
Automation in Construction 158 (2024) 105176

Available online 17 November 2023
0926-5805/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Automated production of synthetic point clouds of truss bridges for
semantic and instance segmentation using deep learning models

Daniel Lamas *, Andrés Justo, Mario Soilán, Belén Riveiro
CINTECX, Universidade de Vigo, GeoTECH Group, Campus Universitario de Vigo, As Lagoas, Marcosende, 36310 Vigo, Spain

A R T I C L E I N F O

Keywords:
Point clouds
Truss bridge
Semantic segmentation
Instance segmentation
Synthetic data
Deep learning

A B S T R A C T

The cost of obtaining large volumes of bridge data with technologies like laser scanners hinders the training of
deep learning models. To address this, this paper introduces a new method for creating synthetic point clouds of
truss bridges and demonstrates the effectiveness of a deep learning approach for semantic and instance seg-
mentation of these point clouds. The method generates point clouds by specifying the dimensions and compo-
nents of the bridge, resulting in high variability in the generated dataset. A deep learning model is trained using
the generated point clouds, which is an adapted version of JSNet. The accuracy of the results surpasses previous
heuristic methods. The proposed methodology has significant implications for the development of automated
inspection and monitoring systems for truss bridges. Furthermore, the success of the deep learning approach
suggests its potential for semantic and instance segmentation of complex point clouds beyond truss bridges.

1. Introduction

Infrastructure systems serve as the foundation of a nation, exerting
significant influence on its society and economy. Specifically, Critical
Infrastructure Systems (CIS), such as water, power supply, or trans-
portation, play a pivotal role in the nation’s development. Furthermore,
in the event of a disaster, CIS are integral to the recovery process and are
responsible for managing and mitigating the associated risks. Thus, the
resilience of these assets is of paramount importance, as they must
endure the negative consequences arising from such events, minimizing
their impact and costs, safeguard their users, and hasten their recovery
[1,2].

Transportation infrastructure is recognized as a CIS, essential for the
optimal functioning of the society. Its function of facilitating the
movement of goods and individuals has a direct impact on the well-
being of citizens and the economy as a whole. Additionally, it serves
as an intermediary between other infrastructure systems by enabling the
movement of resources, including both tangible and intangible assets
between them [3].

For the specific case of bridges, these are infrastructures to overcome
the physical barriers and limitations of the terrain, such as rivers and
canyons, thereby supporting other transportation networks, including
roads, railways, and pedestrian walkways. The advantages of bridges are

multifaceted, encompassing cultural, historical, social, and economic
dimensions. However, a large part of the bridge stock are currently aging
and require urgent maintenance. In some cases, the deterioration of
infrastructure can result in structural collapse. According to the scien-
tific and knowledge service of the European Commission [4], there are
over 1234 km of road bridges longer than 100 m in Europe, many of
which were constructed during the 1950s and have surpassed their ex-
pected lifespan. Given these concerns, and the fact that visual inspection
remains the most common method of assessing bridge condition, there is
a growing demand for research in the area of bridge maintenance. In this
regard, digitizing assets for inspection tasks can offer a substantial boost
in productivity.

Laser scanning is a highly popular technology for digitalizing infra-
structure and obtaining precise geometric data of existing assets.
Numerous studies have demonstrated the effectiveness of laser scanners
for infrastructure mapping, with several examples cited in the literature
[5–8]. Laser scanners can create dense 3D point clouds, which accu-
rately represent the environment from a dimensional point of view.

To enhance the utility of 3D point clouds as digital representations of
infrastructure, it is necessary to accelerate the access to the information
contained in them. Automatic segmentation became a necessary step
when processing these huge datasets. Several researchers have proposed
algorithms for automatic point cloud segmentation in the context of

* Corresponding author.
E-mail addresses: daniel.lamas.novoa@uvigo.gal (D. Lamas), andres.justo.dominguez@uvigo.gal (A. Justo), msoilan@uvigo.gal (M. Soilán), belenriveiro@uvigo.

gal (B. Riveiro).

Contents lists available at ScienceDirect

Automation in Construction

journal homepage: www.elsevier.com/locate/autcon

https://doi.org/10.1016/j.autcon.2023.105176
Received 5 May 2023; Received in revised form 30 October 2023; Accepted 1 November 2023

mailto:daniel.lamas.novoa@uvigo.gal
mailto:andres.justo.dominguez@uvigo.gal
mailto:msoilan@uvigo.gal
mailto:belenriveiro@uvigo.gal
mailto:belenriveiro@uvigo.gal
www.sciencedirect.com/science/journal/09265805
https://www.elsevier.com/locate/autcon
https://doi.org/10.1016/j.autcon.2023.105176
https://doi.org/10.1016/j.autcon.2023.105176
https://doi.org/10.1016/j.autcon.2023.105176
http://crossmark.crossref.org/dialog/?doi=10.1016/j.autcon.2023.105176&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Automation in Construction 158 (2024) 105176

2

bridge. Considering the difficulties of these kind of analysis, various
works on the use of deep learning techniques to analyse point clouds
have been explored. However, having labelled point clouds for training
purposes is very costly, much more so than in the case of images.
Therefore, research has been carried out on the generation of synthetic
point cloud. Specifically, in the field of bridges, there is research on how
to generate synthetic point clouds to train deep learning models.
Nonetheless, there is a knowledge gap in truss bridges, which are a more
complex scenario to segment.

In the context outlined above, the main objectives of this paper are:

1. To outline a novel methodology for creating synthetic point clouds of
truss bridges.

2. To demonstrate the practicality of utilizing a deep learning approach
for semantic and instance segmentation of point clouds related to
truss bridges.

3. To study the effect of training with different types and amounts of
synthetic point clouds.

This work is structured as follows: Section 2 presents the state-of-the-
art. Section 3 details the methodology, where Section 3.1 explains the
implemented methodology for generating synthetic point clouds of truss
bridges, Section 3.2 elaborates on the artificial neural network used, and
Section 3.3 outlines the process of training and testing the neural
network. Section 4 of the paper provides an in-depth analysis of the
obtained results from the experimentation. This section is divided into
two subsections: Section 4.1 presents the results obtained from the
synthetic data, and Section 4.2 elaborates on the segmentation metrics
achieved by the deep learning approach. Finally, Section 5 presents the
conclusions of the paper and highlights future directions for research.

Repositories available at https://github.com/GeoTechUVigo/synth
etic_truss_bridges and https://github.com/GeoTechUVigo/truss_bridge
_pc_segmentation_dl.

2. Related work

This section shows the state-of-the-art related to the use, synthetic
generation, and segmentation of point clouds in the field of truss bridge.

2.1. Segmentation of 3D point clouds of bridges using heuristic methods

Several authors have explored and continue to explore different
techniques for point cloud segmentation using heuristic methods. For
instance, Lu et al. [10] devised a slicing approach that can handle
complicated topologies, reduce computation costs through data split-
ting, and cope with occlusions, local variability density, and frequent
point cloud events. Similarly, Yan and Hajjar [11] introduced a
heuristic-based method to segment steel-girder bridges based on geo-
metric and topological constraints. In a previous study [12], we devel-
oped a process to automatically detect the components of masonry
bridges by utilizing normal surface calculations. However, these seg-
mentation methods are not applicable to truss bridges, which are more
intricate than the bridge types investigated in prior research.

In the domain of truss bridges, Gyetvai et al. [13] proposed a
workflow to construct a finite element model for structural evaluation
using a truss bridge point cloud. Their study consisted of two main
processes. First, the cross-section of each element was identified by
comparing the section-based point cloud to a library of sections. Second,
the primary dimensions of the bridge were estimated to generate the
model. However, the segmentation process for each item was not
automated. Shang et al. [14] introduced an approach for 3D recon-
struction of truss bridges using images instead of point clouds. They
devised a flight plan for unmanned aerial vehicles (UAVs) to capture
bridge images while minimizing occlusions. These images were
employed to construct the bridge meshes. Nonetheless, their model only
provided information on the bridge as a whole and not on each of its

elements. In previous work we [15] have developed a heuristic method
that utilizes principal component analysis (PCA) and clustering to
analyse each point and its neighbouring points in the point cloud. The
algorithm can automatically segment the point clouds of truss bridges
into its instances, extract sufficient information to create a geometric
model of the structure with connected nodes for each element. However,
this method requires some manual measurements as input and, due to its
intended purpose, might not entirely segment the point cloud.

2.2. Segmentation of 3D point clouds using deep learning

Deep learning neural networks have revolutionized many fields,
including image processing and computer vision. In recent years, deep
learning models have been developed to address the challenging prob-
lem of instance segmentation on 3D point clouds, demonstrating their
effectiveness in this field. Commonly used datasets for evaluating such
models include S3DIS [16] and ScanNet [17], and web platforms like
Papers With Code [18] offer rankings of papers with accompanying code
on these datasets. Recently, Vu et al. [19] present SoftGroup, a novel
approach for instance segmentation on 3D point clouds that performs
grouping on soft semantic scores to address the problem of hard
grouping on locally ambiguous objects. Sun et al. [20] introduces
SPFormer, a two-stage framework that combines proposal-based and
grouping-based methods. SPFormer achieves state-of-the-art results
while retaining fast inference speed. Zhong et al. [21] introduces
MaskGroup, a framework that uses a Hierarchical Point Grouping al-
gorithm to progressively merge points into multi-scale groups for better
instance prediction. Additionally, they also propose MaskScoreNet
which effectively eliminates noisy points from the instances. Kolo-
diazhnyi et al. [22] present Top-Down Beats Bottom-Up (TD3D). TD3D
is a fully-convolutional and top-down method that does not rely on prior
assumptions about objects. It achieves state-of-the-art results on Scan-
Net v2, ScanNet200, and S3DIS benchmarks, while being >1.5× faster
than the previous best method. Schult et al. [23] propose Mask3D, which
utilizes Transformer decoders [24] to predict semantic instance masks
without the need for hand-selected voting schemes or hand-crafted
grouping mechanisms.

2.3. Synthetic 3D point cloud generation

Deep Learning applications typically require large amounts of data
for training. While there are open access datasets available to train and
test artificial networks for point clouds segmentation, datasets for spe-
cific topics may not exist. Unlike images, point cloud datasets for
infrastructure require much more planning and surveying to be created.
This entails the transport of both human resources and material to the
location of the survey, the study of the environment to determine the
best scanning spots, and the consideration of weather conditions that
might interfere with the laser. Therefore, obtaining an appropriate
number of point clouds of different characteristics that are fitting for
training a neural network is an extremely challenging and consuming
task.

Similar to the trend in synthetic images [25–28], the utilization of
synthetic point clouds is gaining popularity as a substitute for those
acquired from real-world environments due to certain limitations [29].
These point clouds are generated through computer graphics techniques
by simulating different objects, environments, and scenarios, making it
possible to create large and diverse datasets that can be customized to
meet specific requirements. One of the advantages of synthetic data is
that it is often easier and more cost-effective to generate than real-world
data since it eliminates the need for time-consuming and expensive data
collection and annotation. Generating synthetic data is a complex pro-
cess that requires careful research and planning to establish an effective
procedure. While the use of synthetic data in the field of images is well-
established [30–32], generating synthetic 3D point clouds for specific
fields is still an area of ongoing research. Many authors have developed

D. Lamas et al.

https://github.com/GeoTechUVigo/synthetic_truss_bridges
https://github.com/GeoTechUVigo/synthetic_truss_bridges
https://github.com/GeoTechUVigo/truss_bridge_pc_segmentation_dl
https://github.com/GeoTechUVigo/truss_bridge_pc_segmentation_dl

Automation in Construction 158 (2024) 105176

3

various methods for generating synthetic 3D point clouds to address
specific needs and applications. Griffiths et al. present SynthCity [33],
which is a dataset created using the Blender 3D graphics software [34],
with models downloaded from an online database and duplicated with
shuffling to ensure diversity. Additional building models were added to
populate unoccupied spaces. The dataset contains over 130 buildings,
196 cars, and various other objects. SynthCity also presents an identical
point cloud with Gaussian sampled noise for a more realistic appear-
ance. Curnis et al. propose GTASynth [35], a synthetic dataset for out-
door environments generated called using Grand Theft Auto V (GTAV), a
video game that simulates sensing accurately. The data production
technique is based on DeepGTAV-PreSIL [36], which uses a simulated
LiDAR and camera installed on a vehicle driven through the GTAV map
to produce data. The goal of this work is to produce a large amount of
data to train neural networks, and the characteristics of the sensors are
chosen to accurately simulate real ones to be used with real data. Gaidon
et al. [37] use computer graphics to generate fully labelled, dynamic,
and photo-realistic proxy virtual worlds, and validate their approach by
building a new video dataset called “Virtual KITTI” with accurate
ground truth for various tasks. They provide experimental evidence that
deep learning algorithms pre-trained on virtual data can improve per-
formance, and virtual worlds enable measuring the impact of various
weather and imaging conditions on recognition performance. Cabon
et al. [38] present an updated version of the Virtual KITTI dataset, which
consists of 5 sequence clones from the KITTI tracking benchmark. The
dataset provides various modified weather conditions and camera con-
figurations for each sequence, along with multiple sets of images con-
taining RGB, depth, class segmentation, instance segmentation, flow,
and scene flow data, as well as camera parameters and poses and vehicle
locations. Deschaud et al. published Paris-CARLA-3D [39]. This dataset
is a collection of dense coloured point clouds of outdoor environments
created by a mobile LiDAR and camera system. It consists of two sets of
data, one with synthetic data from the open-source CARLA simulator
[40] and the other with real data acquired in Paris. The dataset has been
manually annotated with semantic tags, allowing for the testing of
transfer methods from synthetic to real data. The objective of the dataset
is to provide a challenging benchmark for 3D mapping tasks such as
semantic segmentation, instance segmentation, and scene completion.

2.4. Synthetic 3D point clouds generation and segmentation of bridges

In the bridge domain, Jing et al. [9] published a work where they
presented a synthetic point cloud generator and a neural network named
BridgeNet. The network was trained on their synthetic data to accurately
segment point clouds of masonry bridges. They describe a bottom-up
methodology to automate the generation of synthetic masonry arch
bridges, which aims to approximate the geometric properties of two
types of real bridges. The methodology involves assembling entire
bridges from two primitive shapes and deriving four subassemblies from
their combinations. Different 3D masonry bridges are generated by
iteratively producing those components based on bridge topologies. The
resulting noiseless synthetic point cloud is then corrupted randomly to
simulate geometric distortions and laser scanning errors. The synthetic
dataset is used for training BridgeNet, which is tested on a dataset
composed of real masonry point clouds from 7 railway bridges in the UK,
demonstrating the success of the synthetic point cloud simulator in
capturing the global geometric properties of real bridges. Semantic la-
bels are provided by the neural network instead of instance labels. The
clustering algorithm DBSCAN [41] is used to obtain instance labels by
considering the coordinates and semantic labels of the points in the
point cloud. Tian Xia et al. [42] propose a machine learning pipeline to
segment semantically RC bridges. They calculated local descriptors
throughout the point clouds to use it as input of a new neural network.
They solve the problem of lack of data using the dataset published by Lu
et al. [43]. Jun S. Lee et al. [44] presents a similar work. Instead of using
an artificial neural network, they propose a graph-based hierarchical

convolutional neural network DGNN (HGCNN). The types of layers of
this architecture, unlike those of the previous authors, are convolu-
tional. Besides, this architecture allows to use the neighbouring relations
between points in a more efficient way than in DGNN. Despite the good
results of these tow works, their method presents the following two
limitations. First, their neural network is not able to segment the ele-
ments in instances, which is crucial to segment truss bridges. Second, the
datasets that they use do not have truss bridges, so their trained network
would not be able to segment truss bridges. Indeed, in the Tian Xia et al.
they said that “since three bridges in the dataset each belongs to a
different bridge type and thus cannot be used for training and testing at
the same time, they are excluded of the experiment”. This indicates that
their model requires to be trained only with the type of bridge it would
be tested on. Xiaofei Yang et al. [45] presents another deep learning
strategy to segment RC bridges. To solve the problem of lack data, they
apply two different data augmentation strategies for superpoint-based
point cloud segmentation. The augmented data is used for training a
superpoint-based algorithm from a previous work of the authors called
WSPG [46]. In those previous work, they use two-real RC point clouds
plus synthetic data generated from RC bridge models for training their
deep learning algorithm. Their algorithm was designed to enable auto-
mated semantic segmentation of bridge components directly from
extensive bridge point clouds. This last work was one of those that
inspired the idea of automatically modelling truss bridges to create
synthetic point clouds, which is presented as part of the contributions in
this article.

3. Methodology

This section presents the methodology developed to perform the
semantic and instance segmentation of truss bridge point clouds using
deep learning. It covers everything from synthetic data generation
(Section 3.1) to the artificial neural network architecture description
(Section 3.2), and the training and testing processes (Section 3.3).

3.1. Synthetic truss bridges

A truss bridge is a bridge whose superstructure is composed of a
truss. A truss is a rigid structure of members connected by nodes. There
are different types of truss bridges depending on the assembly of their
composing members, as shown by the examples of Fig. 1.

Fig. 1. Example of different types of truss bridges.

D. Lamas et al.

Automation in Construction 158 (2024) 105176

4

Due to the lack of real data of point cloud truss bridges, synthetic
data is generated to train and test the methodology. However, this
generation method is neither limited to obtain data for training algo-
rithms, nor limited to use for generating point clouds. This tool can
automatically generate a virtual structure containing its information in
an accessible manner, such as the truss node positions, member profile
or members orientation, that can be modified to redefine the bridge.
Furthermore, in addition to saving a labelled point cloud, it also gen-
erates a mesh of the structure. These other functionalities are not used in
the segmentation processes but could be useful for other applications
and future work.

For a given typology, the whole truss can be defined by setting a
certain number of parameters. It can be characterized by: i) the position
of the nodes, ii) the nodes to which each member is connected, iii) the
orientation of each member and, iv) the member profiles.

Considering this, we propose a methodology according to the
workflow depicted in Fig. 2a to generate the synthetic data. In this
workflow, the first process depends on the truss typology. The system is
being designed so that any typology can be designed. However, as a
starting point, the truss typologies studied in this work are Bailey and
Brown. These typologies were selected due to their simplicity and sim-
ilarity between them, which facilitated the implementation of this first

version presented in this work. Another reason why these typologies
were chosen is that the real data available for this work are truss bridges
of one of these or similar typologies. These typologies are formed by
panels, which are patterns of the structure that are repeated along the
length of the bridge. Knowing the truss typology, the number of panels
and their dimensions, the location of the nodes and the pair of nodes
connected by each member are defined automatically. A schematic
representation of these relations is shown in Fig. 3. In addition, the
methodology was designed to be versatile and adaptable. Even inside a
given typology, it is possible to alter the defining parameters of the truss,
such as member profiles, or remove/change members entirely. For
instance, it is possible to generate a Bailey Truss bridge without vertical
member, or a Brown Truss with Saint Andrew’s crosses.

The node coordinates, and their relationship with the members,
depend on the typology of the truss. However, once these properties
have been calculated, the mesh and point cloud generation are not ty-
pology dependent. To add a level of abstraction and generalization,
these processes have been designed to be separated from the truss type.
As such, the following steps are performed by the generalized class
TrussBridge, regardless of the typology. The workflow of this process is
shown in Fig. 2b.

The first step in the construction of a truss, guided by the TrussBridge

Fig. 2. Synthetic truss bridge model generation.

D. Lamas et al.

Automation in Construction 158 (2024) 105176

5

class, is the generation of members through the class Member. The inputs
required in this procedure are the coordinates of their corresponding
nodes, their profile, and their orientation. Each member is created
independently from one another, following the workflow of Fig. 2c.

As it can be seen, the first step is the computation of the member
mesh. The workflow of the mesh generation is described in Figure 2dand
a schematic example is shown in Fig. 4.

The mesh structure can be seen as an extrusion of the specified
profile in the Z axis, where the extrusion length is determined by the
Euclidean distance between the nodes to which the members is con-
nected, called p0 and p1. First, the mesh triangles of the bottom face are
defined, as shown in Fig. 4a. These triangles depend on the type of
profile of the member being created. For instance, a square profile only
needs two triangles, while other, more complex profiles, require more.
However, the vertices of all implemented profile types are defined in a
clockwise manner so that the following steps can be performed in an
automated manner. The next step is to define the top face. Its vertices are
obtained by increasing setting the Z coordinate of the bottom face
vertices as the extrusion length. Meanwhile, its triangles are calculated
by assessing the number of nodes of the bottom face triangles and
inversing their normal (counter-clockwise), as shown in Fig. 4b. Finally,
the two faces are connected through the lateral triangles. These triangles
are profile independent as they are based on the node indexes of the top
and bottom faces, creating a pair of triangles per edge of the profile used,
as shown in Fig. 4c.

As a note, the currently supported profile typologies are I, T, L, U,
and solid rectangular profiles. They are selected by inputting a label that
specifies the type of standardized profile that the member uses (e.g. IPN
220), which is used to access a list of .csv files that contains the di-
mensions required to generate the vertices and triangles of the bottom

face of each type. At the moment, the standardized profiles accessible for
automated generation are CH, HD, HL, HLZ, HP, HSS, IPN, L, PFC, T, U,
UB, UBP, UC, UPE, and UPN, which are the most commonly used pro-
files. These profiles are defined in a local XY axis system where the
opening of the profile, if applicable, points to the positive X axis. The
reasoning behind this is to have a consistent rotation matrix for all
profiles that is easy to use.

Once all the triangles have been assembled into the mesh that rep-
resents the member, the next step is to place it in the target location, as
shown in Fig. 4d. This positioning is determined by the input nodes p0
and p1 and the input orientation that describes the axial rotation of the
member. To do this, the mesh is centred at (0,0,0). Then, a rotation
matrix, composed of translation and rotation, is applied. The translation
is directly marked by the centre of p0, p1. The rotation, however, is more
complex. All members need to be oriented in a manner that is easily
mutable according to the orientation parameter and that is consistent for
ease of use. To achieve this, the rotation matrix performs a ZYZ rotation
that places the Z’ axis parallel to the main axis (MA) of the member,
which is equal to p0, p1. This procedure can be seen in Fig. 5. First, the
system is rotated Ẑ in the +Z axis, which makes X’ parallel to the pro-
jection of the main axis in the XY plane (MAh), as shown in Fig. 5a and
Fig. 5b. Then, the system rotates Ŷ in the +Y′ axis, resulting in the Z’ axis
parallel to the main axis (MA), as shown in Fig. 5c. By performing the
rotation in this manner, the Y′ axis is now contained in the XY plane, and
the +X” axis points downwards. This means that, in the case of a U
profile, the opening of the U points downwards after these two rotations
(X"). Then, the last rotation orientation along its main axis (MA) is what
allows the tailoring of the rotation of the member in an intuitive and
easy manner, as shown in Fig. 5d. For instance, through this setup, a 90◦

orientation would mean that the opening of the U (now X"’) is contained
in the XY plane, with a 180◦ meaning that it points upwards, and so on.

This procedure makes it possible to define the orientation of the
members of each face to be decide independently, with one exception:
the two vertical faces have a mirror configuration. In this way, defining
the configuration of one vertical face, the other is determined
automatically.

The generation of the deck follows the same procedures as the
members but with the following exceptions. The deck is also created as
an extruded member, but its profile is always a rectangle. The length of
the rectangle is the width of the bridge, and its height is the input that
defines the thickness of the deck. For placement, there are defined two
virtual nodes in order to use the member methods. These nodes are two
points at the ends of the bridge, located at a height determined by the
input that defines the height at which the deck is placed.

At this point, the mesh has been created, placed and oriented,
effectively modelling the geometry and location of the member.

Fig. 3. Schematic relation between nodes and members of a truss.

Fig. 4. Calculate_mesh schematic example.

D. Lamas et al.

Automation in Construction 158 (2024) 105176

6

Therefore, the next step is to generate the synthetic point cloud. Two
different methods are used:

• Uniform point clouds. This method uses an Open3D [47] function
that uniformly samples points that lie on the surfaces of the mesh.
The input parameters is the final number of points. To calculate that
number, the area of the mesh is computed as the sum of the area of
each triangle calculated with Heron’s formula. The number of points
is determined using the input density and the calculated area.

• Point clouds with occlusions. This method simulates the operation of
a terrestrial laser scanner (TLS) to create occlusions in synthetic
point clouds. The procedure involves specifying the positions of the
virtual TLS in the target environment, along with defining the
angular pitch to emulate a scanning. These parameters are defined in
the input cameras, which is a list with the parameters of each virtual
TLS acquisition. This process allows us to generate a synthetic point
cloud that accurately replicates occlusions observed in real-world
scans. For its implementation we utilized the Open3D ray casting
function. We launch rays from each virtual scanner position and
compute the impact points where the rays intersect with the sur-
rounding mesh surfaces. The ray casting function makes it possible to
determine the impact points of rays launched on a camera on a mesh.
The cameras are the virtual TLS positions and the point of impact of
the virtual rays are the points of the synthetic point cloud.

Once this procedure is repeated for each member, the truss can now
be assembled and positioned at the target location. So far, the creation of

the members has used the origin as reference. This means that if no
translation or rotation is applied, the bridge would be centred at (0, 0, 0)
with its main orientation matching the positive X axis and no vertical or
lateral tilt. Therefore, the last step of the point cloud generation is to
place the assembled bridge in the position and orientation specified in
the centre and orientation inputs passed to the TrussBridge class.

Lastly, the point cloud is saved in LAS or LAZ format [48]. The se-
mantic information about the type of member is saved in the classifica-
tion field. The number assigned for each type of member is an input of
SpecifyTrussBridge class together with its profile and orientation. The
instance information is saved in the user_data field with a unique index
for each member object.

Table 1 shows the inputs required to generate a synthetic truss bridge
point cloud.

3.2. Model architecture

The use of deep learning algorithms on point clouds has grown over
the last decade. There are works exploring various fields, from new ar-
chitectures to testing their applicability in specific areas [49]. One of the
objectives of this paper is in line with the latter: to investigate the
applicability of this type of architectures in the field of linear infra-
structure, concretely in truss bridges. The purpose is to obtain a semantic
and instance segmentation, since the objective is to recognise not only
each type of member, but also each member independently. For this
reason, the architecture used is an adaptation of JSNet [50] developed
by Lin Zhao et al. JSNet is a state-of-the-art instance segmentation

Fig. 5. Rotation to target axis. MA is the main axis of the member, which is p0, p1.

D. Lamas et al.

Automation in Construction 158 (2024) 105176

7

network that ranked as the best of the architectures tested in the dataset
S3DIS [16] in 2019, and currently [14] remains in the top 10 at the time
of writing [51].

The model proposed by Lin Zhao et al. consists of a pre-processing,
an instance and semantic segmentation by JSNet, and a post-
processing. The pre-preprocess consists of cropping the point cloud in
parallelepipeds of equal size and randomly selecting Na number of
points. The semantic segmentation JSNet output is of type Nax C, being
C the number of semantic classes. The instance segmentation JSNet
output is of the type Nax K, being K the dimension of the embedding
vector that represents the instance relationship of points. To obtain the
final instance labels of each parallelepiped, Lin Zhao et al. used the al-
gorithm mean-shift clustering. This method requires a unique param-
eter, called bandwidth. Finally, the post- processing consists of merging
those parallelepipeds and remapping the instance labels using the al-
gorithm GroupMerging proposed by Want et al. [52].

The pre-processing used in JSNet does not include a sub-sampling
performed by a voxelization. They only randomly select Na points
from each parallelepiped. This can be a problem in point clouds with not
uniform point distribution. Subsampling by voxelization is a widely used
method. We have incorporated it before the cropping process.

As our data contains objects that require a larger number of points to
identify them accurately, modifications are made to the architecture of
JSNet, which is originally designed to segment objects of S3DIS. Spe-
cifically, the encoder and decoder blocks of the model are each given an
additional layer to accommodate for the increased amount of data.
Additionally, the depth of these layers is adjusted to ensure optimal
performance of the modified architecture. These modifications are
necessary to effectively process the larger number of points required for
accurate object segmentation in our data, resulting in a more robust and
accurate model. Fig. 6 shows the architecture of the encoder and

decoder block.

3.3. Training and testing

On the one hand, we want to test the effect of the variety of training
data. The primary approach involves training with a vast amount of real
data, while there exist no limitations on the quantity of synthetic data.
Consequently, it becomes interesting to explore the impact of varying
data volumes on the training process.

On the other hand, we introduce two distinct methods for generating
synthetic point clouds: one involving occlusions and the other without
occlusions. This aspect raises the question of how the model’s perfor-
mance and response may vary under these different conditions.

To test the effect of synthetic point clouds on models, the data is
organised as follows. The synthetic models are defined and two point
clouds are created for each of them and saved in separately: one with
occlusions and other without. Let’s design the dataset without occlu-
sions as U and the dataset with occlusions as O. Then, the data is split in
k folders with equal number of point clouds. The distribution is the same
for both. Let’s design each folder as Ui and Oi, respectively, being i the
folder number. In this way, folders Ui and Oi contain the same bridge
models.

With this data distribution, models are trained and tested as follows.
A model is trained with the dataset in the folder Ui to Ui+(n−1), being n
the number of folders used for training, and tested in folders Uk, Ok and
in real point clouds called R. This real point clouds are the two point
clouds analysed in our previous work with the heuristic method [15],
with which this new method is compared. In this way, for the same n and
k values, there are two models trained and tested in the same truss
bridge models, which their only difference is that the point clouds used
in one have occlusions and in the other does not. Moreover, by changing
n we can see the effect of training with different volume of data. Besides,
the k-fold cross validation method is applied by changing the k value for
each dataset O or U and n value. The scheme of this process is shown in
Fig. 7.

For each model, the training data is further split into training and
validation data. Epoch by epoch, all the training data is used to train the
model, and all the validation data is used to calculate the different
metrics that reveals the training process. The metrics obtained from the
validation data are utilized to eventually apply an early stop to the
training if there is no progress. The model chosen to perform the test is
the one with the best validation results.

The test process is performed by applying the entire architecture:
pre-processing, segmentation and post-process. However, the training
processing does not use the pre- and post- processing methods. For each
point cloud of training data, only one parallelepiped is selected. The
parallelepipeds are randomly taken and they are different for each point
cloud and for each training epoch. Besides, data augmentation technics
are applied to the parallelepipeds. The cropped point cloud is randomly
rotated and gaussian noise is added. The same processes are applied to
the validation data.

The difference between the testing and the training data is because
using the full point clouds to train and apply the pre- and post-processing
is very time-consuming and does not significantly contribute to the
training. After all, each point cloud contains only one type of truss
bridge. Therefore, each parallelepiped of the same point cloud is made
up of members with the same distribution that do not introduce new
information into the network. However, the testing process must be
performed by applying the pre- and post-processing methods as the
whole process needs to be evaluated.

4. Results

The purpose of this section is to present the results obtained from the
methodology described through Section 3. More specifically, two main
outcomes can be analysed: (i) the generation of synthetic data of truss

Table 1
Synthetic truss bridge inputs.

General Members

typology typology name chord profile name,
orientation

n◦ of panels N vertical
diagonal

profile name,
orientation

centre (x, y, z) vertical parallel profile name,
orientation

orientation (ẑ, ŷ, x̂) bottom diagonal profile name,
orientation

density R+ bottom parallel profile name,
orientation

cameras (x, y, z), angular
pitch

inner diagonal profile name,
orientation

deck position R+

Panel dimensions
height R+

length R+

width R+

Fig. 6. a) Encoder and b) Decoder block of the adapted version based on JSNet.

D. Lamas et al.

Automation in Construction 158 (2024) 105176

8

bridges; (ii) and the point cloud segmentation process. Therefore, it has
been split into Section 4.1 for the synthetic data, and Section 4.2 for the
segmentation.

4.1. Synthetic data

500 synthetic point clouds of truss bridges are created. These 500
point clouds correspond to 250 different models randomly defined,
which 125 have a Bailey truss configuration and 125 a Brown Truss.
From each of these models, two point clouds are generated: one with
uniformly distributed points and the other simulating occlusions, mak-
ing a total of 500 point clouds. The parameters that define the synthetic
point clouds are shown in Table 2, Table 3, Table 4 and Table 5.

Table 2 shows the range of values used to randomly define the input
parameters of each point cloud. For each set of parameters, one point
cloud is created using the input density and the other with the input
cameras, which correspond to a uniform point cloud and a point cloud
with occlusions, respectively. Furthermore, there are members that are
not always created to introduce more variability in the data. The pres-
ence or not of the members is determined by the column “Probability of
having this member”.

Different standardized profiles are available for the definition of the
truss members. However, not all possible combinations among them
were used. Table 3 shows the considered profiles for each type of truss
member. Also, for a better view of how an isolated member is repre-
sented both as a mesh and point cloud, Fig. 8 presents some examples of
profile morphologies.

The generation of uniform point clouds only requires the parameters
density. However, to simulate occlusions, we utilize parameters called
cameras, which define the positions of the virtual TLS. In a real case
study, the TLS placements are determined primarily by accessible lo-
cations and secondarily by positions that offer valuable structural in-
formation. Considering this, the virtual TLS positions are strategically
placed in four areas: on the deck when it is not on top of the bridge,
under the bridge, and at both sides of the bridge. Considering these
factors, a range of values is defined to randomly select the input pa-
rameters for the TLS positions. Table 4 presents these parameters,
including the minimum number of scanners or the distances between the
bridge and the virtual positions, among others.

The deck position can be positioned at different heights to further
diversify the topologies available, as it is shown in Table 5.

Each point cloud is saved with semantic and instance information.
The points of a member are saved with the unique index of their
instance. Also, there are 4 types of semantic classes: deck, chord, parallel

and diagonal.
Fig. 9 shows some examples of this synthetic data, in which there are

Bailey truss and Brown truss configurations, with several deck positions,
several profiles, absence of certain members and the effect of the oc-
clusions. Besides, colours show the instance and semantic information
attach to each point.

For a deeper understanding of the disparities between the point
clouds containing occlusion and the ones without, examine Fig. 10. It is
shown how some elements have fewer points in some areas or no points

Fig. 7. Train and test split.

Table 2
Range of truss bridge parameters corresponding to the inputs required as it is
shown in Table 1.

General Members

Name Value Unit Name Value Probability of
having this
member

typology Bailey or
Truss

m chord Table 3,
Table 1(0◦ ,
90◦,180◦ or

270◦)

100%

n◦ of
panels

4–10 vertical
diagonal

Table 3,
Table 1 (0◦,
90◦,180◦ or

270◦)

70%

centre 0–100,
0–100,
0–100

m vertical
parallel

Table 3,
Table 1 (0◦,
90◦,180◦ or

270◦)

100%

orientation ±180,
±20, ±5

◦ horizontal
diagonal

Table 3,
Table 1 (0◦,
90◦,180◦ or

270◦)

70%

density 1000 points/
m2

horizontal
parallel

Table 3,
Table 1 (0◦,
90◦,180◦ or

270◦)

100%

cameras Table 4 inner
diagonal

Table 3,
Table 1 (0◦,
90◦,180◦ or

270◦)

70%

deck
position

Table 5

Panel dimensions
Name Value Unit
height 3–5 m
length 3–5 m
width 2–5 m

D. Lamas et al.

Automation in Construction 158 (2024) 105176

9

at all.

4.2. Segmentation

Regarding the training and testing dataset configurations explained
in Section 3.3, the specific setups are as follows. The datasets U and O
are split in 5 folders of 50 point clouds each. Switching the folders
designated for testing enables the implementation of a k-fold validation
with k = 5. The number of folders used for training, designed as n, vary
from 1 to 4. In total, there are height different training configurations,
and each of them is tested using a cross-validation of k = 5.

The real point cloud dataset used are the two point clouds analysed
in our previous work with the heuristic method [15]. Only the points
segmented with the heuristic method have been used as ground truth,
applying a mask to the rest of the points.

For testing and validation purposes, the following metrics are
computed. For semantic segmentation evaluation, overall accuracy
(oAcc), mean accuracy (mAcc), and mean IoU (mIoU) are calculated
considering all the categories together, as shown in Eqs. (1), (2) and (3),
respectively.

oAcc =

∑C

i
TPi

∑C

i
(TPi + FNi)

(1)

mAcc =
1

|C|

∑|C|

i

TPi

TPi + FNi
(2)

mIoU =
1

|C|

∑|C|

i

TPi

TPi + FNi + FPi
(3)

C: semantic classes.
TPi: true positives of class i at point level.
FNi: false negatives of class i at point level.
FPi: false positives of class i at point level.
For instance segmentation, mean precision (mPrec) and mean recall

(mRec) with IoU threshold (T) 0.5, and coverage (cov) and weighted
coverage (wCov) are calculated as shown in Eqs. (4), (5), (6) and (7),
respectively. The metric used to evaluate the early stop is cov since it
considers all members equally, irrespective of their size. Otherwise, the
deck would have much more weight than the others when in fact it is the
least interesting member.

Table 3
Profile considered for each type of truss member.

Type of truss
member

Profile Principal dimension
[mm]

Chord IPN, UB, UBP, UC, U, UPE, UPN, CH,
HD, HL, HLZ, HP

≥ 300

Vertical diagonal IPN, L, HD, HL, HLZ, HP ≤ 200
Vertical parallel IPN, HD, HL, HLZ, HP ≤ 300
Horizontal

diagonal
IPN, L, HD, HL, HLZ, HP ≤ 200

Horizontal
parallel

IPN, L ≤ 300

Inner diagonal L ≤ 200

Table 4
TLS virtual positions. XYZ are the main axes of the bridge, being X the direction
of travel, Y the width and Z the axis perpendicular to the deck plane.

TLS on the deck TLS under the bridge

n◦ of scanners 2–3 n◦ of scanners 2–4

Distance to the deck
in Z

0.5–1.5 [m] Distance in Z to the
bridge bottom face

3–10
[m]

TLS on the right size of the bridge TLS on the left size of the bridge
n◦ of scanners 2–4 [m] n◦ of scanners 2–4

Distance to the bridge
right face in Y

3–10 [m] Distance to the
bridge left face in Y

3–10
[m]

Distance to the center
of the bridge in Z

(+2) - (−10) Distance to the
center of the bridge

in Z

(+2) -
(−10)

General parameters
minimum n◦ of

scanners
6

angle pitch 5
standard deviation of

normal noise (x,y,z)
1.0, 0.2, 0.0

X position Equidistributed along
the bridge

Table 5
Deck position.

Probability of being at that Z position Position

70% 0.5-height/2
15% 0
15% height

Fig. 8. Synthetic mesh and point cloud profiles I, L and U.

D. Lamas et al.

Automation in Construction 158 (2024) 105176

10

Fig. 9. Synthetic data. Point clouds uniformly sampled are shown in column one. Column two are the same bridge models but with the occlusion simulation method.

D. Lamas et al.

Automation in Construction 158 (2024) 105176

11

mPrec =
1

|M|

∑|N|

j

((
IoUj ≥ T

)
→1

)
∧

((
IoUj < T

)
→0

)
(4)

mRec =
1

|N|

∑|N|

j

((
IoUj ≥ T

)
→1

)
∧

((
IoUj < T

)
→0

)
(5)

cov =
1

|N|

∑|N|

j
IoUj (6)

wCov =
∑|N|

j

⃒
⃒Nj

⃒
⃒

∑|N|

k
|Nk|

*IoUj (7)

N: ground truth instances.
M: predicted instances.

IoUj = maxnIoU
(
Nj,Mn

)

IoUj: maximum intersection over union between the ground truth
instance j with the predicted instances.

T: IoU threshold between a ground truth instance and its predicted
instance to be consider a true positive.

pj: number of points of the j real instance.
pt: number of total points.
The implementation details of the training and test of the network

are as follows. The point clouds are down-sampled by voxelization with
a grid equal to 0.05 m, cropped into overlapping parallelepipeds of
10x10x10 m, and each parallelepiped contains 16,384 points. The

Fig. 10. Details of synthetic point clouds with occlusions in the top row, and without occlusions in the bottom row.

Table 6
Mean number of epochs and training time of each training strategy.

Training dataset (TD) n◦ of folders used for training (n) epochs time [h]

Occlusions (O) 1 890 ± 297 9 ± 2
Occlusions (O) 2 672 ± 242 13 ± 4
Occlusions (O) 3 689 ± 227 21 ± 6
Occlusions (O) 4 630 ± 66 25 ± 2
Uniform (U) 1 873 ± 398 13 ± 2
Uniform (U) 2 670 ± 398 11 ± 2
Uniform (U) 3 670 ± 164 16 ± 3
Uniform (U) 4 774 ± 125 24 ± 3

Table 7
Test result in real point clouds in %.

TD n Semantic metrics Instance metrics

oAcc mAcc mIoU mPrec mRec cov wCov

O 1 84 85 54 30 12 21 39
O 2 85 87 55 30 13 25 41
O 3 86 87 55 36 18 28 43
O 4 83 86 53 35 18 27 43
U 1 86 87 55 24 8 17 35
U 2 84 86 54 28 12 22 40
U 3 87 88 56 31 14 24 41
U 4 84 86 53 30 13 22 38

Table 8
Test result in synthetic dataset with occlusions in %.

TD n Semantic metrics Instance metrics

oAcc mAcc mIoU mPrec mRec cov wCov

O 1 96 95 90 83 75 69 85
O 2 97 96 92 86 83 76 88
O 3 97 96 93 88 89 79 89
O 4 98 97 94 89 91 81 90
U 1 93 91 84 70 58 56 78
U 2 95 94 89 80 79 69 84
U 3 96 94 90 81 85 73 86
U 4 96 95 91 82 87 75 87

Table 9
Test result in synthetic dataset without occlusions (uniform) in %.

TD n Semantic metrics Instance metrics

oAcc mAcc mIoU mPrec mRec cov wCov

O 1 92 91 84 76 68 62 79
O 2 93 92 86 79 77 68 82
O 3 95 93 88 81 83 72 84
O 4 95 94 88 82 86 74 85
U 1 94 93 87 75 63 60 81
U 2 96 95 91 86 82 74 87
U 3 95 94 89 86 86 77 86
U 4 95 94 90 87 88 78 87

D. Lamas et al.

Automation in Construction 158 (2024) 105176

12

network is trained for 2000 epochs with a batch size of 5 and an early
stop of 100, using the metric Cov. The grid size utilized in the Group-
Merging method for merging the crops during post-processing is 0.1 m,
which is twice the size of the grid used in the pre-processing stage. The
other implementation details are the same as those used in JSNet. The
experiments have been carried out at the Centro de Supercomputación
de Galicia (CESGA) [53], using 40G of RAM and a GPU NVIDIA A100.

Table 6 shows the time and number of epochs that each training
strategy needs calculated from the k-fold cross validation method.

Table 7, Table 8 and Table 9 show the metrics obtained for each
model in the dataset R, O and U, respectively.

To compare the models in a more visual way, Fig. 11 has been
introduced. It contains graphics showing how the use of different
training data size affects. In addition, the graphs also compare the effect
of training with U or O.

We will call X_y the model trained with the data set (X) and n = y.
For example, the model trained with O and n = 3 is the model O_3.

The best metrics in each dataset are obtained by those models trained
on the same dataset and with the maximum amount of data. This is
observed in Fig. 11 and Table 8 and Table 9, in which the best models are
O_4 and U_4, respectively. Note that in Table 9, U_2, U_3 and U_4 have
similar semantic metrics, but the instance metrics of U_4 are better. In

the tests with dataset R, the best model is O_3.
To compare the effect of using different data size and different

dataset for training, Table 10 has been included, which shows the dif-
ferences of metric cov and wCov obtained with all the models in the three
datasets. These metrics are selected for being the most relevant to split
the truss into its elements. Regarding the data size used for training,

Fig. 11. Graphics comparing the metrics obtained with the different amounts of data used for training. The legends indicates the metric plus the dataset used for
training, being _o or _u the datasets O and U, respectively.

Table 10
Comparation of metric cov and wCov obtained with different models in the
datasets U, O and R expressed in %.

Models being compared cov wCov

U O R U O R

U_2 vs U_1 18 20 27 7 8 13
U_3 vs U_2 3 5 10 -1 2 3
U_4 vs U_3 2 2 −8 −1 1 −8
O_2 vs O_1 9 8 16 3 3 5
O_3 vs O_2 6 5 12 1 2 6
O_4 vs O_3 2 2 −2 1 1 1
O_1 vs U_1 2 20 19 −2 9 9
O_2 vs U_2 −9 8 11 −6 4 1
O_3 vs U_3 −6 8 13 −2 4 4
O_4 vs U_4 −6 7 18 −2 4 13

D. Lamas et al.

Automation in Construction 158 (2024) 105176

13

there is a considerable improvement in all models in all tests by
increasing the number of point clouds used for training from 50 to 100.
However, by increasing from 100 to 150 and from 150 to 200, the
improvement is much lower, even having a considerable decline in the
tests with R.

Regarding the dataset used for training, except when only 50 point
clouds are used for training, there is an average improvement of around
7% in cov and 4% in wCov if the dataset used for training and testing is
the same. However, in the tests with dataset R, models trained with O
obtain an improvement of around 3% in wCov. It is true that comparing
O_4 vs U_4 it increases again, but it is due to a decline of the wCov of U_4
rather than an improvement of O_4, as it is shown in Fig. 11. Analysing
the metric cov, this improvement is higher, at around the 14%. It is
interesting to note that, for metric cov, the improvement obtained from
training with occlusions is twice as much in the tests with dataset R s as
on O. These improvements in cov and wCov make sense since R has
occlusions, so the dataset O (occlusions) is more like R (real) than the
dataset U (uniform).

With the aim of visualising the results obtained and to analyse them
from a qualitative perspective, Fig. 12 shows some of the segmented
synthetic point clouds with occlusions obtained with the model trained
with n = 3 and dataset O, which is the model with the best results in R.
They are coloured according to two different pallets: the first one (top
row) represents the semantic segmentation, where members of the same
class are coloured in the same way; the second one (bottom row) shows
the instance segmentation, which means that every individual member
is randomly coloured.

To complete the qualitative analysis, the errors are also visualised to
study where they are. Fig. 13 shows different semantic and instance
errors in the same point clouds of Fig. 12. This visualization shows, as
well as the metrics, that there are more instance errors than semantic
ones. Furthermore, it also indicates that how both errors tend to accu-
mulate in the same areas: the nodes. Note that instance errors are those
points of the correctly segmented instance that do not belong to the real
instance. Moreover, all the points of the incorrect segmented instances
are errors. An incorrect instance is an instance with a IoU < 0.5 with all
real instance. For example, if a ground truth instance is segmented into
three instances and all of them have a IoU < 0.5 with the ground truth
instance, all the points of the segmented instances are displayed as
errors.

The methodology is also compared with the heuristic method pre-
sented in [15], that to the best of our knowledge, are the only two

methods of truss bridges point cloud segmentation. For comparison, the
heuristic method is tested in three randomly selected point clouds of the
dataset O. Relevant measurements are manually taken in the point
clouds to feed the inputs into the algorithm. As result, the metrics in
Table 11 are obtained. Note that deck points are not considered into this
analysis since the heuristic method is not designed to segment those
points.

With the aim of analysing the qualitative differences between the
presented deep learning method and the heuristic one, the segmentation
results and the errors of the heuristic approach are visualised in the same
way as in the deep learning method, as shown in Fig. 14 and Fig. 15,
shown the labels and the errors, respectively. The heuristic method,
unlike the deep learning approach, leaves points without labelling,
coloured in black in Fig. 14 and Fig. 15. For the computation of metrics,
these non-labelled points are considered errors, except for the deck
points, which are not considered. In the first point cloud, the main errors
appear in nodes, as with the deep learning method. However, in the
second point cloud, the faces are not correctly split, causing errors in the
segmentation. The deck is considered as the upper face, which means
that the actual upper face is not analysed, and some parts of the deck are
segmented as beams. In the third face, the bottom chords are not well
segmented: the lateral areas of the deck are segmented as chords.

Before comparing the results of the presented deep learning method
with those of the heuristic method, the following should be considered.
First, it is important to notice that this method requires a series of
measurements to be taken in the point cloud. Second, the deck points
have been removed from the calculation of the metrics since the heu-
ristic method does not label deck points. Despite all these licenses
granted to the heuristic method, the metrics obtained, shown in
Table 11, are 44% of oAcc and 45% of cov. These metrics show how the
new method improves on the old one in the dataset O. Besides, the new
method is easier to use since it does not require to make measurements
in the point clouds, and it is able the label deck points. It is also inter-
esting to discuss the results from a qualitative point of view. These
analysis shows that the main failure sizes are the nodes, as shown in
Fig. 13. This is because nodes are union zones where it is difficult to
precisely determine to which member the points of these places belong.
This error occurs also in the heuristic method, although the main error of
this one is the large number of points it leaves unlabelled. The reason
why there become unlabelled points is because the heuristic method was
designed as a conservative method, unlike the new method, which
segments all the points.

Fig. 12. Semantic and instance segmented synthetic point clouds with occlusions (O) performed by the model O_3. Top row are semantic segmented point clouds
where the deck is coloured in grey, chords in blue, parallels in green, and verticals in red. Bottom row are instance segmented point clouds, with every individual
member randomly coloured. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

D. Lamas et al.

Automation in Construction 158 (2024) 105176

14

In the same way, the results obtained in the real point clouds are
shown to discuss them from a qualitative point of view. Fig. 16 and
Fig. 17 show the results and errors performed by the deep learning
model O_3, respectively.

To compare the effect of training with synthetic dataset with occlu-
sions in real point clouds, Fig. 18 and Fig. 19 are introduced to show the
segmentation and errors performed by the deep learning model U_3,
respectively. We chose U_3 because is the model with the best metrics

trained with the dataset U.
Comparing the results obtained with model O_3 and U_3 shown in

Table 7, we see that the semantic metrics obtained by U_3 are a bit better
than O_3. However, the instance metrics of O_3 are much better than
U3. Such as in the synthetic dataset, the semantic results are better than
the instance ones, which shows the positive effect of training with oc-
clusions. Regarding the figures, it is shown that the 2nd bridge is better
analysed from both models than the 1st one.

Our interpretation suggests that the second point cloud bears more
resemblance to the synthetic data, as it contains fewer diagonals
compared to the first point cloud. The primary weakness of the deep
learning algorithm is its inability to provide semantic labels for non-
structural elements like railings, lampposts, or walkways since these
elements are not simulated in the synthetic data. These non-structural
elements are not considered as errors in the images due to the lack of
labels from the heuristic method. However, these errors might make it
difficult to create a structural model from the segmented data.

Fig. 13. Segmentation errors in synthetic point clouds with occlusions (O) performed by the model O_3. First row shows semantic errors. Second row instance errors.
True positives in green, errors in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 11
Average metrics of the heuristic and the deep learning approach in %.

Method Semantic metrics Instance metrics

oAcc mAcc mIoU mPrec mRec Cov wCov

DL n ¼ 3 dataset O 97 96 93 88 89 79 89
Hueristic 44 57 32 61 53 45 46

Fig. 14. Segmented synthetic point clouds with occlusions (O) using the heuristic method [15]. Pallet of colours of Fig. 12. Non-segmented points are coloured
in black.

D. Lamas et al.

Automation in Construction 158 (2024) 105176

15

5. Conclusions

This paper presents a methodology for generating synthetic point
clouds of truss bridges. Moreover, this data is used to demonstrate the
applicability of a deep learning approach to simultaneously obtain a
semantic and instance segmentation of truss bridges point clouds.

The generation of point clouds of synthetic truss bridges are made
from the specification of the dimensions and components of them. These
specifications are the typology, the profiles of the members, their
orientation, and the deck position. In addition, it is also possible to
specify which members form the truss, as there may be multiple topol-
ogies for the same typology of truss. For instance, it is possible to create a

Bailey truss with or without Sant Andrew’s cross, which chords are U
profiles with their open face pointing up or down. Moreover, it is
possible to create point clouds with a uniform distribution of points or
simulate the TLS positions to create occlusions. The dataset is generated
automatically by selecting these parameters randomly from several pre-
defined options, which allows for a dataset with high variability. Some
results are shown in Fig. 9.

The process of generating synthetic point clouds works as follows.
First, the nodes of the bridge are calculated. Then, each member is
created as an extrusion of the specified profile and placed in its place in
the truss. To this end, each member is defined from its pair of nodes, its
profile, and its orientation. The dimensions of the profile are read from a

Fig. 15. Segmentation errors in synthetic point clouds with occlusions (O) using the heuristic method [15]. Pallet of colours of Fig. 13. Non-segmented points
in black.

Fig. 16. Segmented real point clouds performed by the model O_3. Pallet of colours of Fig. 12. Dataset of [15].

D. Lamas et al.

Automation in Construction 158 (2024) 105176

16

table in which standardized profiles dimensions are saved. The stan-
dardized profiles used are CH, HD, HL, HLZ, HP, HSS, IPN, L, PFC, T, U,
UB, UBP, UC, UPE, and UPN, with several sizes available for each of
them. This profile is generated in the form of mesh, by creating the
triangles that define the profile of the member and its lateral face. Then,
the mesh is placed with respect to its node pairs and its orientation. The
deck is also generated as a mesh, and its position in the bridge can be
modified. Finally, there are two methods for obtaining the point cloud:
random points are uniformly generated on the surface of the mesh, or

define virtual TLS positions from which ray casting algorithm are
applied to calculate the intersection points with the mesh generating a
point cloud with occlusions. These processes are automatically per-
formed from the inputs. Note that for this work we only integrated two
typologies: Bailey and Brown. However, several typologies might be
added taking advantage of the main functions of this method, since it
only implies to create new methods for calculating the location of the
nodes.

In this work, we only use the synthetic data generator to create point

Fig. 17. Segmentation errors in real point clouds performed by the model O_3. Pallet of colours of Fig. 13. Point without ground truth are coloured in black. Dataset
of [15].

Fig. 18. Segmented real point clouds performed by the model U_3. Pallet of colours of Fig. 12. Dataset of [15].

D. Lamas et al.

Automation in Construction 158 (2024) 105176

17

clouds to train and test a deep learning method. Nevertheless, this
method has other applications that need to be explored, as the use of
synthetic meshes, or the wire frame structure made from the nodes and
the profiles of each member. Ultimately, this method allows the massive
generation of various types of geometric data of truss bridges.

On the other hand, this paper demonstrates the well-performance of
deep learning approaches for semantic and instance segmentation of
truss bridge point clouds. The state-of-the-art of deep learning methods
for instance segmentation of point clouds are widely explored, but not in
data as complex as truss bridges, where their instances are intertwined
to each other. For this purpose, an existing state-of-art architecture is
adapted, trained and tested. We use several strategies for training the
point clouds to investigate the effect of synthetic data. The models are
trained just with the uniform synthetic data (U) or with the synthetic
data with occlusion (O). Moreover, the volume of data used for training
varies. The parameter n indicates the number of folders with data used
for training, ranging from 1 to 4. All models are tested in real point
clouds, in U and O.

The obtained results shown in Fig. 11 indicate that the models
trained O are better in the tests with R, showing that training with
synthetic point clouds with occlusions has a positive effect in real data.
In the tests with synthetic data, using the dataset that matches the
testing data yields the most favourable results. However, in the tests
with O, the improvement of the models trained with that data compared
to those trained with U is much greater than vice versa. Fig. 11 also
indicates the effect of using several amounts of training data. The results
indicate that testing on synthetic data there is an improvement when
training with more data. However, in the tests with real data, the best
models are those trained with n = 3 and not n = 4, although it is true that
their differences are small and that only two real point clouds are
available for testing.

Comparing the deep learning method with our previous heuristic,
which from the best of our knowledge, are the only two existing
methods, we obtained the following conclusions. The deep learning
method outperforms the heuristic one in the dataset O, as shown in
Table 11. The deep learning model U_3 achieves 96% mAcc and 79%

Cov, while the heuristic method 57% mAcc and 45% Cov. However, in
real point clouds, U_3 obtains 87% mAcc and 28% Cov, using as ground
truth only the points labelled by the heuristic method. The main errors
can be due to two reasons:

• The synthetic does not have non-structural elements, as the real data
does.

• One of the real bridges is very different from the synthetic typologies.

Future work may consider introducing non-structural members in
the synthetic data to make the architecture lean to differentiate between
them. Moreover, some members are segmented together, or with certain
parts of their adjacent members. This could make it difficult to use these
data for modelling purposes. Therefore, refinement methods should be
explored to solve this problem. Or from another perspective, approaches
that introduce a priori information via axioms into artificial neural
networks can be explored.

Funding

This project has received funding from the European Union’s Hori-
zon 2020 Research and Innovation Program under grant agreement No.
958171. This work has been partially supported by the Spanish Ministry
of Science and Innovation through the PONT3 project Ref. PID2021-
124236OB-C33, and through the human resources Grant RYC2021-
033560-I funded by MCIN/AEI/10.13039/501100011033 and by Eu-
ropean Union NextGenerationEU/PRTR. This document reflects only the
views of the authors. Neither the Innovation and Networks Executive
Agency (INEA) nor the European Commission is in any way responsible
for any use that may be made of the information it contains.

This work has been partially supported by the University of Vigo
through the human resources grant: “Axudas para a contratación de
personal investigador predoutoral en formacion da Universidade De
Vigo 2021” (PREUVIGO-21).

Fig. 19. Segmentation errors in real point clouds performed by the model U_3. Pallet of colours of Fig. 13. Point without ground truth are coloured in black. Dataset
of [15].

D. Lamas et al.

https://doi.org/10.13039/501100011033

Automation in Construction 158 (2024) 105176

18

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

Authors would like to thank CESGA [53] for allowing to use their
computers to test the methodology.

The library Open3D [47] is used to generate the synthetic data, to
visualise it and create some figures.

During the method’s development, the software CloudCompare [54]
was utilized for generating certain figures and conducting visual
inspections.

References

[1] A. Boin, A. McConnell, Preparing for critical infrastructure breakdowns: the limits
of crisis management and the need for resilience, J. Conting. Crisis Manag. 15
(2007) 50–59, https://doi.org/10.1111/j.1468-5973.2007.00504.x.

[2] M. Ouyang, Review on modeling and simulation of interdependent critical
infrastructure systems, Reliab. Eng. Syst. Saf. 121 (2014) 43–60, https://doi.org/
10.1016/J.RESS.2013.06.040.

[3] J.J. Magoua, F. Wang, N. Li, High level architecture-based framework for modeling
interdependent critical infrastructure systems, Simul. Model. Pract. Theory 118
(2022), https://doi.org/10.1016/J.SIMPAT.2022.102529.

[4] Keeping European Bridges Safe | EU Science Hub. https://joint-research-centre.ec.
europa.eu/jrc-news/keeping-european-bridges-safe-2019-04-05_en, 2023
(accessed July 1, 2022).

[5] M. Soilán, A. Sánchez-Rodríguez, P. Del Río-Barral, C. Perez-Collazo, P. Arias,
B. Riveiro, Infrastructures Review of Laser Scanning Technologies and their
Applications for Road and Railway Infrastructure Monitoring, 2019, https://doi.
org/10.3390/infrastructures4040058.

[6] L. Ma, Y. Li, J. Li, C. Wang, R. Wang, M.A. Chapman, Mobile laser scanned point-
clouds for road object detection and extraction: a review, Remote Sens. 10 (2018)
1531, https://doi.org/10.3390/RS10101531.

[7] H. Guan, J. Li, S. Cao, Y. Yu, Use of mobile LiDAR in road information inventory: a
review, Int. J. Image Data Fusion 7 (2016) 219–242, https://doi.org/10.1080/
19479832.2016.1188860.

[8] S. Gargoum, K. El-Basyouny, Automated extraction of road features using LiDAR
data: A review of LiDAR applications in transportation, in: In: 2017 4th
International Conference on Transportation Information and Safety, ICTIS 2017 -
Proceedings, Institute of Electrical and Electronics Engineers Inc., 2017,
pp. 563–574, https://doi.org/10.1109/ICTIS.2017.8047822.

[9] Y. Jing, B. Sheil, S. Acikgoz, Segmentation of large-scale masonry arch bridge point
clouds with a synthetic simulator and the BridgeNet neural network, Autom.
Constr. 142 (2022), 104459, https://doi.org/10.1016/J.AUTCON.2022.104459.

[10] R. Lu, I. Brilakis, C.R. Middleton, Detection of structural components in point
clouds of existing RC bridges, Comp. Aid. Civ. Infrastruct. Eng. 34 (2019) 191–212,
https://doi.org/10.1111/mice.12407.

[11] Y. Yan, J.F. Hajjar, Automated extraction of structural elements in steel girder
bridges from laser point clouds, Autom. Constr. 125 (2021), 103582, https://doi.
org/10.1016/J.AUTCON.2021.103582.

[12] B. Riveiro, M.J. DeJong, B. Conde, Automated processing of large point clouds for
structural health monitoring of masonry arch bridges, Autom. Constr. 72 (2016)
258–268, https://doi.org/10.1016/J.AUTCON.2016.02.009.

[13] N. Gyetvai, L. Truong-Hong, D.F. Laefer, Laser scanning-based diagnostics in the
structural assessment of historic wrought iron bridges, in: Proceedings of the
Institution of Civil Engineers - Engineering History and Heritage, ICE Publishing,
2018, pp. 76–89, https://doi.org/10.1680/JENHH.17.00018.

[14] Z. Shang, Z. Shen, Flight planning for survey-grade 3D reconstruction of truss
bridges, Remote Sens. 14 (2022) 3200, https://doi.org/10.3390/RS14133200.

[15] D. Lamas, A. Justo, M. Soilán, M. Cabaleiro, B. Riveiro, Instance and semantic
segmentation of point clouds of large metallic truss bridges, Autom. Constr. 151
(2023), 104865, https://doi.org/10.1016/J.AUTCON.2023.104865.

[16] I. Armeni, O. Sener, A.R. Zamir, H. Jiang, I. Brilakis, M. Fischer, S. Savarese, 3D
semantic parsing of large-scale indoor spaces, in: Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, IEEE
Computer Society, 2016, pp. 1534–1543, https://doi.org/10.1109/
CVPR.2016.170.

[17] A. Dai, A.X. Chang, M. Savva, M. Halber, T. Funkhouser, M. Nießner, ScanNet:
Richly-annotated 3D reconstructions of indoor scenes, in: Proceedings - 30th IEEE
Conference on Computer Vision and Pattern Recognition, CVPR, Institute of

Electrical and Electronics Engineers Inc., 2017, pp. 2432–2443, https://doi.org/
10.1109/CVPR.2017.261.

[18] Papers With Code. https://paperswithcode.com/, 2023 (accessed March 24, 2023).
[19] T. Vu, K. Kim, T.M. Luu, T. Nguyen, C.D. Yoo, SoftGroup for 3D instance

segmentation on point clouds, in: Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, IEEE Computer Society,
2022, pp. 2698–2707, https://doi.org/10.1109/CVPR52688.2022.00273.

[20] J. Sun, C. Qing, J. Tan, X. Xu, Superpoint Transformer for 3D Scene Instance
Segmentation, 2022, https://doi.org/10.48550/arXiv.2211.15766.

[21] M. Zhong, X. Chen, X. Chen, G. Zeng, Y. Wang, MaskGroup: Hierarchical point
grouping and masking for 3D instance segmentation, in: IEEE International
Conference on Multimedia and Expo, IEEE Computer Society, 2022, https://doi.
org/10.1109/ICME52920.2022.9859996.

[22] M. Kolodiazhnyi, D. Rukhovich, A. Vorontsova, A. Konushin, Top-Down Beats
Bottom-Up in 3D Instance Segmentation, 2023, https://doi.org/10.48550/
arXiv.2302.02871.

[23] J. Schult, F. Engelmann, A. Hermans, O. Litany, S. Tang, B. Leibe, Mask3D for 3D
Semantic Instance Segmentation. https://arxiv.org/abs/2210.03105v1, 2022
(accessed March 24, 2023).

[24] M. Jaderberg, K. Simonyan, A. Zisserman, K. Kavukcuoglu, Spatial transformer
networks, in: Adv Neural Inf Process Syst, Neural Information Processing Systems
Foundation, 2015, pp. 2017–2025. https://arxiv.org/abs/1506.02025v3 (accessed
January 3, 2022).

[25] L. Pearlstein, M. Kim, W. Seto, Convolutional neural network application to plant
detection, based on synthetic imagery, in: Proceedings - Applied Imagery Pattern
Recognition Workshop, Institute of Electrical and Electronics Engineers Inc., 2017,
https://doi.org/10.1109/AIPR.2016.8010596.

[26] P.S. Rajpura, H. Bojinov, R.S. Hegde, Object Detection Using Deep CNNs Trained
on Synthetic Images. https://arxiv.org/abs/1706.06782v2, 2017 (accessed March
24, 2023).

[27] X. Liu, W. Liang, Y. Wang, S. Li, M. Pei, 3D head pose estimation with
convolutional neural network trained on synthetic images, in: Proceedings -
International Conference on Image Processing, ICIP, IEEE Computer Society, 2016,
pp. 1289–1293, https://doi.org/10.1109/ICIP.2016.7532566.

[28] T. Björklund, A. Fiandrotti, M. Annarumma, G. Francini, E. Magli, Robust license
plate recognition using neural networks trained on synthetic images, Pattern
Recogn. 93 (2019) 134–146, https://doi.org/10.1016/J.PATCOG.2019.04.007.

[29] Y. Xu, S. Arai, F. Tokuda, K. Kosuge, A convolutional neural network for point
cloud instance segmentation in cluttered scene trained by synthetic data without
color, IEEE Access. 8 (2020) 70262–70269, https://doi.org/10.1109/
ACCESS.2020.2978506.

[30] B. Berenguel-Baeta, J. Bermudez-Cameo, J.J. Guerrero, OmniSCV: an
omnidirectional synthetic image generator for computer vision, Sensors 2020 (20)
(2020) 2066, https://doi.org/10.3390/S20072066.

[31] Z. Zhou, S.S. Kumar, K. Mallery, et al., Synthetic image generator for defocusing
and astigmatic PIV/PTV, Meas. Sci. Technol. 31 (2019), 017003, https://doi.org/
10.1088/1361-6501/AB42BB.

[32] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, M. Chen, OpenAI, Hierarchical Text-
Conditional Image Generation with CLIP Latents. https://arxiv.org/abs/2204.0
6125v1, 2022 (accessed March 24, 2023).

[33] D. Griffiths, J. Boehm, SynthCity: A large scale synthetic point cloud. https://arxiv.
org/abs/1907.04758v1, 2019 (accessed March 24, 2023).

[34] blender.org - Home of the Blender project - Free and Open 3D Creation Software.
https://www.blender.org/, 2023 (accessed March 24, 2023).

[35] G. Curnis, S. Fontana, D.G. Sorrenti, GTASynth: 3D synthetic data of outdoor non-
urban environments, Data Brief 43 (2022), 108412, https://doi.org/10.1016/J.
DIB.2022.108412.

[36] B. Hurl, K. Czarnecki, S. Waslander, Precise synthetic image and LiDAR (PreSIL)
dataset for autonomous vehicle perception, in: IEEE Intelligent Vehicles
Symposium, Proceedings, Institute of Electrical and Electronics Engineers Inc.,
2019, pp. 2522–2529, https://doi.org/10.1109/IVS.2019.8813809.

[37] A. Gaidon, Q. Wang, Y. Cabon, E. Vig, VirtualWorlds as proxy for multi-object
tracking analysis, in: Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. 2016-December, 2016, pp. 4340–4349,
https://doi.org/10.1109/CVPR.2016.470.

[38] Y. Cabon, N. Murray, M. Humenberger, Virtual KITTI 2, 2020. https://arxiv.
org/abs/2001.10773v1 (accessed March 24, 2023).

[39] J.E. Deschaud, D. Duque, J.P. Richa, S. Velasco-Forero, B. Marcotegui, F. Goulette,
Paris-CARLA-3D: a real and synthetic outdoor point cloud dataset for challenging
tasks in 3D mapping, Remote Sens. 13 (2021) 4713, https://doi.org/10.3390/
RS13224713.

[40] CARLA, Simulator. https://carla.org/, 2023 (accessed March 24, 2023).
[41] G. Andrade, G. Ramos, D. Madeira, R. Sachetto, R. Ferreira, L. Rocha, G-DBSCAN:

A GPU accelerated algorithm for density-based clustering, in: Procedia Comput Sci,
Elsevier B.V., 2013, pp. 369–378, https://doi.org/10.1016/j.procs.2013.05.200.

[42] T. Xia, J. Yang, L. Chen, Automated semantic segmentation of bridge point cloud
based on local descriptor and machine learning, Autom. Constr. 133 (2022),
103992, https://doi.org/10.1016/J.AUTCON.2021.103992.

[43] L.U. Roudan, Ioannis Brillakis, Campbell R. Middleton, Detection of Structural
Components in Point Clouds of Existing RC Bridges, 2023, https://doi.org/
10.5281/ZENODO.1240534.

[44] J.S. Lee, J. Park, Y.M. Ryu, Semantic segmentation of bridge components based on
hierarchical point cloud model, Autom. Constr. 130 (2021), 103847, https://doi.
org/10.1016/J.AUTCON.2021.103847.

[45] X. Yang, E. del Rey Castillo, Y. Zou, L. Wotherspoon, Semantic segmentation of
bridge point clouds with a synthetic data augmentation strategy and graph-

D. Lamas et al.

https://doi.org/10.1111/j.1468-5973.2007.00504.x
https://doi.org/10.1016/J.RESS.2013.06.040
https://doi.org/10.1016/J.RESS.2013.06.040
https://doi.org/10.1016/J.SIMPAT.2022.102529
https://joint-research-centre.ec.europa.eu/jrc-news/keeping-european-bridges-safe-2019-04-05_en
https://joint-research-centre.ec.europa.eu/jrc-news/keeping-european-bridges-safe-2019-04-05_en
https://doi.org/10.3390/infrastructures4040058
https://doi.org/10.3390/infrastructures4040058
https://doi.org/10.3390/RS10101531
https://doi.org/10.1080/19479832.2016.1188860
https://doi.org/10.1080/19479832.2016.1188860
https://doi.org/10.1109/ICTIS.2017.8047822
https://doi.org/10.1016/J.AUTCON.2022.104459
https://doi.org/10.1111/mice.12407
https://doi.org/10.1016/J.AUTCON.2021.103582
https://doi.org/10.1016/J.AUTCON.2021.103582
https://doi.org/10.1016/J.AUTCON.2016.02.009
https://doi.org/10.1680/JENHH.17.00018
https://doi.org/10.3390/RS14133200
https://doi.org/10.1016/J.AUTCON.2023.104865
https://doi.org/10.1109/CVPR.2016.170
https://doi.org/10.1109/CVPR.2016.170
https://doi.org/10.1109/CVPR.2017.261
https://doi.org/10.1109/CVPR.2017.261
https://paperswithcode.com/
https://doi.org/10.1109/CVPR52688.2022.00273
https://doi.org/10.48550/arXiv.2211.15766
https://doi.org/10.1109/ICME52920.2022.9859996
https://doi.org/10.1109/ICME52920.2022.9859996
https://doi.org/10.48550/arXiv.2302.02871
https://doi.org/10.48550/arXiv.2302.02871
https://arxiv.org/abs/2210.03105v1
https://arxiv.org/abs/1506.02025v3
https://doi.org/10.1109/AIPR.2016.8010596
https://arxiv.org/abs/1706.06782v2
https://doi.org/10.1109/ICIP.2016.7532566
https://doi.org/10.1016/J.PATCOG.2019.04.007
https://doi.org/10.1109/ACCESS.2020.2978506
https://doi.org/10.1109/ACCESS.2020.2978506
https://doi.org/10.3390/S20072066
https://doi.org/10.1088/1361-6501/AB42BB
https://doi.org/10.1088/1361-6501/AB42BB
https://arxiv.org/abs/2204.06125v1
https://arxiv.org/abs/2204.06125v1
https://arxiv.org/abs/1907.04758v1
https://arxiv.org/abs/1907.04758v1
https://www.blender.org/
https://doi.org/10.1016/J.DIB.2022.108412
https://doi.org/10.1016/J.DIB.2022.108412
https://doi.org/10.1109/IVS.2019.8813809
https://doi.org/10.1109/CVPR.2016.470
https://arxiv.org/abs/2001.10773v1
https://arxiv.org/abs/2001.10773v1
https://doi.org/10.3390/RS13224713
https://doi.org/10.3390/RS13224713
https://carla.org/
https://doi.org/10.1016/j.procs.2013.05.200
https://doi.org/10.1016/J.AUTCON.2021.103992
https://doi.org/10.5281/ZENODO.1240534
https://doi.org/10.5281/ZENODO.1240534
https://doi.org/10.1016/J.AUTCON.2021.103847
https://doi.org/10.1016/J.AUTCON.2021.103847

Automation in Construction 158 (2024) 105176

19

structured deep metric learning, Autom. Constr. 150 (2023), 104838, https://doi.
org/10.1016/J.AUTCON.2023.104838.

[46] X. Yang, E. del Rey Castillo, Y. Zou, L. Wotherspoon, Y. Tan, Automated semantic
segmentation of bridge components from large-scale point clouds using a weighted
superpoint graph, Autom. Constr. 142 (2022), 104519, https://doi.org/10.1016/J.
AUTCON.2022.104519.

[47] Q.-Y. Zhou, J. Park, V. Koltun, Open3D: A Modern Library for 3D Data Processing,
2018, https://doi.org/10.48550/arxiv.1801.09847.

[48] LAS (LASer) File Format, Version 1.4. https://www.loc.gov/preservation/digital/
formats/fdd/fdd000418.shtml, 2023 (accessed June 25, 2021).

[49] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, M. Bennamoun, Deep learning for 3D point
clouds: a survey, IEEE Trans. Pattern Anal. Mach. Intell. 43 (2021) 4338–4364,
https://doi.org/10.1109/TPAMI.2020.3005434.

[50] L. Zhao, W. Tao, JSNet: joint instance and semantic segmentation of 3D point
clouds, Proc. AAAI Conf. Artific. Intellig. 34 (2020) 12951–12958, https://doi.org/
10.1609/AAAI.V34I07.6994.

[51] S3DIS Benchmark (3D Instance Segmentation) | Papers with Code. https://pape
rswithcode.com/sota/3d-instance-segmentation-on-s3dis, 2023 (accessed January
24, 2023).

[52] W. Wang, R. Yu, Q. Huang, U. Neumann, SGPN: Similarity Group Proposal
Network for 3D, Point Cloud Instance Segmentation, 2023.

[53] Inicio - Cesga - Centro de Supercomputación de Galicia. https://www.cesga.es/,
2023 (accessed February 1, 2023).

[54] CloudCompare. https://www.cloudcompare.org/, 2023 (accessed July 6, 2022).

D. Lamas et al.

https://doi.org/10.1016/J.AUTCON.2023.104838
https://doi.org/10.1016/J.AUTCON.2023.104838
https://doi.org/10.1016/J.AUTCON.2022.104519
https://doi.org/10.1016/J.AUTCON.2022.104519
https://doi.org/10.48550/arxiv.1801.09847
https://www.loc.gov/preservation/digital/formats/fdd/fdd000418.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000418.shtml
https://doi.org/10.1109/TPAMI.2020.3005434
https://doi.org/10.1609/AAAI.V34I07.6994
https://doi.org/10.1609/AAAI.V34I07.6994
https://paperswithcode.com/sota/3d-instance-segmentation-on-s3dis
https://paperswithcode.com/sota/3d-instance-segmentation-on-s3dis
http://refhub.elsevier.com/S0926-5805(23)00436-3/rf0260
http://refhub.elsevier.com/S0926-5805(23)00436-3/rf0260
https://www.cesga.es/
https://www.cloudcompare.org/

	Automated production of synthetic point clouds of truss bridges for semantic and instance segmentation using deep learning ...
	1 Introduction
	2 Related work
	2.1 Segmentation of 3D point clouds of bridges using heuristic methods
	2.2 Segmentation of 3D point clouds using deep learning
	2.3 Synthetic 3D point cloud generation
	2.4 Synthetic 3D point clouds generation and segmentation of bridges

	3 Methodology
	3.1 Synthetic truss bridges
	3.2 Model architecture
	3.3 Training and testing

	4 Results
	4.1 Synthetic data
	4.2 Segmentation

	5 Conclusions
	Funding
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References

