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A B S T R A C T   

The cost of obtaining large volumes of bridge data with technologies like laser scanners hinders the training of 
deep learning models. To address this, this paper introduces a new method for creating synthetic point clouds of 
truss bridges and demonstrates the effectiveness of a deep learning approach for semantic and instance seg-
mentation of these point clouds. The method generates point clouds by specifying the dimensions and compo-
nents of the bridge, resulting in high variability in the generated dataset. A deep learning model is trained using 
the generated point clouds, which is an adapted version of JSNet. The accuracy of the results surpasses previous 
heuristic methods. The proposed methodology has significant implications for the development of automated 
inspection and monitoring systems for truss bridges. Furthermore, the success of the deep learning approach 
suggests its potential for semantic and instance segmentation of complex point clouds beyond truss bridges.   

1. Introduction 

Infrastructure systems serve as the foundation of a nation, exerting 
significant influence on its society and economy. Specifically, Critical 
Infrastructure Systems (CIS), such as water, power supply, or trans-
portation, play a pivotal role in the nation’s development. Furthermore, 
in the event of a disaster, CIS are integral to the recovery process and are 
responsible for managing and mitigating the associated risks. Thus, the 
resilience of these assets is of paramount importance, as they must 
endure the negative consequences arising from such events, minimizing 
their impact and costs, safeguard their users, and hasten their recovery 
[1,2]. 

Transportation infrastructure is recognized as a CIS, essential for the 
optimal functioning of the society. Its function of facilitating the 
movement of goods and individuals has a direct impact on the well- 
being of citizens and the economy as a whole. Additionally, it serves 
as an intermediary between other infrastructure systems by enabling the 
movement of resources, including both tangible and intangible assets 
between them [3]. 

For the specific case of bridges, these are infrastructures to overcome 
the physical barriers and limitations of the terrain, such as rivers and 
canyons, thereby supporting other transportation networks, including 
roads, railways, and pedestrian walkways. The advantages of bridges are 

multifaceted, encompassing cultural, historical, social, and economic 
dimensions. However, a large part of the bridge stock are currently aging 
and require urgent maintenance. In some cases, the deterioration of 
infrastructure can result in structural collapse. According to the scien-
tific and knowledge service of the European Commission [4], there are 
over 1234 km of road bridges longer than 100 m in Europe, many of 
which were constructed during the 1950s and have surpassed their ex-
pected lifespan. Given these concerns, and the fact that visual inspection 
remains the most common method of assessing bridge condition, there is 
a growing demand for research in the area of bridge maintenance. In this 
regard, digitizing assets for inspection tasks can offer a substantial boost 
in productivity. 

Laser scanning is a highly popular technology for digitalizing infra-
structure and obtaining precise geometric data of existing assets. 
Numerous studies have demonstrated the effectiveness of laser scanners 
for infrastructure mapping, with several examples cited in the literature 
[5–8]. Laser scanners can create dense 3D point clouds, which accu-
rately represent the environment from a dimensional point of view. 

To enhance the utility of 3D point clouds as digital representations of 
infrastructure, it is necessary to accelerate the access to the information 
contained in them. Automatic segmentation became a necessary step 
when processing these huge datasets. Several researchers have proposed 
algorithms for automatic point cloud segmentation in the context of 
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bridge. Considering the difficulties of these kind of analysis, various 
works on the use of deep learning techniques to analyse point clouds 
have been explored. However, having labelled point clouds for training 
purposes is very costly, much more so than in the case of images. 
Therefore, research has been carried out on the generation of synthetic 
point cloud. Specifically, in the field of bridges, there is research on how 
to generate synthetic point clouds to train deep learning models. 
Nonetheless, there is a knowledge gap in truss bridges, which are a more 
complex scenario to segment. 

In the context outlined above, the main objectives of this paper are:  

1. To outline a novel methodology for creating synthetic point clouds of 
truss bridges.  

2. To demonstrate the practicality of utilizing a deep learning approach 
for semantic and instance segmentation of point clouds related to 
truss bridges.  

3. To study the effect of training with different types and amounts of 
synthetic point clouds. 

This work is structured as follows: Section 2 presents the state-of-the- 
art. Section 3 details the methodology, where Section 3.1 explains the 
implemented methodology for generating synthetic point clouds of truss 
bridges, Section 3.2 elaborates on the artificial neural network used, and 
Section 3.3 outlines the process of training and testing the neural 
network. Section 4 of the paper provides an in-depth analysis of the 
obtained results from the experimentation. This section is divided into 
two subsections: Section 4.1 presents the results obtained from the 
synthetic data, and Section 4.2 elaborates on the segmentation metrics 
achieved by the deep learning approach. Finally, Section 5 presents the 
conclusions of the paper and highlights future directions for research. 

Repositories available at https://github.com/GeoTechUVigo/synth 
etic_truss_bridges and https://github.com/GeoTechUVigo/truss_bridge 
_pc_segmentation_dl. 

2. Related work 

This section shows the state-of-the-art related to the use, synthetic 
generation, and segmentation of point clouds in the field of truss bridge. 

2.1. Segmentation of 3D point clouds of bridges using heuristic methods 

Several authors have explored and continue to explore different 
techniques for point cloud segmentation using heuristic methods. For 
instance, Lu et al. [10] devised a slicing approach that can handle 
complicated topologies, reduce computation costs through data split-
ting, and cope with occlusions, local variability density, and frequent 
point cloud events. Similarly, Yan and Hajjar [11] introduced a 
heuristic-based method to segment steel-girder bridges based on geo-
metric and topological constraints. In a previous study [12], we devel-
oped a process to automatically detect the components of masonry 
bridges by utilizing normal surface calculations. However, these seg-
mentation methods are not applicable to truss bridges, which are more 
intricate than the bridge types investigated in prior research. 

In the domain of truss bridges, Gyetvai et al. [13] proposed a 
workflow to construct a finite element model for structural evaluation 
using a truss bridge point cloud. Their study consisted of two main 
processes. First, the cross-section of each element was identified by 
comparing the section-based point cloud to a library of sections. Second, 
the primary dimensions of the bridge were estimated to generate the 
model. However, the segmentation process for each item was not 
automated. Shang et al. [14] introduced an approach for 3D recon-
struction of truss bridges using images instead of point clouds. They 
devised a flight plan for unmanned aerial vehicles (UAVs) to capture 
bridge images while minimizing occlusions. These images were 
employed to construct the bridge meshes. Nonetheless, their model only 
provided information on the bridge as a whole and not on each of its 

elements. In previous work we [15] have developed a heuristic method 
that utilizes principal component analysis (PCA) and clustering to 
analyse each point and its neighbouring points in the point cloud. The 
algorithm can automatically segment the point clouds of truss bridges 
into its instances, extract sufficient information to create a geometric 
model of the structure with connected nodes for each element. However, 
this method requires some manual measurements as input and, due to its 
intended purpose, might not entirely segment the point cloud. 

2.2. Segmentation of 3D point clouds using deep learning 

Deep learning neural networks have revolutionized many fields, 
including image processing and computer vision. In recent years, deep 
learning models have been developed to address the challenging prob-
lem of instance segmentation on 3D point clouds, demonstrating their 
effectiveness in this field. Commonly used datasets for evaluating such 
models include S3DIS [16] and ScanNet [17], and web platforms like 
Papers With Code [18] offer rankings of papers with accompanying code 
on these datasets. Recently, Vu et al. [19] present SoftGroup, a novel 
approach for instance segmentation on 3D point clouds that performs 
grouping on soft semantic scores to address the problem of hard 
grouping on locally ambiguous objects. Sun et al. [20] introduces 
SPFormer, a two-stage framework that combines proposal-based and 
grouping-based methods. SPFormer achieves state-of-the-art results 
while retaining fast inference speed. Zhong et al. [21] introduces 
MaskGroup, a framework that uses a Hierarchical Point Grouping al-
gorithm to progressively merge points into multi-scale groups for better 
instance prediction. Additionally, they also propose MaskScoreNet 
which effectively eliminates noisy points from the instances. Kolo-
diazhnyi et al. [22] present Top-Down Beats Bottom-Up (TD3D). TD3D 
is a fully-convolutional and top-down method that does not rely on prior 
assumptions about objects. It achieves state-of-the-art results on Scan-
Net v2, ScanNet200, and S3DIS benchmarks, while being >1.5× faster 
than the previous best method. Schult et al. [23] propose Mask3D, which 
utilizes Transformer decoders [24] to predict semantic instance masks 
without the need for hand-selected voting schemes or hand-crafted 
grouping mechanisms. 

2.3. Synthetic 3D point cloud generation 

Deep Learning applications typically require large amounts of data 
for training. While there are open access datasets available to train and 
test artificial networks for point clouds segmentation, datasets for spe-
cific topics may not exist. Unlike images, point cloud datasets for 
infrastructure require much more planning and surveying to be created. 
This entails the transport of both human resources and material to the 
location of the survey, the study of the environment to determine the 
best scanning spots, and the consideration of weather conditions that 
might interfere with the laser. Therefore, obtaining an appropriate 
number of point clouds of different characteristics that are fitting for 
training a neural network is an extremely challenging and consuming 
task. 

Similar to the trend in synthetic images [25–28], the utilization of 
synthetic point clouds is gaining popularity as a substitute for those 
acquired from real-world environments due to certain limitations [29]. 
These point clouds are generated through computer graphics techniques 
by simulating different objects, environments, and scenarios, making it 
possible to create large and diverse datasets that can be customized to 
meet specific requirements. One of the advantages of synthetic data is 
that it is often easier and more cost-effective to generate than real-world 
data since it eliminates the need for time-consuming and expensive data 
collection and annotation. Generating synthetic data is a complex pro-
cess that requires careful research and planning to establish an effective 
procedure. While the use of synthetic data in the field of images is well- 
established [30–32], generating synthetic 3D point clouds for specific 
fields is still an area of ongoing research. Many authors have developed 
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various methods for generating synthetic 3D point clouds to address 
specific needs and applications. Griffiths et al. present SynthCity [33], 
which is a dataset created using the Blender 3D graphics software [34], 
with models downloaded from an online database and duplicated with 
shuffling to ensure diversity. Additional building models were added to 
populate unoccupied spaces. The dataset contains over 130 buildings, 
196 cars, and various other objects. SynthCity also presents an identical 
point cloud with Gaussian sampled noise for a more realistic appear-
ance. Curnis et al. propose GTASynth [35], a synthetic dataset for out-
door environments generated called using Grand Theft Auto V (GTAV), a 
video game that simulates sensing accurately. The data production 
technique is based on DeepGTAV-PreSIL [36], which uses a simulated 
LiDAR and camera installed on a vehicle driven through the GTAV map 
to produce data. The goal of this work is to produce a large amount of 
data to train neural networks, and the characteristics of the sensors are 
chosen to accurately simulate real ones to be used with real data. Gaidon 
et al. [37] use computer graphics to generate fully labelled, dynamic, 
and photo-realistic proxy virtual worlds, and validate their approach by 
building a new video dataset called “Virtual KITTI” with accurate 
ground truth for various tasks. They provide experimental evidence that 
deep learning algorithms pre-trained on virtual data can improve per-
formance, and virtual worlds enable measuring the impact of various 
weather and imaging conditions on recognition performance. Cabon 
et al. [38] present an updated version of the Virtual KITTI dataset, which 
consists of 5 sequence clones from the KITTI tracking benchmark. The 
dataset provides various modified weather conditions and camera con-
figurations for each sequence, along with multiple sets of images con-
taining RGB, depth, class segmentation, instance segmentation, flow, 
and scene flow data, as well as camera parameters and poses and vehicle 
locations. Deschaud et al. published Paris-CARLA-3D [39]. This dataset 
is a collection of dense coloured point clouds of outdoor environments 
created by a mobile LiDAR and camera system. It consists of two sets of 
data, one with synthetic data from the open-source CARLA simulator 
[40] and the other with real data acquired in Paris. The dataset has been 
manually annotated with semantic tags, allowing for the testing of 
transfer methods from synthetic to real data. The objective of the dataset 
is to provide a challenging benchmark for 3D mapping tasks such as 
semantic segmentation, instance segmentation, and scene completion. 

2.4. Synthetic 3D point clouds generation and segmentation of bridges 

In the bridge domain, Jing et al. [9] published a work where they 
presented a synthetic point cloud generator and a neural network named 
BridgeNet. The network was trained on their synthetic data to accurately 
segment point clouds of masonry bridges. They describe a bottom-up 
methodology to automate the generation of synthetic masonry arch 
bridges, which aims to approximate the geometric properties of two 
types of real bridges. The methodology involves assembling entire 
bridges from two primitive shapes and deriving four subassemblies from 
their combinations. Different 3D masonry bridges are generated by 
iteratively producing those components based on bridge topologies. The 
resulting noiseless synthetic point cloud is then corrupted randomly to 
simulate geometric distortions and laser scanning errors. The synthetic 
dataset is used for training BridgeNet, which is tested on a dataset 
composed of real masonry point clouds from 7 railway bridges in the UK, 
demonstrating the success of the synthetic point cloud simulator in 
capturing the global geometric properties of real bridges. Semantic la-
bels are provided by the neural network instead of instance labels. The 
clustering algorithm DBSCAN [41] is used to obtain instance labels by 
considering the coordinates and semantic labels of the points in the 
point cloud. Tian Xia et al. [42] propose a machine learning pipeline to 
segment semantically RC bridges. They calculated local descriptors 
throughout the point clouds to use it as input of a new neural network. 
They solve the problem of lack of data using the dataset published by Lu 
et al. [43]. Jun S. Lee et al. [44] presents a similar work. Instead of using 
an artificial neural network, they propose a graph-based hierarchical 

convolutional neural network DGNN (HGCNN). The types of layers of 
this architecture, unlike those of the previous authors, are convolu-
tional. Besides, this architecture allows to use the neighbouring relations 
between points in a more efficient way than in DGNN. Despite the good 
results of these tow works, their method presents the following two 
limitations. First, their neural network is not able to segment the ele-
ments in instances, which is crucial to segment truss bridges. Second, the 
datasets that they use do not have truss bridges, so their trained network 
would not be able to segment truss bridges. Indeed, in the Tian Xia et al. 
they said that “since three bridges in the dataset each belongs to a 
different bridge type and thus cannot be used for training and testing at 
the same time, they are excluded of the experiment”. This indicates that 
their model requires to be trained only with the type of bridge it would 
be tested on. Xiaofei Yang et al. [45] presents another deep learning 
strategy to segment RC bridges. To solve the problem of lack data, they 
apply two different data augmentation strategies for superpoint-based 
point cloud segmentation. The augmented data is used for training a 
superpoint-based algorithm from a previous work of the authors called 
WSPG [46]. In those previous work, they use two-real RC point clouds 
plus synthetic data generated from RC bridge models for training their 
deep learning algorithm. Their algorithm was designed to enable auto-
mated semantic segmentation of bridge components directly from 
extensive bridge point clouds. This last work was one of those that 
inspired the idea of automatically modelling truss bridges to create 
synthetic point clouds, which is presented as part of the contributions in 
this article. 

3. Methodology 

This section presents the methodology developed to perform the 
semantic and instance segmentation of truss bridge point clouds using 
deep learning. It covers everything from synthetic data generation 
(Section 3.1) to the artificial neural network architecture description 
(Section 3.2), and the training and testing processes (Section 3.3). 

3.1. Synthetic truss bridges 

A truss bridge is a bridge whose superstructure is composed of a 
truss. A truss is a rigid structure of members connected by nodes. There 
are different types of truss bridges depending on the assembly of their 
composing members, as shown by the examples of Fig. 1. 

Fig. 1. Example of different types of truss bridges.  
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Due to the lack of real data of point cloud truss bridges, synthetic 
data is generated to train and test the methodology. However, this 
generation method is neither limited to obtain data for training algo-
rithms, nor limited to use for generating point clouds. This tool can 
automatically generate a virtual structure containing its information in 
an accessible manner, such as the truss node positions, member profile 
or members orientation, that can be modified to redefine the bridge. 
Furthermore, in addition to saving a labelled point cloud, it also gen-
erates a mesh of the structure. These other functionalities are not used in 
the segmentation processes but could be useful for other applications 
and future work. 

For a given typology, the whole truss can be defined by setting a 
certain number of parameters. It can be characterized by: i) the position 
of the nodes, ii) the nodes to which each member is connected, iii) the 
orientation of each member and, iv) the member profiles. 

Considering this, we propose a methodology according to the 
workflow depicted in Fig. 2a to generate the synthetic data. In this 
workflow, the first process depends on the truss typology. The system is 
being designed so that any typology can be designed. However, as a 
starting point, the truss typologies studied in this work are Bailey and 
Brown. These typologies were selected due to their simplicity and sim-
ilarity between them, which facilitated the implementation of this first 

version presented in this work. Another reason why these typologies 
were chosen is that the real data available for this work are truss bridges 
of one of these or similar typologies. These typologies are formed by 
panels, which are patterns of the structure that are repeated along the 
length of the bridge. Knowing the truss typology, the number of panels 
and their dimensions, the location of the nodes and the pair of nodes 
connected by each member are defined automatically. A schematic 
representation of these relations is shown in Fig. 3. In addition, the 
methodology was designed to be versatile and adaptable. Even inside a 
given typology, it is possible to alter the defining parameters of the truss, 
such as member profiles, or remove/change members entirely. For 
instance, it is possible to generate a Bailey Truss bridge without vertical 
member, or a Brown Truss with Saint Andrew’s crosses. 

The node coordinates, and their relationship with the members, 
depend on the typology of the truss. However, once these properties 
have been calculated, the mesh and point cloud generation are not ty-
pology dependent. To add a level of abstraction and generalization, 
these processes have been designed to be separated from the truss type. 
As such, the following steps are performed by the generalized class 
TrussBridge, regardless of the typology. The workflow of this process is 
shown in Fig. 2b. 

The first step in the construction of a truss, guided by the TrussBridge 

Fig. 2. Synthetic truss bridge model generation.  
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class, is the generation of members through the class Member. The inputs 
required in this procedure are the coordinates of their corresponding 
nodes, their profile, and their orientation. Each member is created 
independently from one another, following the workflow of Fig. 2c. 

As it can be seen, the first step is the computation of the member 
mesh. The workflow of the mesh generation is described in Figure 2dand 
a schematic example is shown in Fig. 4. 

The mesh structure can be seen as an extrusion of the specified 
profile in the Z axis, where the extrusion length is determined by the 
Euclidean distance between the nodes to which the members is con-
nected, called p0 and p1. First, the mesh triangles of the bottom face are 
defined, as shown in Fig. 4a. These triangles depend on the type of 
profile of the member being created. For instance, a square profile only 
needs two triangles, while other, more complex profiles, require more. 
However, the vertices of all implemented profile types are defined in a 
clockwise manner so that the following steps can be performed in an 
automated manner. The next step is to define the top face. Its vertices are 
obtained by increasing setting the Z coordinate of the bottom face 
vertices as the extrusion length. Meanwhile, its triangles are calculated 
by assessing the number of nodes of the bottom face triangles and 
inversing their normal (counter-clockwise), as shown in Fig. 4b. Finally, 
the two faces are connected through the lateral triangles. These triangles 
are profile independent as they are based on the node indexes of the top 
and bottom faces, creating a pair of triangles per edge of the profile used, 
as shown in Fig. 4c. 

As a note, the currently supported profile typologies are I, T, L, U, 
and solid rectangular profiles. They are selected by inputting a label that 
specifies the type of standardized profile that the member uses (e.g. IPN 
220), which is used to access a list of .csv files that contains the di-
mensions required to generate the vertices and triangles of the bottom 

face of each type. At the moment, the standardized profiles accessible for 
automated generation are CH, HD, HL, HLZ, HP, HSS, IPN, L, PFC, T, U, 
UB, UBP, UC, UPE, and UPN, which are the most commonly used pro-
files. These profiles are defined in a local XY axis system where the 
opening of the profile, if applicable, points to the positive X axis. The 
reasoning behind this is to have a consistent rotation matrix for all 
profiles that is easy to use. 

Once all the triangles have been assembled into the mesh that rep-
resents the member, the next step is to place it in the target location, as 
shown in Fig. 4d. This positioning is determined by the input nodes p0 
and p1 and the input orientation that describes the axial rotation of the 
member. To do this, the mesh is centred at (0,0,0). Then, a rotation 
matrix, composed of translation and rotation, is applied. The translation 
is directly marked by the centre of p0, p1. The rotation, however, is more 
complex. All members need to be oriented in a manner that is easily 
mutable according to the orientation parameter and that is consistent for 
ease of use. To achieve this, the rotation matrix performs a ZYZ rotation 
that places the Z’ axis parallel to the main axis (MA) of the member, 
which is equal to p0, p1. This procedure can be seen in Fig. 5. First, the 
system is rotated Ẑ in the +Z axis, which makes X’ parallel to the pro-
jection of the main axis in the XY plane (MAh), as shown in Fig. 5a and 
Fig. 5b. Then, the system rotates Ŷ in the +Y′ axis, resulting in the Z’ axis 
parallel to the main axis (MA), as shown in Fig. 5c. By performing the 
rotation in this manner, the Y′ axis is now contained in the XY plane, and 
the +X” axis points downwards. This means that, in the case of a U 
profile, the opening of the U points downwards after these two rotations 
(X"). Then, the last rotation orientation along its main axis (MA) is what 
allows the tailoring of the rotation of the member in an intuitive and 
easy manner, as shown in Fig. 5d. For instance, through this setup, a 90◦

orientation would mean that the opening of the U (now X"’) is contained 
in the XY plane, with a 180◦ meaning that it points upwards, and so on. 

This procedure makes it possible to define the orientation of the 
members of each face to be decide independently, with one exception: 
the two vertical faces have a mirror configuration. In this way, defining 
the configuration of one vertical face, the other is determined 
automatically. 

The generation of the deck follows the same procedures as the 
members but with the following exceptions. The deck is also created as 
an extruded member, but its profile is always a rectangle. The length of 
the rectangle is the width of the bridge, and its height is the input that 
defines the thickness of the deck. For placement, there are defined two 
virtual nodes in order to use the member methods. These nodes are two 
points at the ends of the bridge, located at a height determined by the 
input that defines the height at which the deck is placed. 

At this point, the mesh has been created, placed and oriented, 
effectively modelling the geometry and location of the member. 

Fig. 3. Schematic relation between nodes and members of a truss.  

Fig. 4. Calculate_mesh schematic example.  
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Therefore, the next step is to generate the synthetic point cloud. Two 
different methods are used:  

• Uniform point clouds. This method uses an Open3D [47] function 
that uniformly samples points that lie on the surfaces of the mesh. 
The input parameters is the final number of points. To calculate that 
number, the area of the mesh is computed as the sum of the area of 
each triangle calculated with Heron’s formula. The number of points 
is determined using the input density and the calculated area.  

• Point clouds with occlusions. This method simulates the operation of 
a terrestrial laser scanner (TLS) to create occlusions in synthetic 
point clouds. The procedure involves specifying the positions of the 
virtual TLS in the target environment, along with defining the 
angular pitch to emulate a scanning. These parameters are defined in 
the input cameras, which is a list with the parameters of each virtual 
TLS acquisition. This process allows us to generate a synthetic point 
cloud that accurately replicates occlusions observed in real-world 
scans. For its implementation we utilized the Open3D ray casting 
function. We launch rays from each virtual scanner position and 
compute the impact points where the rays intersect with the sur-
rounding mesh surfaces. The ray casting function makes it possible to 
determine the impact points of rays launched on a camera on a mesh. 
The cameras are the virtual TLS positions and the point of impact of 
the virtual rays are the points of the synthetic point cloud. 

Once this procedure is repeated for each member, the truss can now 
be assembled and positioned at the target location. So far, the creation of 

the members has used the origin as reference. This means that if no 
translation or rotation is applied, the bridge would be centred at (0, 0, 0) 
with its main orientation matching the positive X axis and no vertical or 
lateral tilt. Therefore, the last step of the point cloud generation is to 
place the assembled bridge in the position and orientation specified in 
the centre and orientation inputs passed to the TrussBridge class. 

Lastly, the point cloud is saved in LAS or LAZ format [48]. The se-
mantic information about the type of member is saved in the classifica-
tion field. The number assigned for each type of member is an input of 
SpecifyTrussBridge class together with its profile and orientation. The 
instance information is saved in the user_data field with a unique index 
for each member object. 

Table 1 shows the inputs required to generate a synthetic truss bridge 
point cloud. 

3.2. Model architecture 

The use of deep learning algorithms on point clouds has grown over 
the last decade. There are works exploring various fields, from new ar-
chitectures to testing their applicability in specific areas [49]. One of the 
objectives of this paper is in line with the latter: to investigate the 
applicability of this type of architectures in the field of linear infra-
structure, concretely in truss bridges. The purpose is to obtain a semantic 
and instance segmentation, since the objective is to recognise not only 
each type of member, but also each member independently. For this 
reason, the architecture used is an adaptation of JSNet [50] developed 
by Lin Zhao et al. JSNet is a state-of-the-art instance segmentation 

Fig. 5. Rotation to target axis. MA is the main axis of the member, which is p0, p1.  
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network that ranked as the best of the architectures tested in the dataset 
S3DIS [16] in 2019, and currently [14] remains in the top 10 at the time 
of writing [51]. 

The model proposed by Lin Zhao et al. consists of a pre-processing, 
an instance and semantic segmentation by JSNet, and a post- 
processing. The pre-preprocess consists of cropping the point cloud in 
parallelepipeds of equal size and randomly selecting Na number of 
points. The semantic segmentation JSNet output is of type Nax C, being 
C the number of semantic classes. The instance segmentation JSNet 
output is of the type Nax K, being K the dimension of the embedding 
vector that represents the instance relationship of points. To obtain the 
final instance labels of each parallelepiped, Lin Zhao et al. used the al-
gorithm mean-shift clustering. This method requires a unique param-
eter, called bandwidth. Finally, the post- processing consists of merging 
those parallelepipeds and remapping the instance labels using the al-
gorithm GroupMerging proposed by Want et al. [52]. 

The pre-processing used in JSNet does not include a sub-sampling 
performed by a voxelization. They only randomly select Na points 
from each parallelepiped. This can be a problem in point clouds with not 
uniform point distribution. Subsampling by voxelization is a widely used 
method. We have incorporated it before the cropping process. 

As our data contains objects that require a larger number of points to 
identify them accurately, modifications are made to the architecture of 
JSNet, which is originally designed to segment objects of S3DIS. Spe-
cifically, the encoder and decoder blocks of the model are each given an 
additional layer to accommodate for the increased amount of data. 
Additionally, the depth of these layers is adjusted to ensure optimal 
performance of the modified architecture. These modifications are 
necessary to effectively process the larger number of points required for 
accurate object segmentation in our data, resulting in a more robust and 
accurate model. Fig. 6 shows the architecture of the encoder and 

decoder block. 

3.3. Training and testing 

On the one hand, we want to test the effect of the variety of training 
data. The primary approach involves training with a vast amount of real 
data, while there exist no limitations on the quantity of synthetic data. 
Consequently, it becomes interesting to explore the impact of varying 
data volumes on the training process. 

On the other hand, we introduce two distinct methods for generating 
synthetic point clouds: one involving occlusions and the other without 
occlusions. This aspect raises the question of how the model’s perfor-
mance and response may vary under these different conditions. 

To test the effect of synthetic point clouds on models, the data is 
organised as follows. The synthetic models are defined and two point 
clouds are created for each of them and saved in separately: one with 
occlusions and other without. Let’s design the dataset without occlu-
sions as U and the dataset with occlusions as O. Then, the data is split in 
k folders with equal number of point clouds. The distribution is the same 
for both. Let’s design each folder as Ui and Oi, respectively, being i the 
folder number. In this way, folders Ui and Oi contain the same bridge 
models. 

With this data distribution, models are trained and tested as follows. 
A model is trained with the dataset in the folder Ui to Ui+(n−1), being n 
the number of folders used for training, and tested in folders Uk, Ok and 
in real point clouds called R. This real point clouds are the two point 
clouds analysed in our previous work with the heuristic method [15], 
with which this new method is compared. In this way, for the same n and 
k values, there are two models trained and tested in the same truss 
bridge models, which their only difference is that the point clouds used 
in one have occlusions and in the other does not. Moreover, by changing 
n we can see the effect of training with different volume of data. Besides, 
the k-fold cross validation method is applied by changing the k value for 
each dataset O or U and n value. The scheme of this process is shown in 
Fig. 7. 

For each model, the training data is further split into training and 
validation data. Epoch by epoch, all the training data is used to train the 
model, and all the validation data is used to calculate the different 
metrics that reveals the training process. The metrics obtained from the 
validation data are utilized to eventually apply an early stop to the 
training if there is no progress. The model chosen to perform the test is 
the one with the best validation results. 

The test process is performed by applying the entire architecture: 
pre-processing, segmentation and post-process. However, the training 
processing does not use the pre- and post- processing methods. For each 
point cloud of training data, only one parallelepiped is selected. The 
parallelepipeds are randomly taken and they are different for each point 
cloud and for each training epoch. Besides, data augmentation technics 
are applied to the parallelepipeds. The cropped point cloud is randomly 
rotated and gaussian noise is added. The same processes are applied to 
the validation data. 

The difference between the testing and the training data is because 
using the full point clouds to train and apply the pre- and post-processing 
is very time-consuming and does not significantly contribute to the 
training. After all, each point cloud contains only one type of truss 
bridge. Therefore, each parallelepiped of the same point cloud is made 
up of members with the same distribution that do not introduce new 
information into the network. However, the testing process must be 
performed by applying the pre- and post-processing methods as the 
whole process needs to be evaluated. 

4. Results 

The purpose of this section is to present the results obtained from the 
methodology described through Section 3. More specifically, two main 
outcomes can be analysed: (i) the generation of synthetic data of truss 

Table 1 
Synthetic truss bridge inputs.  

General Members 

typology typology name chord profile name, 
orientation 

n◦ of panels N vertical 
diagonal 

profile name, 
orientation 

centre (x, y, z) vertical parallel profile name, 
orientation 

orientation (ẑ, ŷ, x̂) bottom diagonal profile name, 
orientation 

density R+ bottom parallel profile name, 
orientation 

cameras (x, y, z), angular 
pitch 

inner diagonal profile name, 
orientation 

deck position R+

Panel dimensions   
height R+

length R+

width R+

Fig. 6. a) Encoder and b) Decoder block of the adapted version based on JSNet.  
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bridges; (ii) and the point cloud segmentation process. Therefore, it has 
been split into Section 4.1 for the synthetic data, and Section 4.2 for the 
segmentation. 

4.1. Synthetic data 

500 synthetic point clouds of truss bridges are created. These 500 
point clouds correspond to 250 different models randomly defined, 
which 125 have a Bailey truss configuration and 125 a Brown Truss. 
From each of these models, two point clouds are generated: one with 
uniformly distributed points and the other simulating occlusions, mak-
ing a total of 500 point clouds. The parameters that define the synthetic 
point clouds are shown in Table 2, Table 3, Table 4 and Table 5. 

Table 2 shows the range of values used to randomly define the input 
parameters of each point cloud. For each set of parameters, one point 
cloud is created using the input density and the other with the input 
cameras, which correspond to a uniform point cloud and a point cloud 
with occlusions, respectively. Furthermore, there are members that are 
not always created to introduce more variability in the data. The pres-
ence or not of the members is determined by the column “Probability of 
having this member”. 

Different standardized profiles are available for the definition of the 
truss members. However, not all possible combinations among them 
were used. Table 3 shows the considered profiles for each type of truss 
member. Also, for a better view of how an isolated member is repre-
sented both as a mesh and point cloud, Fig. 8 presents some examples of 
profile morphologies. 

The generation of uniform point clouds only requires the parameters 
density. However, to simulate occlusions, we utilize parameters called 
cameras, which define the positions of the virtual TLS. In a real case 
study, the TLS placements are determined primarily by accessible lo-
cations and secondarily by positions that offer valuable structural in-
formation. Considering this, the virtual TLS positions are strategically 
placed in four areas: on the deck when it is not on top of the bridge, 
under the bridge, and at both sides of the bridge. Considering these 
factors, a range of values is defined to randomly select the input pa-
rameters for the TLS positions. Table 4 presents these parameters, 
including the minimum number of scanners or the distances between the 
bridge and the virtual positions, among others. 

The deck position can be positioned at different heights to further 
diversify the topologies available, as it is shown in Table 5. 

Each point cloud is saved with semantic and instance information. 
The points of a member are saved with the unique index of their 
instance. Also, there are 4 types of semantic classes: deck, chord, parallel 

and diagonal. 
Fig. 9 shows some examples of this synthetic data, in which there are 

Bailey truss and Brown truss configurations, with several deck positions, 
several profiles, absence of certain members and the effect of the oc-
clusions. Besides, colours show the instance and semantic information 
attach to each point. 

For a deeper understanding of the disparities between the point 
clouds containing occlusion and the ones without, examine Fig. 10. It is 
shown how some elements have fewer points in some areas or no points 

Fig. 7. Train and test split.  

Table 2 
Range of truss bridge parameters corresponding to the inputs required as it is 
shown in Table 1.  

General Members 

Name Value Unit Name Value Probability of 
having this 
member 

typology Bailey or 
Truss 

m chord Table 3,  
Table 1(0◦ , 
90◦,180◦ or 

270◦) 

100% 

n◦ of 
panels 

4–10  vertical 
diagonal 

Table 3,  
Table 1 (0◦, 
90◦,180◦ or 

270◦) 

70% 

centre 0–100, 
0–100, 
0–100 

m vertical 
parallel 

Table 3,  
Table 1 (0◦, 
90◦,180◦ or 

270◦) 

100% 

orientation ±180, 
±20, ±5 

◦ horizontal 
diagonal 

Table 3,  
Table 1 (0◦, 
90◦,180◦ or 

270◦) 

70% 

density 1000 points/ 
m2 

horizontal 
parallel 

Table 3,  
Table 1 (0◦, 
90◦,180◦ or 

270◦) 

100% 

cameras Table 4  inner 
diagonal 

Table 3,  
Table 1 (0◦, 
90◦,180◦ or 

270◦) 

70% 

deck 
position 

Table 5     

Panel dimensions    
Name Value Unit    
height 3–5 m    
length 3–5 m    
width 2–5 m     
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at all. 

4.2. Segmentation 

Regarding the training and testing dataset configurations explained 
in Section 3.3, the specific setups are as follows. The datasets U and O 
are split in 5 folders of 50 point clouds each. Switching the folders 
designated for testing enables the implementation of a k-fold validation 
with k = 5. The number of folders used for training, designed as n, vary 
from 1 to 4. In total, there are height different training configurations, 
and each of them is tested using a cross-validation of k = 5. 

The real point cloud dataset used are the two point clouds analysed 
in our previous work with the heuristic method [15]. Only the points 
segmented with the heuristic method have been used as ground truth, 
applying a mask to the rest of the points. 

For testing and validation purposes, the following metrics are 
computed. For semantic segmentation evaluation, overall accuracy 
(oAcc), mean accuracy (mAcc), and mean IoU (mIoU) are calculated 
considering all the categories together, as shown in Eqs. (1), (2) and (3), 
respectively. 

oAcc =

∑C

i
TPi

∑C

i
(TPi + FNi)

(1)  

mAcc =
1

|C|

∑|C|

i

TPi

TPi + FNi
(2)  

mIoU =
1

|C|

∑|C|

i

TPi

TPi + FNi + FPi
(3) 

C: semantic classes. 
TPi: true positives of class i at point level. 
FNi: false negatives of class i at point level. 
FPi: false positives of class i at point level. 
For instance segmentation, mean precision (mPrec) and mean recall 

(mRec) with IoU threshold (T) 0.5, and coverage (cov) and weighted 
coverage (wCov) are calculated as shown in Eqs. (4), (5), (6) and (7), 
respectively. The metric used to evaluate the early stop is cov since it 
considers all members equally, irrespective of their size. Otherwise, the 
deck would have much more weight than the others when in fact it is the 
least interesting member. 

Table 3 
Profile considered for each type of truss member.  

Type of truss 
member 

Profile Principal dimension 
[mm] 

Chord IPN, UB, UBP, UC, U, UPE, UPN, CH, 
HD, HL, HLZ, HP 

≥ 300 

Vertical diagonal IPN, L, HD, HL, HLZ, HP ≤ 200 
Vertical parallel IPN, HD, HL, HLZ, HP ≤ 300 
Horizontal 

diagonal 
IPN, L, HD, HL, HLZ, HP ≤ 200 

Horizontal 
parallel 

IPN, L ≤ 300 

Inner diagonal L ≤ 200  

Table 4 
TLS virtual positions. XYZ are the main axes of the bridge, being X the direction 
of travel, Y the width and Z the axis perpendicular to the deck plane.  

TLS on the deck TLS under the bridge 

n◦ of scanners 2–3 n◦ of scanners 2–4 

Distance to the deck 
in Z 

0.5–1.5 [m] Distance in Z to the 
bridge bottom face 

3–10 
[m] 

TLS on the right size of the bridge TLS on the left size of the bridge 
n◦ of scanners 2–4 [m] n◦ of scanners 2–4 

Distance to the bridge 
right face in Y 

3–10 [m] Distance to the 
bridge left face in Y 

3–10 
[m] 

Distance to the center 
of the bridge in Z 

(+2) - (−10) Distance to the 
center of the bridge 

in Z 

(+2) - 
(−10) 

General parameters   
minimum n◦ of 

scanners 
6   

angle pitch 5   
standard deviation of 

normal noise (x,y,z) 
1.0, 0.2, 0.0   

X position Equidistributed along 
the bridge    

Table 5 
Deck position.  

Probability of being at that Z position Position 

70% 0.5-height/2 
15% 0 
15% height  

Fig. 8. Synthetic mesh and point cloud profiles I, L and U.  
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Fig. 9. Synthetic data. Point clouds uniformly sampled are shown in column one. Column two are the same bridge models but with the occlusion simulation method.  
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mPrec =
1

|M|

∑|N|

j

((
IoUj ≥ T

)
→1

)
∧

((
IoUj < T

)
→0

)
(4)  

mRec =
1

|N|

∑|N|

j

((
IoUj ≥ T

)
→1

)
∧

((
IoUj < T

)
→0

)
(5)  

cov =
1

|N|

∑|N|

j
IoUj (6)  

wCov =
∑|N|

j

⃒
⃒Nj

⃒
⃒

∑|N|

k
|Nk|

*IoUj (7) 

N: ground truth instances. 
M: predicted instances. 

IoUj = maxnIoU
(
Nj,Mn

)

IoUj: maximum intersection over union between the ground truth 
instance j with the predicted instances. 

T: IoU threshold between a ground truth instance and its predicted 
instance to be consider a true positive. 

pj: number of points of the j real instance. 
pt: number of total points. 
The implementation details of the training and test of the network 

are as follows. The point clouds are down-sampled by voxelization with 
a grid equal to 0.05 m, cropped into overlapping parallelepipeds of 
10x10x10 m, and each parallelepiped contains 16,384 points. The 

Fig. 10. Details of synthetic point clouds with occlusions in the top row, and without occlusions in the bottom row.  

Table 6 
Mean number of epochs and training time of each training strategy.  

Training dataset (TD) n◦ of folders used for training (n) epochs time [h] 

Occlusions (O) 1 890 ± 297 9 ± 2 
Occlusions (O) 2 672 ± 242 13 ± 4 
Occlusions (O) 3 689 ± 227 21 ± 6 
Occlusions (O) 4 630 ± 66 25 ± 2 
Uniform (U) 1 873 ± 398 13 ± 2 
Uniform (U) 2 670 ± 398 11 ± 2 
Uniform (U) 3 670 ± 164 16 ± 3 
Uniform (U) 4 774 ± 125 24 ± 3  

Table 7 
Test result in real point clouds in %.  

TD n Semantic metrics Instance metrics 

oAcc mAcc mIoU mPrec mRec cov wCov 

O 1 84 85 54 30 12 21 39 
O 2 85 87 55 30 13 25 41 
O 3 86 87 55 36 18 28 43 
O 4 83 86 53 35 18 27 43 
U 1 86 87 55 24 8 17 35 
U 2 84 86 54 28 12 22 40 
U 3 87 88 56 31 14 24 41 
U 4 84 86 53 30 13 22 38  

Table 8 
Test result in synthetic dataset with occlusions in %.  

TD n Semantic metrics Instance metrics 

oAcc mAcc mIoU mPrec mRec cov wCov 

O 1 96 95 90 83 75 69 85 
O 2 97 96 92 86 83 76 88 
O 3 97 96 93 88 89 79 89 
O 4 98 97 94 89 91 81 90 
U 1 93 91 84 70 58 56 78 
U 2 95 94 89 80 79 69 84 
U 3 96 94 90 81 85 73 86 
U 4 96 95 91 82 87 75 87  

Table 9 
Test result in synthetic dataset without occlusions (uniform) in %.  

TD n Semantic metrics Instance metrics 

oAcc mAcc mIoU mPrec mRec cov wCov 

O 1 92 91 84 76 68 62 79 
O 2 93 92 86 79 77 68 82 
O 3 95 93 88 81 83 72 84 
O 4 95 94 88 82 86 74 85 
U 1 94 93 87 75 63 60 81 
U 2 96 95 91 86 82 74 87 
U 3 95 94 89 86 86 77 86 
U 4 95 94 90 87 88 78 87  
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network is trained for 2000 epochs with a batch size of 5 and an early 
stop of 100, using the metric Cov. The grid size utilized in the Group-
Merging method for merging the crops during post-processing is 0.1 m, 
which is twice the size of the grid used in the pre-processing stage. The 
other implementation details are the same as those used in JSNet. The 
experiments have been carried out at the Centro de Supercomputación 
de Galicia (CESGA) [53], using 40G of RAM and a GPU NVIDIA A100. 

Table 6 shows the time and number of epochs that each training 
strategy needs calculated from the k-fold cross validation method. 

Table 7, Table 8 and Table 9 show the metrics obtained for each 
model in the dataset R, O and U, respectively. 

To compare the models in a more visual way, Fig. 11 has been 
introduced. It contains graphics showing how the use of different 
training data size affects. In addition, the graphs also compare the effect 
of training with U or O. 

We will call X_y the model trained with the data set (X) and n = y. 
For example, the model trained with O and n = 3 is the model O_3. 

The best metrics in each dataset are obtained by those models trained 
on the same dataset and with the maximum amount of data. This is 
observed in Fig. 11 and Table 8 and Table 9, in which the best models are 
O_4 and U_4, respectively. Note that in Table 9, U_2, U_3 and U_4 have 
similar semantic metrics, but the instance metrics of U_4 are better. In 

the tests with dataset R, the best model is O_3. 
To compare the effect of using different data size and different 

dataset for training, Table 10 has been included, which shows the dif-
ferences of metric cov and wCov obtained with all the models in the three 
datasets. These metrics are selected for being the most relevant to split 
the truss into its elements. Regarding the data size used for training, 

Fig. 11. Graphics comparing the metrics obtained with the different amounts of data used for training. The legends indicates the metric plus the dataset used for 
training, being _o or _u the datasets O and U, respectively. 

Table 10 
Comparation of metric cov and wCov obtained with different models in the 
datasets U, O and R expressed in %.  

Models being compared cov wCov 

U O R U O R 

U_2 vs U_1 18 20 27 7 8 13 
U_3 vs U_2 3 5 10 -1 2 3 
U_4 vs U_3 2 2 −8 −1 1 −8 
O_2 vs O_1 9 8 16 3 3 5 
O_3 vs O_2 6 5 12 1 2 6 
O_4 vs O_3 2 2 −2 1 1 1 
O_1 vs U_1 2 20 19 −2 9 9 
O_2 vs U_2 −9 8 11 −6 4 1 
O_3 vs U_3 −6 8 13 −2 4 4 
O_4 vs U_4 −6 7 18 −2 4 13  
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there is a considerable improvement in all models in all tests by 
increasing the number of point clouds used for training from 50 to 100. 
However, by increasing from 100 to 150 and from 150 to 200, the 
improvement is much lower, even having a considerable decline in the 
tests with R. 

Regarding the dataset used for training, except when only 50 point 
clouds are used for training, there is an average improvement of around 
7% in cov and 4% in wCov if the dataset used for training and testing is 
the same. However, in the tests with dataset R, models trained with O 
obtain an improvement of around 3% in wCov. It is true that comparing 
O_4 vs U_4 it increases again, but it is due to a decline of the wCov of U_4 
rather than an improvement of O_4, as it is shown in Fig. 11. Analysing 
the metric cov, this improvement is higher, at around the 14%. It is 
interesting to note that, for metric cov, the improvement obtained from 
training with occlusions is twice as much in the tests with dataset R s as 
on O. These improvements in cov and wCov make sense since R has 
occlusions, so the dataset O (occlusions) is more like R (real) than the 
dataset U (uniform). 

With the aim of visualising the results obtained and to analyse them 
from a qualitative perspective, Fig. 12 shows some of the segmented 
synthetic point clouds with occlusions obtained with the model trained 
with n = 3 and dataset O, which is the model with the best results in R. 
They are coloured according to two different pallets: the first one (top 
row) represents the semantic segmentation, where members of the same 
class are coloured in the same way; the second one (bottom row) shows 
the instance segmentation, which means that every individual member 
is randomly coloured. 

To complete the qualitative analysis, the errors are also visualised to 
study where they are. Fig. 13 shows different semantic and instance 
errors in the same point clouds of Fig. 12. This visualization shows, as 
well as the metrics, that there are more instance errors than semantic 
ones. Furthermore, it also indicates that how both errors tend to accu-
mulate in the same areas: the nodes. Note that instance errors are those 
points of the correctly segmented instance that do not belong to the real 
instance. Moreover, all the points of the incorrect segmented instances 
are errors. An incorrect instance is an instance with a IoU < 0.5 with all 
real instance. For example, if a ground truth instance is segmented into 
three instances and all of them have a IoU < 0.5 with the ground truth 
instance, all the points of the segmented instances are displayed as 
errors. 

The methodology is also compared with the heuristic method pre-
sented in [15], that to the best of our knowledge, are the only two 

methods of truss bridges point cloud segmentation. For comparison, the 
heuristic method is tested in three randomly selected point clouds of the 
dataset O. Relevant measurements are manually taken in the point 
clouds to feed the inputs into the algorithm. As result, the metrics in 
Table 11 are obtained. Note that deck points are not considered into this 
analysis since the heuristic method is not designed to segment those 
points. 

With the aim of analysing the qualitative differences between the 
presented deep learning method and the heuristic one, the segmentation 
results and the errors of the heuristic approach are visualised in the same 
way as in the deep learning method, as shown in Fig. 14 and Fig. 15, 
shown the labels and the errors, respectively. The heuristic method, 
unlike the deep learning approach, leaves points without labelling, 
coloured in black in Fig. 14 and Fig. 15. For the computation of metrics, 
these non-labelled points are considered errors, except for the deck 
points, which are not considered. In the first point cloud, the main errors 
appear in nodes, as with the deep learning method. However, in the 
second point cloud, the faces are not correctly split, causing errors in the 
segmentation. The deck is considered as the upper face, which means 
that the actual upper face is not analysed, and some parts of the deck are 
segmented as beams. In the third face, the bottom chords are not well 
segmented: the lateral areas of the deck are segmented as chords. 

Before comparing the results of the presented deep learning method 
with those of the heuristic method, the following should be considered. 
First, it is important to notice that this method requires a series of 
measurements to be taken in the point cloud. Second, the deck points 
have been removed from the calculation of the metrics since the heu-
ristic method does not label deck points. Despite all these licenses 
granted to the heuristic method, the metrics obtained, shown in 
Table 11, are 44% of oAcc and 45% of cov. These metrics show how the 
new method improves on the old one in the dataset O. Besides, the new 
method is easier to use since it does not require to make measurements 
in the point clouds, and it is able the label deck points. It is also inter-
esting to discuss the results from a qualitative point of view. These 
analysis shows that the main failure sizes are the nodes, as shown in 
Fig. 13. This is because nodes are union zones where it is difficult to 
precisely determine to which member the points of these places belong. 
This error occurs also in the heuristic method, although the main error of 
this one is the large number of points it leaves unlabelled. The reason 
why there become unlabelled points is because the heuristic method was 
designed as a conservative method, unlike the new method, which 
segments all the points. 

Fig. 12. Semantic and instance segmented synthetic point clouds with occlusions (O) performed by the model O_3. Top row are semantic segmented point clouds 
where the deck is coloured in grey, chords in blue, parallels in green, and verticals in red. Bottom row are instance segmented point clouds, with every individual 
member randomly coloured. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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In the same way, the results obtained in the real point clouds are 
shown to discuss them from a qualitative point of view. Fig. 16 and 
Fig. 17 show the results and errors performed by the deep learning 
model O_3, respectively. 

To compare the effect of training with synthetic dataset with occlu-
sions in real point clouds, Fig. 18 and Fig. 19 are introduced to show the 
segmentation and errors performed by the deep learning model U_3, 
respectively. We chose U_3 because is the model with the best metrics 

trained with the dataset U. 
Comparing the results obtained with model O_3 and U_3 shown in 

Table 7, we see that the semantic metrics obtained by U_3 are a bit better 
than O_3. However, the instance metrics of O_3 are much better than 
U3. Such as in the synthetic dataset, the semantic results are better than 
the instance ones, which shows the positive effect of training with oc-
clusions. Regarding the figures, it is shown that the 2nd bridge is better 
analysed from both models than the 1st one. 

Our interpretation suggests that the second point cloud bears more 
resemblance to the synthetic data, as it contains fewer diagonals 
compared to the first point cloud. The primary weakness of the deep 
learning algorithm is its inability to provide semantic labels for non- 
structural elements like railings, lampposts, or walkways since these 
elements are not simulated in the synthetic data. These non-structural 
elements are not considered as errors in the images due to the lack of 
labels from the heuristic method. However, these errors might make it 
difficult to create a structural model from the segmented data. 

Fig. 13. Segmentation errors in synthetic point clouds with occlusions (O) performed by the model O_3. First row shows semantic errors. Second row instance errors. 
True positives in green, errors in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 11 
Average metrics of the heuristic and the deep learning approach in %.  

Method Semantic metrics Instance metrics 

oAcc mAcc mIoU mPrec mRec Cov wCov 

DL n ¼ 3 dataset O 97 96 93 88 89 79 89 
Hueristic 44 57 32 61 53 45 46  

Fig. 14. Segmented synthetic point clouds with occlusions (O) using the heuristic method [15]. Pallet of colours of Fig. 12. Non-segmented points are coloured 
in black. 
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5. Conclusions 

This paper presents a methodology for generating synthetic point 
clouds of truss bridges. Moreover, this data is used to demonstrate the 
applicability of a deep learning approach to simultaneously obtain a 
semantic and instance segmentation of truss bridges point clouds. 

The generation of point clouds of synthetic truss bridges are made 
from the specification of the dimensions and components of them. These 
specifications are the typology, the profiles of the members, their 
orientation, and the deck position. In addition, it is also possible to 
specify which members form the truss, as there may be multiple topol-
ogies for the same typology of truss. For instance, it is possible to create a 

Bailey truss with or without Sant Andrew’s cross, which chords are U 
profiles with their open face pointing up or down. Moreover, it is 
possible to create point clouds with a uniform distribution of points or 
simulate the TLS positions to create occlusions. The dataset is generated 
automatically by selecting these parameters randomly from several pre- 
defined options, which allows for a dataset with high variability. Some 
results are shown in Fig. 9. 

The process of generating synthetic point clouds works as follows. 
First, the nodes of the bridge are calculated. Then, each member is 
created as an extrusion of the specified profile and placed in its place in 
the truss. To this end, each member is defined from its pair of nodes, its 
profile, and its orientation. The dimensions of the profile are read from a 

Fig. 15. Segmentation errors in synthetic point clouds with occlusions (O) using the heuristic method [15]. Pallet of colours of Fig. 13. Non-segmented points 
in black. 

Fig. 16. Segmented real point clouds performed by the model O_3. Pallet of colours of Fig. 12. Dataset of [15].  
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table in which standardized profiles dimensions are saved. The stan-
dardized profiles used are CH, HD, HL, HLZ, HP, HSS, IPN, L, PFC, T, U, 
UB, UBP, UC, UPE, and UPN, with several sizes available for each of 
them. This profile is generated in the form of mesh, by creating the 
triangles that define the profile of the member and its lateral face. Then, 
the mesh is placed with respect to its node pairs and its orientation. The 
deck is also generated as a mesh, and its position in the bridge can be 
modified. Finally, there are two methods for obtaining the point cloud: 
random points are uniformly generated on the surface of the mesh, or 

define virtual TLS positions from which ray casting algorithm are 
applied to calculate the intersection points with the mesh generating a 
point cloud with occlusions. These processes are automatically per-
formed from the inputs. Note that for this work we only integrated two 
typologies: Bailey and Brown. However, several typologies might be 
added taking advantage of the main functions of this method, since it 
only implies to create new methods for calculating the location of the 
nodes. 

In this work, we only use the synthetic data generator to create point 

Fig. 17. Segmentation errors in real point clouds performed by the model O_3. Pallet of colours of Fig. 13. Point without ground truth are coloured in black. Dataset 
of [15]. 

Fig. 18. Segmented real point clouds performed by the model U_3. Pallet of colours of Fig. 12. Dataset of [15].  
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clouds to train and test a deep learning method. Nevertheless, this 
method has other applications that need to be explored, as the use of 
synthetic meshes, or the wire frame structure made from the nodes and 
the profiles of each member. Ultimately, this method allows the massive 
generation of various types of geometric data of truss bridges. 

On the other hand, this paper demonstrates the well-performance of 
deep learning approaches for semantic and instance segmentation of 
truss bridge point clouds. The state-of-the-art of deep learning methods 
for instance segmentation of point clouds are widely explored, but not in 
data as complex as truss bridges, where their instances are intertwined 
to each other. For this purpose, an existing state-of-art architecture is 
adapted, trained and tested. We use several strategies for training the 
point clouds to investigate the effect of synthetic data. The models are 
trained just with the uniform synthetic data (U) or with the synthetic 
data with occlusion (O). Moreover, the volume of data used for training 
varies. The parameter n indicates the number of folders with data used 
for training, ranging from 1 to 4. All models are tested in real point 
clouds, in U and O. 

The obtained results shown in Fig. 11 indicate that the models 
trained O are better in the tests with R, showing that training with 
synthetic point clouds with occlusions has a positive effect in real data. 
In the tests with synthetic data, using the dataset that matches the 
testing data yields the most favourable results. However, in the tests 
with O, the improvement of the models trained with that data compared 
to those trained with U is much greater than vice versa. Fig. 11 also 
indicates the effect of using several amounts of training data. The results 
indicate that testing on synthetic data there is an improvement when 
training with more data. However, in the tests with real data, the best 
models are those trained with n = 3 and not n = 4, although it is true that 
their differences are small and that only two real point clouds are 
available for testing. 

Comparing the deep learning method with our previous heuristic, 
which from the best of our knowledge, are the only two existing 
methods, we obtained the following conclusions. The deep learning 
method outperforms the heuristic one in the dataset O, as shown in 
Table 11. The deep learning model U_3 achieves 96% mAcc and 79% 

Cov, while the heuristic method 57% mAcc and 45% Cov. However, in 
real point clouds, U_3 obtains 87% mAcc and 28% Cov, using as ground 
truth only the points labelled by the heuristic method. The main errors 
can be due to two reasons:  

• The synthetic does not have non-structural elements, as the real data 
does.  

• One of the real bridges is very different from the synthetic typologies. 

Future work may consider introducing non-structural members in 
the synthetic data to make the architecture lean to differentiate between 
them. Moreover, some members are segmented together, or with certain 
parts of their adjacent members. This could make it difficult to use these 
data for modelling purposes. Therefore, refinement methods should be 
explored to solve this problem. Or from another perspective, approaches 
that introduce a priori information via axioms into artificial neural 
networks can be explored. 
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