, a3}, bracket given by [a2, a2, a2] = a1, [a3, a2, a2] = a3, [a3, a3, a3] = a2
and zero elsewhere, and endomorphism α̃K = (0).

Obviously (K, α̃K) is a perfect Hom-Leibniz 3-algebra and Z(K) = ⟨{a1}⟩.
The linear map π :

(
K, 0̃

)
→
(
L, 0̃

)
given by π (a1) = 0, π (a2) = b1, π (a3) =

b2, is a central extension since π is a surjective homomorphism of Hom-Leibniz
3-algebras and Ker (π) = ⟨{a1}⟩ ⊆ Z(K).

Now consider the four-dimensional Hom-Leibniz 3-algebra (F , α̃F ) with basis
{e1, e2, e3, e4}, bracket given by [e3, e2, e2] = e1 , [e3, e3, e3] = e2, [e4, e3, e3] =
e4 , [e4, e4, e4] = e3 and zero elsewhere, and endomorphism α̃F = (0).

The linear map ρ (e1) = 0, ρ (e2) = a1, ρ (e3) = a2, ρ (e4) = a3 is a central
extension since ρ is a surjective homomorphism of Hom-Leibniz 3-algebras and
Ker (ρ) = ⟨{e1}⟩ = Z(F).

The composition π ◦ ρ :
(
F , 0̃

)
→
(
L, 0̃

)
is given by π ◦ ρ (e1) = π (0) =

0, π ◦ ρ (e2) = π (a1) = 0, π ◦ ρ (e3) = π (a2) = b1, π ◦ ρ (e4) = π (a3) = b2.
Consequently, π◦ρ is a surjective homomorphism, but is not a central extension,

since Ker (π ◦ ρ) = ⟨{e1, e2}⟩ * Z(F). However, π ◦ ρ :
(
F , 0̃

)
→
(
L, 0̃

)
is an

α-central extension.

Lemma 3.8. Let 0 → (M, α̃M)
i→ (K, α̃K)

π→ (L, α̃L) → 0 and 0 →
(N , α̃N )

j→ (F , α̃F )
ρ→ (K, α̃K) → 0 be central extensions with (K, α̃K) a per-

fect Hom-Leibniz n-algebra. Then the composition extension 0 → (P, α̃P) =

Ker(π ◦ ρ) → (F , α̃F )
π◦ρ→ (L, α̃L) →0 is an α-central extension.

Moreover, if 0 → (M, α̃M)
i→ (K, α̃K)

π→ (L, α̃L) → 0 is a universal α-

central extension, then 0 → (N , α̃N )
j→ (F , α̃F )

ρ→ (K, α̃K) → 0 is split.

Proof. Since (K, α̃K) is a perfect Hom-Leibniz n-algebra, then every element
f ∈ F can be written as

∑
k

λk [fk1, ..., fkn] + n, n ∈ N , fk1, ..., fkn ∈ F . So, for

any element in [αP(P), n−1. . . , αP(P),F ] we have

[αP (p1) , . . . , fi, . . . , αP (pn−1)] =
∑
k

λk ([αP (p1) , . . . , [fik1
, . . . , fikn

], . . . ,

αP (pn−1)] + [αP (p1) , . . . , n, . . . , αP (pn−1)])

which vanishes by application of the fundamental identity and bearing in mind
that [P,F , . . . ,F ] ∈ Ker(ρ) = N and N ⊆ Z(F).

For the second statement, if 0 → (M, α̃M)
i→ (K, α̃K)

π→ (L, α̃L) → 0 is
a universal α-central extension, then by the first statement, 0 → (P, α̃P) =

Ker(π ◦ ρ) → (F , α̃F )
π◦ρ→ (L, α̃L) → 0 is an α-central extension, then there

exists a unique homomorphism of Hom-Leibniz algebras σ : (K, α̃K) → (F , α̃F )
such that π ◦ ρ ◦ σ = π. On the other hand, π ◦ ρ ◦ σ = π = π ◦ id and (K, α̃K)
is perfect, then Lemma 3.6 implies that ρ ◦ σ = id. 2
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Theorem 3.9.

a) If a central extension 0 → (M, α̃M)
i→ (K, α̃K)

π→ (L, α̃L) → 0 is a
universal α-central extension, then (K, α̃K) is a perfect Hom-Leibniz n-
algebra and every central extension of (K, α̃K) is split.

b) Let 0 → (M, α̃M)
i→ (K, α̃K)

π→ (L, α̃L) → 0 be a central extension.
If (K, α̃K) is a perfect Hom-Leibniz n-algebra and every central exten-

sion of (K, α̃K) is split, then 0 → (M, α̃M)
i→ (K, α̃K)

π→ (L, α̃L) → 0 is
a universal central extension.

c) A Hom-Leibniz n-algebra (L, α̃L) admits a universal central extension if
and only if (L, α̃L) is perfect. Furthermore, the kernel of the universal
central extension is canonically isomorphic to nHL

α
1 (L).

d) If 0 → (M, α̃M)
i→ (K, α̃K)

π→ (L, α̃L) → 0 is a universal α-central
extension, then nHL

α
0 (K) = nHL

α
1 (K) = 0.

e) If nHL
α
0 (K) = nHL

α
1 (K) = 0, then any central extension 0 →

(M, α̃M)
i→ (K, α̃K)

π→ (L, α̃L) → 0 is a universal central extension.

Proof. a) If 0 → (M, α̃M)
i→ (K, α̃K)

π→ (L, α̃L) → 0 is a universal α-central
extension, then is a universal central extension by Remark 2, so (K, α̃K) is a
perfect Hom-Leibniz n-algebra by Lemma 3.5 and every central extension of
(K, α̃K) is split by Lemma 3.8.

b) Let us consider any central extension 0 → (N , α̃N )
j→ (A, α̃A)

τ→ (L, α̃L) →
0. Construct the pull-back extension 0 → (N , α̃N )

χ→ (Q, α̃Q)
τ→ (K, α̃K) →

0, where Q = A ×L K = {(a, k) ∈ A × K | τ(a) = π(k)} and αQ(a, k) =
(αA(a), αK(k)), which is central, consequently is split, that is, there exists a
homomorphism σ : (K, α̃K) → (Q, α̃Q) such that τ ◦ σ = id.

Then π ◦ σ, where π : (Q, α̃Q) → (A, α̃A) is induced by the pull-back con-
struction, satisfies τ ◦ π ◦ σ = π. Lemma 3.6 concludes the proof.

c) For a Hom-Leibniz n-algebra (L, α̃L), let be the chain homology complex

nC
α
∗ (L,K), where K is endowed with a trivial Hom-co-representation structure.

nC
α
∗ (L,K) : · · · → L⊗k(n−1)+1 δk→ L⊗(k−1)(n−1)+1 δk−1→ · · · → L⊗2n−1 δ2→ L⊗n δ1→ L

The low differentials are given by

δ1(x1 ⊗ · · · ⊗ xn) = [x1, . . . , xn]
δ2(x1 ⊗ · · · ⊗ xn ⊗ y1 ⊗ · · · ⊗ yn−1) = [x1, . . . , xn]⊗ αL(y1)⊗ · · · ⊗ αL(yn−1)−

n∑
i=1

αL(x1)⊗ · · · ⊗ [xi, y1, . . . , yn−1]⊗ . . .

⊗αL(xn)

As a K-vector space, let IL be the subspace of L⊗2n−1 spanned by the ele-
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ments of the form

[x1, . . . , xn]⊗ αL (y1)⊗ · · · ⊗ αL (yn−1)−
n∑
i=1

αL(x1)⊗ · · · ⊗ [xi, y1, . . . , yn−1]⊗ · · · ⊗ αL(xn)

that is IL = Im
(
δ2 : L⊗2n−1 → L⊗n). Let uce(L) be the quotient vector space

L⊗n

IL
. Every coset (x1 ⊗ · · · ⊗ xn) + IL is denoted by {x1, . . . , xn}.

By construction, the following identity holds

{[x1, . . . , xn] , αL (y1) , . . . , αL (yn−1)} =
n∑
i=1

{αL(x1), . . . , [xi, y1, . . . , yn−1], . . . , αL(xn)} (3)

Since δ1 vanishes on IL, it induces a linear map uL : uce(L) → L,
given by uL({x1, . . . , xn}) = [x1, . . . , xn], and (α̃L) induces (α̃uce(L)), where
αuce(L)({x1, . . . , xn}) = {αL(x1), . . . , αL(xn)}.

The bracket operation

[{x1,1, ..., xn,1} , . . . , {x1,n, . . . , xn,n}] = {[x1,1, . . . , xn,1] , . . . , [x1,n, . . . , xn,n]}

endows
(
uce(L), α̃uce(L)

)
with a structure of Hom-Leibniz n-algebra and uL :(

uce(L), α̃uce(L)
)

→ (L, α̃L) becomes a surjective homomorphism of Hom-
Leibniz n-algebras when (L, α̃L) is perfect because Im(uL) = [L, . . . ,L].

From the construction immediately follows that Ker (uL) = nHL
α
1 (L), so we

have the central extension

0 →
(
nHL

α
1 (L) , α̃uce(L)|

)
→
(
uce(L), α̃uce(L)

) uL→ (L, α̃L) → 0

which is universal, because for any central extension 0 → (M, α̃M) →
(K, α̃K)

π→ (L, α̃L) → 0 there exists the homomorphism of Hom-Leibniz
n-algebras β : (uce(L), α̃uce(L)

)
→ (K, α̃K) given by β ({x1, . . . , xn}) =

[k1, ..., kn] , π (ki) = xi, such that π ◦ β = uL.
A direct checking shows that

(
uce(L), α̃uce(L)

)
is perfect, then Lemma 3.6

guarantees the uniqueness of β.

d) If 0 → (M, α̃M) → (K, α̃K)
π→ (L, α̃L) → 0 is a universal α-central extension,

then (K, α̃K) is perfect by Remark 2 and Lemma 3.5, so nHL
α
0 (K) = 0. By

Lemma 3.8 and statement c), the universal central extension corresponding to
(K, α̃K) is split, so nHL

α
1 (K) = 0.

e) nHL
α
0 (K) = 0 implies that (K, α̃K) is a perfect Hom-Leibniz n-algebra.

nHL
α
1 (K) = 0 implies that (uce(K), α̃uce(K))

∼→ (K, α̃K). Statement b) ends
the proof. 2

Remark 3. When n = 2, the above results recover the corresponding ones for
Hom-Leibniz algebras in [14].
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4. Non-abelian tensor product

Let (Mi, α̃Mi
), 1 ≤ i ≤ n, be n-sided Hom-ideals of a Hom-Leibniz n-algebra

(L, α̃L). We denote by M1∗· · ·∗Mn the vector space spanned by all the symbols
mσ(1) ∗ · · · ∗mσ(n), where mi ∈ Mi, i ∈ {1, 2, . . . , n}, σ ∈ Sn.

We claim that (M1 ∗ · · · ∗ Mn, α̃M1∗···∗Mn
) is a Hom-vector space, where

(α̃M1∗···∗Mn
) is induced by αMi

, 1 ≤ i ≤ n, i.e.

αM1∗···∗Mn

(
mσ(1) ∗ · · · ∗mσ(n)

)
= αMσ(1)

(
mσ(1)

)
∗ · · · ∗ αMσ(n)

(
mσ(n)

)
.

We denote by DLn(M1, . . . ,Mn) the vector subspace spanned by the ele-
ments of the form:

a) λ
(
mσ(1) ∗ · · · ∗mσ(n)

)
=
(
λmσ(1)

)
∗mσ(2) ∗ · · · ∗mσ(n) = · · · = mσ(1) ∗ · · · ∗(

λmσ(n)

)
.

b) mσ(1) ∗ · · · ∗
(
m′
σ(i) +m′′

σ(i)

)
∗ · · · ∗mσ(n) = mσ(1) ∗ · · · ∗m′

σ(i) ∗ · · · ∗mσ(n)+

mσ(1) ∗ · · · ∗m′′
σ(i) ∗ · · · ∗mσ(n), for any i ∈ {1, 2, . . . , n}.

c)
[
mτ(1), . . . ,mτ(n)

]
∗ αMτ(n+1)

(
mτ(n+1)

)
∗ · · · ∗ αMτ(2n−1)

(
mτ(2n−1)

)
−

n∑
i=1

αMτ(1)
(mτ(1))∗· · ·∗

[
mτ(i),mτ(n+1), . . . ,mτ(2n−1)

]
∗· · ·∗αMτ(n)

(mτ(n)).

d) [mσ(1), . . . ,mσ(n)] ∗ αMn+1
(mn+1) ∗ · · · ∗ αM2n−1

(m2n−1) −
(−1)ϵ(σ)[m1, . . . ,mn] ∗ αMn+1

(mn+1) ∗ · · · ∗ αM2n−1
(m2n−1).

for all λ ∈ K, mi ∈ Mi, 1 ≤ i ≤ n, σ ∈ Sn, τ ∈ S2n−1.
Moreover, it can be readily checked that αM1∗···∗Mn

(DLn(M1, . . . ,Mn)) ⊆
DLn(M1, . . . ,Mn), hence we can construct the quotient Hom-vector space

(M1 ∗ · · · ∗Mn/DLn(M1, . . . ,Mn), αM1∗···∗Mn
)

which is endowed with a structure of Hom-Leibniz n-algebra with respect to
the bracket

[m11 ∗ · · · ∗mn1,m12 ∗ · · · ∗mn2, . . . ,m1n ∗ · · · ∗mnn] :=
[m11, . . . ,mn1] ∗ [m12, . . . ,mn2] ∗ · · · ∗ [m1n, . . . ,mnn]

(4)

where we abbreviate a coset m1i ∗ · · · ∗mni by m1i ∗ · · · ∗mni and the endomor-
phism αM1∗···∗Mn

by αM1∗···∗Mn
.

Definition 4.1. The above Hom-Leibniz n-algebra structure on

(M1 ∗ · · · ∗Mn/DLn(M1, . . . ,Mn), αM1∗···∗Mn
)

is called the non-abelian tensor product of the n-sided Hom-ideals
(Mi, α̃Mi

), 1 ≤ i ≤ n, and it will be denoted by (M1 ∗ · · · ∗Mn, α̃M1∗···∗Mn
).

Remark 4. If α̃L = (idL), then (M1 ∗ · · · ∗Mn, α̃M1∗···∗Mn
) coincides with

the non-abelian tensor product of Leibniz n-algebras introduced in [12]. In case
n = 2, we recover a particular case of the non-abelian tensor product of Hom-
Leibniz algebras given in [15].
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For any n-sided Hom-ideals (Mi, α̃Mi
), 1 ≤ i ≤ n, of a Hom-Leibniz n-

algebra (L, α̃L), there exists a homomorphism of Hom-Leibniz n-algebras

ψ : (M1 ∗ · · · ∗Mn, α̃M1∗···∗Mn
) →

(
n∩
i=1

Mi, α̃∩

)

given by

ψ(mσ(1) ∗ · · · ∗mσ(n)) = [mσ(1), . . . ,mσ(n)]

for any mσ(i) ∈ Mσ(i), i = 1, . . . , n, σ ∈ Sn.
In particular, when Mi = L, 1 ≤ i ≤ n, from relation (4) immediately follows

that ψ : (L ∗ · · · ∗ L, α̃L∗···∗L) �
(
[L, . . . ,L], α̃L|

)
is a central extension.

Theorem 4.2. If (L, α̃L) is a perfect Hom-Leibniz n-algebra, then ψ :
(L ∗ · · · ∗ L, α̃L∗···∗L) � (L, α̃L) is a universal central extension.

Proof. Let 0 →
(
Ker (χ) , α̃C|

) i→ (C, α̃C)
χ→ (L, α̃L) → 0 be a cen-

tral extension of (L, α̃L). Since Ker (χ) ⊆ Z (C) we get a well-defined homo-
morphism of Hom-Leibniz n-algebras f : L ∗ · · · ∗ L → C given on genera-
tors by f(lσ(1) ∗ · · · ∗ lσ(n)) = [clσ(1)

, . . . , clσ(n)
], where clσ(i)

is an element in

χ−1
(
lσ(i)

)
, i = 1, . . . , n, σ ∈ Sn.

On the other hand, relation (4) implies that (L ∗ · · · ∗ L, α̃L∗···∗L) is perfect,
then the homomorphism f is unique by Remark 1 and Lemma 3.6. 2

Remark 5. If (L, α̃L) is a perfect Hom-Leibniz n-algebra, then Ker(ψ) ∼=
nHL

α
1 (L) by Theorem 3.9 c).

Since universal central extensions of perfect Hom-Leibniz n-algebras are
unique up to isomorphisms, then (L ∗ · · · ∗ L, α̃L∗···∗L) ∼=

(
uce(L), α̃uce(L)

)
by

means of the isomorphism φ : (L ∗ · · · ∗ L, α̃L∗···∗L) →
(
uce(L), α̃uce(L)

)
, φ(lσ(1)∗

· · · ∗ lσ(n)) = {lσ(1), . . . , lσ(n)}, σ ∈ Sn.
In case n = 2, the universal central extension in Theorem 4.2 provides the

universal central extension of a Hom-Leibniz algebra given in [15].

Proposition 4.3. If (M, α̃M) is an n-sided Hom-ideal of a perfect Hom-
Leibniz n-algebra (L, α̃L), then there is an exact sequence of vector spaces

Ker(
n⊕
i=1

L ∗ · · · ∗

i︷︸︸︷
M ∗· · · ∗ L

ψ|→ M) → nHL
α
1 (L) → nHL

α
1 (L/M) →

M

n⊕
i=1

[L, . . . ,

i︷︸︸︷
M , . . . ,L]

→ 0

Proof. Consider the following commutative diagram of Hom-Leibniz n-
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algebras where π denotes the canonical projection on the quotient

0

��

0

��
(

n⊕
i=1

L ∗ · · · ∗
i︷︸︸︷
M ∗· · · ∗ L, α̃L∗···∗L|)

��

ψ| // (M, α̃M)

��
(L ∗ · · · ∗ L, α̃L∗···∗L)

π∗···∗π
��

ψ // (L, α̃L)

π
��

( L
M ∗ · · · ∗ L

M , α̃ L
M∗···∗ L

M
)

��

ψ // ( L
M , α̃L)

��
0 0

where ψ(lσ(1) ∗ · · · ∗ lσ(n)) = [lσ(1), . . . , lσ(n)], σ ∈ Sn. Then, forgetting the Hom-
Leibniz n-algebra structures, by using the Snake Lemma for the same diagram
of vector spaces, we obtain the following exact sequence,

Ker(ψ|) → Ker(ψ) → Ker(ψ) → Coker(ψ|) → Coker(ψ) → Coker(ψ) → 0

where Ker
(
ψ|
) ∼= Ker(

n⊕
i=1

L∗ · · · ∗
i︷︸︸︷
M ∗· · · ∗L → M); Ker (ψ) ∼= nHL

α
1 (L) and

Ker
(
ψ
) ∼= nHL

α
1 (L/M) by Remark 5; Coker

(
ψ|
) ∼= M

n⊕
i=1

[L, . . . ,
i︷︸︸︷
M , . . . ,L]

and

Coker (ψ) = Coker
(
ψ
)
= 0. 2

5. Unicentrality of Hom-Leibniz n-algebras

Our goal in this section is the generalization of the concept and properties of
unicentral Leibniz algebras to the setting of Hom-Leibniz n-algebras. Namely
(see [13]), a Leibniz algebra q is said to be unicentral if π(Z(g)) = Z(q) for
every central extension π : g � q. In particular, perfect Leibniz algebras are
unicentral (see [13, Proposition 4]).

As a first step, we show in the following example, that perfect Hom-Leibniz
n-algebras are not generally unicentral.

Example 5.1. Let (L, α̃L) be the three-dimensional Hom-Leibniz 3-algebra
with basis {e1, e2, e3}, bracket operation given by [e1, e1, e1] = e1; [e1, e1, e2] =
e2; [e1, e2, e1] = e3 and zero elsewhere, and α̃L = (0). Obviously, (L, α̃L) is a
perfect Hom-Leibniz 3-algebra.
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Consider the four-dimensional Hom-Leibniz 3-algebra (K, α̃K) with basis
{a1, a2, a3, a4}, bracket operation given by [a3, a3, a3] = a3; [a3, a3, a1] =
a1; [a3, a1, a3] = a2; [a3, a3, a2] = a4 and zero elsewhere, and α̃K = (0).

The surjective homomorphism f : (K, α̃K) � (L, α̃L) given by f(a1) =
e2; f(a2) = e3; f(a3) = e1; f(a4) = 0, is a central extension since Ker(f) =
⟨{a4}⟩ and Z(K) = ⟨{a4}⟩. Moreover, f(Z(K)) = 0, but Z(L) = ⟨{e3}⟩, hence
f(Z(K)) & Z(L).

By this fact, in what follows we show some results concerning the general-
ization of properties of unicentral Leibniz algebras.

Definition 5.2. A perfect Hom-Leibniz n-algebra (L, α̃L) is said to be centrally
closed if its universal central extension is

0 → 0 → (L, α̃L)
∼→ (L, α̃L) → 0

i.e. nHL
α
1 (L) = 0 and (uce(L), α̃uce(L)) ∼= (L, α̃L)

Lemma 5.3. Let f : (K, α̃K) � (L, α̃L) be a central extension of a perfect
Hom-Leibniz n-algebra (L, α̃L). Then the following statements hold:

a) K = [K, . . . ,K] + Ker(f).
b) If αL(l) ∈ Z(αL(L)), then [l1, . . . , li−1, l, li+1, . . . , ln] ∈ Ker(αL), for all

lj ∈ L, i ∈ {1, 2, . . . , n}, j ∈ {1, . . . , î, . . . , n}.

Proof. a) For any k ∈ K, f(k) ∈ L = [L, . . . ,L], then f(k) =
[f(k1), . . . , f(kn)], hence k − [k1, . . . , kn] ∈ Ker(f).

b) If αL(l) ∈ Z(αL(L)), then [αL(l1), . . . , αL(l), . . . , αL(ln)] = 0. 2

Proposition 5.4. Let f : (K, α̃K) � (L, α̃L) be a central extension of a perfect
Hom-Leibniz n-algebra (L, α̃L) with αL injective, such that (K, α̃K) satisfies the
following condition

[α(k), α(k), α(k3), . . . , α(kn)] = 0, for all k, k3, . . . , kn ∈ K (5)

Then

f(Z(αK(K))) = Z(αL(L))

Proof. Let αK(k) ∈ Z(αK(K)), then f(αK(k)) ∈ Z(αL(L)) since

[αL(l1), . . . , f(αK(k)), . . . , αL(ln)] = [αL(f(k1)), . . . , f(αK(k)), . . . , αL(f(kn))]
= f [αK(k1), . . . , αK(k), . . . , αK(kn)] = 0

Conversely, for any αL(l) ∈ Z(αL(L)), there exists any k ∈ K such that
f(k) = l, hence αL(l) = αL(f(k)) = f(αK(k)). We must show that αK(k) ∈
Z(αK(K)). Indeed,

[αK(k), αK(k2), . . . , αK(kn)] = −[αK(k2), αK(k), αK(k3), . . . , αK(kn)]
= − [αK[k21, . . . , k2n] + Ker(f), αK(k), αK(k3), . . . ,

αK(kn)]
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by condition (5) and Lemma 5.3 a). Applying the fundamental identity (1) and
having in mind that Ker(f) ⊆ Z(K), the above equality reduces to

−[[αK(k21), k, k3, . . . , kn], α
2
K(k22), . . . , α

2
K(k2n)]

−[α2
K(k21), [αK(k22), k, k3, . . . , kn], α

2
K(k23), . . . , α

2
K(k2n)]− . . .

−[α2
K(k21), . . . , α

2
K(k2(n−1)), [αK(k2n), k, k3, . . . , kn]]

which vanishes since the brackets of the form [αK(k2i), k, k3, . . . , kn] are
in Ker(f) ⊆ Z(K) because f [αK(k2i), k, k3, . . . , kn] = [f(αK(k2i)), l, f(k3),
. . . , f(kn)] ∈ Ker(αL) by Lemma 5.3 b), and αL is injective.

The vanishing of the other possible brackets is completely analogous to the
last arguments, so we omit it. 2

Remark 6. Hom-Lie n-algebras are examples of Hom-Leibniz n-algebras sat-
isfying condition (5). Also Hom-Lie triple systems satisfy condition (5) in case
n = 3 (see Example 2.4 d)).

Example 5.5. In the following we present a concrete example of central ex-
tension satisfying the conditions established in Proposition 5.4.

Consider the four-dimensional C-vector space L with basis {e1, e2, e3, e4} en-
dowed with the ternary bracket operation given by [e2, e3, e4] = e1; [e1, e3, e4] =
e2; [e1, e2, e4] = e3; [e1, e2, e3] = e4, together with the corresponding skew-
symmetric ones and zero elsewhere. By Lemma 2.2 in [6], (L, [−,−,−]) is a
Lie 3-algebra.

Now consider the homomorphism of Lie 3-algebras α : L → L given by
α(e1) = e1;α(e2) = −e2;α(e3) = e3;α(e4) = −e4. Then Theorem 3.4 in [4]
endows L with a structure of Hom-Leibniz 3-algebra with bracket operation
given by {e2, e3, e4} = e1; {e1, e3, e4} = −e2; {e1, e2, e4} = e3; {e1, e2, e3} = −e4,
together with the corresponding skew-symmetric ones and zero elsewhere, and
α̃L = (α, α). This Hom-Leibniz 3-algebra is perfect and αL is injective.

Consider the four-dimensional C-vector space K with basis {a1, a2, a3, a4} en-
dowed with the ternary bracket operation given by [a2, a3, a4] = a1; [a1, a3, a4] =
a2; [a1, a2, a4] = a3; [a1, a2, a3] = a4, together with the corresponding skew-
symmetric ones and zero elsewhere. By Lemma 2.2 in [6], (K, [−,−,−]) is a Lie
3-algebra.

Now consider the homomorphism of Lie 3-algebras β : K → K given by
β(a1) = −a1;β(a2) = a2;β(a3) = −a3;β(a4) = a4. Then Theorem 3.4 in [4]
endows K with a structure of Hom-Leibniz 3-algebra with bracket operation
given by {a2, a3, a4} = −a1; {a1, a3, a4} = a2; {a1, a2, a4} = −a3; {a1, a2, a3} =
a4, together with the corresponding skew-symmetric ones and zero elsewhere,
and α̃K = (β, β). This Hom-Leibniz 3-algebra obviously satisfies condition (5).

The surjective homomorphism f : (K, α̃K) � (L, α̃L) defined by f(a1) =
e2; f(a2) = e1; f(a3) = e4; f(a4) = −e3, is a central extension since Ker(f) and
Z(K) are both trivial.

Let (L, α̃L) be a perfect Hom-Leibniz n-algebra with αL injective. As-
sume that (L, α̃L) satisfies condition (5). Then

(
uce(L), α̃uce(L)

)
satisfies con-

dition (5) provided that {αL(l), αL(l), αL(l3), . . . , αL(ln)} ∈ nHL
α
1 (L), for all

l, l3, . . . , ln ∈ L, is the zero coset. This fact occurs, for instance, when (L, α̃L)
is centrally closed.
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From now on, we assume that
(
uce(L), α̃uce(L)

)
satisfies condition (5) when

(L, α̃L) does. Then Proposition 5.4 gives the following equality:

uL(Z(αuce(L)(uce(L)))) = Z(αL(L)) (6)

Theorem 5.6. Let (L, α̃L) be a perfect Hom-Leibniz n-algebra with αL injective
such that (L, α̃L) and

(
uce(L), α̃uce(L)

)
satisfy condition (5). Then there is an

isomorphism

αL(L)
Z(αL(L))

∼=
αuce(L)(uce(L))

Z(αuce(L)(uce(L)))

Proof. The universal central extension of (L, α̃L) induces the central extension

0 →
(
αuce(L) (nHL

α
1 (L)) , α̃uce(L)|

)
→

→
(
αuce(L)(uce(L)), α̃uce(L)|

)
→
(
αL(L), α̃L|

)
→ 0

when αL is injective. Moreover condition (5) is preserved by the terms in this
central extension.

Bearing in mind (6), the kernels of the horizontal arrows in the commutative
diagram

Z(αuce(L)(uce(L)))
uL| // //

��

��

Z(αL(L))��

��
αuce(L)(uce(L))

uL| // // αL(L)

coincide, then the cokernels of the vertical homomorphisms are isomorphic. 2

Proposition 5.7. Let 0 → (M, α̃M) → (K, α̃K)
π→ (L, α̃L) → 0 and 0 →

(N , α̃N ) → (H, α̃H)
τ→ (K, α̃K) → 0 be central extensions of Hom-Leibniz n-

algebras. Then the following statements hold:

a) If π ◦ τ : (H, α̃H) � (L, α̃L) is a universal α-central extension, then
τ : (H, α̃H) � (K, α̃K) is a universal central extension.

b) If τ : (H, α̃H) � (K, α̃K) is a universal central extension, then π ◦ τ :
(H, α̃H) � (L, α̃L) is an α-central extension which is universal over
central extensions, that is, for any central extension 0 → (A, α̃A) →
(P, α̃P)

ω→ (L, α̃L) → 0 there exists a unique homomorphism Φ :
(H, α̃H) → (P, α̃P) such that ω ◦ Φ = π ◦ τ .

Proof. a) If π ◦ τ : (H, α̃H) � (L, α̃L) is a universal α-central extension, then

nHL
α
0 (H) = nHL

α
1 (H) = 0 by Theorem 3.9 d). Hence τ : (H, α̃H) � (K, α̃K) is

a universal central extension by Theorem 3.9 e).
b) If τ : (H, α̃H) � (K, α̃K) is a universal central extension, then (H, α̃H)

and (K, α̃K) are perfect Hom-Leibniz n-algebras by Lemma 3.5, hence π ◦ τ :
(H, α̃H) � (L, α̃L) is an α-central extension by Lemma 3.8. Moreover π◦τ is uni-
versal over central extensions. Indeed, for any central extension 0 → (A, α̃A) →
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(P, α̃P)
ω→ (L, α̃L) → 0, construct the pull-back extension

0 // (A, α̃A) // (P ×L K, α̃P × α̃K)
ω //

π
��

(K, α̃K) //

π

��

0

0 // (A, α̃A) // (P, α̃P)
ω // (L, α̃L) // 0

which is central. Since τ : (H, α̃H) � (K, α̃K) is a universal central extension,
then there exists a unique homomorphism φ : (H, α̃H) → (P ×L K, α̃P × α̃K)
such that ω ◦ φ = τ . Then Φ = π ◦ φ satisfies the required universal property
thanks to Lemma 3.6. 2

Corollary 5.8. Let (L, α̃L), (L′, α̃L′) be perfect Hom-Leibniz n-algebras with
both αL, αL′ injective and such that (L, α̃L), (L′, α̃L′),

(
uce(L), α̃uce(L)

)
, and

(uce(L′), α̃uce(L′)

)
satisfy condition (5). Then

a) If
(
uce(L), α̃uce(L)

) ∼= (uce(L′), α̃uce(L′)

)
, then αL(L)

Z(αL(L))
∼= αL′ (L′)

Z(αL′ (L′)) .

b) If αL(L)
Z(αL(L))

∼= αL′ (L′)
Z(αL′ (L′)) , then

(
uce(αL(L)), α̃uce(L)|

) ∼= (uce(αL′(L′)),

α̃uce(L′)|
)
.

Proof. a) If
(
uce(L), α̃uce(L)

) ∼=
(
uce(L′), α̃uce(L′)

)
, then αL(L)

Z(αL(L))
∼=

αuce(L)(uce(L))
Z(αuce(L)(uce(L)))

∼= αuce(L′)(uce(L′))

Z(αuce(L′)(uce(L′)))
∼= αL′ (L′)

Z(αL′ (L′)) by Theorem 5.6.

b) If αL(L)
Z(αL(L))

∼= αL′ (L′)
Z(αL′ (L′)) , then

(
uce
(

αL(L)
Z(αL(L))

)
, α̃uce(L)

)
∼=(

uce
(

αL′ (L′)
Z(αL′ (L′))

)
, α̃uce(L′)

)
.

Now, applying Proposition 5.7 b) to the central extensions
uL| :

(
uce(αL(L)), α̃uceL)|

)
→ (αL(L), α̃L|) and p : (αL(L), α̃L|) →

(αL(L)/Z(αL(L)), α̃L), we conclude that
(
uce(αL(L)), α̃uceL)|

) ∼=(
uce(αL(L)/Z(αL(L))), α̃uce(L)|

)
. 2

Corollary 5.9. Let (L, α̃L) be a centerless perfect Hom-Leibniz n-algebra with
αL injective such that (L, α̃L) and

(
uce(L), α̃uce(L)

)
satisfy condition (5). Then

Z(αuce(L)(uce(L))) ∼= nHL
α
1 (αL(L)) and the universal central extension of

(αL(L), α̃L|) is

0 →
(
Z(αuce(L)(uce(L))), α̃uceL)|

)
→
(
uce(αL(L)), α̃uce(L)|

)
→ (αL(L), α̃L|) → 0

Proof. Z(L) = 0 and αL injective implies that Z(αL(L)) = 0. Then Theorem
5.6 implies that 0 →

(
Z(αuce(L)(uce(L))), α̃uce(L)|

)
→
(
αL(uce(L)), α̃uce(L)|

)
→

(αL(L), α̃L|) → 0 is isomorphic to the universal central extension of
(αL(L), α̃L|). 2
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