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In a context of special relativity under anisotropy, Burde recently presented in this jour-
nal a new group of coordinate transformations obtained using Lie group techniques from
the principles of relativity and correspondence, which show conformal metric invariance.
As a consequence, this author argued that conformal invariance is a necessary condition
of any anisotropic transformation satisfying those principles, and rejected the adequacy
of any transformation obtained from the Lorentz transformation by a coordinate change,
e.g. resynchronization such as the ε-Lorentz transformation. This paper argues against
these assertions, and presents, as a counterexample, a relativistic generalization of the
Tangherlini transformation obtained by the same Lie group method, that satisfies the
previous requirements and enjoys the metric invariance property.
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group of transformations; special relativity; Tangherlini transformation.
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1. Introduction

The discovery of the cosmic microwave background radiation (CMBR) has stimu-
lated1,2 the proposal of test theories of relativity hoping to shed light on the validity
of the relativity principle by empirically contrasting the special theory of relativity
(STR) with anisotropic test theories considering the CMBR frame as a privileged
frame. Since the pioneering work of Mansouri and Sexl,3 several proposals have been
made (although see e.g. Refs. 4 and 5 , where for different reasons this approach is
not seen as acceptable), one of the most recent by Burde6,7 (Ref. 8 is a first step and
serves as a background). This author, in the context of an anisotropic world,a using
Lie group techniques, obtains a Lie group of coordinate transformations between

aUnless otherwise stated, throughout this paper, by an anisotropic world we mean a world in which
light propagates anisotropically with respect to any inertial frame — except an isotropic preferred

2250089-1

https://dx.doi.org/10.1142/S0218271822500894


�QG�5HDGLQJ

July 11, 2022 12:14 WSPC/S0218-2718 142-IJMPD 2250089

J. M. Mat́ıas

inertial frames that show conformal metric invariance, that is, they leave a scaled
metric invariant rather than the metric.

Apart from the interest of the derivation method and the new transformation
itself, Burde makes some assertions about his results that could be considered at
least controversial, and that could be summarized in the following main claims (e.g.
Ref. 6, pp. 1595–1596):

(1) In an anisotropic world, the invariance of the interval (metric) cannot be used
as a first principle in the derivation of a coordinate transformationb between
inertial frames. The invariance of the light propagation equation should be used
instead.

Since using this latter principle leads to conformal metric-invariant trans-
formations — as is the case of the new transformation obtained by Burde —
a metric-invariant transformation would not be suitable for anisotropic
kinematics.

(2) Any transformation obtained from the Lorentz transformation (LT) by a coor-
dinate change is in fact the LT using a nonstandard coordinatization. Since such
a transformation would leave the metric invariant, using the above claim, such
a transformation would be incompatible with a truly anisotropic propagation
of light and could not serve as a basis for anisotropic kinematics. In particular,
this assertion rules out any ε-Lorentz transformation (ε-LT),9,10 to represent
an anisotropic world.c

The above claims seem to contradict the conventionality of simultaneity
(CS)11,12 which, as is well known, is a consequence of our ignorance of the one-
way speed of light. The same ignorance that had to be circumvented by Einstein
stipulating by definition13 the one-way speed of light underlying the synchroniza-
tion of clocks.d

Thus, according to the above statements, any transformation obtained — such
as an ε-LT — from the LT by resynchronization (i.e. a change of coordinates) in
order to reflect an assumed true anisotropy cannot describe this anisotropic prop-
agation of light, but only the isotropic world of the LT in which simultaneity is

frame (PF) — and whose anisotropy depends on its velocity with respect to this privileged frame.
Invariant anisotropies, such as those discussed in Ref. 8 leading to relativity of simultaneity, are
therefore excluded.
bIn what follows, we refer only to inertial frames and linear transformations between them.
cAs is well known, the ε-LTs are obtained from the LT by a change of coordinates that implements
a resynchronization of clocks. The particular case ε = 1/2 corresponds to the standard or Einstein
synchronization in which case the ε-LT is the LT (see below).
dNote that, as usual, by CS we do not mean the freedom one has to establish arbitrary simultaneity
using arbitrary synchronization of clocks, since this is always possible, but the conventionality that
will always pervade any claim to establish “true” simultaneity — i.e. true physical simultaneity,
whether absolute or relative — insofar as, in the context of the theory of relativity, such true
simultaneity is not known due to our ignorance of the one-way speed of light.

2250089-2



�QG�5HDGLQJ

July 11, 2022 12:14 WSPC/S0218-2718 142-IJMPD 2250089

Metric-invariant transformations under anisotropy in STR

relative, hence it is unconventional. In other words, since nonstandard synchroniza-
tions under STR lead to ε-LT (ε != 1/2), ruling out ε-LT to represent an anisotropic
world according to the above claims is equivalent to ruling out the possibility that
such synchronizations represent the supposed true anisotropy, and this is equiva-
lent to establishing the standard procedure as the only true one, which is not only
against CS but against the anisotropic hypothesis itself.

This view that all transformations obtained from the LT by a change of coordi-
nates are intrinsic to, and exclusive to, the isotropic world of the LT is reminiscent
of that of important authors (e.g. Refs. 14–16) who reduced the importance of CS
to the almost irrelevant role of a mere change of coordinates that does not change
the geometry. I thought this debate17 was on the way to resolution after contribu-
tions such as Refs. 18 and 19 clarified Malament’s objection under the property of
general covariance and a gauge equivalence interpretation. However, some of the
motivations put forward by Burde represent a new iteration of the debate on CS
under the new guise of conformal metric invariance as an essential feature of trans-
formations under anisotropy and, therefore, a discriminating element between an
isotropic and an anisotropic world.

This paper tries to clarify this conflictive panorama through two main objectives:

(1) To analyze the arguments used by Burde to support the above assertions and
explain what is wrong with them.

(2) To introduce consequential modifications to the assumptions made by Burde
in order to obtain a new transformation that also satisfies the principles of
relativity and correspondence, but maintains the invariance of the metric. The
resulting transformation thus serves as a counterexample to Burde’s assertions.

To this end, in Sec. 2, we summarize the motivations, principles and results
of Burde’s work. In Sec. 3, we analyze these motivations and principles and their
effects on the resulting Burde’s transformation (BT). In Sec. 4, we apply the critique
of the previous section to obtain a transformation that serves as a counterexample
to Burde’s claims. In Sec. 5, we carry out a final discussion about the BT and of the
work done here, trying to clarify its meaning from the point of view of CS. Finally,
in Sec. 6, we summarize our conclusions. Appendix A presents succinctly the BT,
and Appendix B shows some transformations presented as a counterexample during
the analysis of Sec. 3.

2. Burde’s Transformation

In this section, we summarize the motivations, objectives and methodology that lead
to the new BT. This transformation was first presented in Ref. 6. In this paper,
Burde motivates and derives BT, analyzes its meaning and its relationship with
other known anisotropic transformations obtained from nonstandard synchrony,
and applies the new transformation to the CMBR dipole anisotropy. A previous
article8 is also relevant to understand the motivation and evolution of BT: in that
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article, the same Lie group methodology is presented and applied to obtain a trans-
formation leaving the anisotropy direction invariant in all inertial frames, a case
not considered here, which reduces to LT in the particular isotropic case. A more
recent article applies BT to general relativity (GR) (Ref. 7, Sec. 2.3, pp. 6–7).

Of these three articles, Ref. 6 will be taken as our main reference although we will
use the others when convenient — the oldest to better understand the background,
and the more recent as its introduction and presentation of the transformation are
more succinct.

2.1. The physical context

The physical context of BT is a world described by the following assumptions
(Ref. 6, Sec. 3, pp. 1597–1598):

(1) The speed of light measured over closed paths is c relative to any inertial frame
(round-trip light principle).

(2) There is a PF relative to which, the one-way speed of light is isotropic.
(3) With respect to any other inertial frame, the one-way speed of light is

anisotropic and this anisotropy depends on the frame velocity with respect
to the PF.

For ease of reference, we will call this world an anisotropic world — sometimes
without making explicit that anisotropy depends on velocity. The transformation
obtained by Burde using the Lie group technique ultimately depends on a free
anisotropy parameter function k(a) with a the group parameter, which has to be
specified using the last two assumptions.

Under the round-trip light principle, the one-way speed of light relative to any
inertial frame S is (Ref. 6, pp. 1597–1598)

cn =
c

1 + k · n =
c

1 + k cos θk
, (1)

(compare with (Ref. 10, p. 127) although there, the synchronization parameter κ
has a negative sign,e i.e. k = −κ) where k is a vector defining the anisotropy in
the given frame, k = |k|, and θk is the angle between the direction of propagation
n and k. Therefore, assuming that the x-axis is chosen to be along the anisotropy
vector k, the corresponding light propagation equation isf

ds2 = c2dt2 − 2kcdtdx− (1− k2)dx2 − dy2 − dz2 = 0. (2)

eTo make it easier to track the source, we will follow Burde’s notation and choose a compromise
notation when his different papers diverge.
fNote that this equation cannot be formulated without having previously defined the frame’s time.
However, it is relevant that we are not informed until the end of the article (Ref. 6, Discussion
section, p. 1613) that the synchronization procedure used is that based on light signals with one-
way velocities according to relation (1), as if this synchronization procedure were derived from
the form of the light propagation equation and not the other way around.
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2.2. Motivation and first principles

In this context, the main motivations for the new transformations can be summa-
rized as follows (Ref. 6, pp. 1595–1596):

(1) Coordinate transformations obtained from LT by a coordinate change are not
suitable for an anisotropic world. The ε-LT is a particular case.

(2) Coordinate transformations that leave the metric invariant are not suitable to
an anisotropic world. Only under isotropy the invariance of the metric is equiv-
alent to the invariance of the light propagation equation. Since any coordinate
transformation obtained from LT by a coordinate change is metric invariant,
such a transformation cannot be suitable to an anisotropic world. The ε-LT are
again a particular case.

(3) Under isotropy, the ε-LT do not satisfy the principle of correspondence (PC)
unless ε = 0, therefore, LT is privileged under isotropy. Since according to
Burde the ε-LT are essentially isotropic, a new transformation under anisotropy
satisfying the correspondence principle is necessary.

We present these motivations in more detail below. Given the crucial role of
Burde’s words in this section and the length of the referenced articles, we will
quote them verbatim where necessary to minimize the risk of error or ambiguity in
paraphrase, and make the paper as self-sufficient as possible.

2.2.1. Transformations obtained from LT by coordinate change are not
suitable for an anisotropic world

This motivation is best expressed directly through Burde’s words (Ref. 8, pp. 1575–
1576) (emphasis added)

“What is essential for interpretation of the ε-Lorentz transformations is
that they can be obtained from the standard Lorentz transformations by a
change of coordinates (. . .). Thus, the ε-Lorentz transformations are in fact
the Lorentz transformations of the standard special relativity represented
using the “nonstandard” coordinatization of the four-dimensional space-
time manifold. This might be expected in view of the fact that the kinematic
arguments used in the derivations of the ε-Lorentz transformations in the
aforementioned works [articles by Edwards, Winnie and Ungar] are based
on the assumption that, in the case of ε = 1/2, the relations of the special
relativity theory in its standard formulation are valid. The above implies
that the ε-Lorentz transformations cannot provide a basis for kinematics of
the special relativity if an anisotropy of the one-way speed of light is due to
a real space anisotropy which should influence all physical processes and, in
particular, propagation of light. Effects of a real space anisotropy could not
be eliminated by a change of the space-time coordinatization. The special
relativity kinematics applicable to that situation should be developed based
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on the first principles, without refereeing to the relations of the standard
relativity theory.”

Burde’s view could therefore be summarized as being that any coordinate trans-
formation like ε-LT which can be obtained from and converted back to LT by a
change of coordinates, describes an isotropic kinematics and thus is not suitable for
representing an anisotropic world. Consequently, a specific one has to be derived
from first principles.

2.2.2. Metric-invariant transformations are only valid in an isotropic world

The nonapplicability of ε-LT to an anisotropic system is reinforced by the equiva-
lence, under isotropy (STR), between the properties of metric invariance and light
propagation equation invariance, of linear transformations. Under anisotropy such
an equivalence does not hold, thus Burde concludes that, since the ε-LT — like any
other transformations obtained from LT by a coordinate change — leave the metric
invariant, they are not suitable for an anisotropic world.

Burde bases these considerations on arguments such as those of Pauli’s (Ref. 20,
pp. 9–10), which we reproduce here due to their interest (Ref. 8, pp. 1589–1590).
If, in the context of STR, S, S′ and S′′ are inertial frames in standard configuration
such that S′ moves with velocity β relative to S, and S′′ moves with velocity −β
relative to S′ (i.e. S′′ is at rest with S), then

(1) For a linear transformationg (in particular LT) to leave the light equation invari-
ant, i.e. (ds′)2 = 0 = ds2, it must satisfy (ds′)2 = λ (β) ds2, with λ (β) asso-
ciated to a possible change of lengths in the directions transverse to motion
(Ref. 20, p. 2).

(2) Applying LT to motion in the opposite direction: (ds′′)2 = ds2 = λ(−β)(ds′)2 =
λ(−β)λ(β)ds2, therefore, λ(−β)λ(β) = 1.

(3) For reasons of symmetry, λ(β) must be independent of the direction of the
velocity, i.e. {λ(β) = λ(−β) and λ(β) ≥ 0} ⇒ λ(β) = 1.

In this context, Burde concludes (Ref. 6, pp. 1595–1596) (emphasis added)

“Thus, in general, not the invariance of the interval but invariance of the
equation of light propagation should be a starting point for derivation of
the transformations. (. . .) Therefore the use of the interval invariance is
usually preceded by a proof of its validity (. . .) based on invariance of the
equation of light propagation. However, those proofs are not valid if an
anisotropy is present and the same arguments lead to the conclusion that,
in the presence of anisotropy, the interval is not invariant but modified
by a conformal factor. The “ ε-Lorentz transformations”, like the standard

gThroughout this discussion, we refer to linear transformations.
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Lorentz transformations, leave the interval invariant and therefore they are
applicable only to the case of no anisotropy.”

Also (Ref. 8, pp. 1591–1592) (emphasis added)

“[The] effects of a real space anisotropy cannot be made vanishing by a coor-
dinate change and so the conformal factor should appear in all physically
important relations independently of the synchrony chosen. In particular,
the conformal factor remains in the relations describing the length contrac-
tion and time dilation effects after that those relations have been converted
to the standard variables, with Einstein synchrony assumed.”

These considerations lead Burde to conclude that, in an anisotropic world,
the invariance of the light propagation equation — rather than the invariance of
the metric — must be used as the first principle to derive a relativistic linear
transformation.

2.2.3. The principle of correspondence

Burde’s formulation of the PC affects only to the x-transformation (Ref. 8, p. 1580)

“Correspondence principle. In the limit of small velocities v % 1 (small
values of the group parameter a % 1), the formula for transformation of
the coordinate x turns into that of the Galilean transformation:

x = X − vT (2.4)

It should be noted that the relations t = T , y = Y and z = Z, which
are commonly included into the system of equations called the Galilean
transformations, are not required to be valid in the limit of small velocities.
(. . .) So only the relation 2.4, which does contain the first order term,
provides a reliable basis for specifying the group generators based on the
correspondence principle.”

This formulation gives Burde another reason to reject the ε-LT (Ref. 8, foot-
note 3, p. 1578) (see also Ref. 6, p. 1596)

“It is worth noting that the “ε-Lorentz transformations” do not satisfy
the correspondence principle unless the standard (Einstein) synchrony is
used. In the limit of small velocities, the coordinate transformation con-
tains additional terms including the synchronization parameter and light
speed which are alien to the framework of the Galilean kinematics. So the
correspondence principle applied to the ε-Lorentz transformations singles
out the Einstein synchrony as a “natural” one in a sense.”

In summary, the considerations of the previous two sections restrict the validity
of the ε-LT to the isotropic world, but in this kind of world the LT is privileged since,

2250089-7



�QG�5HDGLQJ

July 11, 2022 12:14 WSPC/S0218-2718 142-IJMPD 2250089

J. M. Mat́ıas

according to Burde, the PC is satisfied only if Reichenbach’s ε = 1/2. Therefore, in
an anisotropic world, another transformation must be selected in order to satisfy
the PC.

2.2.4. First principles

In accordance with all of the above, Burde aims to construct a relativistic
anisotropic kinematics by developing from first principles a coordinate transfor-
mation between inertial frames. Given two arbitrary inertial frames S and S′ with
respective coordinate systems {X,Y, Z, T } and {x, y, z, t}, the coordinate transfor-
mation sought has the following general form:

t = q(X,T,K; a), x = f(X,T,K; a), y = g(Y, Z,K; a),

z = h(Y, Z,K; a), k = p(K; a).
(3)

Note that in this general form, the anisotropy parameter k is one more state
variable subject to the transformation (Ref. 6, p. 1560). This permits the new
transformation to satisfy the principle of relativity in an anisotropic scenario (Ref. 6,
p. 1598; Ref. 7, pp. 2–3) (emphasis added)

“In such a framework, the principle of relativity is preserved since the priv-
ileged frame, in which the anisotropy parameter is zero, enters the analysis
on equal footing with other frames — transformations from/to that frame
are not distinguished from other members of the group of transformations‡.
As a matter of fact, the symmetry underlying the transformation group is
the same spacetime symmetry as that expressed by the Lorentz invariance
but extended by allowing the one-way speed of light to be anisotropic.”

In the footnote on that page, Burde makes it clear that

“‡ In the standard SR, validity of the relativity principle is achieved sim-
ply by assuming that the one-way speed of light is isotropic and equal to
c in all inertial frames which allows the study of relative motion without
any concern with the study of absolute motion. Nevertheless, this restrict-
ing assumption is required neither by the experiment nor by the relativity
principle or the group property of the transformations.”

The above general form also assumes that frames are arranged in standard
configuration (e.g. Ref. 21, p. 45): S′ moves inertially with velocity v relative to
S along their common x-axis, with the y and z-axes of the two frames remaining
parallel. Consequently, based on symmetry arguments, the transformations of the
variables x and t do not involve the variables y and z and vice versa.h In this context,
since anisotropy is attributed to motion with respect to the PF, the direction of

hLater, during the resolution of the problem (Ref. 6, p. 1601), it is also assumed that there are
no rotations in the (y, z) plane, i.e. y = g(Y,K;a) and z = h(Z,K;a).
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motion is assumed to coincide with the direction of anisotropy (Ref. 7, p. 7; Ref. 6,
p. 1599).

Under these assumptions, the equations of light propagation in S and S′ are,
respectively (Ref. 6, pp. 1598 and 1600)

dS2 = c2dT 2 − 2KcdTdX − (1−K2)dX2 − dY 2 − dZ2 = 0, (4)

ds2 = c2dt2 − 2kcdtdx− (1− k2)dx2 − dy2 − dz2 = 0, (5)

where K and k reflect the true anisotropy in both frames.
In this framework, the first principles imposed to the sought transformation are

(1) The invariance of the light propagation equation as it would be required by
the principle of relativity, i.e. the transformation should transformi Eq. (4) into
Eq. (5).

(2) Group structure (Ref. 6, p. 1599): the transformation must form a one-
parameter group with parameter a = a(v) reflecting the anisotropy dependence
on motion.

(3) The PC, i.e. the condition that (Ref. 6, pp. 1560 and 1600) in the limit of small
velocities v % c (. . .), the formula for transformation of the coordinate x turns
into that of the Galilean transformation (GT )

x = X − vT. (6)

2.3. Derivation and further specification

In order to better understand the effect of the assumptions on the resulting trans-
formation, it is important to know the derivation strategy and their order of appli-
cation. We do not go into the details of the derivation here, which are perfectly
described in the references (Ref. 6, pp. 1598 and 1599ff; Ref. 7, pp. 7–9). The
derivation is structured in five steps that can be summarized in the following two
main stages:

(1) Stage 1 (steps 1–4 of the derivation). From the principle of invariance of the
light propagation equation, by means of the Lie group technique,22,23 a general
transformation is obtained that relates any pair of inertial systems with arbi-
trary anisotropy parameters. The PC is applied at this stage to specify the Lie
infinitesimal generator of the spatial transformation from Eq. (6). The result-
ing transformation depends on an indefinite function (Ref. 6, p. 1603) k = k(a)
representing the anisotropy of the inertial frames.

(2) Stage 2 (step 5 of the derivation). A further specification (Ref. 6, Sec. 5) of the
above general transformation is carried out by using the remaining anisotropy
assumptions (Sec. 2.1): (a) the existence of an isotropic PF (k = 0), and (b) the

iNote that the anisotropy parameter is potentially different for each frame, hence this invariance
should be interpreted as covariance of the light equation.
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anisotropy of each inertial frame is originated by its motion, and depends on its
velocity β, relative to the PF. These assumptions lead Burde to postulate the
anisotropy parameter as a function k(a) = F (β), as explained below, in order
to obtain a more specific transformation.

2.3.1. Postulated anisotropy model

Since the general transformation obtained in the first stage depends on a free func-
tion k(a), Burde reduces this degree of freedom with the assumption that anisotropy
is due to motion with respect to the PF, thus postulating a function (Ref. 6, p. 1603)
k = F (β) with β = v/c where v is the velocity of the inertial frame with respect to
the PF. Later, he postulates the form of the function k = F (β) (ibid. p. 1605)

“Although the function F (β) is not known, a further specification can be
made based on the argument that an expansion of the function F (β) in
a series with respect to β should not contain a quadratic term since it is
expected that a direction of the anisotropy vector changes to the opposite
if a direction of a motion with respect to a preferred frame is reversed:
F (β) = −F (−β). Thus, with accuracy up to the third order in β, the
dependence of the anisotropy parameter on the velocity with respect to a
preferred frame can be approximated by:”

k = F (β) ≈ qβ, β = f(k) ≈ k

q
.

Since the function β = β(a) had been previously obtained in the derivation, the
model of anisotropy just postulated permits the specification of the free function as
k(a) = F (β(a)) = qβ(a). Accordingly, the final BT (Appendix A) depends on the
universal constant j q such that the case q = 0 corresponds to STR. In this context,
Burde hopes that the measurable effects of his theory can provide estimates for q,
thus determining deviations from the STR in the manner of a test theory (ibid.
p. 1593).

3. Analysis of the BT Transformation

In this section, we review BT as well as his motivations and first principles, with a
focus on the following aspects that decisively determine its final form and physical
meaning:

(1) The relationship between the natural synchronization assumed in the BT trans-
formation and its anisotropy model.

(2) The specific formulation of the correspondence principle and its relation to the
relative simultaneity shown by the BT.

jNote that q is denoted by b in p. 11 of Ref. 7 because in this paper q is the time transformation
function.

2250089-10
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(3) The relationship between anisotropy, invariance of the light propagation equa-
tion and the conformal invariance property.

3.1. Anisotropy, natural synchronization and velocity

Reading the quote of Sec. 2.2.1, among others, one gets the impression that Burde
does not attach much importance to synchronization of clocks, since it can always
be modified by a coordinate change. However, without this synchronization, we can
neither define time nor give meaning to the light propagation equation (2) because
the mere formulation of that equation relies on a synchronization method. It is
relevant that, as we have indicated in Sec. 2.1, we had not been informed until the
Discussion section (Ref. 6, p. 1613) about the method chosen. It is true however
that, since k represents the true anisotropy of the inertial frame, we can deduce
that all inertial frames use their respective value of this parameter and use it to
synchronize their clocks. This synchrony can be implemented for example with light
signals using the equationk:

tB = tA + ε(t′A − tA), (7)

with Reichenbach’s

εk =
1
2
(1 + k), (8)

where k is the true anisotropy parameter of the inertial frame (Ref. 11, Sec. II.19,
p. 127; Ref. 10, Sec. 1.5.1, p. 106; Ref. 14, Sec. IV.7, p. 167).

However, if we further assume the existence of an isotropic PF S0, if inertial
frames follow this procedure using their respective k, then they all end up adopting a
common and true simultaneity: true, because they use their respective true one-way
speed of light, and common, because they all arrive at the same simultaneity relation
since all inertial frames anisotropies — PF isotropy included — form a coherent
system determined by the universal propagation of light and their respective relative
velocities, and are thus interdependent.

Specifically, according to Redhead,24 (Ref. 25, p. 90ff), if an inertial frame S
moves relative to a standard frame S0 with velocity β as seen by S0, the adoption
by S of the simultaneity of S0 is equivalent to synchronizing its clocks withl

ε =
1
2
(1 + β). (9)

Combining both results (Eqs. (8) and (9)), the resulting anisotropy factor of S is
k = β, i.e. its standard velocity relative to the PF S0. Therefore, given the assumed

kA light signal is emitted from A at time tA, is reflected at B at time tB , and returns to A at
time t′A.
lActually, Redhead presents the situation under the point of view of S assuming that it also has
standard clocks, in which case, m = −β is the slope of the simultaneity hyperplane of S0, according
to S. However, here we have that S0 has standard clocks and S wants to define its own time using
the simultaneity of S0. In any case, if S had adopted the standard synchrony and decided later to
adopt the — under our hypotheses, true — simultaneity of S0, the final result would be the same.
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anisotropic world with isotropic PF, we arrive univocally at a specific anisotropy
model, the one defined by: k = F (β) = β. This result seems to be ignored by Burde
in postulating the function F (β) = qβ.

Furthermore, as it is well known, this anisotropic inertial kinematics is described
by the Tangherlini transformations (TT)26,27,m





t =

T

γ
,

x = γ(X − βT ).
(10)

Nevertheless, Burde seems to conceive of TT as the mere result of a synchro-
nization of convenience with no physical basis, performed solely for the purpose of
establishing a common simultaneity in all frames (Ref. 6, p. 1612) (emphasis added)

“Thus, using the synchronization method, [signals travelling with infinite
or arbitrarily large velocity, or by external synchronization, as assumed
by Tangherlini26,27] that is different from synchronization by light signals,
yields the transformations [TT] which exhibit absolute simultaneity. They
also exhibit non-invariant one-way speed of light so that, in that approach,
the anisotropy of the velocity of light in a moving inertial frame is a feature
that emerges due to synchronization procedure designed to keep simultaneity
unchanged between all inertial frames of reference.”

The quote already shown in Sec. 2.2.1 confirms this view which, however, is
not correct. The main difference between Burde’s view and our previous account
is that we have effectively used the anisotropy hypothesis — which acts here as a
general hypothesis — in its entirety. In this physical scenario (Sec. 2.1) TT can be
obtained from synchronizing clocks either with the true anisotropic light signalsn

using εk = 1
2 (1 + k) with k = β, or by any other natural method — i.e. one

that respects the true anisotropy — such as the external method (Ref. 3, p. 502)
consisting in synchronizing clocks with PF’s clocks when they pass each other.

Therefore, TT can be derived directly from the anisotropy assumption without
necessarily resulting from any resynchronization of standard clocks. This means
that TT is logically independent from LT. Of course, this does not preclude that if
clocks had been previously synchronized with the standard method, such a nat-
ural synchrony could also be obtained by a coordinate change implementing a
resynchronization of clocks with k = β. However, since our scenario is that of
an anisotropic propagation of light, that resynchronization would not make the
resulting TT unsuitable for an anisotropic world — nor, for that matter, would it
make LT unsuitable for an isotropic one, just because LT can be obtained from TT

mFirst proposed by Tangherlini in the context of general covariance (Ref. 26, p. 46ff), who called it
Absolute LT, this transformation was later discovered by other authors.28 In fact, it is a particular
case of Winnie’s ε-LT9 with ε = 1/2 and ε′ = εk.
nTangherlini eventually justified his original idea of synchronization by infinite speed signals as a
mathematical exercise (Ref. 27, p. 32).
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in this scenario — but on the contrary, depending on the hypotheses, it may be the
only suitable solution for it (more on this in the Discussion section).

BT versus TT. What place is left for BT in this context? In principle, by the
above argument, only the value q = 1 would have physical meaning. However, the
fact is that TT is not the same transformation as BT with q = 1 and K = 0, since
the former possesses the property of metric invariance instead of conformal metric
invariance (compare (10) with (A.12) for K = 0 in Appendix A).

On the other hand, values q != 1 are not compatible with the true anisotropy
parameter k = β. If q = 0, BT reduces to LT, i.e. to STR, and in general, synchro-
nization of clocks at A and B using light signals with anisotropy k = F (β) = qβ
would follow the equation:

tB = tA + ε(t′A − tA) = tA +
1
2
(1 + qβ)(t′A − tA), (11)

which for q != 1 would assign an earlier (q < 1) or later (q > 1) time than the true
time tB = tA + 1

2 (1+ β)(t′A − tA) corresponding to the true one-way speed of light.
Therefore, we have to conclude that values q != 1 specified in the function

k = F (β) = qβ would correspond to transformations mathematically satisfying the
first principles stated in the previous section, with none of them having physical
meaning compatible with an isotropic PF because their implicit synchronization
would contradict the existence of such a PF imposed in stage 2 of the derivation
(p. 2) — i.e. the anisotropic parameter k used in the synchronization would be
different from the velocity β relative to that PF.

Another relevant question is: where does this freedom of the k-function arise
during the BT derivation? Alternative values k = β and k = 0 represent freedom
by themselves, but the general freedom of function k arises in stage 1 of the deriva-
tion when the PF hypothesis had not yet been imposed. At that time k revealed
itself as fully free. However, after adding an isotropic PF to the general anisotropy
hypothesis, the propagation of light becomes fully specified and k can no longer
be free. After the assumption of an isotropic PF, the freedom that k enjoys after
the first stage of the derivation is completely eliminated by the univocal relation
between the anisotropy of an inertial frame and its velocity relative to the PF. This
is precisely the simple but deep import of Redhead’s result: the true anisotropy of
any inertial frame is faithfully represented by adopting the standard time of another
inertial frame: the isotropic PF.

Finally, if the only value with compatible physical meaning is q = 1, why not
simply choose TT as the sought transformation? The fact is that TT does not
relate arbitrary pairs of inertial frames since PF is always one of them. Therefore,
TT does not enjoy the sought group structure in order to satisfy the anisotropic
principle of relativity.

In any case, one question remains in the air: is conformal metric invariance a
necessary condition for a relativistic transformation under anisotropy? We will try

2250089-13



�QG�5HDGLQJ

July 11, 2022 12:14 WSPC/S0218-2718 142-IJMPD 2250089

J. M. Mat́ıas

to answer this question below, but first we will look at another puzzling property
of the BT.

3.2. Relative simultaneity and the PC

The above considerations are related to another surprising feature of BT: the rela-
tive simultaneity it implicitly shows. After stage 1 of the derivation — before the
anisotropy model k = F (β) was postulated — the time transformation of BT is
(Eq. (A.3)) (Ref. 6, Eq. (27), p. 1602)

ct =
R√

(1−Kβ)2 − β2
[(1−Kβ − kβ)cT − ((1 −K2)β +K − k)X ], (12)

whose x coefficient (1−K2)β+K−k is not easily made zero since β is any velocity,
and k, K are arbitrary anisotropy values of an undefined function k. If K = 0
(the PF), this x coefficient is zero only if β = k, which excludes any anisotropy
model F (β) = qβ with q != 1 as incompatible with the PF assumption and the
anisotropy dependence on velocity confirming our analysis of the previous section.

However, the relevant point here is that BT shows relative simultaneity just after
being derived from first principles (light equation invariance and PC) as if these
principles caused by themselves the relativity of simultaneity. It is as if, under these
prima facie reasonable first principles, the anisotropies of the inertial frames were
in tension with one another producing relative simultaneity in the same way that
conflicting isotropies originate relative simultaneity in STR. However, while in STR,
isotropies are clearly in conflict, in an anisotropic world with an isotropic PF and
anisotropy depending on the velocity, anisotropies are interdependent.

It could be answered here that this discrepancy is not important as it is always
possible to resynchronize clocks by a coordinate change to adopt a common simul-
taneity. However, this resynchronization would not change the fact that the true
anisotropies produced relative simultaneity. Thus, one would expect all inertial
frames, each using its true anisotropy k, to define the same simultaneity relation,
unless these first principles determine a strange pattern of conflicting anisotropies.
In this sense, only one hypothesis remains that could be responsible for this: the
specific formulation adopted for the PC expressed by equation x = X − vT . This
formulation is applied to obtain the infinitesimal generator of space ξ(X,T,K)
(Eq. (A.1)) (Ref. 6, pp. 1596 and 1600)

ξ =
∂x

∂a

∣∣∣∣
a=0

=
∂(X − v(a)T )

∂a

∣∣∣∣
a=0

= −bT, (13)

with b = v′(0), and using b = 1 without loss of generality since this constant can
be eliminated by redefining the group parameter, the generator becomes

ξ(X,T,K) = −T. (14)

Therefore, this PC formulation only affects the transformation of space and
lets the infinitesimal generator of time τ(X,T,K) depend on space X (Eq. (A.2)).
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This produces an infinitesimal exchange between time and space leading to a finite
transformation with relative simultaneity. This formulation is used in Ref. 8 (see
first quote of Sec. 2.2.3) for deriving LT by the same Lie group technique. For that
purpose, it was reasonable to use the LT approximation to GT for small velocities.
However, this same LT approximation is used by Burde for the BT despite the
differences between LT and BT respective underlying worlds.

Ghosal et al. (Ref. 29, p. 256ff) highlighted the differences between LT and TT
regarding their approximation to GT for small velocities. Given the great reper-
cussion of this matter in what follows, we reproduce his words verbatim (emphasis
added):

“If β2 is neglected in the Lorentz factor, the LT reduces to the Approximate
Lorentz Transformation (ALT)

x̄ = x− vt, t̄ = t−
(vx

c2

)

(. . .) Thus, [this equation] for all v in general, does not represent a
Galilean World (GW). Of course one may choose β2 % 1 (. . .) and it
becomes clear that [this equation] represents a GW approximately. But
then there is a subtle point that must be carefully noted. The resulting
GW is not a GW in totality but it is limited by the very approximation. To
exemplify this point, consider the Tangherlini Transformation (TT), which
represents an Einstein World (EW) with absolute (Galilean) synchrony.
(. . .) Note here that if β2 % 1, the resulting transformations represent a
GT in totality. Obviously, this fact is absent in [the above equation]. Thus
we have demonstrated that the LT does not lead under the small velocity
approximation to Galilean (absolute) synchrony.”

In addition, Baierlein (Ref. 30, p. 193) — a reference also cited by Burde — after
recalling that the composition of two LTs is an LT, says referring to infinitesimal
transformations

“Consequently, any Lorentz transformation with finite speed can be con-
structed by iterating a Lorentz transformation with a small (and ultimately
infinitesimal) ratio v/c. If the Lorentz transformation for infinitesimal v/c
were to reduce to the Galilean transformation, then the iterative process
could never generate a finite Lorentz transformation that is radically dif-
ferent from the Galilean transformation. But the finite transformations
are indeed radically different, and so — however subtly — the infinites-
imal Lorentz transformation must differ significantly from the Galilean
transformation.”

Accordingly, it seems that Burde’s PC formulation that leaves the infinitesimal
time generator space-dependent, is biased towards the relative time of LT despite
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that the hypothesized world is not the isotropic world of STR. The problem, how-
ever, is how to translate the above considerations into the general form of the
infinitesimal transformations of the Lie technique.

3.2.1. Exploring the effect of space in the Lie infinitesimal time
transformation

Studying in depth the possibilities of the Lie group technique to obtain anisotropic
transformations is beyond the scope of this work. However, we have done a brief
exploration of the influence of the stipulated general form of the infinitesimal trans-
formations on the type of transformations finally obtained. As a result, we have
observed that the list of variables initially allowed as arguments of such infinitesi-
mal transformation determine — as could be expected — the relativistic effects of
the finite transformation obtained — i.e. relative/absolute simultaneity, time con-
traction/dilation, length contraction/dilation, etc. Therefore, these lists of allowed
variables constitute an important degree of freedom in the modeling process.o

In this context, we concluded that, for infinitesimal transformations to be com-
patible with the Galilean world in the terms expressed by Baierlein and Ghosal, we
had to prevent any infinitesimal change in time resulting from its exchange with
space. This could be achieved by excluding the variable x from the infinitesimal
transformation of time so we considered the following alternatives to Burde’s PC
formulation:

(1) Exclude the variable x as an argument of the infinitesimal transformation of
time — i.e. of its infinitesimal generator — in order to avoid the exchange
between space and time at each infinitesimal change of the group parameter.

(2) Exclude the variable x from both time and space infinitesimal transformations.p

The transformations resulting from the application of Burde’s methodology to
these alternative specifications, show the following properties (Appendix B shows
the transformations):

(1) Both transformations show absolute simultaneity directly from first princi-
ples — i.e. without further resynchronization

oIn Burde’s methodology the initial list of arguments of the general form of the infinitesimal
transformation is not a list of candidate variables from which the relevant variables are eventually
selected. The light propagation equation invariance principle implies equating to zero all the
monomials that can be constructed with all the variables in the specified list, without exception.
If there are too many variables, the method may even lead to infeasible results. That is why the
initial specification of variables in the infinitesimal transformations is so important: it determines
from the outset the type of transformation we will obtain. The methodology does not act as a
variable selection method.
pNote that this does not entail that the corresponding finite transformation will be independent
from the excluded variable.
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(a) Excluding x from the time infinitesimal transformation results in a GT for
time (Eq. (B.8)). The transformation from the PF shows length dilation in
all directions (Eq. (B.12)).

(b) Excluding x from the infinitesimal transformations of time and space results
in a GT for space (Eq. (B.15)). The transformation from the PF shows time
dilation and length contraction along transverse directions (Eq. (B.18)).

(2) For both transformations, the transformation from the PF shows k = β as
anisotropy transformationq where β is the velocity of the moving inertial frame
relative to the isotropic PF (in whichK = 0). This anisotropy model is obtained
automatically from the first principles by means of the derivation process, with-
out the need for additional anisotropy postulates. This result coincides with the
considerations made in the previous sections.

(3) Both transformations enjoy conformal metric invariance with their respective
conformal factors inverse to each other (Eqs. (B.10) and (B.17)).

The above results show that an anisotropic world with absolute simultaneity
is possible under the Lie group technique. In addition, these results also highlight
the modeling freedom of this methodology, which, if not properly controlled, can
produce results easily misinterpreted as objective physical impositions.

Consequently, the relative simultaneity shown by the BT is a consequence of
the initial stipulations about the desired transformation — list of arguments of its
infinitesimal transformations — and the LT bias of the PC formulation used, but
not of an intrinsic property of the anisotropic world.

Nonetheless, the obtained absolute simultaneity transformations described
above keep showing conformal metric invariance rather than plain metric invari-
ance. Of course, these transformations can be further transformed, by scaling, into
metric-invariant transformations using the inverse square root of the conformal fac-
tor as scale factor. However, our next important question is whether the property
of conformal metric invariance is a necessary property to faithfully represent the
anisotropic nature of the assumed world.

3.3. Anisotropy and conformal invariance

The conformal metric invariance of BT seems to confirm Burde’s arguments in favor
of the need to use the invariance of the light propagation equation, rather than
metric invariance, as a first principle in an anisotropic scenario. These arguments
can be summarized in the following claims (recall the quotes in Sec. 2.2.2):

(1) In an anisotropic world, the symmetry arguments that lead to the invariance of
the metric are no longer valid since (Ref. 8, p. 1589) “as a physical phenomenon
it [anisotropy] influences all the processes”. Consequently, “not the invariance

qRemember that the anisotropy parameter k is also a state variable that participates in the
transformations.
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of the interval but invariance of the equation of light propagation should be a
starting point for derivation of the transformations”.

(2) The metric invariance property of ε-LT or any other linear transformation
obtained by a coordinate change from LT, is a proof of its adherence to STR
isotropic world and thus of its incompatibility with an anisotropic one.

(3) Conversely, the fact that the conformal factor of a transformation cannot be
made to disappear by using standard coordinates, is a proof of the specificity
of conformal transformations for an anisotropic world.

However, the coefficient structure of a metric also determines the symmetry
or asymmetry of the measurements of physical quantities, and this prompt us to
ask why the metric is not sufficient to reflect anisotropic situations. Looking for
example at Eqs. (4) and (5), we easily discern an anisotropic pattern in the quadratic
structure of the metric whose effect is precisely to deform the spherical propagation
of light by flattening it along its x-axis as a consequence of its slowing down in
that direction. Consequently, it is not clear what additional physical significance a
scaled metric can provide in this context in which scale and scale invariance play
no theoretical role.

Furthermore, these claims seem clearly in tension with our discussion so far:
as we have noted in Sec. 3.1, TT is a particular case of ε-LT with ε = 1/2 in the
isotropic PF frame S0 and ε′ = 1

2 (k + 1), with k = β in any inertial frame S′ mov-
ing with velocity β relative to S0. However, TT is metric invariant, thus we have
obtained a metric-invariant transformation under anisotropy — that, of course, also
leaves the light propagation equation invariant (isotropic in S0, and anisotropic with
anisotropy k = β in S′). It is true that TT does not satisfy the group structure,
but its metric invariance property seems to contradict that anisotropy, as a phys-
ical phenomenon, affects the metric. On the contrary, it suggests that conformal
invariance may not be necessary in this anisotropic scenario.

In order to evaluate this fact, we have applied the Lie group technique as Burde
did but replacing the principle of light equation invariance by the principle of metric
invariance ds2 = dS2 with ds2 and dS2 defined like in Eqs. (4) and (5). Under these
conditions, postulating infinitesimal transformations with the same form as those
of BT (Eq. (A.1)), the Lie technique did not provide a feasible solution.

However, the restriction made in the previous section in the infinitesimal trans-
formation of time as a result of the analysis of the relation between anisotropy and
simultaneity and its reflection in the PC formulation, produced a metric-invariant
transformation that shows that anisotropy and metric invariance are perfectly com-
patible. In the next section, we give the details of the obtained transformation.

4. A Metric-Invariant Anisotropic Transformation:
The Relativistic TT

In this section, we present the transformation obtained by the Lie technique under
the same anisotropic world hypothesized by Burde, but: (a) establishing metric
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invariance instead of light equation invariance as first principle as motivated in
the previous section, and (b) excluding the variable x from the infinitesimal time
generator in accordance with the rationale in Sec. 3.2.

4.1. An anisotropic metric-invariant transformation

Given two inertial frames S and S′ under the same initial conditions established in
Sec. 2.2.4, p. 8 — standard configuration, S′ moving with velocity β = v/c relative
to S along the x-axis, etc. — the infinitesimal transformations are






ct ≈ cT + τ(T,K)a,

x ≈ X + ξ(X,T,K)a,

y ≈ Y + η(Y, Z,K)a,

z ≈ Z + ζ(Y, Z,K)a,

k ≈ K + aχ(K),

(15)

where the infinitesimal time generator is

τ(T,K) = c
∂t

∂a

∣∣∣∣
a=0

= c
∂T

∂a

∣∣∣∣
a=0

, (16)

and, analogously, the other generators ξ, η, ζ and χ are the partials of x, y, z and
k, respectively, with respect to the group parameter a, valued at zero.

Following Burde’s methodology, we substitute the differential of these transfor-
mations in the anisotropic metric that we want to keep invariant

ds2 = c2dt2 − 2kcdtdx− (1− k2)dx2 − dy2 − dz2, (17)

and linearize the function f(a) = ds2(a) around zero, i.e. we impose f ′(0) = 0 with
boundary condition f(0) = ds2(0) = dS2 or, equivalently, use c2dT 2 = dS2 + (1 −
K2)dX2 + dY 2 + dZ2 in f ′(0). Equating to zero the corresponding monomials, we
obtain the infinitesimal generators leading to the following Lie boundary problem:






k′ = χ(k), with k(0) = K,

ct′ = − kχ

1− k2
ct, with ct(0) = cT,

x′ =
kχ

1− k2
x− χ

1− k2
ct, with x(0) = X,

y′ = 0, with y(0) = Y,

z′ = 0, with z(0) = Z,

(18)

where χ(K) is a free function, the prime symbol means derivative with respect to
the Lie group parameter a, and it was required (Ref. 6, p. 1601) that the (x, z) and
(X,Z) planes coincide at all times excluding rotations in the plane (y, z), i.e. the
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y and z generators only depend on their respective variable and k. The solution to
this problem is the sought finite transformation






k(a) = K + aχ,

ct(a) =
√

K2 − 1
k2 − 1

cT,

x(a) =
√

K2 − 1
k2 − 1

X +
1√

(K2 − 1)(k2 − 1)
aχcT,

y(a) = Y ; z(a) = Z.

(19)

Substituting aχ = k(a)−K from the k transformation into the x transformation,
we obtain

x(a) =
1√

(K2 − 1)(k2 − 1)
((K2 − 1)X + (k −K)cT ). (20)

Following Burde, in this transformation, we use the condition x = 0 for X =
vT = βcT and we obtain

0 = x =
1√

(K2 − 1)(k2 − 1)
((K2 − 1)β + (k −K))cT (21)

⇒ k(a)−K = (1−K2)β(a) for k(a)2 != 1, ∀ a (22)

⇒






k(a) = (1−K2)β(a) +K or β(a) =
k(a)−K

1−K2
,

χ(K) = χ(k(0)) =
dk(a)
da

∣∣∣∣
a=0

= (1−K2)β′(0),
(23)

for k(a)2 != 1, ∀ a. Using these results in the first equation of (19) we get

a =
k(a)−K

χ(K)
=

(1 −K2)β(a) +K −K

(1−K2)β′(0)
=

β(a)
β′(0)

∝ β(a). (24)

The final transformation becomes





k = K + aχ = K + β(1−K2) = K + Γ−2β,

ct =
√

1− k2

1−K2
cT =

Γ
γ
cT,

x =
√

1−K2

1− k2
(X − βcT ) =

γ

Γ
(X − βcT ),

y = Y ; z = Z,

(25)

where we have defined γ = (1− k2)−1/2 and Γ = (1−K2)−1/2.
The transformation obtained is, by construction, metric invariant, enjoys group

structure, and satisfies the correspondence principle (Sec. 3.2) showing absolute
simultaneity. Note also how the function k(a) ends up fully specified in the deriva-
tion, with no need for further stipulations.
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For further reference, in what follows, we will refer to this transformation as
the AMI transformation — for anisotropic metric-invariant transformation — or
simply, AMIT.

4.2. AMI inverse transformation

The AMI inverse transformation can be obtained from the above noting that the
velocity β′ of S relative to S′ is

β′ =
dx

cdt
=

γ

Γ
(dX − βcdT )

Γ
γ
cdT

= −γ2

Γ2
β. (26)

Therefore, the inverse transformation is





K = k + γ−2β′ = k + γ−2

(
−γ2

Γ2
β

)
= k − Γ−2β,

cT =
√

1−K2

1− k2
ct =

γ

Γ
ct,

X =
√

1− k2

1−K2
(x − β′ct) =

Γ
γ

(
x+

γ2

Γ2
βct

)
,

Y = y; Z = z.

(27)

4.3. AMIT velocity-addition formula

If S1, S2 and S3 are three inertial frames with Sj moving with velocity βij relative
to Si as seen by the latter, (x(j)

i , t(j)i ) is the path of frame j as seen by frame i, and
γi = (1 − k2i )−1/2, then using the AMIT (Eq. (25)) between S1 and S2 we get the
following formula for addition of velocities:

β23 =
dx(3)

2

cdt(3)2

=

γ2
γ1

(dx(3)
1 − β12cdt

(3)
1 )

γ1
γ2

cdt(3)1

=
(

γ2
γ1

)2

β13 −
(

γ2
γ1

)2

β12 (28)

⇒ β13 = β12 +
(

γ1
γ2

)2

β23. (29)

4.4. AMIT from/to a PF : The TT

If, in addition, we assume an isotropic (K = 0) PF S0, and S is an inertial frame
moving with velocity β relative to S0, and we consider the AMIT from S0 to S, the
S anisotropy parameter is

k(a) = (1−K2)β(a) +K = β(a), (30)
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and since Γ = 1, such a transformation (Eq. (25)) becomes





k = β (anisotropy due to velocity),

ct =
cT

γ
(absolute simultaneity and time dilation),

x = γ(X − βcT ) (length contraction),

y = Y ; z = Z,

(31)

which we can recognize as the TT.
The inverse of this transformation is obtained from Eq. (25) using the reciprocal

velocity (Eq. (26)) β′ = −γ2β

K = k − γ−2β′ = β − γ−2(−γ2β) = 0, (32)

thus





K = 0,

cT =
√

1−K2

1− k2
ct = γct,

X =
√

1− k2

1−K2
(x− β′ct) = γ−1(x+ γ2βct),

Y = y; Z = z.

(33)

4.5. AMIT with PF : A relativistic TT

If we consider any two frames S and S′ moving with velocities β and β′ relative to
the PF S0, we can think of the respective inverse AMITs from S and S′, to S0 (i.e.
two TTs), which are obtained from (27) using the (reciprocal) velocities −γ2β and
−γ′2β′ of S0 relative to S and S′, respectively






cT = γct,

X = γ−1(x+ γ2βct),

Y = y; Z = z,

;






cT = γ′ct′,

X = (γ′)−1(x′ + (γ′)2β′ct′),

Y = y′; Z = z′,

(34)

where as usual γ = (1− β2)−1/2 and γ′ = (1− (β′)2)−1/2. Therefore





γ′ct′ = γct,

(γ′)−1(x′ + (γ′)2β′ct′) = γ−1(x+ γ2βct),

y′ = y; z′ = z,

∣∣∣∣∣∣∣∣

⇒






ct′ =
γ

γ′ ct,

x′ =
γ′

γ
(x− γ2(β′ − β)ct),

y′ = y; z′ = z.

(35)
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However, this transformation is the AMIT between S and S′: the velocity β′
S of

S′ relative to S can be obtained from the fact that β′ is the velocity of S′ relative
to S0 as follows:

β′
S =

dx

cdt
=

γ(dX − βcdT )
cdT

γ

= γ2(β′ − β). (36)

Substituting this velocity into Eq. (25) with γ → γ′ and Γ → γ we get the
AMIT with the following transformation for k:

k′ = k + γ−2β′
S = β + γ−2γ2(β′ − β) = β′. (37)

Of course, this result is a particular case of the inverse and transitive properties
of the AMIT group structure. Therefore, under the assumption of a PF, the AMIT
is a kind of relativistic TT (RTT), i.e. a more general TT not restricted to relation-
ships between inertial frames and the PF, but directly relating arbitrary inertial
frames endowed with Tangherlini coordinate systems.

In addition, the RTT group of transformations is a particular case of ε-LT with
ε = 1

2 (k + 1) and k = β, and ε′ = 1
2 (k

′ + 1) with k′ = β′, thus serving as a
counterexample to Burde’s claim that (metric-invariant) transformations than can
be obtained from the LT by a coordinate change are not valid for an anisotropic
world.

By construction, the AMIT is a Lie group of metric-invariant transformations
which shows that conformal invariance is not necessary for a transformation to
leave the anisotropic light propagation equation invariant. Furthermore, the AMIT
also qualifies in an important way Burde’s claim (Ref. 8, footnote 1, p. 1575) that
“Winnie’s ε-LTs do not possess the group properties if ε1 != ε2 but, in the case of
ε1 = ε2 (. . .) do form a group”.

Finally, the RTT transformation is relevant not only for a true anisotropic phys-
ical world but also for a conventional situation in which a set of inertial systems
decide to establish a common simultaneity based on privileging one of them by
convention.

Consulting the literature,r we have found the RTT transformation for the first
time in Eq. (34) of Ref. 28 where Selleri calls it inertial transformation and indicates
that it “can be shown to form a group”. However, in pp. 659–660 of Ref. 32, Selleri
says

“Notice however that it is not possible to multiply any two transformations
of the set, but only two such that the second velocity of the first one
coincides with the first velocity of the second one. For this reason the
inertial transformations do not form a group.”

rUngar31 obtained a transformation that looks like AMIT but is not: it has group structure and
leaves the metric and an anisotropic propagation of light invariant, yet all inertial frames have the
same anisotropy (without PF) — as in the STR all inertial frames are isotropic — in the vein of
Burde’s 2016 paper8 which is not relevant here.
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Therefore, the above derivation based on the Lie group technique settles this
question of the RTT group structure. According to p. 43ff of Ref. 33, the RTT have
been later rediscovered by Homem (Ref. 34, p. 6ff) where its inverse transformation
is derived.

All these references to the RTT are restricted to motions along the x-axis so in
the next section we present its vector form.

4.6. Vector form of the RTT

As we have noted above, the RTT can be seen of transversal transformation that
directly relates two inertial frames by pivoting in the PF. We will use this fact to
easily obtain an RTT vector form. We start defining the RTT as follows (Ref. 26,
p. 53; Ref. 35, p. 22):

Definition 4.1. If S0 is a privileged frame, and S, S′ are two arbitrary inertial
frames with spacetime vectors ξ, ξ′, and absolute velocities β, β′, respectively, the
RTT Tβ,β′ is the transformation between two arbitrary inertial frames defined as
follows:

ξ′ = Tβ,β′(ξ) = (Tβ′ ◦ T−1
β )(ξ), (38)

where Tβ and Tβ′ are the TTs between S0 and S, and S0 and S′, respectively.

This definition corresponds to the following composition of TTs:

S
T−1

β−→ S0
Tβ′
−→ S′

ξ −→ ξ0 −→ ξ′.
(39)

Using this definition, we can obtain the vector form of the RTT from both the
TT and its inverse vector forms as obtained in p. 484 of Ref. 36

ξ′ = (ct′r′) = Tβ′(ξ0) =




(γ′)−1cT

R +
(

γ′ − 1
(β′)2

(R · β′)− γ′cT

)
β′



, (40)

with

ξ0 = (cTR) = T−1
β (ξ) =




γct

r +
(

γ−1 − 1
β2 (r · β) + γct

)
β



, (41)

where R, r and r′ are the spatial vectors of S0, S and S′, respectively.
In order to obtain a closed vector form in terms of the relative velocity of S′

with respect to S, recall that a TT is a transformation from S0 to an inertial
frame S which results from the composition of a Lorentz boost Lβ and a synchrony
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transformation Cβ (e.g. Ref. 14, p. 169ff; Ref. 10) which adopts the simultaneity of
the PF S0

ξ = Tβ(ξ0) = Cβ ◦ Lβ(ξ0) = Cβ(ξ̄), (42)

where ξ̄ = Lβ(ξ0) is the state vector of a standard inertial frame with clocks
synchronized by Einstein’s method, and a synchrony transformation Ck transforms
coordinates as follows: {

ct = ct̄+ k · r̄,
r = r̄,

(43)

where ct̄ and r̄ are standard variables. Accordingly, the RTT is a particular case
of the Generalized LT (Ref. 10, Eqs. (39) and (40), p. 129) between two inertial
frames S and S′ in which clocks have been resynchronized with synchrony vectors
κ = −k = −β and κ′ = −k′ = −β′, respectively (note that Anderson et al.’s κ
and κ′ have a minus sign in the resynchronization coordinate change of Eq. (43))

cdt′ = γ̃(1 − k · β′
S + k′ · β′

S)cdt+ (γ̃β′
S − k′) · dr

+(γ̃(1− k · β′
S)− 1)

k · β′
S

(β′
S)2

β′
S · dr − γ̃k · β′

S(k · dr), (44a)

dr′ = −γ̃β′
Scdt+ dr + (γ̃(1− k · β′

S)− 1)
β′
S · dr
(β′

S)2
+ γ̃β′

S(k · dr), (44b)

where γ̃ = γ(1 + k · β′
S) and β′

S is the velocity of S′ relative to S as seen by the
latter with its resynchronized clocks. This velocity is given by Eq. (26) in p. 128 of
Ref. 10 in terms of ṽ ≡ cβ′

S

ṽ =
v

1− κ · v
c

, (45)

where v is the relative velocity of S′ with respect to S before resynchronization
(i.e. with standard variables in S) which can be obtained by relativistic addition
of velocities v = cβ ⊕ cβ′ ≡ v/c = β ⊕ β′ with ⊕ the relativistic addition. Such
a relative velocity can be obtained more easily here noting that it is the reciprocal
velocity (as seen by S under the TT from S0) of the absolute velocity β′ of S′. Using
Eq. (40) without primes for the TT from S0 to S, this velocity is

β′
S =

dr

cdt

=
d

γ−1cdT

(
R +

(
γ − 1
β2 (R · β)− γcT

)
β

)
(46)

= γ2

(
γ−1β′ − γ−1 − 1

β2 (β′ · β)β−β

)
. (47)

This is Eq. (36) generalized to vector form. In particular, if S′ = S0 (i.e. β′ = 0)
we get β′

S = −γ2β which is the reciprocal velocity under TT, the vector version of
Eq. (26) for motion along the x-axis as the anisotropy direction.
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Therefore, like the RTT of Sec. 4.5 is a particular case of the ε-LT with
anisotropy and motion along the x-axis, the vectorial RTT is a particular case
of the vectorial version of the ε-LT, in which ε and ε′ are now functions of direction
(Ref. 37, p. 790)

ε(n) =
1
2
(1 + k · n),

(and analogously for ε′) where n is the direction-determining unitary vector of
Eq. (1), and k = β and k′ = β′ are the respective anisotropy vectors of the frames.

5. Discussion

The RTT presented in the previous section confirms that Burde’s assertions men-
tioned in the introduction are false. On the contrary

(1) Anisotropy is not incompatible with transformations between inertial frames
possessing the property of metric invariance.

(2) Under anisotropy, the RTT satisfies the first principles of group structure, rel-
ativity and correspondence, despite being a particular case of ε-LT and thus
convertible from and to LT by a change of coordinates.

The fundamental idea behind Burde’s initiative is that any transformation
between inertial frames, ε-LT in particular, that can be obtained from, and con-
verted back to, LT by a change of coordinates is no more than an LT in disguise
and is not suitable for an anisotropic world. In fact (Ref. 8, p. 1591), the ε-LT,
“being converted to the standard variables coincide with the LTs (. . .) and thus
show no traces of the anisotropy and, in particular, leave the anisotropic interval
[17] invariant”.

From a mathematical point of view, the conformal character of BT comes from
combining the invariance of the light equation as a first principle with the relative
time of Burde’s PC formulation — which is due to the inclusion of space as an
argument of the infinitesimal transformation for time.s If, in these circumstances,
the invariance of the equation of light is replaced by metric invariance as a first
principle, the problem becomes infeasible. However, if in addition space is eliminated
as an argument of the infinitesimal transformation of time (i.e. we formulate PC
with absolute rather than relative simultaneity) then the problem becomes feasible
and we obtain the AMI transformation as a solution.

From a physics perspective, it is very important to keep in mind two fundamental
assumptions of Burde

sSince the technique obtains the infinitesimal generators from equating all monomials to zero in
the linearization (Sec. 4.1 and p. 1601 of Ref. 6), all postulated arguments of the infinitesimal
generators (in particular, space in the time generator) contribute to the equations for obtaining
them — the technique does not perform variable selection but all postulated variables actively
participate. Thus, the finite time transformation ends up showing relative simultaneity.
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(1) Anisotropy. The one-way speed of light is anisotropic with respect to any
inertial frame except for an isotropic PF.

(2) Synchronization. Each frame synchronizes its clocks using this true one-way
speed of light.

These two assumptions can be paraphrased in the following termst: if k is the
anisotropy parameter of an inertial frame, this frame synchronizes its clocks using
what we can call the natural or true method, i.e. the method using the true one-way
speed of light. This method is equivalent to using the following Reichenbach’s ε:

εk =
1
2
(k + 1) ⇔ k = 2εk − 1, (48)

where k = β (see Sec. 3.1) or the following one-way speeds of light:

c+ =
c

2εk
=

c

1 + k
; c− =

c

2(1− εk)
=

c

1− k
. (49)

In line with the true character of c+, c− and k, we can call εk the natural or true
Reichenbach’s ε. However, this true synchronization leads to TT. In fact, if in the
derivation of LT by Einstein in 1905 from ε = ε′ = 1/2 (forgive the anachronism)
we replaced the value ε′ = 1/2 by ε′ = εk′ , then we would obtain TT. If further
we replaced ε = 1/2 by ε = εk we would obtain RTT. The fact that this same
result can also be obtained by nonstandard resynchronization of standard clocks is
irrelevant to this. Therefore, one could have directly proposed TT and its relativistic
extension, RTT, as a counterexample to Burde’s claims without the need to use the
Lie group technique. This was actually the initial intention of this work before
discovering that RTT could be also obtained by that technique.

Burde could reply that an ε-LT cannot be appropriate for the anisotropic world
because it could be converted back to LT by a mere resynchronization of standard
clocks without leaving any trace of anisotropy. But this answer requires specifying
under which hypothetical world it was made: if the world were isotropic, the RTT
would hide this isotropy and the LT would be the natural transformation; but
if the world were really anisotropic, it is the LT that would hide this anisotropy
and the RTT would be the natural transformation corresponding to Eq. (49). This
shows that, regardless of whether RTT and LT can be converted into each other
by a change of coordinates, RTT and LT are logically independent, and ε-LT is as
legitimate in the anisotropic scenario as LT is in the isotropic one.

5.1. Polysemy of a coordinate system: The importance
of assumptions

Although the assumption about the world determines the character (true or arbi-
trary) of a synchronization; under coordinatization freedom, a given synchronization

tFor the discussion, we assume the simplest case of motion and anisotropy of the inertial frames
along their common x-axis.
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can be both true (in the above sense) in one hypothetical world and arbitrary in
another.

In these circumstances, if the assumption about the world is not made explicit
enough or goes unnoticed, a kind of polysemy can occur in synchronization (i.e. in
Reichenbach’s ε) because it can be used with two different meanings: as the true
synchronization (Eqs. (48) and (49)) or as an arbitrary one.u Both meanings are
often conflated in the CS literature, suggesting the need to use two parameters:
k — and its corresponding εk — on the one hand, and any freely chosen ε on
the other — the former as an element of the geometry, the latter belonging to the
realm of coordinate systems. With this notation, setting ε = εk means that the true
synchronization has been selected.

We are now in a position to better understand Burde’s rejection of ε-LT as
a candidate to represent anisotropic kinematics because it has its origin in this
polysemy of synchronization. For example, Burde interprets Winnie’s ε-LT as the
result of a mere resynchronization of standard clocks (second meaning), while his
own approach (Ref. 7, pp. 3–4) “stands apart from the ample literature on CS and
clock synchronization, [since] anisotropy is governed by a physical law which is not
influenced by changing the synchronization procedure” (this is the first meaning).
However, Winnie’s explicit purpose carries the first meaning (Ref. 9, p. 82) (italics
in the original)

“The purpose of this paper, then, is to systematically explore the kinemat-
ics of the Special Theory when the assumption of the equality of the speed
of light in all directions is not made to begin with.”

In this context, Burde’s view that the conversion from ε-LT to LT by resyn-
chronization leaves no trace of anisotropy (thus invalidating the former to repre-
sent anisotropic kinematics), assigns to the resulting LT the ability to reflect the
true one-way speed of light, i.e. isotropic, (first meaning), and thus at the same
time considers the ε-LT to be the result of arbitrary synchronization (second mean-
ing). Therefore, this assertion tacitly assumes an isotropic world and considers any
nonstandard synchronization as arbitrary.v

However, there is no justification as to why isotropy has been hypothesized
instead of anisotropy. It is true, of course, that in an isotropic world only stan-
dard synchrony reflects the existing relative simultaneity and that no nonstandard
resynchronization will change that actual isotropy. But this is not the fault of the
ε-LT resulting from the resynchronization — as if it were not capable of represent-
ing anisotropy — but is due to our underlying isotropy hypothesis. However, here,
our main hypothesis is anisotropy, so we can no longer draw conclusions from an
isotropic world to an anisotropic one.

uNote, however, that synchronization is not completely arbitrary (see Sec. 4 of Ref. 18).
vNote that the same argument could be directed against LT under an anisotropic world: the
passage from LT to ε-LT leaves no trace of isotropy, so LT is not suitable for an isotropic world.
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Fig. 1. Polysemy of coordinate systems. The lower right coordinate system (e.g. a Tangherlini
coordinate system) can be a faithful representation η of the upper right perspective P′ (e.g. that
of a moving observer in an anisotropic world), or an anisotropic representation ξ′ of the upper left
perspective P (e.g. that of an observer in an isotropic world). Reciprocally, the lower left coordinate
system (e.g. a standard one) can be either a faithful representation ξ of the upper left perspective
P or a distorted representation η′ of the upper right perspective P′. Consequently, the result of a
change of coordinates C (e.g. a resynchronization) can be interpreted as a new coordinate system
of the same observer (passively) or as a coordinate system of a different observer (actively).

The situation has been metaphorically depicted in Fig. 1. This figure represents
the polysemy of any representation (here, a coordinate system): each coordinate
system can be interpreted as a faithful representation of the perspective of one
observer, but also as a distorted representation of the perspective of a different
observer.

The left-hand side of the figure metaphorically represents an isotropic perspec-
tive (top) and a natural coordinate system defined on it (e.g. standard Einstein
coordinates) (bottom). The right-hand side of the figure metaphorically represents
an anisotropic perspective and a natural coordinate system representing it (e.g.
Tangherlini coordinates).

In this context, the lower right representation can be seen as a faithful repre-
sentation of the upper right perspective (e.g. a moving observer in an anisotropic
world) but, at the same time, as a distorted anisotropic representation of the upper
left perspective (e.g. an observer in an isotropic world, or the PF in an anisotropic
world).

Following Burde’s argument, the lower right coordinate system would not be
suitable to represent the upper right perspective because it can be converted
back to the lower left coordinate system without leaving any trace of anisotropy.
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Reciprocally, however, the lower left coordinate system would also be unsuitable
for representing the upper left isotropic perspective.

The above considerations show that the only way to dissolve this polysemy of
coordinate systems is to make clear our prior assumption about the world. In our
anisotropic case, there is a natural synchronization by light signals that reflects the
true simultaneity: that specified by Eqs. (48) and (49) that give rise to the RTT.

5.2. The CS debate footprint

Therefore, all these positions that try to privilege LT and STR under CS do so
because in essence they are implicitly assuming isotropy and, under such an assump-
tion, any change of coordinates cannot change that hypothesis. This explains, for
example, Friedman’s words on nonstandard (ε != 1/2) simultaneity (Ref. 14, p. 312)

“[T]his additional structure has no explanatory power and no useful pur-
pose is served by introducing it into Minkowski space-time.”

From another perspective, the STR symmetry group is the Lorentz group (e.g.
Ref. 38, p. 832), and a resynchronization of clocks of the kind ct̄ = ct+ κx, x̄ = x,
does not belong to such a group. Therefore, such a resynchronization implies aban-
doning the theory, so we cannot say that a resynchronization of clocks like those
leading to the ε-LT, is a mere coordinate change that leads to LT represented using
the “nonstandard” co-ordination.

Perhaps the consideration of a more general covariant formulation of STR
(Ref. 38, pp. 833–834) or viewing this theory as a particular case of GR,w led
Burde to the same conclusion as many prominent figures of the CS debate,17 who,
after having acknowledged that (Ref. 14, pp. 175–176)

“Minkowski space-time can be described equally well from the point of view
of any coordinate system (. . .) Therefore, the equivalence of ε-systems and
inertial systems in this sense reveals no deep facts about Minkowski space-
time and special relativity; rather, it is simply a trivial consequence of
general covariance.”

wIn the context of GR, a generalization of equations (48) and (49) are provided by p. 441 of
Ref. 18. Since STR spacetime can be seen as a special case of flat spacetime, for which the
Riemann–Christoffel curvature tensor vanishes, general covariance makes it possible to consider
all possible metrics that preserve the conformal structure of the theory, i.e. ds2 = gµνdxµdxν = 0
(Greek letters range from 0 to 3 with x0 the time coordinate and Latin letters range from 1 to
3 indicating the spatial coordinates). In this setting, Havas shows that any metric that satisfies
Hilbert’s conditions (ibid. Eq. (6), p. 438), maintains such a conformal structure. For such a metric,
it is satisfied that

c(ni) =
c„

1

c

«
gi0ni + 1

and ε(ni) =
1

2

„
1

c
gi0n

i + 1

«
,

where if #n goes in the x-direction, we can see Eqs. (49) and (48) with k = 1
c g10n

i = v/c = β.
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Subsequently privileged LT over any other transformation obtained from it by
a nonstandard resynchronization mainly (Ref. 14, p. 310) on the basis of Mala-
ment’s arguments.16 These arguments considered the conformal structure as implic-
itly isotropic (standard light cone) and then concluded, unsurprisingly, that only
standard orthogonal hyperplanes of simultaneity were implicitly definable from the
corresponding causal structurex (e.g. Ref. 18; Ref. 10, p. 124ff; Ref. 39; Ref. 19,
p. 94).

Once accepted that (Ref. 14, p. 176) “inertial systems [i.e. standard systems]
and ε-systems are equally good coordinate representations” of the STR (isotropic)
spacetime, it is a simple additional step to consider ε-systems inappropriate to
represent an anisotropic world, since, otherwise, different synchronizations (in the
first meaning of the previous section) would correspond to different worlds, which
jeopardize Minkowski’s world under the threat of CS.

Under CS (i.e. under our current ignorance about the one-way speed of light)
both coordinatizations and their respective LT and RTT transformations, i.e. both
kinematic theories, are equally good to represent our current empirical evidence (the
hard evidence and the Selleri’s ensemble of theories mentioned in Ref. 40). However,
under anisotropy assumptions, only one theory is correct (recall Fig. 1): the one
based on a synchronization with Eqs. (48) and (49) representing true simultaneity
which give rise to the RTT.

6. Conclusion

The line of argument followed by Burde throughout his work from the anisotropy
hypothesis can be summarized as follows:

(1) Any transformation obtained from LT by a coordinate change is not suitable
for an anisotropic world since it can be converted back to LT without leaving
any trace of anisotropy.

The ε-LT is obtained from LT by resynchronization, therefore, it is not
suitable for an anisotropic world.

(2) Under anisotropy, the invariance of the metric must be replaced by the invari-
ance of the light propagation equation as a starting condition to obtain a
transformation between inertial frames. This leads to transformations between
inertial frames possessing the property of conformal invariance instead of metric
invariance.

The ε-LT enjoys the property of metric invariance so it is not suitable for
an anisotropic world.

xIn this sense, it is paradoxical that Malament’s proof would be correct only if the reference
observer path O were that of a privileged isotropic frame. In that case, the standard simultaneity
SimO would be the only one implicitly definable from O and the causal connectability relation
associated to its isotropic light cone. However, SimO would be privileged also for other inertial
observers.
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(3) Under anisotropy, the application of the Lie group technique from the first prin-
ciples of light propagation equation invariance and of correspondence produces
a conformal metric-invariant transformation, which corroborates the previous
claims.

The analysis of the previous sections and, in particular, the RTT obtained using
the Lie group technique, which serves as a counterexample, confirms that all the
above statements are false. This line of argument may have its main motivation
in the ambiguity of the concept of covariance (reduced or general (Ref. 38, pp.
833–834)) with which one can approach the STR: while the former privileges the
classical formulation of the Minkowski metric, the latter includes the covariance of
the form of the metric — which encompasses the isotropic and anisotropic cases.
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Appendix A. Burde’s Transformation

A.1. The transformation

BT has the general form given by Eq. (3) with a the parameter of the transforma-
tion. The corresponding infinitesimal transformations are






ct ≈ cT + τ(X,T,K)a,

x ≈ X + ξ(X,T,K)a,

y ≈ Y + η(Y, Z,K)a,

z ≈ Z + ζ(Y, Z,K)a,

k ≈ K + aχ(K),

(A.1)

where the infinitesimal generator for time is

τ(X,T,K) = c
∂t

∂a

∣∣∣∣
a=0

= c
∂T

∂a

∣∣∣∣
a=0

, (A.2)

and similarly for the other generators ξ, η, ζ and χ. The direct and inverse BT
transformations are as follows:

• Direct transformation:





ct =
R√

(1 −Kβ)2 − β2
[(1−Kβ − kβ)cT − ((1 −K2)β +K − k)X ],

x =
R√

(1−Kβ)2 − β2
(X − βcT ),

y = RY ; z = RZ.

(A.3)
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• Inverse transformations:





cT =
R−1

√
(1−Kβ)2 − β2

[ct+ ((1−K2)β +K − k)x],

X =
R−1

√
(1−Kβ)2 − β2

[(1−Kβ − kβ)x+ βct],

Y = R−1y; Z = R−1z,

(A.4)

with k(a) undefined and

R = e−
R a
0 k(α)dα, (A.5)

a =
1
2
ln

1 + β −Kβ

1− β −Kβ
. (A.6)

Assuming an isotropic PF and that the anisotropy of the inertial frames depends on
their velocity with respect to the PF through the anisotropy model k = F (β) = qβ
with q a universal constant to be determined empirically, the above transformations
are further specified with

k =
q[K + β(q −K2)]
q + βK(1− q)

, (A.7)

β =
sinha

K sinh a+ q cosha
with β =

v

c
, (A.8)

R = e−
R a
0 k(α)dα =

(
q2(1 + β(1 −K))(1− β(1 +K))

(q + βK(1− q))2

)q/2

. (A.9)

The conformal relation between metrics is

ds2 = R2dS2. (A.10)

A.2. Transformations to/from the PF

Transformations to/from the PF (K = 0) in which the other frame moves with
velocity β relative to the PF

R =
(
q2(1− β2)

q2

)q/2

= (1− β2)q/2 = γ−q =






γ, if q = −1,

1, if q = 0,

γ−1/2, if q =
1
2
,

γ−1, if q = 1.

(A.11)

• If q = 0, the LT.
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• If q = 1





ct =
cT

γ2
,

x = X − βcT,

y =
Y

γ
; z =

Z

γ
,

(A.12)

i.e. a kind of TT but with greater time dilation, no length contraction in the
direction of motion, and length dilation in transversal directions.

• If q = −1





ct = γ2(1 + β2)cT − 2βX,

x = γ2(X − βcT ),

y = γY ; z = γZ,

(A.13)

i.e. absolute simultaneity is lost, with length dilation in all directions but greater
in the direction of motion.

Appendix B. Light Equation Invariant Anisotropic Lie
Transformations with Absolute Simultaneity

We have tried to obtain absolute simultaneity transformations compatible with an
anisotropic world with isotropic PF, by replacing the relativistic PC proposed by
Burde, with the restriction of the initial list of arguments of the transformation.
Specifically, we explored two alternatives, both keeping the same arguments for the
y, z and k transformations.

(1) Excluding the x variable from the infinitesimal generator of time (Appendix
A, Eq. (A.1)) τ(X,T,K) → τ(T,K) in order to avoid the space and time
swapping characteristic of relative simultaneity. The corresponding infinitesimal
transformation for time becomes

ct ≈ cT + aτ(T,K). (B.1)

(2) Excluding the x variable also from the space transformation ξ(X,T,K) →
ξ(T,K). The corresponding infinitesimal transformation for space becomes

x ≈ X + aξ(T,K). (B.2)

The arguments of the y, z and k transformations remain the same as do their
corresponding infinitesimal transformations in (A.1).

B.1. Excluding the x variable from the time generator

Substituting (B.1) and the other infinitesimal transformations (A.1) in the
light propagation equation (2) linearized in a, using the boundary condition
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c2dT 2 = (1 −K2)dX2 + 2KdXdT + dY 2 + dZ2 and equating monomials to zero,
we determine the infinitesimal generators leading to the following Lie boundary
problem:






k′ = χ(K), with k(0) = K,

ct′ = 0, with ct(0) = cT,

x′ =
2kχ

1− k2
x− χ

1− k2
ct, with x(0) = X,

y′ =
kχ

1− k2
Y, with y(0) = Y,

z′ =
kχ

1− k2
Z, with z(0) = Z,

(B.3)

where χ(K) is a free function and prime means derivative with respect to the Lie
group parameter a. The solution to this problem is the sought finite transformation






k = K + aχ(K),

ct = cT,

x =
1

1− k2
((1 −K2)X − aχcT ),

y =
√

1−K2

1− k2
Y ; z =

√
1−K2

1− k2
Z.

(B.4)

Substituting χ(K) = k(a)−K
a in the x transformation we get






k = K + aχ(K),

ct = cT,

x =
1−K2

1− k2
X − k −K

1− k2
cT,

y =
√

1−K2

1− k2
Y ; z =

√
1−K2

1− k2
Z.

(B.5)

We follow Burde’s path: using condition x = 0 for X = vT = vT = βcT in the
space transformation we obtain






k(a) = (1−K2)β(a) +K ⇔ β(a) =
k(a)−K

1−K2
,

χ(K) = χ(k(0)) =
dk(a)
da

∣∣∣∣
a=0

= (1−K2)β′(0),
(B.6)
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for k(a)2 != 1, ∀ a. Thus

a =
k(a)−K

χ(K)
=

(1 −K2)β(a) +K −K

(1−K2)β′(0)
=

β(a)
β′(0)

∝ β(a), (B.7)

and the transformations become





k = K + β(1−K2),

ct = cT,

x =
1−K2

1− k2
(X − βcT ),

y =
√

1−K2

1− k2
Y ; z =

√
1−K2

1− k2
Z.

(B.8)

The inverse transformation uses the velocity β′ of S relative to S′. If x is the position
of S relative to S′, then

β′ =
dx

cdt
=

1−K2

1− k2
(dX − βcdT )

cdT
= −1−K2

1− k2
β. (B.9)

B.1.1. Conformal invariance

This transformation satisfies the metric conformal invariance property

ds2 = Ω2dS2 with Ω =
√

1−K2

1− k2
, (B.10)

where dS2 and ds2 are given by (4) and (5), respectively.

B.1.2. The transformation under a PF (K = 0) assumption

Finally, if we assume an isotropic PF S0, i.e. K = 0, and S is an inertial
frame moving relative to S0 with velocity β, then the anisotropy parameter
becomes

k(a) = (1−K2)β(a) +K = β(a), (B.11)

and the transformation from S0 to S becomes





k = β (anisotropy due to velocity),

ct = cT (absolute time),

x = γ2(X − βcT ) (length contraction),

y = γY ; z = γZ (length contraction),

(B.12)

with γ = (1− k2)−1/2 = (1− β2)−1/2 the usual relativistic factor.
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B.2. Excluding the x variable from the time and space generators

If we postulate time and space generators without x in their arguments, following
the above procedure, we obtain the following Lie boundary problem:






k′ = χ(K), with k(0) = K,

ct′ = − 2k
1− k2

χct, with ct(0) = cT,

x′ = − 1
1− k2

χct, with x(0) = X,

y′ = − k

1− k2
χy, with y(0) = Y,

z′ = − kχ

1− k2
Z, with z(0) = Z,

(B.13)

whose solution, after substituting χ(K) in the space transformation, is the finite
transformation






k = K + aχ(K),

ct =
1− k2

1−K2
cT,

x = X − k −K

1−K2
cT,

y =
√

1− k2

1−K2
Y ; z =

√
1− k2

1−K2
Z.

(B.14)

The condition x = 0 forX = vT = cβT produces the same results as in the previous
case (Eqs. (B.6) and (B.7)), and the transformation becomes






k = K + β(1 −K2),

ct =
1− k2

1−K2
cT,

x = X − βcT,

y =
√

1− k2

1−K2
Y ; z =

√
1− k2

1−K2
Z.

(B.15)

The inverse transformation uses the velocity β′ of S relative to S′. If x tracks the
position of S relative to S′, then

β′ =
dx

cdt
=

dX − βcdT

1− k2

1−K2
cdT

= −1−K2

1− k2
β. (B.16)
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B.2.1. Conformal invariance

This transformation satisfies the metric conformal invariance property with an
inverse conformal factor Ω2 to the previous case

ds2 = Ω2dS2 with Ω =
√

1− k2

1−K2
, (B.17)

where dS2 and ds2 are given by (4) and (5), respectively.

B.2.2. The transformation with a PF (K = 0)

Finally, if we assume an isotropic PF S0, i.e. K = 0, and S is an inertial frame
moving relative to S0 with velocity β, then the anisotropy coefficient becomes again
that of Eq. (B.11), and the transformation from the PF becomes






k = β (anisotropy due to velocity),

ct =
cT

γ2
(absolute simultaneity and time dilation),

x = X − βcT (Galilean space transformation),

y = γY ; z = γZ (length contraction),

(B.18)

with γ = (1− k2)−1/2 = (1− β2)−1/2 the usual relativistic factor.
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