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a b s t r a c t

In this work, the artificial recirculation of water is presented and analyzed, from the
perspective of the optimal control of partial differential equations, as a tool to prevent
eutrophication effects in large waterbodies. A novel formulation of the environmental
problem, based on the coupling of nonlinear models for hydrodynamics, water tem-
perature and concentrations of the different species involved in the eutrophication
processes, is introduced. After a complete and rigorous analysis of the existence of
optimal solutions, a full numerical algorithm for their computation is proposed. Finally,
some numerical results for a realistic scenario are shown, in order to prove the efficiency
of our approach.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction: The environmental problem

One of the most important environmental problems related to human activities near large masses of water is
utrophication. Eutrophication is caused by an excessive supply of nutrients (normally nitrogen and phosphorus) to the
ater. These nutrients cause undesirable effects like algal blooms that directly affects the concentration of dissolved
xygen in the deeper layers since the processes of remineralization of organic detritus consume oxygen, which can lead
o oxygen depletion of the body of water [1]. In Fig. 1 (left) we can find a schematic representation of the problem and
ts consequences.

Artificial circulation is a management technique that increases the dissolved oxygen concentration in the bottom layers.
ater from the well aerated upper layers is taken by means of a set of collectors and injects it into the bottom layers that

re poorly oxygenated. Then, oxygen-poor water from the bottom is circulated to the surface, where oxygenation from
he atmosphere and photosynthesis can naturally occur [2,3]. In Fig. 1 (right) we can find a representation of the main
dea of water artificial circulation.

Although eutrophication has received some attention from the mathematical viewpoint in last decade (see, for instance,
he recent publications [4–6] and the references therein), the study of artificial circulation as a eutrophication control tool
as remained unaddressed in the mathematical literature up to now, as far as we know. We can only mention two recent
apers of the authors [2,3], where a simplified preliminary formulation of the problem is posed and briefly analyzed. The
ain contribution of this work with respect to [3] is that in this case, we are considering the effect that solar radiation
as on the increase in water temperature and, therefore, on the evolution of the different species. The incorporation of
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Fig. 1. On the left side, a diagram representing algal blooms caused by eutrophication and its consequences. On the right side, a basic scheme
depicting the water artificial circulation process [2].

solar radiation to the model represents a notable increase in complexity in the mathematical analysis of the existence of a
solution to the state equations and also in mathematical analysis of the control problem and its numerical resolution. This
complexity is revealed in [2], where the authors show that, under certain assumptions about the regularity of the data, it
is possible to find a solution to the state equations. We must mention that in this work we will also present a complete
algorithm for the numerical resolution of the control problem and we will present results that we have obtained using
realistic data.

In next section we present a detailed mathematical formulation of the physical problem as a control/state constrained
optimal control problem of nonlinear partial differential equations. Then, we briefly recall the existence results for the
state system proved in [2]. Next, in the central part of the paper, we demonstrate in a rigorous way the existence of optimal
solutions. Finally, we present the numerical resolution of the problem, introducing a full computational algorithm and a
realistic numerical example, showing the efficiency of our approach.

2. Mathematical formulation of the control problem

In this section we will formulate the environmental problem in the framework of optimal control of partial differential
equations. For a better understanding of this novel mathematical formulation, we will divide this section into five
subsections: in the first subsection we will introduce and describe the physical domain; in the second one, the control
variables (in our case, the volumetric flow rate for each pump); in the third subsection we will establish the mathematical
formulation for the thermo-hydrodynamic model; in the fourth one we will present the eutrophication model that will
be used (the core of our model) and, finally, in the fifth subsection we will formulate the optimal control problem.

In order to establish the appropriate framework for mathematically analyzing the control problem, we consider, for a
Banach space V1 and a locally convex space V2 such that V1 ⊂ V2, and for 1 ≤ p, q ≤ ∞, the following Sobolev–Bochner
space (cf. Chapter 7 of [7] for further details):

W 1,p,q(0, T ; V1, V2) =
{
u ∈ Lp(0, T ; V1) :

du
dt
∈ Lq(0, T ; V2)

}
, (1)

where du
dt denotes the derivative of u in the sense of distributions. It is well known that, if both V1 and V2 are Banach spaces,

then W 1,p,q(0, T ; V1, V2) is also a Banach space endowed with the norm ∥u∥W1,p,q(0,T ;V1,V2) = ∥u∥Lp(0,T ;V1) +
 du

dt


Lq(0,T ;V2)

.

.1. The physical domain

We consider a domain Ω ⊂ R3 corresponding, for instance, to a reservoir. In order to promote the artificial circulation
f water inside the domain Ω , we suppose the existence of a set of NCT pairs collector–injector {(Ck, T k)}NCT

k=1 ⊂ ∂Ω in
such a way that each water collector is connected to its corresponding injector by a pipe with a pumping group. We also
assume a smooth enough boundary ∂Ω , such that it can be split into four disjoint subsets ∂Ω = ΓS ∪ΓC ∪ΓT ∪ΓN , where
ΓC corresponds to the part of the boundary where the water collectors are located (ΓC = ∪

NCT
k=1C

k), ΓT corresponds to the
part of the boundary where the water injectors are located (Γ = ∪NCT T k), Γ is the top part of the boundary in contact
T k=1 S

2
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Fig. 2. Geometrical configuration of an example domain Ω with NCT = 4 collector/injector pairs, showing the different boundary sections: ΓS ,
C = ∪

4
k=1C

k , ΓT = ∪
4
k=1T

k and ΓN , and also the control domain ΩC .

ith air, and ΓN = ∂Ω \ (ΓS ∪ ΓC ∪ ΓT ) corresponds to the rest of the boundary. In particular, we suppose the boundary
Ω regular enough to assure the existence of elements ϕk, ϕ̃k

∈ H3/2(∂Ω), for k = 1, . . . ,NCT , satisfying the following
ssumptions (mainly corresponding to suitable regularizations of the indicator functions of T k and Ck, respectively):

• ϕk(x), ϕ̃k(x) ≥ 0, a.e. x ∈ ∂Ω ,
• ϕk(x) = 0, a.e. x ∈ ∂Ω \ T k, and

∫
Tk ϕ

k dγ = µ(T k),
• ϕ̃k(x) = 0, a.e. x ∈ ∂Ω \ Ck, and

∫
Ck ϕ̃

k dγ = µ(Ck),

here µ(S) represents the (n − 1) dimensional measure of a generic set S, and β0 : u ∈ H3/2(∂Ω) → β0(u) ∈ H2(Ω)
enotes a right inverse of the classical trace operator γ0, i.e., (γ0 ◦β0)(u) = u (cf. Theorem 8.3. in Chapter 1 of [8]). Finally,
e also consider a subdomain ΩC ⊂ Ω , corresponding to the part of the domain where we want to increase the dissolved
xygen concentration (denoted as control domain in Fig. 2).

.2. The control variable

As above commented, our control will be the volumetric flow rate (m3 s−1) by pump k at each time t , gk(t) ∈ H1(0, T ),
or k = 1, . . . ,NCT , where T (s) denotes the length of the time interval. We will suppose that the control acts over the
ystem through a Dirichlet boundary condition on the hydrodynamic model:

v = φg on ∂Ω × (0, T ), (2)

here v(x, t) will denote the water velocity, and where:

φg(x, t) =
NCT∑
k=1

gk(t)
[
ϕk(x)
µ(T k)

−
ϕ̃k(x)
µ(Ck)

]
n(x) (3)

epresents the given Dirichlet condition for the hydrodynamic system. It is immediate that, thanks to the regularity of
he control g and of the functions {(ϕk, ϕ̃k)}NCT

k=1, we have that φg ∈ W 1,2,2(0, T ;H3/2(∂Ω),H3/2(∂Ω)) (cf. expression (1)
or a detailed definition of this Sobolev–Bochner space), and also that∫

∂Ω

φg · n dγ = 0.

.3. The thermo-hydrodynamic model

We denote by v(x, t) (m s−1) the solution of the following modified Navier–Stokes system with a Smagorinsky model
f turbulence:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂v
∂t
+∇v v− div(Ξ (v))+∇p = α0(θ − θ0) ag in Ω × (0, T ),

∇ · v = 0 in Ω × (0, T ),
v = φg on ∂Ω × (0, T ),

0

(4)
v(0) = v in Ω,

3



F.J. Fernández, A. Martínez and L.J. Alvarez-Vázquez Journal of Computational and Applied Mathematics 421 (2023) 114886

b

r

where ag (m s−2) is the gravity acceleration, α0
= −

1
ρ

∂ρ

∂θ
(K−1) is the thermic expansion coefficient (see, for instance,

section 10.7 of [9]), ρ(θ ) (gm−3) is the density, v0 is the initial velocity, and the boundary field φg is the element given
y (3). The diffusion term Ξ (v) is given by:

Ξ (v) =
∂D(e)
∂e

⏐⏐⏐⏐
e=e(v)

, with e(v) =
1
2

(
∇v+∇vt

)
, (5)

where D is a potential function (for instance, in the standard case of the classical Navier–Stokes equations, D(e) = ν [e : e],
with ν(m2 s−1) the kinematic viscosity of the water, and, consequently, Ξ (v) = 2ν e(v)). However, in our case, the
Smagorinsky model, the potential function is defined as in [10]:

D(e) = ν [e : e]+
2
3
νtur [e : e]3/2 , (6)

so,

Ξ (v) =
∂D(ϵ)
∂ϵ

⏐⏐⏐⏐
ϵ=ϵ(v)

= 2ν ϵ(v)+ 2νtur [ϵ(v) : ϵ(v)]1/2 ϵ(v)

=
(
2ν + 2νtur [ϵ(v) : ϵ(v)]1/2

)
ϵ(v) = β(ϵ(v)) ϵ(v),

(7)

where β(ϵ(v)) = 2ν + 2νtur [ϵ(v) : ϵ(v)]1/2 and νtur (m2) is the turbulent viscosity.
Regarding thermic effects, water temperature θ (x, t) (K) is the solution of the following convection–diffusion partial

differential equation with nonhomogeneous, nonlinear, mixed boundary conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂θ

∂t
+ v · ∇θ −∇ · (K∇θ ) = 0 in Ω × (0, T ),

θ = φθ on ΓT × (0, T ),

K
∂θ

∂n
= 0 on ΓC × (0, T ),

K
∂θ

∂n
= bN1 (θN − θ ) on ΓN × (0, T ),

K
∂θ

∂n
= bS1(θS − θ )+ bS2(T

4
r − |θ |

3θ ) on ΓS × (0, T ),

θ (0) = θ0 in Ω,

(8)

where Dirichlet boundary condition φθ is given by expression:

φθ (x, t) =
NCT∑
k=1

ϕk(x)
∫ T

−T
ρϵ(t − ϵ − s) γ k

θ (s) ds (9)

with, for each k = 1, . . . ,NCT ,

γ k
θ (s) =

⎧⎪⎪⎨⎪⎪⎩
1

µ(Ck)

∫
Ck
θ0 dγ if s ≤ 0,

1
µ(Ck)

∫
Ck
θ (s) dγ if s > 0,

(10)

epresenting the mean temperature of water in the collector Ck, and with the weight function ρϵ defined by:

ρϵ(t) =

⎧⎨⎩ c
ϵ

exp
(

t2

t2 − ϵ2

)
if |t| < ϵ,

0 if |t| ≥ ϵ,

(11)

for c ∈ R the positive constant satisfying the unitary condition:∫
R
ρ1(t) dt = 1.

In other words, we are assuming that the mean temperature of water at each injector Tk is a weighted average in time
of the mean temperatures of water at its corresponding collector Ck. In order to obtain the mean temperature at each
injector, we convolute the mean temperature at the collector with a smooth function with support in (t − 2ϵ, t). In this
way, we have that the temperature in the injector only depends on the mean temperatures in the collector along the
time interval (t − 2ϵ, t). Parameter 0 < ϵ < T represents, in a certain sense, the technical characteristics of the pipeline
that define the stay time of water in the pipe. We also suppose that there is not heat transfer through the walls of the
pipelines (that is, they are isolated).
4
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Moreover, for the other terms appearing in the formulation of problem (8) we have that:

• n is the unit outward normal vector to the boundary ∂Ω .
• K > 0 (m2 s−1) is the thermal diffusivity of the fluid, that is, K = α

ρ cp
, where α (Wm−1 K−1) is the thermal

conductivity, ρ(θ ) (gm−3) is the density, and cp (W s g−1 K−1) is the specific heat capacity of water.
• bK1 ≥ 0 (m s−1), for K ∈ {N, S}, are the coefficients related to convective heat transfer through the boundaries ΓN and
ΓS , obtained from the relation ρ cp bK1 = hK , where hK

≥ 0 (Wm−2 K−1) are the convective heat transfer coefficients
on each surface.
• bS2 > 0 (m s K−3) is the coefficient related to radiative heat transfer through the boundary ΓS , given by bS2 =

σB ε
ρ cp

,
where σB (Wm−2 K−4) is the Stefan–Boltzmann constant and ε is the emissivity.
• θ0
≥ 0 (K) represents the initial temperature.

• θN , θS ≥ 0 (K) are the temperatures related to convection heat transfer on the surfaces ΓN and ΓS .
• Tr ≥ 0 (K) is the radiation temperature on the surface ΓS , derived from the expression σB ε T 4

r = (1 − a)Rsw,net +

Rlw,down, where a is the albedo, Rsw,net (Wm−2) denotes the net incident shortwave radiation on the surface ΓR, and
Rlw,down (Wm−2) denotes the downwelling longwave radiation.

2.4. The eutrophication model

We consider the following system for modeling the eutrophication processes, based in Michaelis–Menten kinetics
(further details can be found, for instance, in [11,12] and the references therein), where we consider the concentrations
of five different species: u1(x, t) (mg l−1) stands for the nutrient (nitrogen in this case), u2(x, t) (mgC l−1) for the
phytoplankton, u3(x, t) (mgC l−1) for the zooplankton, u4(x, t) (mgC l−1) for the organic detritus, and u5(x, t) (mg l−1)
for the dissolved oxygen:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂ui

∂t
+ v · ∇ui

−∇ · (µi
∇ui) = Ai(x, t, θ,u) in Ω × (0, T ),

ui
= φui on ΓT × (0, T ),

µi ∂u
i

∂n
= 0 on (ΓS ∪ ΓN ∪ ΓC )× (0, T ),

ui(0) = u0,i in Ω, i = 1, . . . , 5,

(12)

here, for i = 1, . . . , 5,

φui (x, t) =
NCT∑
k=1

ϕk(x)
∫ T

−T
ρϵ(t − ϵ − s)γ k

ui (s) ds, (13)

nd, for k = 1, . . . ,NCT , and i = 1, . . . , 5,

γ k
ui (s) =

⎧⎪⎪⎨⎪⎪⎩
1

µ(Ck)

∫
Ck

u0,i dγ , if s ≤ 0,

1
µ(Ck)

∫
Ck

ui(s) dγ , if s > 0.
(14)

inally, the reaction term A = (Ai) : Ω × (0, T )× R6
→ R5 is defined by the following expression:

A(x, t, θ,u) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
CncL(x, t, θ )
KN + |u1|

u1u2
+ CncKru2

+ CncKrdD(θ )u4

L(x, t, θ )
KN + |u1|

u1u2
− Kru2

− Kmf u2
−

Kz

KF + |u2|
u2u3

CfzKz

KF + |u2|
u2u3
− Kmzu3

Kmf u2
+ Kmzu3

− KrdD(θ )u4

CocL(x, t, θ )
KN + |u1|

u1u2
− CocKru2

− CocKrdD(θ )u4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(15)

here:

• Coc ≥ 0 (mgmgC−1) is the oxygen–carbon stoichiometric relation,
• Cnc ≥ 0 (mgmgC−1) is the nitrogen–carbon stoichiometric relation,
• Cfz ≥ 0 is the zooplankton grazing efficiency factor,
• K ≥ 0 (s−1) is the detritus regeneration rate,
rd

5
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• Kr ≥ 0 (s−1) is the phytoplankton endogenous respiration rate,
• Kmf ≥ 0 (s−1) is the phytoplankton death rate,
• Kmz ≥ 0 (s−1) is the zooplankton death rate (including predation),
• Kz ≥ 0 (s−1) is the zooplankton predation (grazing),
• KF > 0 (mgC l−1) is the phytoplankton half-saturation constant,
• KN > 0 (mg l−1) is the nitrogen half-saturation constant,
• µi
≥ 0 (m2 s−1), i = 1, . . . , 5, are the diffusion coefficients of each species,

• D is the thermic regeneration function for the organic detritus, defined as:

D(θ ) = Θθ−θ0 , (16)

with log(Θ) (K−1) the thermic regeneration constant for the reference temperature θ0. In order to simplify the
mathematical analysis of the state equations we will consider the following linear approximation:

D(θ ) = 1+ log(Θ)(θ − θ0) (17)

if Θ > 0, and D(θ ) = 1 if Θ = 0.
• L is the luminosity function, given by:

L(x, t, θ ) = µ Cθ−θ0

t
I0(t)
Is

e−ϕ1x3 , (18)

with I0 (Wm−2) the incident light intensity, Is (Wm−2) the light saturation, log(Ct ) (K−1) the phytoplankton growth
thermic constant for the reference temperature θ0, ϕ1 (m−1) the light attenuation due to depth, and µ (s−1)
the maximum phytoplankton growth rate. Again, for the sake of simplicity, we will consider the following linear
approximation:

L(x, t, θ ) = µ
(
1+ log(Ct )(θ − θ0)

) I0(t)
Is

e−ϕ1x3 (19)

if Ct > 0, and L(x, t, θ ) = µ
I0(t)
Is

e−ϕ1x3 if Ct = 0.

2.5. The optimal control problem

Our main objective is to ensure that the concentration of dissolved oxygen in the bottom layer lies within an admissible
range of values by means of an optimal artificial circulation of water from the well-aerated upper layer. So, we want to
solve the following optimal control problem:

(P) min{J(g) : g ∈ Uad,
1

µ(ΩC )

∫
ΩC

u5(t) dx ∈ [λm, λM
]},

here

Uad = {g ∈ [H1(0, T )]NCT : g(0) = 0, ∥gk
∥H1(0,T ) ≤ c, ∀k = 1, . . . ,NCT } (20)

s the admissible set, c > 0 is a constant related to technological limitations of the pumps, J(g) is the cost function:

J(g) =
1
2

NCT∑
k=1

∫ T

0
gk(t)2 dt +

1
2

NCT∑
k=1

∫ T

0

dgk

dt
(t)2 dt, (21)

nd λm, λM > 0 represent, respectively, minimum and maximum permissible concentrations in the control domain ΩC .
inally, (v, θ,u) are the solutions of the coupled state systems (4), (8) and (12).

3. Mathematical analysis of the state equations

The mathematical analysis of the state equations (4), (8) and (12) have been previously studied by authors in [2]. We
briefly recall the main results for convenience of the reader.

For the modified Navier–Stokes system (4) we consider the following spaces:

X1 =

{
v ∈ [W 1,3(Ω)]3 : ∇ · v = 0, v|∂Ω\(ΓC∪ΓT ) = 0

}
,

X̃1 =
{
v ∈ [W 1,3(Ω)]3 : ∇ · v = 0, v|∂Ω = 0

}
.

(22)

Then, associated to the previous spaces, we define:

W1 = W 1,∞,2(0, T ;X1, [L2(Ω)]3) ∩ C([0, T ];X1),˜ 1,∞,2 ˜ 2 3 ˜ (23)
W1 = W (0, T ;X1, [L (Ω)] ) ∩ C([0, T ];X1).
6
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Now, for the water temperature system (8), we consider the following spaces:

X2 = {θ ∈ H1(Ω) : θ|ΓS ∈ L5(ΓS)},
X̃2 = {θ ∈ X2 : θ|ΓT

= 0}.
(24)

f we define the following norm associated to above space X2:

∥θ∥X2 = ∥θ∥H1(Ω) + ∥θ∥L5(ΓS ),

e have that X2 is a reflexive separable Banach space (cf. Lemma 3.1 of [13]), and that X̃2 ⊂ L2(Ω) ⊂ X̃ ′2 is an evolution
triple. So, we consider:

W2 = {θ ∈ W 1,2,5/4(0, T ; X2, X ′2) : θ|ΓS ∈ L5(0, T ; L5(ΓS))} ∩ L∞(0, T ; L2(Ω)),
W̃2 = {θ ∈ W 1,2,5/4(0, T ; X̃2, X̃ ′2) : θ|ΓS ∈ L5(0, T ; L5(ΓS))} ∩ L∞(0, T ; L2(Ω)).

(25)

Finally, for the eutrophication system (12), we define:

X3 = [H1(Ω)]5,
X̃3 = {u ∈ X3 : u|ΓT = 0}, (26)

nd we consider the following spaces associated to them:

W3 = W 1,2,2(0, T ;X3,X′3),
W̃3 = W 1,2,2(0, T ; X̃3, X̃′3).

(27)

From this section we will assume the following hypotheses for coefficients and data in the analytical study of the
roblem:

• gk
∈ H1(0, T ), with gk(0) = 0, ∀k = 1, . . . ,NCT ,

• v0 ∈
[
H2
σ (Ω)

]3
= {v ∈ [H2(Ω)]3 : ∇ · v = 0, v|∂Ω = 0} ⊂ X̃1,

• θS ∈ L2(0, T ; L2(ΓS)),
• θN ∈ L2(0, T ; L2(ΓN )),
• Tr ∈ L5(0, T ; L5(ΓS)),
• θ0
∈ X2,

• I0 ∈ L∞(0, T ),
• u0
∈ X3.

Under these hypotheses we will state now two lemmas (whose demonstrations can be found in [14,15], respectively),
hich will allow us to reformulate the state systems (4), (8) and (12) as homogeneous Dirichlet problems.

emma 1. There exists a linear continuous extension:
Rv : [H1(0, T )]NCT → W 1,2,2(0, T ; [H2

σ (Ω)]3, [H2
σ (Ω)]3)

g → Rv(g) = ζg
(28)

such that ζg|∂Ω
= φg, where φg is defined by (3), and H2

σ (Ω) = {u ∈ [H2(Ω)]3 : ∇ · u = 0}. □

Remark 1. It is worthwhile emphasizing here that, thanks to the construction done in the proof of Lemma 1, we have

ν

∫
Ω

e(ζg) : e(η) dx = 0, ∀η ∈ X̃1,

and, consequently, this term will not appear in the corresponding variational formulation. □

Lemma 2. We have that the following operator is compact

Rh : [L2(0, T )]NCT → W 1,2,2(0, T ;H2(Ω),H2(Ω))
h → Rh(h) = ζh,

(29)

where:

ζh(x, t) =
NCT∑
k=1

β0(ϕk(x))
∫ T

−T
ρϵ(t − ϵ − s)γ k

h (s) ds, (30)

with γ k
h (s) ∈ L2(−T , T ), for k = 1, . . . ,NCT , defined by:

γ k
h (s) =

⎧⎨⎩
1

µ(Ck)

∫
Ck
θ0 dγ if s ≤ 0,

k
(31)
h (s) if s > 0,

7
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(

i

and β0 : u ∈ H3/2(∂Ω)→ β0(u) ∈ H2(Ω) the right inverse of the classical trace operator γ0, i.e., such that (γ0 ◦ β0)(u) = u
cf. Theorem 8.3. of [8]).

We also have the existence of a constant C, that depends continuously on the space–time computational domain and the
nitial temperature θ0, such that:

∥ζh∥W1,2,2(0,T ;H2(Ω),H2(Ω)) ≤ C(θ0) (1+ ∥h∥
[L2(0,T )]NCT ). □ (32)

Now, we will establish the following notations, in order to consider the homogeneous Dirichlet systems. So, given
elements (z, ξ ,w) ∈ W̃1 × W̃2 × W̃3, we define (v, θ,u) ∈ W1 ×W2 ×W3 in the following way:

• v = z+ ζg, with ζg ∈ W 1,2,2(0, T ; [H2
σ (Ω)]3, [H2

σ (Ω)]3) the extension of control g given by Lemma 1.
• θ = ξ + ζhθ , with ζhθ

∈ W 1,2,2(0, T ;H2(Ω),H2(Ω))the extension of hθ obtained from Lemma 2, where:

hk
θ (s) =

1
µ(Ck)

∫
Ck
θ (s) dγ , k = 1, . . . ,NCT . (33)

• ui
= wi

+ ζhiu
, with ζhiu

∈ W 1,2,2(0, T ;H2(Ω),H2(Ω)) the extension of hi
u obtained from Lemma 2 with obvious

modifications, where:

hi,k
u (s) =

1
µ(Ck)

∫
Ck

ui(s) dγ , k = 1, . . . ,NCT , i = 1, . . . , 5. (34)

Thus, using above notations, we can reformulate the state systems (4), (8) and (12) in the following way:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂z
∂t
+∇(ζg + z)z+∇zζg

−div
(
2νe(z)+ 2νtur

∫
Ω

[
e(ζg + z) : e(ζg + z)

]1/2 e(ζg + z)
)

+∇p = α0(θ − θ0) ag −
∂ζg

∂t
−∇ζgζg + 2ν∇ · e(ζg) in Ω × (0, T ),

z = 0 on ∂Ω × (0, T ),
z(0) = v0 in Ω.

(35)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ξ

∂t
+ v · ∇ξ −∇ · (K∇ξ )

= −
∂ζhθ

∂t
− v · ∇ζhθ +∇ · (K∇ζhθ ) in Ω × (0, T ),

ξ = 0 on T k
× (0, T ), for k = 1, . . . ,NCT ,

K
∂ξ

∂n
= −K

∂ζhθ

∂n
on Ck

× (0, T ), for k = 1, . . . ,NCT ,

K
∂ξ

∂n
= bN1

(
θN − ζhθ −

K
bN1

∂ζhθ

∂n
− ξ

)
on ΓN × (0, T ),

K
∂ξ

∂n
= bS1

(
θS − ζhθ −

K
bS1

∂ζhθ

∂n
− ξ

)
+bS2

(
T 4
r − |ξ + ζhθ |

3(ξ + ζhθ )
)

on ΓS × (0, T ),

ξ (0) = θ0
− ζhθ (0) in Ω.

(36)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂wi

∂t
+ v · ∇wi

−∇ · (µi
∇wi) = Ai(x, t, θ, ζhu +w)

−
∂ζhiu

∂t
− v · ∇ζhiu +∇ · (µ

i
∇ζhiu

) in Ω × (0, T ),

∂wi

∂n
= −µi

∂ζhiu

∂n
on (ΓS ∪ ΓN ∪ ΓC )× (0, T ),

wi
= 0 on T k

× (0, T ), for k = 1, . . . ,NCT ,

wi(0) = u0,i
− ζhiu

(0) in Ω, i = 1, . . . , 5.

(37)

It is worthwhile noting here that all three previous systems show homogeneous Dirichlet boundary conditions and,
consequently, we will be able to define the concept of solution of the original state systems (4), (8) and (12) in terms
of the modified state systems (35), (36) and (37). It should be also noted that, in the case of systems (8) and (12), the
coupling terms in the Dirichlet boundary conditions are now transferred to the partial differential equations in systems
(36) and (37).

Definition 1 (The Concept of Solution for the State Systems). An element (v, θ,u) ∈ W1 ×W2 ×W3 is a solution for the
state systems (4), (8) and (12), if there exists an element (z, ξ ,w) ∈ W̃ × W̃ × W̃ such that:
1 2 3

8
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• v = z+ ζg, with ζg ∈ W 1,2,2(0, T ; [H2
σ (Ω)]3, [H2

σ (Ω)]3) as given by Lemma 1, z(0) = v0, a.e. x ∈ Ω , and z ∈ W̃1 the
solution of the following variational formulation:∫

Ω

∂z
∂t
· η dx+

∫
Ω

∇(ζg + z)z · η dx+
∫
Ω

∇zζg · η dx+ 2ν
∫
Ω

e(z) : e(η) dx

+2νtur

∫
Ω

[
e(ζg + z) : e(ζg + z)

]1/2 e(ζg + z) : e(η) dx

=

∫
Ω

Hg · η dx, a.e. t ∈ (0, T ), ∀η ∈ X̃1,

(38)

where:

Hg = α0(θ − θ0) ag −
∂ζg

∂t
−∇ζgζg ∈ L2(0, T ; [L2(Ω)]3). (39)

• θ = ξ + ζhθ , with ζhθ
∈ W 1,2,2(0, T ;H2(Ω),H2(Ω)) obtained from Lemma 2 for hθ ∈ [L2(0, T )]NCT defined by (33),

ξ (0) = θ0
− ζhθ (0), a.e. x ∈ Ω , and ξ ∈ W̃2 the solution of the following variational formulation:∫

Ω

∂ξ

∂t
η dx+

∫
Ω

v · ∇ξη dx+ K
∫
Ω

∇ξ · ∇η dx+ bN1

∫
ΓN

ξη dγ

+bS1

∫
ΓS

ξη dγ + bS2

∫
ΓS

|ξ + ζhθ |
3(ξ + ζhθ )η dγ =

∫
Ω

Hhθ η dx

+

∫
ΓC

gC
hθ η dγ + bN1

∫
ΓN

gN
hθ η dγ + bS1

∫
ΓS

gS
hθ η dγ

+bS2

∫
ΓS

T 4
r η dγ , a.e. t ∈ (0, T ), ∀η ∈ X̃2,

(40)

where:

Hhθ =
∂ζhθ

∂t
− v · ∇ζhθ +∇ · (K∇ζhθ ) ∈ L2(0, T ; L2(Ω)),

gC
hθ = −K

∂ζhθ

∂n
∈ L2(0, T ; L2(ΓC )),

gN
hθ = θN − ζhθ −

K
bN1

∂ζhθ

∂n
∈ L2(0, T ; L2(ΓN )),

gS
hθ = θS − ζhθ −

K
bS1

∂ζhθ

∂n
∈ L2(0, T ; L2(ΓS)).

(41)

• ui
= wi

+ ζhiu
, with ζhiu

∈ W 1,2,2(0, T ;H2(Ω),H2(Ω)) obtained from Lemma 2 for hi
u ∈ [L

2(0, T )]NCT defined by (34),
w(0) = u0 − ζhu (0), a.e. x ∈ Ω , and w ∈ W̃3 the solution of the following variational formulation:∫

Ω

∂w
∂t
· η dx+

∫
Ω

∇wv · η dx+Λµ

∫
Ω

∇w : ∇η dx

=

∫
Ω

A(θ, ζhu +w) · η dx+
∫
Ω

Hu · η dx

+

∫
ΓS∪ΓN∪ΓC

gu · η dγ , a.e. t ∈ (0, T ), ∀η ∈ X̃3,

(42)

where Λµ = diag(µ1, . . . , µ5) ∈ M5×5(R) is a diagonal matrix with diffusion coefficients, and:

H i
u = −

∂ζhiu

∂t
− v · ∇ζhiu +∇ · (µ

i
∇ζhiu

) ∈ L2(0, T ; L2(Ω)),

g i
u = −µi

∂ζhiu

∂n
∈ L2(0, T ; L2(ΓS ∪ ΓN ∪ ΓC )), i = 1, . . . , 5.

□ (43)

emark 2. We have the following dependence scheme between the elements of state system:

g →
(
v ←→ θ

)
→ u.

herefore, we can separate the mathematical analysis of systems (4)–(8) from system (12). The coupled system (4)–
8) has been fully analyzed by the authors in [14,15]. Thus, following the results there, we can assure that, for each
ontrol g ∈ [H1(0, T )]NCT , there exists a solution (v, θ ) ∈ W̃1 × W̃2 of the thermo-hydrodynamic system (4)–(8). We
ust remark here that, due to the complexity of this nonlinear system, we cannot obtain a uniqueness result for the

hermo-hydrodynamic solution (v, θ ) under our general hypotheses. However, this property will not be necessary in our
pproach, and previous existence result will be sufficient for our argumentation. So, we can focus now all our attention
9



F.J. Fernández, A. Martínez and L.J. Alvarez-Vázquez Journal of Computational and Applied Mathematics 421 (2023) 114886

s

w

in analyzing the solution u of the eutrophication system (12) or, equivalently, in studying the solution w of the modified
ystem (37). □

Thus, in order to analyze the existence of a solution u by means of a fixed point technique, we consider the operator:

Mu : (u∗,h∗u) ∈ [L
2(0, T ; L2(Ω))]5 × [L2(0, T )]5×NCT −→

Mu(u∗,h∗u) = (u,hu) ∈ [L2(0, T ; L2(Ω))]5 × [L2(0, T )]5×NCT ,
(44)

here u∗ = (u1∗, . . . , u5∗), with ui∗
∈ L2(0, T ; L2(Ω)), for i = 1, . . . , 5, h∗u = (h1

u
∗
, . . . ,h5

u
∗), with hi

u
∗
∈ [L2(0, T )]NCT , for

i = 1, . . . , 5, u = (u1, . . . , u5) ∈ W3, hu = (h1
u, . . . ,h5

u) ∈ [L
2(0, T )]5×NCT , such that:

• ζhi∗u
∈ W 1,2,2(0, T ;H2(Ω),H2(Ω)), for i = 1, . . . , 5, is defined by Lemma 2.

• u ∈ W3 is the solution, in the sense of Definition 1 with the obvious modifications, of the following decoupled
problem with resolution order i = 3→ 2→ 4→ 1→ 5:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂ui

∂t
+ v · ∇ui

−∇ · (µi
∇ui) = Âi(x, t, θ,u∗,u) in Ω × (0, T ),

ui
= ζhi∗u

on ΓT × (0, T ),

µi ∂u
i

∂n
= 0 on (ΓS ∪ ΓN ∪ ΓC )× (0, T ),

ui(0) = u0,i in Ω, i = 1, . . . , 5,

(45)

where the Caratheodory function Â = (̂Ai) : Ω × (0, T )× R6
× R6

→ R5 is defined by:

Â(x, t, θ,u∗,u) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−CncL(x, t, θ )
u1∗

KN + |u1∗|
u2
+ CncKru2

+ CncKrdD(θ )u4

L(x, t, θ )
u1∗

KN + |u1∗|
u2
− Kru2

− Kmf u2
− Kz

u2∗

KF + |u2∗|
u3

CfzKz
u2∗

KF + |u2∗|
u3
− Kmzu3

Kmf u2
+ Kmzu3

− KrdD(θ )u4

CocL(x, t, θ )
u1∗

KN + |u1∗|
u2
− CocKru2

− CocKrdD(θ )u4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
• hi

u ∈ [L
2(0, T )]NCT , for i = 1, . . . , 5, is such that:

hi,k
u (s) =

1
µ(Ck)

∫
Ck

ui(s) dγ , k = 1, 2, . . . ,NCT . (46)

We have the following lemma whose proof can be found in [2]. This lemma will be used later in the mathematical
analysis of the control problem.

Lemma 3. A solution u of the uncoupled system (45) verifies the following:

• Estimates for u3 and h3
u:

∥u3
∥W1,2,2(0,T ;H1(Ω),H1(Ω)′) ≤ C3(∥v∥W1 )

[
1+ ∥h3

u
∗
∥
[L2(0,T )]NCT

]
, (47)

∥h3
u∥[L2(0,T )]NCT ≤ C8(∥v∥W1 )

[
1+ ∥h3

u
∗
∥
[L2(0,T )]NCT

]
, (48)

where the constants C3 and C8 also depend on the initial condition ∥u0,3
∥H1(Ω).

• Estimates for u2 and h2
u:

∥u2
∥W1,2,2(0,T ;H1(Ω),H1(Ω)′) ≤ C2(∥v∥W1 , ∥θ∥W2 )

×

[
1+ ∥h2

u
∗
∥
[L2(0,T )]NCT + ∥h

3
u
∗
∥
[L2(0,T )]NCT

]
, (49)

∥h2
u∥[L2(0,T )]NCT ≤ C7(∥v∥W1 , ∥θ∥W2 )

×

[
1+ ∥h2

u
∗
∥
[L2(0,T )]NCT + ∥h

3
u
∗
∥
[L2(0,T )]NCT

]
, (50)

where constants C and C also depend on the initial conditions ∥u0,2
∥ and ∥u0,3

∥ .
2 7 H1(Ω) H1(Ω)

10
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• Estimates for u4 and h4
u:

∥u4
∥W1,2,2(0,T ;H1(Ω),H1(Ω)′) ≤ C4(∥v∥W1 , ∥θ∥W2 )

×

[
1+ ∥h2

u
∗
∥
[L2(0,T )]NCT + ∥h

3
u
∗
∥
[L2(0,T )]NCT + ∥h

4
u
∗
∥
[L2(0,T )]NCT

]
, (51)

∥h4
u∥[L2(0,T )]NCT ≤ C9(∥v∥W1 , ∥θ∥W2 )

×

[
1+ ∥h2

u
∗
∥
[L2(0,T )]NCT + ∥h

3
u
∗
∥
[L2(0,T )]NCT + ∥h

4
u
∗
∥
[L2(0,T )]NCT

]
, (52)

where the constants C4 and C9 also depend on the initial conditions ∥u0,2
∥H1(Ω), ∥u0,3

∥H1(Ω) and ∥u0,4
∥H1(Ω).

• Estimates for u1 and h1
u:

∥u1
∥W1,2,2(0,T ;H1(Ω),H1(Ω)′) ≤ C1(∥v∥W1 , ∥θ∥W2 )

[
1+ ∥h1

u
∗
∥
[L2(0,T )]NCT

+∥h2
u
∗
∥
[L2(0,T )]NCT + ∥h

3
u
∗
∥
[L2(0,T )]NCT + ∥h

4
u
∗
∥
[L2(0,T )]NCT

]
, (53)

∥h1
u∥[L2(0,T )]NCT ≤ C6(∥v∥W1 , ∥θ∥W2 )

[
1+ ∥h1

u
∗
∥
[L2(0,T )]NCT

+∥h2
u
∗
∥
[L2(0,T )]NCT + ∥h

3
u
∗
∥
[L2(0,T )]NCT + ∥h

4
u
∗
∥
[L2(0,T )]NCT

]
, (54)

where constants C1 and C6 also depend on the initial conditions ∥u0,1
∥H1(Ω), ∥u0,2

∥H1(Ω), ∥u0,3
∥H1(Ω) and ∥u0,4

∥H1(Ω).
• Estimates for u5 and h5

u:

∥u5
∥W1,2,2(0,T ;H1(Ω),H1(Ω)′) ≤ C5(∥v∥W1 , ∥θ∥W2 )

[
1+ ∥h2

u
∗
∥
[L2(0,T )]NCT

+∥h3
u
∗
∥
[L2(0,T )]NCT + ∥h

4
u
∗
∥
[L2(0,T )]NCT + ∥h

5
u
∗
∥
[L2(0,T )]NCT

]
, (55)

∥h5
u∥[L2(0,T )]NCT ≤ C10(∥v∥W1 , ∥θ∥W2 )

[
1+ ∥h2

u
∗
∥
[L2(0,T )]NCT

+∥h3
u
∗
∥
[L2(0,T )]NCT + ∥h

4
u
∗
∥
[L2(0,T )]NCT + ∥h

5
u
∗
∥
[L2(0,T )]NCT

]
, (56)

where the constants C5 and C10 also depend on the initial conditions ∥u0,2
∥H1(Ω), ∥u0,3

∥H1(Ω), ∥u0,4
∥H1(Ω) and

∥u0,5
∥H1(Ω). □

Remark 3. We must to note here that all above estimates do not depend on the variable u∗, since the dependence on u∗
appears within terms of the form:

uk∗

K + |uk∗|
,

ith K > 0, and those terms are bounded a.e. (x, t) ∈ Ω × (0, T ) by a constant independent on u∗. □

Finally, we have the following existence result for the system (4), (8) and (12) (see Theorem 2 of [2]).

Theorem 4 (Existence of Solution for the Eutrophication System). If there exist coefficients and data such that:

C6(∥v∥W1 , ∥θ∥W2 ) < 1,
C7(∥v∥W1 , ∥θ∥W2 ) < 1,

C8(∥v∥W1 ) < 1,
C9(∥v∥W1 , ∥θ∥W2 ) < 1,
C10(∥v∥W1 , ∥θ∥W2 ) < 1,

(57)

for all g ∈ Uad, then there will exist positive constants C̃i, i = 1, . . . , 10, such that the operator Mu : Bu → Bu defined by (44)
as a fixed point, which is solution of the state system (4), (8) and (12) in the sense of Definition 1, where:

Bu =

{
(u,hu) ∈ [L2(0, T ; L2(Ω))]5 × [L2(0, T )]5×NCT :

∥ui
∥L2(0,T ;L2(Ω)) ≤ C̃i, ∀i = 1, . . . , 5,

∥hi
∥ 2 N ≤ C̃ , ∀i = 1, . . . , 5

}
.

(58)
u [L (0,T )] CT 5+i

11
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4. Mathematical analysis of the optimal control problem

In this section we will prove the existence of solution for the optimal control problem (P). It is important to remark
ere that, since we have not demonstrated the uniqueness of solution for the state systems (4), (8) and (12), we will treat

the problem as a multistate control problem (cf. [16]). Thus, we define the set:

U =
{
(v, θ,u, g) ∈ L3(0, T ;X1)× L2(0, T ; X2)× L2(0, T ;X3)× Uad :

(v, θ,u) is a solution of (4), (8) and (12) associated to g,

verifying
1

µ(ΩC )

∫
ΩC

u5(t) dx ∈ [λm, λM
], ∀t ∈ [0, T ]

}
,

(59)

here the set of admissible controls Uad is bounded, convex and closed (in particular, Uad is weakly closed). We observe
hat the constraints in the sets U and Uad are well defined since gk

∈ H1(0, T ) ⊂⊂ C([0, T ]), k = 1, . . . ,NCT , and
i
∈ C([0, T ]; L2(Ω)), i = 1, . . . , 5. Then, we prove the following property for the set U .

emma 5. The set U is weakly closed.

roof. Let us consider a sequence of elements {(vn, θn,un, gn)}n∈N ⊂ U such that (vn, θn,un, gn) ⇀ (v, θ,u, g) in
3(0, T ;X1) × L2(0, T ; X2) × L2(0, T ;X3) × Uad. In particular, the sequence {gn}n∈N is bounded in [H1(0, T )]NCT and then,
hanks to the estimates obtained in Lemma 7 of [14], in Theorem 9 of [15], and in Lemmas 1–3, we have that the
equence {(zn, ζgn , ξn, ζhθnwn, ζhun )}n∈N ⊂ W̃1 × W 1,2,2(0, T ; [H2

σ (Ω)]3, [H2
σ (Ω)]3) × W̃2 × W 1,2,2(0, T ;H2(Ω),H2(Ω)) ×˜3×W 1,2,2(0, T ; [H2(Ω)]5, [H2(Ω)]5) induced by Definition 1 is bounded, where, for all n ∈ N, vn = wn+ζgn , θn = ξn+ζhθn

nd un = wn + ζhun .
Now, if we denote by w = v − ζg, ξ = θ − ζhθ and w = u − ζhu , we have (taking subsequences if necessary) the

ollowing convergences for the elements associated to the sequence of controls:

• gn(t)→ g(t) strongly for all t ∈ [0, T ] (so, in particular, gn(0)→ g(0) and, consequently, g(0) = 0),
• ζgn ⇀ ζg weakly in W 1,2,2(0, T ; [H2

σ (Ω)]3, [H2
σ (Ω)]3),

• ζhθn → ζhθ strongly in W 1,2,2(0, T ;H2(Ω),H2(Ω)),
• ζhun → ζhu strongly in W 1,2,2(0, T ; [H2(Ω)]5, [H2(Ω)]5),

here the first convergence is a direct consequence of compactness of H1(0, T ) in C([0, T ]) and the two last convergences
re consequence of Lemma 2. In a similar way we also have, for the sequence {zn}n∈N, the following convergences:

• zn → z strongly in Lp(0, T ; [Lq(Ω)]3) for all 1 < p <∞ and 2 ≤ q <∞,
• zn ⇀ z weakly in L3(0, T ; X̃1),
•

dzn
dt ⇀ dz

dt weakly in L2(0, T ; [L2(Ω)]3),
• ∇zn ⇀∗ ∇z weakly-∗ in L∞(0, T ; [L3(Ω)]3),
• β(e(ζgn + zn)) e(ζgn + zn) ⇀ β̂ , weakly in L3/2(0, T ; X̃′1).

oreover, for the sequence {ξn}n∈N we have:

• ξn ⇀ ξ in L2(0, T ; X̃2),
• ξn ⇀

∗ ξ in L∞(0, T ; L2(Ω)),
• ξn → ξ in L10/3−ϵ(0, T ; L10/3−ϵ(Ω)), for all ϵ > 0 small enough,
• ξn → ξ in L2(0, T ; L2(ΓC )),
• ξn → ξ in L4(0, T ; L4(ΓS)).

inally, for the sequence {wn}n∈N, we have the following convergences:

• wn ⇀ w weakly in L2(0, T ; X̃3),
•

dwn
dt ⇀ dw

dt weakly in L2(0, T ; X̃′3),
• wn → w strongly in [L10/3−ϵ(0, T ; L10/3−ϵ(Ω))]5, for all ϵ > 0 small enough,
• wn → w strongly in [L2(0, T ; L2(ΓC ))]5.

So, we are able to pass to the limit in the corresponding variational formulations using the same arguments that we
have employed for proving the compactness of operator Mu, and in the Galerkin approximations for systems (4) and (8)
cf. [2,14,15]). The only difficulty here is to prove that∫

β̂ : e(η) dx =
∫

β(e(ζg + z))e(ζg + z) : e(η) dx, a.e. t ∈ (0, T ), ∀η ∈ X̃1.

Ω Ω

12
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The proof is based on arguments that can be found in the corresponding proof of Theorem 6.7, Chapter V of [10]. Indeed,
on the one hand, by Lemma 8 of [14] we have that∫

Ω

[
β(e(ζg + z1))e(ζg + z1)− β(e(ζg + z2))e(ζg + z2)

]
: e(z1 − z2) dx dt

≥ C
∫
Ω

∥∇(z1 − z2)∥2[L2(Ω)]3×3 dx dt,

or all z1, z2 ∈ X̃1 and for all g ∈ [H1(0, T )]NCT . In particular, taking g = gn, z1 = zn(t) and z2 = η(t) and integrating over
he interval (0, T ),∫ T

0

∫
Ω

[
β(e(ζgn + zn))e(ζgn + zn)− β(e(ζgn + η))e(ζgn + η)

]
: e(zn − η) dx dt

≥

∫ T

0

∫
Ω

∥zn − η∥2
[L2(Ω)]3×3 dx dt ≥ 0,

for all η ∈ L3(0, T ; X̃1), and then, using similar techniques that we can find in the proof of Theorem 9 of [14] when we
ake limits in the Galerkin approximation, we can prove that∫ T

0

∫
Ω

[̂
β − β(e(ζg + η))e(ζg + η)

]
: e(z− η) dx dt ≥ 0,

or all η ∈ L3(0, T ; X̃1). Finally, choosing η = z ± λζ, with ζ ∈ L3(0, T ; X̃1) and λ an arbitrary positive number, and
ultiplying both sides of the inequality by λ−1, we obtain∫ T

0

∫
Ω

[̂
β − β(e(ζg + z+ λζ))e(ζg + z+ λζ)

]
: e(ζ) dx dt ≤ 0∫ T

0

∫
Ω

[̂
β − β(e(ζg + z− λζ))e(ζg + z− λζ)

]
: e(ζ) dx dt ≥ 0.

ow, letting λ tend to zero, we deduce that, for all ζ ∈ L3(0, T ; X̃1):∫ T

0

∫
Ω

[̂
β − β(e(ζg + z))e(ζg + z)

]
: e(ζ) dx dt = 0. (60)

n particular, taking ζ = ϕ ⊗ η ∈ L3(0, T ; X̃1), with ϕ ∈ D(0, T ) and η ∈ X̃1, we obtain the desired result.
Finally, by the strong convergence of {un}n∈N in [L2(0, T ; L2(ΓC ))]5, we have

1
µ(ΩC )

∫
ΩC

u5(t) dx ∈ [λm, λM
], ∀t ∈ [0, T ], (61)

nd, consequently, the element (v, θ,u, g) ∈ U .

heorem 6 (Existence of Optimal Solution). The optimal control problem (P) has, at least, a solution.

roof. Let us consider a minimizing sequence {(vn, θn,un, gn)}n∈N ⊂ U . Then, {gn}n∈N is bounded in [H1(0, T )]NCT , which
mplies, thanks to the estimates (53), (49), (47) and (51), and to the Hypotheses of Theorem 4, that the sequence {un}n∈N
s bounded in W3. We also have, thanks to estimates obtained in [14,15] that the sequence {(vn, θn)}n∈N is also bounded
n W1 × W2. Thus, we can take a subsequence of {(vn, θn,un, gn)}n∈N ⊂ U , still denoted in the same way, such that
vn, θn,un, gn) ⇀ (̃v, θ̃ , ũ, g̃) in L3(0, T ;X1)× L2(0, T ; X2)× L2(0, T ;X3)× Uad. Moreover, from previous Lemma, we have
hat (̃v, θ̃ , ũ, g̃) ∈ U .

Finally, due to the continuity and the convexity of the cost functional J (in particular, J is weakly lower semicontinuous),
e deduce that:

J (̃g) ≤ lim inf
n→∞

J(gn) = inf
(v,θ,u,g)∈U

J(g) ≤ J (̃g).

hus, g̃ ∈ Uad is a solution of the optimal control problem (P).

emark 4. It is worthwhile remarking here that, using standard techniques in the spirit of those presented in below
ection, it is possible to obtain a formal optimality system for the characterization of the optimal solutions of the control
roblem (P). However, since this is not the main aim of this paper, and for the sake of brevity, we will not present here
his optimality system, focusing our attention on the numerical computation of these optimal solutions. □
13
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5. Numerical resolution of the control problem

In this section we will present a numerical approximation for the optimal control problem (P). So, we will discretize the
state systems (4), (8) and (12) using a standard finite element method, and we will compute the numerical approximation
of the resulting nonlinear optimization problem (that appears after the full space–time discretization of the control
problem) using an interior point algorithm. In this particular case, due to the specific relations between the dimensions
of the control and the constraint variables, the numerical approximation of the Jacobian matrix of the constraints will be
performed using the discretized adjoint system (row by row) instead of the linearized systems (column by column). In
addition, the computation of each row of the Jacobian matrix will be parallelized.

5.1. Space–time discretization

Let us consider a regular partition 0 = t0 < t1 < · · · < tN = T of the time interval [0, T ] such that tn+1− tn = ∆t = 1
α
,

n = 0, . . . ,N − 1, and recall the material derivative of a generic scalar field φ defined as:

Dφ
Dt

(x, t) =
∂

∂t
φ(X(x, t), t) =

∂φ

∂t
(x, t)+ v(x, t) · ∇φ(x, t), (62)

where X represents the characteristic line, that is, verifies the equation:

∂X
∂t

(x, t) = v(x, t). (63)

o, we can approximate the material derivative in the following way:

Dφ
Dt

(tn+1) ≃ α
(
φn+1
− φn

◦ Xn
−

)
, (64)

here φn represents an approximation to φ(tn), and Xn
−
(x) = X(x, tn+1; tn) (i.e., the position at time tn of a particle that

at time tn+1 was located at point x) is the solution of the following trajectory equation:⎧⎨⎩
dX
dτ
= v(X(x, t; τ ), τ ),

X(x, t; t) = x,
(65)

pproached by the Euler scheme, that is, we consider the following approximation (see further details, for instance,
n [17,18]):

(φn
◦ Xn
−
)(x) ≃ φn(x−∆t vn(x)). (66)

For the space discretization, we take a family of meshes τh for the domain Ω with characteristic size h and, associated
o this family of meshes, we define the following finite element spaces (cf. Section 4.1 of [19]):

• Vh (P1b FEM space) for the water velocity v:

Vh = {v ∈ [C(Ω)]3 : vτ ∈ [P1b(τ )]3, ∀τ ∈ τh, v|∂Ω\(ΓT ∪ΓC ) = 0}, (67)

and, for the test functions and the adjoint state, the subspace:

Wh = {w ∈ Vh : w|ΓT = 0}. (68)

• Mh (P1 FEM space) for the water pressure p:

Mh = {p ∈ C(Ω) : p|τ ∈ P1(τ ), ∀τ ∈ τh}. (69)

• Kh (P1 FEM space) for the water temperature θ :

Kh = {θ ∈ C(Ω) : θ|τ ∈ P1(τ ), ∀τ ∈ τh}, (70)

and, for the test functions and the adjoint state, the subspace:

Hh = {θ ∈ Kh : θ|ΓT
= 0}. (71)

• Xh (P1 FEM space) for the concentration u of the species involved in eutrophication process:

Xh = {u ∈ [C(Ω)]5 : u|τ ∈ [P1(τ )]5, ∀τ ∈ τh}, (72)

and, for the test functions and the adjoint state, the subspace:

Z = {u ∈ X : u = 0}. (73)
h h |ΓT

14
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With respect to the computational treatment of the problem, we have used the open code FreeFem++ [20] for the
space–time discretizations of the problem. We have also employed a penalty method (cf. Section 4.3 of [19]) for computing
the solution of the Stokes problems that appear after discretization. Finally, in order to reduce the CPU time necessary
for computing the solution of the state systems, we have applied an explicit scheme (evaluations in previous time step)
for the nonlinearities and the coupled terms of the discretized problem.

So, we consider the following space–time discretization for the optimal control problem (P) where, for the sake of
implicity, we will use the same notations for the discrete problem as in the case of the continuous one:

1. Coupling of temperature/species in collectors and injectors:
We denote by θn

∈ Kh and un
∈ Xh, respectively, the water temperature and the species concentration at time step

n = 0, . . . ,N . Then, we consider the following approximation for functions γ k
θ , k = 1, . . . ,NCT , defined in (10),

(analogously for functions γ k
ui
, k = 1, . . . ,NCT , i = 1, . . . , 5, defined in (14)):

γ k
θ (t) =

1
µ(Ck)

[
χ(−∞,t0)

∫
Ck
θ0dγ +

N∑
n=1

χ[tn−1,tn)

∫
Ck
θn−1dγ + χ[tN ,∞)

∫
Ck
θNdγ

]
Moreover, if we assume the value ϵ = ∆t

2 in the definition (11) of function ρϵ we have that the support of
ρ∆t/2(tn − ∆t

2 − s) is contained in (tn −∆t, tn) = (tn−1, tn), for all n = 1, . . . ,N , and then:

φn
θ (x) =

NCT∑
k=1

ϕk(x)
∫ T

−T
ρ∆t/2(tn −

∆t
2
− s) γ k

θ (s) ds

=

NCT∑
k=1

ϕk(x)
∫ tn

tn−1

ρ∆t/2(tn −
∆t
2
− s)

[
1

µ(Ck)

∫
Ck
θn−1 dγ

]
ds

=

NCT∑
k=1

ϕk(x)
1

µ(Ck)

∫
Ck
θn−1 dγ .

Finally, we approximate each element ϕk by the indicator function of the injector T k, k = 1, . . . ,NCT , and each
element ϕ̃k by the indicator function of the collector Ck, k = 1, . . . ,NCT . Thus, the temperature in each injector at
time step tn is the mean temperature in the corresponding collector at time step tn−1 (analogously for the species
of the eutrophication model).

2. Discretized control:
We consider the following discretization of the admissible set (20) (we will still denote by Uad the set of admissible
discrete controls):

Uad = {g ∈ [C([0, T ])]NCT : g(0) = 0,
g|[tn,tn+1] ∈ [P1([tn, tn+1])]NCT , ∀n = 0, . . . ,N − 1, and
gn,k
= gk(tn) ∈ [c1, c2], ∀k = 1, . . . ,NCT , ∀n = 1, . . . ,N},

where c1 , c2 > 0 are technological bounds related to mechanical characteristics of pumps, and they are chosen so
that ∥gk

∥H1(0,T ) ≤ c , ∀k = 1, . . . ,NCT . So, if we consider the standard basis for the previous finite element space,
we can consider the following discrete control:

g = (g1,1, g1,2, . . . , g1,NCT  
g1

, . . . , gN,1, gN,2, . . . , gN,NCT  
gN

) ∈ RN×NCT . (74)

3. Discretized cost functional:
In order to simplify the numerical resolution of the control problem, we will consider the following expression of
the cost functional in terms of the previous admissible set:

J(g) =
σ1

2

N∑
n=1

NCT∑
k=1

(gn,k)2 +
σ2

2

N−1∑
n=1

NCT∑
k=1

(gn+1,k
− gn,k)2, (75)

where σ1 and σ2 are positive weights that we will take into account in the numerical tests.
4. Discretized state constraints:

We consider the function:

G : g ∈ Uad −→ G(g) = (G1(g), . . . ,GN (g)) ∈ RN , (76)

where, for each n = 1, . . . ,N ,

Gn(g) =
1

∫
un+1,5 dx, (77)
µ(ΩC ) ΩC
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Fig. 3. Dependence scheme for the discretized variables.

with un+1
∈ Zh the solution of the discretized eutrophication model. Thus, we can express:

U = {g ∈ Uad : Gn(g) ∈ [λm, λM
], ∀n = 1, . . . ,N}. (78)

It is worthwhile remarking here that, due the type of time discretization considered for the material derivatives
(64), the control gN acts over the species and the temperature at time tN+1. So, it will be necessary to compute one
additional time step in the case of temperature and species in order to take into account this control. This fact can
be more clearly noticed in the dependence scheme shown in Fig. 3.

5. Water velocity and pressure:
Given v0 ∈ Wh, the pair velocity/pressure (vn+1, pn+1) ∈ Vh ×Mh, for each n = 0, 1, . . . ,N − 1, with:

vn+1
|Tk
= −

gn+1,k

µ(T k)
n, vn+1

|Ck =
gn+1,k

µ(Ck)
n, ∀k = 1, . . . ,NCT , (79)

is the solution of the fully discretized system:

α

∫
Ω

vn+1 · η dx+
∫
Ω

β(vn)e(vn+1) : e(η) dx−
∫
Ω

pn+1∇ · η dx

−

∫
Ω

∇ · vn+1q dx− λ

∫
Ω

pn+1q dx = α

∫
Ω

(vn ◦ Xn
−
) · η dx

+

∫
Ω

α0(θn
− θ0)ag · η dx, ∀η ∈ Wh, ∀q ∈ Mh,

(80)

where λ > 0 is the penalty parameter and β(vn) = 2ν + 2νtur [e(vn) : e(vn)]1/2.
6. Water temperature: Given θ0

∈ Kh, the temperature θn+1
∈ Kh, for each n = 0, . . . ,N , with

θn+1
|Tk
=

1
µ(Ck)

∫
Ck
θn dγ , ∀k = 1, . . . ,NCT , (81)

is the solution of the fully discretized system:

α

∫
Ω

θn+1η dx+ K
∫
Ω

∇θn+1
· ∇η dx+ bN1

∫
ΓN

θn+1η dγ

+bS1

∫
ΓS

θn+1η dγ = α

∫
Ω

(θn
◦ Xn
−
)η dx+ bN1

∫
ΓN

θn+1
N η dγ

+bS1

∫
ΓS

θn+1
S η dγ + bS2

∫
ΓS

(T n
r
4
− |θn

|
3
θn)η dγ , ∀η ∈ Hh.

(82)

7. Eutrophication species concentration:
Given u0

∈ Xh, the species concentration un+1
∈ Xh, for each n = 0, . . . ,N , with:

un+1
|
=

1
∫

un dγ , ∀k = 1, . . . ,NCT , (83)

Tk µ(Ck) Ck
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is the solution of the fully discretized system:

α

∫
Ω

un+1
· η dx+

∫
Ω

Λµ∇un+1
: ∇η dx+

∫
Ω

An(θn,un)un+1
· η dx

= α

∫
Ω

(
un
◦ Xn
−

)
· η dx, ∀η ∈ Zh,

(84)

where An(θn,un) ∈ R5×5 is the following matrix:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
CncLn(θn)un,1

KN + |un,1|
− CncKr 0 0 −CncKrdD(θn)

0 Kr −
Ln(θn)un,1

KN + |un,1|
+ Kmf

Kzun,2

KF + |un,2|
0 0

0 0 −
CfzKzun,2

KF + |un,2|
+ Kmz 0 0

0 −Kmf −Kmz 0 KrdD(θn)

0 CocKr −
CocL(θn)un,1

KN + |un,1|
0 0 CocKrdD(θn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

.2. Numerical resolution of the optimization problem

Once developed above space–time discretization, as introduced in previous section, we obtain the following discrete
ptimization problem:

(P) min{J(g) : g ∈ U}

n order to solve this nonlinear optimization problem, we will use the interior point algorithm IPOPT [21] interfaced with
he FreeFem++ code that we have developed. One of the requirements for using previous algorithm is the knowledge of
unctions that compute the gradient of the cost functional and the Jacobian matrix of the constraints.

In the case of the cost functional, we have that its differential δgJ(g) ∈ L(RN×NCT ,R) is such that, for any δg =
δg1, . . . , δgN ) ∈ RN×NCT :

δgJ(g)(δg) = σ1

N∑
n=1

NCT∑
k=1

gn,kδgn,k

+σ2

N−1∑
n=1

NCT∑
k=1

(gn+1,n
− gn,k)(δgn+1,n

− δgn,k).

(85)

herefore, [∇gJ(g)]i = δgJ(g)(ei), where ei, i = 1, . . . ,N × NCT , is the ith vector of the canonical basis in RN×NCT .
In the case of the Jacobian matrix of the constraints, we know that the differential associated to the application
: Uad ⊂ RN×NCT → RN is such that δgG(g) ∈ L(RN×NCT ,RN ). So, given any element δg ∈ RN×NCT , we have that

gG(g)(δg) ∈ RN , and the Jacobian matrix JgG(g) ∈ MN×(NCT×N) is such that [JgG(g)]j,i = ⟨δgG(g)(ei), ẽj⟩, where ẽj,
= 1, . . . ,N , is the jth vector of the canonical basis in RN . As above commented, for computing previous matrix we
an use either the linearized state systems or the adjoint state systems. The choice of one method or another depends
n the relation between the dimension of the space of controls (N × NCT ) and the dimension of the space where the
pplication G takes values (N).

• When using the linearized systems, we would have to solve NCT × N times these systems (in this case, we would
compute the Jacobian matrix column by column):

JgG(g) =
(
δgG(g)(e1) δgG(g)(e2) · · · δgG(g)(eNCT−1) δgG(g)(eNCT )

)
,

where δgG(g)(ek) ∈MN×1(R), for k = 1, . . . ,NCT .
• When employing the adjoint state systems, we would have to solve N times these systems (now, we would compute

the Jacobian row by row):

JgG(g)(δg) =

⎛⎜⎜⎜⎜⎜⎝
∇gG1(g)
∇gG2(g)

...

∇gGN−1(g)
∇gGN (g)

⎞⎟⎟⎟⎟⎟⎠ ,

where ∇ Gi(g) ∈ RNCT is such that [∇ Gj(g)] = δ Gj(g)(e ), j = 1, . . . ,N , i = 1, . . . ,N × N .
g g i g i CT
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In our case, NCT > 1. So, it is more advantageous to employ the adjoint state systems and computing the Jacobian matrix
ow by row (j = 1, . . . ,N). However, in order to obtain a computational expression for the Jacobian matrix using the
djoint systems it will be necessary deriving first a theoretical expression using the linearized systems and then applying
transposition procedure.

emma 7 (Computing the Jacobian Matrix Using Linearized Systems). Within the framework introduced in this Section, we have
he following expression for the Jacobian matrix of the constraints using the linearized equations: Given an element δg ∈ RN×NCT ,
then

δgG(g)(δg) =

⎛⎜⎜⎜⎜⎜⎝
1

µ(ΩC )

∫
ΩC

δu2,5 dx

...
1

µ(ΩC )

∫
ΩC

δuN+1,5 dx

⎞⎟⎟⎟⎟⎟⎠ ,

here {(δvn, δpn)}Nn=0 ⊂ Vh × Mh, {δθn
}
N+1
n=0 ⊂ Kh and {δun

}
N+1
n=0 ⊂ Xh are, respectively, the solutions of the linearized

hydrodynamic model, the linearized thermic model and the linearized eutrophication model, defined as:

• Linearized system for water velocity and pressure: Given (δv0, δp0) = (0, 0), for each n = 0, . . . ,N − 1, (δvn, δpn) ∈
Vh ×Mh, with

δvn+1
|Tk
= −

δgn+1,k

µ(T k)
n, δvn+1

|Ck =
δgn+1,k

µ(Ck)
n, ∀k = 1, . . . ,NCT , (86)

is the solution of:

α

∫
Ω

δvn+1 · η dx+
∫
Ω

β(vn)e(δvn+1) : e(η) dx−
∫
Ω

δpn+1∇ · η dx

−

∫
Ω

∇ · δvn+1q dx− λ

∫
Ω

δpn+1q dx = α

∫
Ω

(δvn ◦ Xn
−
) · η dx

−

∫
Ω

(∇vn ◦ Xn
−
)δvn · η dx+

∫
Ω

α0 δθ
nag · η dx

−

∫
Ω

γ (vn) e(vn) : e(δvn) e(vn+1) : e(η) dx, ∀η ∈ Wh, ∀q ∈ Mh,

(87)

where γ (vn) = 2νtur [e(vn) : e(vn)]−1/2.
• Linearized system for water temperature: Given δθ0

= 0, for each n = 0, . . . ,N, δθn+1
∈ Kh, with:

δθn+1
|Tk
=

1
µ(Ck)

∫
Ck
δθn dγ , ∀k = 1, . . . ,NCT , (88)

is the solution of:

α

∫
Ω

δθn+1η dx+ K
∫
Ω

∇δθn+1
· ∇η dx+ bN1

∫
ΓN

δθn+1η dγ

+bS1

∫
ΓS

δθn+1η dγ = α

∫
Ω

(δθn
◦ Xn
−
)η dx

−

∫
Ω

(∇θn
◦ Xn
−
) · δvnη dx− 4bS2

∫
ΓS

|θn
|
3
δθnη dγ , ∀η ∈ Hh.

(89)

• Linearized system for eutrophication model: Given δu0
= 0, for each n = 0, . . . ,N, δun+1

∈ Xh, with:

δun+1
|Tk
=

1
µ(Ck)

∫
Ck
δun dγ , ∀k = 1, . . . ,NCT , (90)

is the solution of:

α

∫
Ω

δun+1
· η dx+

∫
Ω

Λµ∇δun+1
: ∇η dx

+

∫
Ω

An(θn,un)δun+1
· η dx = α

∫
Ω

(δun
◦ Xn
−
) · η dx

−

∫
Ω

(∇un
◦ Xn
−
)δvn · η dx−

∫
Ω

δθAn(θn,un)(δθn)un+1
· η dx

−

∫
δuAn(θn,un)(δun)un+1

· η dx, ∀η ∈ Zh.

(91)
Ω
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t
W

Proof. The proof is straightforward, where the only drawback is related to the computation of terms of the type
δg (ϕ(g, x−∆t v(g, x))) (δg), where ϕ(g, x) and v(g, x) are vector functions smooth enough (the scalar case would be
analogous). Nevertheless, using the chain rule, we can easily obtain that:

δg (ϕ(g, x−∆t v(g, x))) (δg)
= δgϕ(g, x−∆t v(g, x))(δg)−∆t δxϕ(g, x−∆t v(g, x))(δgv(g, x)(δg))
≡ (δϕ ◦ X−)−∆t (∇ϕ ◦ X−)δv.

(we must note here that, in our specific formulation, we deal with the function b : x ∈ R → b(x) = x |x|3, that is
differentiable in R, with b′(x) = 4 |x|3).

Lemma 8 (Computing the Jacobian Matrix Using the Adjoint Equations). Within the framework introduced in this Section, we
have the following expression for the Jacobian matrix of the constraints using the adjoint systems: For each row k = 1, . . . ,N,
the matrices {∇gnGk(g)}kn=1 ⊂M1×NCT (R) can be computed using the following expressions:

• If n ∈ {1, . . . , k} \ {N},

δgnGk(g)(δgn) =
NCT∑
i=1

δgn,i

µ(T i)

∫
T i
β(vn−1)e(wn−1)n · n− qn−1 dγ

+

NCT∑
i=1

δgn,i

µ(C i)

∫
C i
qn−1 − β(vn−1)e(wn−1)n · n dγ

+

NCT∑
i=1

δgn,i

µ(T i)

∫
T i
γ (vn)e(vn+1) : e(wn)e(vn)n · n dγ

−

NCT∑
i=1

δgn,i

µ(C i)

∫
C i
γ (vn)e(vn+1) : e(wn)e(vn)n · n dγ .

• If n = N,

δgnGk(g)(δgn) =
NCT∑
i=1

δgn,i

µ(T i)

∫
T i
β(vn−1)e(wn−1)n · n− qn−1 dγ

+

NCT∑
i=1

δgn,i

µ(C i)

∫
C i
qn−1 − β(vn−1)e(wn−1)n · n dγ ,

where if we introduce, for each row k = 1, . . . ,N, the following vector (defined from the usual Kronecker delta δij and the
indicator function of subset ΩC ):

Hn+1
k =

(
0, 0, 0, 0,

1
µ(ΩC )

χΩC δkn

)
∈M1×5(R), n = 0, . . . ,N,

hen the adjoint states associated to the eutrophication system {zn}N+1n=0 ⊂ Zh, to the hydrodynamic system {(wn, qn)}Nn=0 ⊂
h ×Mh, and to the temperature system {ξ n

}
N+1
n=0 ⊂ Hh are, respectively, the solution of the following systems:

• Adjoint system for eutrophication model:

– For n = N + 1, zn = 0.
– For n = N, zn ∈ Zh is such that:⎧⎪⎪⎪⎨⎪⎪⎪⎩

αzn −∇ · (Λµ∇zn)+ An(θn,un)T zn = α(zn+1 ◦ Xn+1
+

)+ Hn+1
k in Ω,

zn = 0 on ΓT ,

Λµ∇znn = 0 on ∂Ω \ (ΓT ∪ ΓC )

Λµ∇znn = −
1

µ(Ck)

∫
Tk
Λµ∇zn+1n dγ ′ on Ck, k = 1, . . . ,NCT ,

(92)

where Xn+1(x) = x+∆t vn+1.
+
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– For n = N − 1, . . . , 0, zn ∈ Zh is such that:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

αzn −∇ · (Λµ∇zn)+ An(θn,un)T zn = α(zn+1 ◦ Xn+1
+

)+ Hn+1
k

−

5∑
l=1

[∇uAn+1
l (θn+1,un+1)]Tun+2zn+1,l in Ω,

zn = 0 on ΓT ,

Λµ∇znn = 0 on ∂Ω \ (ΓT ∪ ΓC ),

Λµ∇znn = −
1

µ(Ck)

∫
Tk
Λµ∇zn+1n dγ ′ on Ck, k = 1, . . . ,NCT ,

(93)

• Adjoint system for water temperature:

– For n = N + 1, ξ n
= 0.

– For n = N, ξ n
∈ Hh is such that:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

αξ n
−∇ · (K∇ξ n) = α(ξ n+1

◦ Xn+1
+

) in Ω,

ξ n
= 0 on ΓT ,

K∇ξ n
· n = −bS1ξ

n
− 4bS2|θ

n+1
|
3
ξ n+1 on ΓS,

K∇ξ n
· n = −bN1 ξ

n on ΓN ,

K∇ξ n
· n = −

K
µ(Ck)

∫
Tk
∇ξ n+1

· n dγ ′ on Ck, k = 1, . . . ,NCT .

(94)

– For n = N − 1, . . . , 0, ξ n
∈ Hh is such that:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αξ n
−∇ · (K∇ξ n) = α(ξ n+1

◦ Xn+1
+

)

−
d
dθ

An+1(θn+1,un+1)un+2
· zn+1 + α0ag ·wn+1 in Ω,

ξ n
= 0 on ΓT ,

K∇ξ n
· n = −bS1ξ

n
− 4bS2|θ

n+1
|
3
ξ n+1 on ΓS,

K∇ξ n
· n = −bN1 ξ

n on ΓN ,

K∇ξ n
· n = −

K
µ(Ck)

∫
Tk
∇ξ n+1

· n dγ ′ on Ck, k = 1, . . . ,NCT .

(95)

• Adjoint system for water velocity and pressure:

– For n = N, (wn, q0) = (0, 0).
– For n = N − 1, (wn, qn) ∈ Wh ×Mh is such that:⎧⎪⎪⎪⎨⎪⎪⎪⎩

αwn
− div(β(vn)e(wn))+∇qn = α(wn+1

◦ Xn+1
+

)
−(∇vn+1 ◦ Xn+1

−
)Twn+1

− (∇un+1
◦ Xn+1
−

)T zn+1

−(∇θn+1
◦ Xn+1
−

)T ξ n+1 in Ω,

∇ ·wn
+ λqn = 0 in Ω,

wn
= 0 on ∂Ω.

(96)

– For n = N − 2, . . . , 0, (wn, qn) ∈ Wh ×Mh is such that:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

αwn
− div(β(vn)e(wn))+∇qn

= α(wn+1
◦ Xn+1
+

)− (∇vn+1 ◦ Xn+1
−

)Twn+1

−(∇un+1
◦ Xn+1
−

)T zn+1 − (∇θn+1
◦ Xn+1
−

)T ξ n+1

+∇ · (γ (vn+1)e(vn+2) : e(wn+1)e(vn+1)) in Ω,

∇ ·wn
+ λqn = 0 in Ω,

wn
= 0 on ∂Ω.

(97)

Remark 5. In order to simplify the proof of above Lemma, we have established the adjoint systems (96)–(97), (94)–(92)
and (95)–(93) in a strong formulation (contrary to the case of the linearized systems (87), (89) and (91), where we have
proposed a variational formulation). It is also clear that these adjoint systems easily admit a variational formulation, but
we have chosen to formulate them in a strong form for a better understanding of the demonstration. □

Proof. Let us consider as a test functions in the linearized systems (87), (89) and (91), respectively, the nth component
of the sequences {(wn, qn)}Nn=0 ⊂ Wh × Mh, {ξ n

}
N+1
n=0 ⊂ Hh and {zn}Nn=0 ⊂ Zh, such that wN

= 0, qN = 0, ξN+1
= 0 and

zN+1 = 0, and let us sum in n from 0 to N . Then, after some straightforward computations, taking into account the final
conditions for the adjoint systems and the initial conditions for the linearized ones, we have:
20
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• For eutrophication model:

N∑
n=0

[
α

∫
Ω

zn · δun+1 dx−
∫
Ω

∇ · (Λµ∇zn) · δun+1 dx

+

∫
Ω

An(θn,un)T zn · δun+1 dx
]
=

N∑
n=0

[
α

∫
Ω

(zn+1 ◦ Xn+1
+

) · δun+1 dx

−

∫
Ω

(∇un+1
◦ Xn+1
−

)T zn+1 · δvn+1 dx

−

NCT∑
k=1

∫
Ck

(
Λµ∇znn+

1
µ(Ck)

∫
Tk
Λµ∇zn+1n dγ ′

)
· δun+1 dγ

]
−

N−1∑
n=0

[ ∫
Ω

(
d
dθ

An+1(θn+1,un+1)un+2
· zn+1

)
δθn+1 dx

+

∫
Ω

(
5∑

l=1

[∇uAn+1
l (θn+1,un+1)]Tun+2zn+1,l

)
· δun+1 dx

]
,

(98)

with Xn+1
+ (x) = x+∆t vn+1, and where we are assuming δvN+1 = 0 in order to simplify the notation.

• For water temperature:

N∑
n=0

[
α

∫
Ω

ξ nδθn+1 dx−
∫
Ω

∇ · (K∇ξ n)δθn+1 dx

+

∫
ΓN

(
bN1 ξ

n
+ K∇ξ n

· n
)
δθn+1 dγ

+

∫
ΓS

(
bS1ξ

n
+ 4bS2|θ

n+1
|
3
ξ n+1
+ K∇ξ n

· n
)
δθn+1 dγ

]
=

N∑
n=0

[
α

∫
Ω

(ξ n+1
◦ Xn+1
+

)δθn+1 dx

−

∫
Ω

(∇θn+1
◦ Xn+1
−

)T ξ n+1
· δvn+1 dx

−

NCT∑
k=1

∫
Ck

(
K∇ξ n

· n+
1

µ(Ck)

∫
Tk

K∇ξ n+1
· n dγ ′

)
δθn+1 dγ

]
,

(99)

where, for the sake of simplicity, we have also assumed δvN+1 = 0.
• For water velocity:

N−1∑
n=0

[
α

∫
Ω

wn
· δvn+1 dx−

∫
Ω

div
(
β(vn)e(wn)

)
· δvn+1 dx

−

∫
Ω

∇ ·wnδpn+1 dx+
∫
Ω

∇qn · δvn+1 dx− λ

∫
Ω

qnδpn+1 dx
]

=

N∑
n=0

[∫
Ω

α0agwn+1δθn+1 dx
]
+

N−1∑
n=0

[
α

∫
Ω

(wn+1
◦ Xn+1
+

) · δvn+1 dx

−

∫
Ω

(∇vn+1 ◦ Xn+1
−

)Twn+1
· δvn+1 dx

]
+

N−2∑
n=0

[∫
Ω

div(γ (vn+1)e(vn+2) : e(wn+1)e(vn+1)) · δvn+1 dx
]

+

N−1∑
n=0

NCT∑
k=1

δgn+1,k
[

1
µ(T k)

∫
Tk

(
β(vn)e(wn)n · n− qn

)
dγ

−
1

k

∫ (
β(vn)e(wn)n · n− qn

)
dγ

]

µ(C ) Ck
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Fig. 4. Triangular mesh of the domain Ω for the numerical tests.

+

N−2∑
n=0

NCT∑
k=1

δgn+1,k
[

1
µ(T k)

∫
Tk
γ (vn+1)e(vn+2) : e(wn+1)e(vn+1)n · n dγ

−
1

µ(Ck)

∫
Ck
γ (vn+1)e(vn+2) : e(wn+1)e(vn+1)n · n dγ

]
,

(100)

where we have assumed wN+1
= 0.

Thus, if we define {(wn, qn)}Nn=0 ⊂ Wh × Mh, {ξ n
}
N+1
n=0 ⊂ Hh and {zn}N+1n=0 ⊂ Zh, such that wN

= 0, qN = 0, ξN+1
= 0

nd zN+1 = 0, as the solutions of the adjoint system (96)–(97), (94)–(92) and (95)–(93), respectively, we obtain, after
umming above expressions (98), (99) and (100), that:

N∑
n=0

∫
Ω

Hn+1
k · δun+1 dx =

N−1∑
n=0

NCT∑
k=1

δgn+1,k
[

1
µ(T k)

∫
Tk

(
β(vn)e(wn)n · n− qn

)
dγ

−
1

µ(Ck)

∫
Ck

(
β(vn)e(wn)n · n− qn

)
dγ

]
+

N−2∑
n=0

NCT∑
k=1

δgn+1,k
[

1
µ(T k)

∫
Tk
γ (vn+1)e(vn+2) : e(wn+1)e(vn+1)n · n dγ

−
1

µ(Ck)

∫
Ck
γ (vn+1)e(vn+2) : e(wn+1)e(vn+1)n · n dγ

]
.

And, finally, from the definition:
N∑

n=0

∫
Ω

Hn+1
k · δun+1 dx =

1
µ(ΩC )

∫
ΩC

δuk+1,5 dx. (101)

.3. Numerical results

In order to simplify the graphical representation of the computational results for the numerical tests developed in this
tudy, we will present here only the case of a two dimensional domain Ω . So, we consider a space configuration similar
o that presented in Fig. 1, with NCT = 4 collector/injector pairs, in a rectangular domain of 20m×16m. We suppose that
he diameter of each collector is 1m and the diameter of each injector is 2m. For the coefficients of the eutrophication
odel (12), we have used the same values as those appearing in [12], and for the thermo-hydrodynamic system (4), (8)

we have employed the same values as in [15]. For the space discretization we have generated a regular mesh of 2989
vertices, as shown in Fig. 4.
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Fig. 5. Standard profile for radiation temperature Tr .

Fig. 6. Comparison of the mean concentrations of dissolved oxygen in ΩC , taking a time step length ∆t = 450 s, for a constant flow rate of
1.0× 10−4 m3 s−1 in all the pumps, and for the case without pumping.

The control domain ΩC corresponds to a 3m strip at the bottom of the domain, and all the numerical tests have been
performed in a temporal horizon of 12 h (T = 43200 s). Finally, in order to simulate the effects of solar radiation for the
heat Eq. (8), we consider the standard function Tr depicted in Fig. 5.

We must remark that our main goal in this first approximation to the numerical resolution of the problem is trying
to understand if we can improve the management of the pumps with respect to a constant operating regime. So, given
a constant reference control g̃, with g̃n,k

= C (constant), for n = 1, . . . ,N , k = 1, . . . ,NCT , we will solve the following
modification of the original optimization problem (P):

(P̂) min{J(g) : g ∈ Uad, G(g) ≥ G(̃g)}.

In other words, we want to find an optimal control ĝ ∈ Uad that supplies us with a higher concentration of dissolved
oxygen than that obtained with the constant control g̃, and that minimizes the energy cost functional J . As an illustration
to this behavior, in Fig. 6 we can see the evolution of the mean concentration of dissolved oxygen in the control domainΩC
considering a constant reference control g̃n,k

= 1.0×10−4 m3 s−1, ∀n = 1, . . . ,N , ∀k = 1, . . . ,NCT , compared to the mean
concentration assuming that all the pumps are out of service (that is, g̃n,k

= 0.0m3 s−1, ∀n = 1, . . . ,N , ∀k = 1, . . . ,NCT ).
We observe how, if the pumps are out of service, the mean concentration of dissolved oxygen in the control domain
decays gradually but, nevertheless, if we consider a constant flow rate (not necessarily large), this mean concentration of
dissolved oxygen increases in a significant way.

In this final part of the Section we present several numerical results that we have obtained using different choices of
the time step length ∆t . We must mention that in the numerous numerical tests developed, we have always obtained
that G(̂g) = G(̃g), and also a reduction in the value of the cost functional J (̂g) < J (̃g). So, in Fig. 7 we can see the optimal
control that we have obtained taking σ1 = 0.5 and σ2 = 1 − σ1 = 0.5, for time steps of ∆t = 3600 s and ∆t = 1800 s
(corresponding to N = 12 and N = 24, respectively). In Fig. 8 we can find the optimal control corresponding to time
steps of ∆t = 900 s and ∆t = 450 s (N = 48 and N = 96, respectively), showing the robustness of our methodology.
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Fig. 7. Evolution of the optimal flow rates for the four pumps taking weights σ1 = σ2 = 0.5, and ∆t = 3600 s (left) or ∆t = 1800 s (right).

Fig. 8. Evolution of the optimal flow rates for the four pumps taking σ1 = σ2 = 0.5, and ∆t = 900 s (left) or ∆t = 450 s (right).

Table 1
Functional cost evaluated in the reference control (̃g) vs. optimal control (̂g).

∆t = 3600 s ∆t = 1800 s ∆t = 900 s ∆t = 450 s

J (̃g) 1.2000× 10−7 2.4000× 10−7 4.8000× 10−7 9.6000× 10−7

J (̂g) 1.0973× 10−7 2.1865× 10−7 4.3195× 10−7 8.7104× 10−7

We observe that the flow rates associated to the two upper collectors (g1 and g3) are significantly higher than the
corresponding to lower collectors (g2 and g4). This is caused by the fact that the photosynthesis is more intense in the
superficial layers and, consequently, the presence of dissolved oxygen is higher there.

In Table 1 we can see the comparison between the functional cost evaluated in the reference control and in the optimal
control. We can observe that, as we decrease the time step, the difference between the reference cost and the optimal
cost increases. As it seems obvious, this is a straightforward consequence of the fact that, as we decrease the time step,
we can act in a more precise way over the system and achieve better results.

In Fig. 9 we can see the evolution of the constraints for the choice of the time step length ∆t = 450 s. We can verify
here that the optimal constraint G(̃g) and the reference constraint G(̂g) are virtually indistinguishable, that is, with optimal
trategy g̃ we obtain the same water quality in the control region as with the constant reference flow rate g̃, but with a
ignificative decrease in energy cost.
Finally, in Fig. 10 we show the concentration of dissolved oxygen in the whole domain Ω associated to the optimal

ontrol solution for ∆t = 450 s (left), and the concentration of dissolved oxygen when all the pumps are off (right), both
n the last time step (corresponding to N = 96). We can easily notice here the pumping effects associated to the optimal
ontrol in the bottom layer, with an evident improvement of water quality in the region.
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Fig. 9. Evolution of the constraints, for ∆t = 450 s, in the controlled and uncontrolled cases.

Fig. 10. Concentration of dissolved oxygen in the last time step corresponding to the optimal solution (left), and without control (right).
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