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Abstract

Mechanistic dynamical models allow us to study the behavior of complex biological systems.

They can provide an objective and quantitative understanding that would be difficult to

achieve through other means. However, the systematic development of these models is a

non-trivial exercise and an open problem in computational biology. Currently, many

research efforts are focused on model discovery, i.e. automating the development of inter-

pretable models from data. One of the main frameworks is sparse regression, where the

sparse identification of nonlinear dynamics (SINDy) algorithm and its variants have enjoyed

great success. SINDy-PI is an extension which allows the discovery of rational nonlinear

terms, thus enabling the identification of kinetic functions common in biochemical networks,

such as Michaelis-Menten. SINDy-PI also pays special attention to the recovery of parsimo-

nious models (Occam’s razor). Here we focus on biological models composed of sets of

deterministic nonlinear ordinary differential equations. We present a methodology that, com-

bined with SINDy-PI, allows the automatic discovery of structurally identifiable and observ-

able models which are also mechanistically interpretable. The lack of structural identifiability

and observability makes it impossible to uniquely infer parameter and state variables, which

can compromise the usefulness of a model by distorting its mechanistic significance and

hampering its ability to produce biological insights. We illustrate the performance of our

method with six case studies. We find that, despite enforcing sparsity, SINDy-PI sometimes

yields models that are unidentifiable. In these cases we show how our method transforms

their equations in order to obtain a structurally identifiable and observable model which is

also interpretable.

Author summary

Dynamical models provide a quantitative understanding of complex biological systems.

Since their development is far from trivial, in recent years many research efforts focus on

obtaining these models automatically from data. One of the most effective approaches is

based on implicit sparse regression. This technique is able to infer biochemical networks

with kinetic functions containing rational nonlinear terms. However, as we show here,
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one limitation is that it may yield models that are unidentifiable. These features may lead

to inaccurate mechanistic interpretations and wrong biological insights. To overcome this

limitation, we propose an integrated methodology that applies additional procedures in

order to ensure that the discovered models are structurally identifiable, observable, and

interpretable. We demonstrate our method with six challenging case studies of increasing

model complexity.

Introduction

Mathematical models are increasingly used to describe, monitor, analyze and predict the

behavior of complex biological systems. One of the major benefits of using mathematical mod-

els to study biology is that they can provide an objective and quantitative understanding that

would be difficult to achieve through any other means. In systems biology, dynamical models

(typically sets of ordinary differential equations, ODEs) are widely used to provide mechanistic

insights into the functioning of biological systems [1, 2].

The use of dynamical systems theory originated in Newtonian mechanics is now pervasive

in all the natural and engineering sciences [3]. Dynamic models are highly versatile, enabling

researchers to study complex biosystems from a range of different perspectives, such as (i) ana-

lyzing the effect of changes in conditions and scenarios different from those studied experi-

mentally, (ii) guiding research by identifying key aspects that need to be further investigated,

(iii) helping to generate new testable hypotheses, or (iv) guiding the design of interventions.

However, the systematic development of mechanistic dynamic models is a non-trivial exercise.

In the case of biological systems, the situation is particularly difficult due to the fact that we

cannot rely on first principles in the same way as in e.g. physics. As a consequence, model

development is one of the key open problems in mathematical biology [4].

Can we automate the development of mechanistic models? This question of model discov-

ery (in the sense of symbolic reconstruction of equations) from data was already addressed by

pioneering attempts in the field of artificial intelligence several decades ago [5–7]. However,

the data-driven automatic identification of nonlinear dynamic models has only been addressed

more recently. In this area, several different statistical and machine learning frameworks have

been considered, including symbolic regression [8, 9], grammar-based methods [10, 11],

sparse regression [12], neural networks [13–15], Gaussian process regression [16, 17] and

Bayesian approaches [18–20]. More detailed reviews can be found in [21–25]. The sparse iden-

tification of nonlinear dynamics (SINDy) algorithm [12] has been particularly successful, and

a number of extensions have been developed (see review in [26]).

In the case of biological systems, a large amount of research has been devoted to different

classes of subproblems with different simplifying assumptions (such as e.g. static networks,

non-mechanistic dynamic networks, linear dynamics, etc.), as reviewed by [27–29]. In this

work, we consider the more general problem of fully reconstructing interpretable (mechanistic

and parameterized) nonlinear dynamic models from time-series data. Recently, several

approaches using methods based on sparse regression, Bayesian identification or symbolic

regression have appeared [18, 30–36]. In this context, SINDy-PI [37] is an especially interest-

ing parallel implicit version of SINDy because it allows the incorporation of implicit dynamics

and rational nonlinear terms, thus enabling the discovery of kinetic functions (such as Michae-

lis-Menten) common in biochemical networks.

Many of these SINDy-based methods pay special attention to the recovery of parsimonious

models, usually penalizing model complexity [38] or evaluating performance on a validation
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data-set [37]. The objective is to find the simplest model which can explain the data, in agree-

ment with the well known principle of Occam’s razor. These strategies help to discard more

complex models which would be indistinguishable (i.e. would explain the data equally well but

adding spurious terms). Besides enforcing simplicity, a related key aspect in model discovery is

ensuring structural identifiability and observability (SIO). The property of structural identifia-

bility refers to the theoretical possibility of inferring the unknown parameters of a given model

(assuming that its equations are known, except for the numerical values of the parameters)

from observations of the model output, which typically consist of time-resolved measurements

of its state variables, or of a subset of them [39]. Likewise, observability is the possibility of

inferring all the state variables of a model at a given time from future observations of a subset

of them. Since lack of SIO makes it impossible to uniquely infer parameters and state variables,

it can compromise the usefulness of the model [40–46]. The analysis of these properties can be

performed with symbolic computation tools [47], and numerical approaches have also been

proposed for their study [48, 49]. However, to the best of our knowledge, ensuring SIO has not

been considered in dynamic model discovery yet.

Here we present a methodology that ensures SIO in automatic model discovery in two pos-

sible scenarios: with and without prior knowledge. In both cases the end product is a dynamic

model of a biological system consisting of (typically nonlinear) ODEs. The equations may con-

tain rational terms, such as Michaelis-Menten kinetics, thus being suitable for the description

of many biochemical processes. If there is no prior knowledge about the model structure, the

methodology performs equation discovery with the SINDy-PI approach, and incorporates a

SIO analysis as a post-processing stage. If there is prior knowledge (i.e. we have a candidate

model), another SIO analysis is added as a pre-processing step. If the analyses reveal structural

unidentifiabilities, a reparameterization step is carried out to ensure that the resulting model is

fully identifiable and observable. Furthermore, equivalent model reformulations are generated

to facilitate its interpretation in a mechanistic sense.

Using representative case studies, we illustrate how ignoring these structural properties can

lead to wrong conclusions or poorly identified models. Although we demonstrate the use of

the methodology with SINDy-PI, it is straightforward to apply it in combination with other

automatic discovery methods. In particular, it could easily be adapted to future methods capa-

ble of considering partially-observed systems.

Overall, our study presents a novel and non-trivial integrated methodology to ensure that the

discovered models are structurally identifiable and interpretable. To the best of our knowledge,

this is the first study to address these questions in model discovery. Further, our method involves

an original and non-obvious combination of algorithmic steps regarding structural identifiabil-

ity analysis (SIO), reparameterization, reformulation and interpretability analysis. While the

concepts of SIO and reparameterization draw on recent ideas developed in our group, the

remaining steps and their integration represent fresh and innovative contributions to the field.

Methods

In this section we describe the methodology, which can be used in two different scenarios.

Both of them entail performing model discovery (using SINDy-PI or a similar approach) and

performing SIO analysis. If a model is structurally identifiable and observable, we say that it is

FISPO (full input, state, and parameter observability). If the SIO analysis reveals that the

model is not FISPO, our method suggests a reparameterization step. The two scenarios and

their procedures are as follows:

• Scenario (I): full model discovery from time-series data with no prior knowledge. Since we

assume zero prior knowledge, we use SINDy-PI to discover a candidate model (CM). We
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then analyse its SIO. If it is not FISPO, we reparameterize it in order to obtain an equivalent

model which is FISPO. Finally, we check if the model is interpretable, in the sense that it con-

tains monomials and simple rational terms which belong to a dictionary of mechanistic

kinetic terms. If not, we apply a symbolic reformulation step in order to render it

interpretable.

• Scenario (II): model discovery from time-series data with prior knowledge. This scenario

corresponds to situations where we seek model (in)validation and/or refinement. We

assume good prior knowledge and time-series data, that is we are reasonably confident that

our prior model (PM), which already represents the data quite well, is close to the ‘true’ one.

Here the motivation to use SINDy-PI is to compare this PM with an alternative candidate

obtained via model discovery (CM). To this end we check the SIO of the PM, obtaining a

reparameterized version if needed. In parallel, we apply SINDy-PI to the data, obtaining a

CM, and we make sure that it is FISPO (using reparameterisation if not). If needed, we use

model reformulation techniques to obtain interpretable versions of the CM and the PM.

Finally, we perform a comparative analysis of these latter models.

An schematic diagram of our method considering these two scenarios is depicted in Fig 1.

In the remainder of this section we describe in detail each of the steps.

Automatic model discovery using sparse regression

We assume that the dynamical system is governed by classical reaction-rate nonlinear ordinary

differential equations with the following form:

M ¼

_xðtÞ ¼ f ðxðtÞ; pÞ

yðtÞ ¼ gðxðtÞ; pÞ

x0 ¼ xðt0; pÞ

8
<

:

Fig 1. Workflow of the methodology. Scenario (I) (solid black lines only): data-driven full model discovery from (time-series) data with no prior

knowledge. We apply SINDy-PI and test the SIO of the discovered candidate model (CM). If the CM is not FISPO, we reparameterize it. Next, we check

if the model is interpretable; if not, we reformulate it via symbolic manipulation. The result is a FISPO interpretable model, M*. Scenario (II) (solid

black lines + dashed, dark orange lines in the lower part): model discovery from (time-series) data with good prior knowledge. In this scenario we seek

model (in)validation and/or refinement. We have a prior model (PM) which we want to compare with an alternative candidate discovered from data

(CM). To this end, we check the SIO of the PM and reparameterize if needed. In parallel, we apply SINDy-PI to the data to obtain a CM, and we make

sure it is FISPO (using reparameterisation if not). Then, we use model reformulation techniques to ensure interpretable versions (M* and PM*) if

needed. Lastly, we perform a comparative analysis.

https://doi.org/10.1371/journal.pcbi.1011014.g001
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where _xðtÞ 2 Rn is the state vector, p 2 Rnp is the parameter vector, the function f (x(t), p) rep-

resents the dynamics, y(t) is the measurable output, and x0 is the vector of initial conditions.

SINDy [12] assumes a fully observed system, y(t) = x(t). In the reminder of this section, we will

consider _xðtÞ ¼ f ðxðtÞÞ to simplify the notation. SINDy also assumes that f(x(t)) can be

expressed as the product of a suitable library function, Θ(x(t)), and a sparse vector ξ (indicating

the active library terms), where each entry in the library function is a candidate term:

YðxÞ ¼ ½y1ðxÞ y2ðxÞ y3ðxÞ . . . ypðxÞ� ; ð1Þ

By arranging the time-series data as a matrix, X = [x(t1), . . ., x(tm)], and its associated deriv-

ative matrix _X ¼ ½ _xðt1Þ; . . . ; _xðtmÞ�, _xðtÞ can be expressed as:

_xðtÞ � YðxðtÞÞX ; ð2Þ

where X corresponds to the sparse matrix of active terms. When the system includes rational

terms, f (x) can be rewritten as:

_xðtÞ ¼ f ðxÞ ¼ NðxÞ=DðxÞ ð3Þ

leading to the implicit problem formulation [31]:

_xðtÞDðxÞ ¼ NðxÞ : ð4Þ

Eq 4 has a different kind of term in each side of the equality: the Left Hand Side (LHS), in

which there are combinations of term involving the derivative data and the candidate library,

and the Right Hand Side (RHS), in which we only have library terms. When f (x) includes ratio-

nal terms, model complexity can be viewed as the number of terms in the LHS, as they will

involve the denominator degree too.

The generalized function library Θ(X) allows the inclusion of X and _X . Under this consider-

ation, the implicit problem formulation can be rewritten as:

_xðtÞDðxÞ � NðxÞ ¼ 0 ! YðX; _XÞX ¼ 0 : ð5Þ

For example, if a model has two states and the chosen degree is 2, the function library for the

first state, i.e. x1, will be:

YðX; _XÞ ¼ ½1; x1; x2; x2
1
; x1x2; x2

2
; _x1; _x1x1; _x1x2; _x1x2

1
; _x1x1x2; _x1x2

2
� ð6Þ

It should be noted that the function library for state x2 will differ from Eq 6 as it will include

_x2 instead of _x1. The design of the library of candidate functions is a critical aspect of SINDy-

PI. However, in the context of dynamic modelling of biochemical and biological phenomena,

by including monomials up to an order of 5 or 6, we can accommodate the vast majority of

nonlinear terms, such as e.g. mass-action kinetics, or feedback regulatory loops. Furthermore,

common nonlinear rational terms such as Michaelis-Menten in enzyme kinetics, or Monod in

microbial growth, can be inferred from such library due to the implicit nature of SINDy-PI.

The case studies considered here cover a wide range of nonlinear terms, illustrating the capa-

bilities of SINDy-PI in biological modelling.

The implicit form of Eq 5 admits the sparsest trivial solution X = 0. The implicit-SINDy

algorithm [31] surmounted this issue by using nonconvex optimization to find the sparsest

vector ξ in the null space. However this particular formulation is very sensitive towards noise

levels, thereby affecting the robustness of the method.

In an effort to address this issue, Kaheman et al. [37] introduced SINDy-PI, a novel method

that solves the problem using a sequence of convex relaxations of the non-convex optimization
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problem. By doing so, the algorithm can utilize the same noise levels as those employed in the

original SINDy algorithm. The authors achieved this by assuming the knowledge of at least

one term on the LHS, specifically of the form _xDðxÞ. Consequently, Eq 5 can be rewritten as:

yjðX; _XÞ ¼ YðX; _X jyjðX; _XÞÞxj ; ð7Þ

where YðX; _X jyjðX; _XÞÞ denotes the library YðX; _XÞ without the θj element. SINDy-PI pro-

ceeds iteratively by examining each term within the library. In order to balance accuracy and

complexity, the method performs Pareto optimal model selection.

To find the sparsest vector ξ, SINDy-PI considers the problem:

xj ¼ argmin
xj

kyjðX; _XÞ � YðX; _X jyjðX; _XÞÞxjk2 þ bkxjk0 ð8Þ

SINDy-PI solves this non–convex optimization problem using a sequentially thresholded

least-squares (STLSQ) approach. This method proceeds by iteratively solving the least squares

term in the cost function, zeroing out elements of ξ that are below a certain threshold λ. This

threshold must be fine-tuned to select the model that provides the best trade-off between accu-

racy and efficiency. To discover the model, SINDy-PI considers a finite set of λ values and pro-

ceeds by sweeping the library terms for each value of the threshold λ, obtaining a family of

possible candidate models. Next, SINDy-PI performs model selection choosing the best trade-

off, i.e. the Pareto-optimal model. The Pareto front is obtained by considering a model com-

plexity metric (such as the Akaike information criterion, AIC), and the score for each candi-

date model. Details of this process, illustrated with an example, are given in the Supporting

Information.

Structural identifiability and observability analysis and reparameterization

Once a candidate model structure (CM) has been discovered, the next step is to analyse its

structural identifiability and observability (SIO) [50]. This test assesses the possibility of deter-

mining the values of the model parameters and state variables, respectively, from output mea-

surements. These properties are structural (i.e. they depend only on the model equations) and

hence they can be analysed a priori (i.e. before taking experimental measurements) using sym-

bolic computation. They should not be confused with the so-called practical versions of these

properties, which depend on the features of the experimental data and are analysed a posteri-
ori, i.e. after performing measurements [39].

We can provide a mathematical definition of structural local identifiability (SLI) as follows.

Let us denote by y(t, p) the output vector obtained with a parameter vector p at time t. (For

fully observed systems y(t, p) = x(t, p), while for partially observed systems y typically consists

of a subset of x.) We say that a parameter pi (which is the ith element of the parameter vector

p 2 Rnp) is structurally locally identifiable (SLI) if, for almost any parameter vector p∗ 2 Rnp ,

there is a neighbourhood N ðp∗Þ such that:

p̂ 2 N ðp∗Þ and yðt; p̂Þ ¼ yðt; p∗Þ ) p̂i ¼ p∗i : ð9Þ

The definition of structural global identifiability is similar, but with the neighbourhood N ðp∗Þ
extending to the whole parameter space. In this paper we focus on SLI.

There are several approaches for determining structural local identifiability and observabil-

ity. We apply a differential geometry approach, which we explain briefly in these paragraphs.

In this framework, parameters are treated as state variables that happen to be constant, i.e. the

state vector is augmented with the parameters, ~x ¼ ðxT; pTÞ
T
, and has dimension n~x ¼ n þ np:
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The augmented dynamic equations are _~x ¼ ~f ð~xÞ; and the output function is y ¼ gð~xÞ; omit-

ting the dependence on time for ease of notation.

Thus, SLI is considered as a particular case of a more general property, observability, which

describes the possibility of inferring the internal state of a model by observing its output vector

—hence the use of the term FISPO for “full input, state, and parameter observability” (note

that this concept also allows for the treatment of unknown inputs as additional state variables,

a possibility that we will not consider in this paper).

We analyse SIO by building an observability-identifiability matrix and computing its rank.

The matrix is built with Lie derivatives of the output function. The zero-order Lie derivative is

L~f
0gð~xÞ ¼ gð~xÞ; and for i � 1 the i–order Lie derivatives are obtained as:

L~f
i g ~xð Þ ¼

@L~f
i�1gð~xÞ

@~x
~f ~xð Þ:

The observability-identifiability matrix OI is:

OI ~xð Þ ¼
@

@~x
L~f

0gð~xÞ
T L~f gð~xÞ

T L~f
2gð~xÞ

T
. . . L~f

n~x�1gð~xÞ
T

� �T
; ð10Þ

A model is FISPO around a point ~x0 if the rank of its observability-identifiability matrix

equals the number of its states and parameters, rank ðOIð~x0ÞÞ ¼ n~x ¼ nx þ np. If the rank is

smaller, the model contains structurally unidentifiable parameters. By performing additional

tests it is possible to determine which specific parameters are structurally identifiable, and

which state variables are observable.

If a model is not FISPO, its calibration will almost surely produce wrong parameter esti-

mates. Furthermore, structural unidentifiability is often linked with non-observability, in

which case the simulations of some state variables will also be wrong. Thus, structural non-

identifiability and non-observability are undesirable features of a model’s structure, which

compromise its reliability as a source of biological insight. These features are caused by sym-

metries in the differential equations of the model that make its output invariant with respect to

certain changes in their parameters and/or state variables [51–53]. Said symmetries can be

studied in the framework of Lie group theory. We say that a mapping of the form

x∗ ¼ Xðx; εÞ; ð11Þ

is a one-parameter Lie group of transformations (with ε being the parameter) if it has the fol-

lowing properties: it is smooth in x and analytic in ε, it satisfies the four group axioms (closure,

associativity, and existence of an identity and an inverse), and the identity element can be cho-

sen as ε = 0. The transformation above is also called a symmetry transformation, or a Lie sym-

metry. Examples of the simplest and possibly most common symmetries in biological

modelling include the following:

Translation:

x∗i ¼ xi þ ε; X ¼
@

@xi
ð12Þ

Scaling:

x∗i ¼ eεxi; X ¼ xi
@

@xi
ð13Þ
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Moebius:

x∗i ¼
xi

1 � εxi
; X ¼ x2

i
@

@xi
ð14Þ

It is sometimes possible to remove or ‘break’ these symmetries by transforming the model

equations via a suitable reparameterization. To this end, we first search for the symmetry

transformations admitted by the model. If a model has such symmetries, it is overparameter-

ized and therefore structurally unidentifiable. Then, we express the ε of those transformations

in terms of other parameters, thus setting the value of one of the transformed parameters to

one and removing it from the equations. The end result of the reparameterization is a FISPO

model that has exactly the same dynamic behaviour as the original one. In previous work [54]

we presented a methodology to perform such reparameterizations automatically, which has

been integrated in the workflow described here.

In summary, if the SIO analysis of the CM reveals structural unidentifiability and/or non-

observability, our methodology applies a symmetry-breaking reparameterization that makes it

FISPO.

Model reformulation for interpretability

The dynamic model obtained in the previous step supports the experimental data and is struc-

turally identifiable and observable. However, the rational expressions in 3 may lack a clear bio-

logical interpretation. In the case of biological networks, we will need to reformulate

expressions of the form N(x)/D(x) into terms that belong to a dictionary of interpretable terms.

Our model reformulation procedure seeks to transform it into simple monomials and ratio-

nal terms that have a mapping with the dictionary of kinetic and regulatory terms compatible

with the specific type of biological reaction network under study. Typically, this dictionary will

include mass-action kinetics and simple rational functions (e.g. Michaelis-Menten for enzyme

kinetics, or Hill for cooperative binding). However, care should be taken in order to ensure

that the reformulation does not destroy identifiability and observability. Further, as shown in

the case studies below, sometimes these rational terms can have high degrees, complicating

model discovery.

Our reformulation procedure makes use of symbolic manipulation and involves the follow-

ing steps:

1. Obtain the list of p non-trivial divisors of the denominator:

ddðxÞ ¼ ½dd1ðxÞ; . . . ;DðxÞ� ð15Þ

2. Obtain a family A of expressions composed of monomials (interpretable as e.g. mass-action

kinetics), minimizing the number of rational terms and their degree, by obtaining the quo-

tients and the residuals:

NðxÞ

ddiðxÞ
¼ ddiðxÞqiðxÞ þ riðxÞ : ð16Þ

3. If any residuals ri(x) lack interpretability, factorize and simplify N(x) by means of the nested

Horner form:

NðxÞ ¼ a0 þ xða1 þ xða2 þ . . . þ xðan�1 þ anxÞÞÞ ; ð17Þ
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obtaining a family of coupled and factorized equations with the same degree, but with

monomials involving different state combinations:

Nx1
¼ a0 þ x1ða1 þ . . .Þ þ x2ð. . .Þ ; ð18Þ

Nx2
¼ b0 þ x2ðb1 þ . . .Þ þ x1ð. . .Þ : ð19Þ

Thus, the Horner nested form gives different possible decompositions of the numerator.

Next, obtain a family B of reformulations by simplifying the rational terms using the divi-

sors of Eq 15 and the Horner form of the numerator.

As an example, consider Eq 20 below, where we can decompose the fraction in the left into

a monomial plus a simpler rational term as follows:

a0x þ a1x
2

b2 þ b3x
¼

b0b2x þ x2ðb1 þ b3b0Þ

b2 þ b3x
¼ b0x þ

b1x
2

b2 þ b3x
: ð20Þ

4. Match the monomials and simplified rational terms in families A and B with elements in

the dictionary of canonical kinetic and regulatory expressions (or by inspection by a human

domain expert), finding members that are fully interpretable.

5. Ensure that the resulting interpretable model is FISPO. If not, reparameterize and repeat

until an interpretable and identifiable model is obtained.

Implementation

We implemented our methodology, as depicted in Fig 1, using Matlab and the Symbolic Math

Toolbox, integrating the following components:

• Sparse regression using SINDy-PI [37] with some modifications, as detailed in the Support-

ing Information.

• Structural identifiability and observability (SIO) analysis using the algorithm FISPO [55],

plus reparameterization using the algorithm AutoRepar [54], as implemented in STRIKE-

GOLDD 4.0 and later releases [56].

• Reformulation for interpretability, implementing the algorithm described above using sym-

bolic manipulation.

The resulting code is available at https://doi.org/10.5281/zenodo.7713047. In order to facili-

tate reproducibility and illustrate the results at each step of the workflow, we have included

interactive notebooks (Matlab live scripts) and reports (in HTML format) for each of the case

studies described below. More details are given in S1 File.

Results

Below, we apply our methodology to a set of challenging case studies. (Table 1 summarises

their main features). These examples are presented in order to illustrate the performance of

our method for a variety of situations of increasing complexity, from models without rational

terms and fully identifiable and observable (FISPO) structure, to larger (in terms of number of

parameters and states), non-FISPO models with more difficult non-linearities, as indicated by

the different maximum degrees in their rational terms.
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In order to illustrate all the steps and capabilities of our workflow, we consider Scenario (II)

in all these examples. For each problem, a ground truth (GT) model is defined and subse-

quently considered as prior model (PM) for the sake of simplicity but without loss of general-

ity. This GT model is used to generate training data sets in all the case studies. After

confirming the identifiability and interpretability of the final discovered model M*, we also

assess its structural, parametric and predictive accuracy. The predictive power is evaluated tak-

ing into account conditions different from those used for generating the training data. Details

regarding the training data generation and the conditions to evaluate predictive accuracy are

given in S1 File.

Lorenz system (Lorenz)

This case study involves the well-known Lorenz system [57], which is a classical example of

dynamic model with chaotic behaviour. This model was previously used in [12] to demon-

strate the original SINDy algorithm. The governing equations describe the dynamics of a fluid

layer warmed from below and cooled from above:

_x1 ¼ aðx2 � x1Þ ; ð21aÞ

_x2 ¼ x1ðb � x3Þ � x2 ; ð21bÞ

_x3 ¼ x1x2 � cx3 : ð21cÞ

where x1 is proportional to the rate of convection, x2 to the horizontal temperature variation

and x3 to the vertical one. For certain values of parameters a, b, and c, the system exhibits cha-

otic dynamics.

We consider the ideal Scenario (II) case where the prior model (PM) is the same as the

nominal (or ground truth, GT) model. We generate a synthetic training data set using the GT

model and settings similar to [12] (details in Supporting Information). Following the workflow

in Fig 1, we perform structural and identifiability analysis and confirm that the PM is fully

identifiable and observable (FISPO). We then apply SINDy-PI to the training data, obtaining

the following candidate model (CM):

_x1 ¼ p1x2 þ p2x1 ; ð22aÞ

_x2 ¼ p3x1 þ p4x2 þ p5x1x3 ; ð22bÞ

_x3 ¼ p6x1x2 þ p7x3 : ð22cÞ

Table 1. Main features of the case studies: Relevant references and main characteristics of the models considered in the case studies. The fourth and fifth rows show

the maximum degree of N(x) and D(x) in Eq 4. The last row indicates if the original (ground truth, GT) model is fully identifiable and observable (FISPO).

ID (short name) Lorenz Immunity Bacterial Microbial Crypt Glycolysis

References [12, 57] [58] [31, 59] [60] [61] [31, 37, 62]

# states 3 2 2 2 3 7

# parameters 3 8 5 4 11 13

Max degree N(x) 2 3 6 2 3 6

Max degree D(x) 1 2 6 2 4 4

FISPO Y N Y Y N Y

https://doi.org/10.1371/journal.pcbi.1011014.t001
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Our algorithm then confirms that this inferred CM model is FISPO and interpretable (thus, it

corresponds to M*). Further, it is fully equivalent to the expanded ground truth model in

terms of structural, parametric and predictive accuracy, as shown in Fig 2. In summary, in this

case study we have the ideal situation where both the nominal and the inferred models are

fully observable and identifiable. As we will see below, this situation might change as soon as

we consider rational terms in the dynamics.

Competition between bacteria and the immune system (Immunity)

This model describes the influence of quorum sensing signaling molecules (QSSM) on the

competition between bacteria and the immune system, as studied in [58]. The following differ-

ential equations depict the dynamics for the concentrations of bacteria ( _x1) and immune cells

( _x2):

_x1 ¼ að1 � x1=kÞx1 � ex1x2 �
bgx1x

2

2

gx2 þ ax1

ð23aÞ

_x2 ¼ S þ dx1 � dx2 ð23bÞ

where it is assumed that bacteria grow logistically at rate a with an effective carrying capacity

Fig 2. Lorenz case study. Structural accuracy: on the left, active terms in ξ (non-zero terms of the prior model PM in black, and of the inferred model

M* in green). Parameter accuracy: center, matching parametric ODEs for PM and M*. Predictive accuracy: on the right, time evolution of the different

states (x1, x2 and x3) of the PM and M*models.

https://doi.org/10.1371/journal.pcbi.1011014.g002
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of the environment given by parameter k, and that they are cleared by the immune system fol-

lowing a mass action term ex1x2. The rational term at the end of Eq 23a represents the modula-

tion of QSSM in the competition between bacteria and the immune system. We consider Eqs

23a and 23b as the GT model.

We consider Scenario (II) again, assuming that the prior model (PM) is the same as the

ground truth (GT) or nominal model. Considering that the unknown parameters are a, k, e, β,

γ, α, S, d and δ, the structural identifiability analysis of the PM indicates that two of the three

parameters involved in the rational term are unidentifiable. Specifically, there is a scaling sym-

metry between γ and α, which is probably the most common type of symmetry in biological

models [63]. Our reparameterization step indicates that this issue can be solved by dividing the

numerator and denominator by one of the unidentifiable parameters; for example, if we

choose α, Eq 23a will be:

_x1 ¼ að1 � x1=kÞx1 � ex1x2 �
b

g

a
x1x

2

2

g

a
x2 þ x1

¼ að1 � x1=kÞx1 � ex1x2 �
bg∗x1x

2

2

g∗x2 þ x1

ð24Þ

where γ/α = γ*. Thus our new reference model will be the following PM*:

_x1 ¼ að1 � x1=kÞx1 � ex1x2 �
bg∗x1x

2

2

g∗x2 þ x1

ð25aÞ

_x2 ¼ S þ dx1 � dx2 ð25bÞ

Next, our workflow proceeds by applying SINDy-PI to a data set generated with the GT

model, obtaining the following candidate model (CM):

_x1 ¼ p1x1 þ p2x2
1

þ p3x1x2 þ
p4x

3

1

p5x2 þ p6x1

ð26aÞ

_x2 ¼ p7 þ p8x1 þ p9x2 ð26bÞ

Interestingly, our method then finds that this CM is not FISPO due to three structurally

unidentifiable parameters: p4, p5, p6. The reformulation step is then able to find structurally

identifiable reformulations of the form:

_x1 ¼ p1x1 þ p2x2
1

þ p3x1x2 þ

1

pj
p4x3

1

1

pj
ðp5x2 þ p6x1Þ

; for j 2 ½4; 5; 6�; ð27Þ

We chose j = 6, but the same result can be obtained with j = 4, 5. Denoting as

p∗j ¼
pj
p6

; j ¼ 4; 5, the resulting dynamic system becomes identifiable. Eq 27 is re-arranged as:

_x1 ¼ p1x1 þ p2x2
1

þ p3x1x2 þ
p∗

4
x3

1

p∗
5
x2 þ x1

: ð28Þ

The resulting model is fully identifiable, but the rational term does not match the one in the

GT describing the modulation of QSSM. However, the reformulation step in our workflow
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produces an interpretable form M* which is FISPO:

_x1 ¼ p1x1 þ p2x2
1

þ p3x1x2 þ
p∗

4
x1x

2

2

p∗
5
x2 þ x1

; ð29aÞ

_x2 ¼ p7 þ p8x1 þ p9x2 ð29bÞ

Fig 3 illustrates the importance of ensuring structural identifiability and observability. The

CM found by SINDy-PI is not FISPO, so there are other different parameter realizations pro-

ducing exactly the same output, as shown by CM2. This means that if this CM structure is

used for parameter identification, the estimated parameters will not be unique, i.e. there exist

different parameterizations of CM in full agreement with the same output measurements.

However, the reformulated model M* is FISPO, i.e. there is a unique set of parameter values

compatible with the output. Finally, in Fig 4 we confirm the structural, parametric and predic-

tive accuracy of M*.

Stress response in bacteria (Bacterial)

This model describes the stress response in Bacillus subtilis [59]. It was used by Mangan et al

[31] to illustrate how an implicit SINDy approach was able to infer biological nonlinear

Fig 3. Immunity model. Structural unidentifiability in CM (unidentifiable parameters in red, identifiable parameters in blue) leads to the same output

dynamics when different parameterizations are considered, as can be seen in CM2. In contrast, the reformulation M* is FISPO and therefore there is a

unique set of parameters compatible with the output measurements.

https://doi.org/10.1371/journal.pcbi.1011014.g003
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dynamics. Under nutrient limitation, the majority of B. subtilis cells switch to sporulation, but

a small fraction switch to an alternative behaviour, the so called state of competence, in which

they are capable of taking up extracellular DNA. This latter fraction might subsequently return

to vegetative growth. Süel et al [59] described the regulatory system of this mechanism using a

dynamic model with two states. In dimensionless form, the ground truth (GT) model for this

example is:

_x1 ¼ a1 þ
a2x

2

1

a3 þ x2
1

�
x1

1 þ x1 þ x2

; ð30aÞ

_x2 ¼
b1

1 þ b2x5
1

�
x2

1 þ x1 þ x2

: ð30bÞ

where x1 and x2 represent the concentration levels of the ComK and ComS proteins. The ratio-

nal terms arise from time-scale separation assumptions about the regulation: an autoregulatory

positive feedback loop of ComK plus and indirect negative feedback loop mediated by ComS.

In Eq 30a, a1 corresponds to the minimal rate of ComK production. The second term describes

the autoregulation (via a positive feedback loop) of ComK activating its own production,

where a2 is the fully activated rate of ComK generation. The first term in Eq 30b describes the

negative feedback loop regulating the repression of ComS, where b1 is the maximum rate of

ComS expression. Both the auto-activation of ComK and the repression of ComS follow Hill

Fig 4. Immunity case study. Structural accuracy: on the left, active terms in ξ (non-zero terms of the prior model PM in black, and of the inferred

model M* in green). Parameter accuracy: center, matching parametric ODEs for PM and M*. Predictive accuracy: on the right, time evolution of

the different states (x1 and x2) of the PM and M*models.

https://doi.org/10.1371/journal.pcbi.1011014.g004
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kinetics where the exponent indicates the level of cooperativity (2 and 5, respectively). The last

term in both equations represents the degradation of both ComK and ComS.

We again consider PM = GT and check the identifiability of PM. Considering unknown

parameters a1, a2, a3, b1 and b2, the model is fully identifiable, thus PM* = GT.

Next, SINDy-PI is applied to the training data generated using GT, obtaining the following

candidate model (CM):

_x1 ¼ p1 þ
p2

p3 þ p4x2
1

þ
p5x2 þ p6

p7 þ p8x1 þ p9x2

; ð31aÞ

_x2 ¼
p10

p11 þ p12x5
1

þ
p13x2

p14 þ p15x1 þ p16x2

; ð31bÞ

This CM has 16 parameters, pj, j = 1, . . ., 16, and the SIO analysis reveals that all of them are

non-identifiable, with the exception of p1. The reformulation step indicated that we can obtain

an identifiable model with four scaling transformations, one per rational term, i.e. the second

term in Eq 31a is scaled by pj, j 2 [2, 3, 4], and the third term by pk, k 2 [5, . . ., 9]. In Eq 31b

the same strategy is applied for pl, l 2 [10, 11, 12], and pm, m 2 [13, . . ., 16]. That is:

_x1 ¼ p1 þ

1

pj
p2

1

pj
ðp3 þ p4x2

1
Þ

þ

1

pk
ðp5x2 þ p6Þ

1

pk
ðp7 þ p8x1 þ p9x2Þ

; ð32aÞ

_x2 ¼

1

pl
p10

1

pl
ðp11 þ p12x5

1Þ
þ

1

pm
p13x2

1

pm
ðp14 þ p15x1 þ p16x2Þ

: ð32bÞ

Choosing j = 4, k = 7, l = 11, m = 14, the resulting structurally identifiable model is:

_x1 ¼ p1 þ
p∗

2

p∗
3

þ x2
1

þ
p∗

5
x2 þ p∗

6

1 þ p∗
8
x1 þ p∗

9
x2

ð33aÞ

_x2 ¼
p∗

10

1 þ p∗
12
x5

1

þ
p∗

13
x2

1 þ p∗
15
x1 þ p∗

16
x2

ð33bÞ

where * denotes a reparameterized parameter.

This reformulated model is now fully identifiable, but no longer directly interpretable: Eq

33a does not explicitly have the term involving the autoregulation of ComK. By means of the

reformulation procedure, we are able to recover the autoregulation and degradation terms as

in Eq 30a:

_x1 ¼ p1 þ
p∗

2
x2

1

p∗
3

þ x2
1

þ
p∗

5
x1

1 þ p∗
8
x1 þ p∗

9
x2

ð34aÞ

_x2 ¼
p∗

10

1 þ p∗
12
x5

1

þ
p∗

13
x2

1 þ p∗
15
x1 þ p∗

16
x2

ð34bÞ

This reformulated model M* is structurally identifiable and interpretable, and equivalent to

the PM. Fig 5 shows the assessment of the structural, parametric and predictive accuracy of the

inferred model M*.
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Microbial growth (Microbial)

This case study considers microbial growth in a batch reactor, as presented by [64] and later

used by [60] to study identifiable reparameterizations of unidentifiable systems. The following

model describes the dynamics of microbial and substrate concentrations assuming Monod

kinetics (similar in functional form to Michaelis-Menten enzyme kinetics):

_x1 ¼
mx2x1

Ks þ x2

� Kdx1 ; ð35aÞ

_x2 ¼ �
mx2x1

gðKs þ x2Þ
: ð35bÞ

where x1 and x2 represent the concentrations of microorganisms and growth-limiting sub-

strate, respectively. The rational term in Eq 35a is the Monod kinetic term, where μ is the max-

imum growth velocity and Ks the substrate concentration corresponding to
1

2
m. In Eq 35a, the

same rational term appears scaled by γ (the yield coefficient) to represent the depletion of sub-

strate. The last term in Eq 35a describes the death of microorganisms assuming first order

kinetics where Kd is the decay rate.

Fig 5. Bacterial case study. Structural accuracy: on the left, active terms in ξ (non-zero terms of the prior model PM in black, and of the inferred

model M* in green). Parameter accuracy: center, matching parametric ODEs for PM and M*. Predictive accuracy: on the right, time evolution of the

different states (x1 and x2) of the PM and M*models.

https://doi.org/10.1371/journal.pcbi.1011014.g005
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We consider a prior model (PM) that matches the ground truth (GT) model, Eqs 35a and

35b. When the initial conditions are known and different from zero, our algorithm confirms

that this PM is structurally identifiable. Next, our workflow discovers the following dynamics

using SINDy-PI:

_x1 ¼ p1x1 þ
p2x1

p3 þ p4x2

; ð36aÞ

_x2 ¼
p5x1x2

p6 þ p7x2

: ð36bÞ

Next, the FISPO step finds that only p1 is identifiable, i.e. parameters pi, i = 2, . . ., 7 are uniden-

tifiable. The reformulation step finds that it is possible to find an identifiable form by scaling

each rational term by the same unidentifiable parameter. For simplicity, we have chosen that

p∗
2

¼
p2

p3
, p∗

4
¼

p4

p3
, p∗

5
¼

p5

p7
and p∗

7
¼

p7

p6
. Then, the resulting structurally identifiable model is:

_x1 ¼ p1x1 þ
p∗

2
x1

1 þ p∗
3
x2

; ð37aÞ

_x2 ¼
p∗

5
x1x2

1 þ p∗
7
x2

: ð37bÞ

However, Eqs 37a and 37b are not directly interpretable because they do not contain the

expected Monod kinetics terms explicitly. Next, the reformulation step finds an equivalent

structure which is both interpretable and identifiable (M*):

_x1 ¼ p1x1 þ
p2x1x2

1 þ p∗
4
x2

; ð38aÞ

_x2 ¼
p∗

5
x1x2

1 þ p∗
7
x2

: ð38bÞ

This inferred model (M*) is compared to the ground truth in Fig 6, confirming its structural,

parametric and predictive accuracy.

Cell cycle in the colonic crypt (Crypt)

This example considers a cell population model describing the cell renewal cycle in the colonic

crypt [61]. This cycle is heavily regulated and the model was used to explain the rupture of

homeostasis and the initiation of tumorigenesis. The equations describing the dynamics are:

_x1 ¼ ða3 � a1 � a2Þx1 �
k0x

2

1

1 þ m0x1

; ð39aÞ

_x2 ¼ ðb3 � b1 � b2Þx2 þ a2x1 �
k1x

2

2

1 þ m1x2

þ
k0x

2

1

1 þ m0x1

; ð39bÞ

_x3 ¼ �gx3 þ b2x2 þ
k1x

2

2

1 þ m1x2

: ð39cÞ

where the state variables represent the populations of stem cells (x1), semi-differentiated cells

(x2), and fully-differentiated cells (x3). Stem cells have first order kinetics for renewal (rate
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given parameter a3), differentiation (parameter a2), and death (parameter a1). Semi-differenti-

ated cells have similar renewal, differentiation and death kinetics (with parameters bi), plus a

source term due to the differentiation of stem cells. Fully differentiated cells are generated

from semi-differentiated cells with first order rate b2 and removed with a rate modulated by

parameter g. The rational terms correspond to saturating feedback mechanism in the differen-

tiation rates.

We take the above model as GT, and PM = GT. Our algorithm finds that this PM is not

structurally identifiable: it is not possible to uniquely infer a1, a3, b1 and b3 due to the presence

of a translation symmetry. Next, the reformulation step finds a reparameterized prior model

(PM*):

_x1 ¼ ða∗
3

� a2Þx1 �
k0x

2

1

1 þ m0x1

; ð40aÞ

_x2 ¼ ðb∗
3

� b2Þx2 þ a2x1 �
k1x

2

2

1 þ m1x2

þ
k0x

2

1

1 þ m0x1

; ð40bÞ

_x3 ¼ �gx3 þ b2x2 þ
k1x

2

2

1 þ m1x2

; ð40cÞ

where a∗
3

¼ a3 � a1 and b∗
3

¼ b3 � a1. Next, SINDy-PI is applied to the training data, obtaining

Fig 6. Microbial case study. Structural accuracy: on the left, active terms in ξ (non-zero terms of the prior model PM in black, and of the

inferred model M* in green). Parameter accuracy: center, matching parametric ODEs for PM and M*. On the right, predictive accuracy: time

evolution of the different states (x1 and x2) of the PM and M*models.

https://doi.org/10.1371/journal.pcbi.1011014.g006
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the following candidate model (CM):

_x1 ¼ p1 þ p2x1 þ
p3

p5 þ x1p4

; ð41aÞ

_x2 ¼
p6x2 þ p7x1 þ p8x1x2 þ p9x

2

2
þ p10x

2

1
þ p11x

2

1
x2

p12 þ p13x1 þ p14x2 þ p15x1x2

; ð41bÞ

_x3 ¼ p16x2 þ p17x3 þ
p18

p19x2 þ p20

þ p21 : ð41cÞ

Considering pi, i = 1, ‥, 21 as unknown parameters, the FISPO algorithm indicates that only

p1, p2, p16, p17 and p21 are structurally identifiable. The reformulation step finds the following

structurally identifiable alternative:

_x1 ¼ p1 þ p2x1 þ
p∗

3

1 þ x1p∗4
; ð42aÞ

_x2 ¼
p∗

5
x2 þ p∗

6
x1 þ p∗

7
x1x2 þ p∗

8
x2

2
þ p∗

9
x3

1
þ p∗

10
x2

1
þ p∗

11
x2

1
x2

1 þ p∗
13
x1 þ p∗

14
x2 þ p∗

15
x1x2

; ð42bÞ

_x3 ¼ p16x2 þ p17x3 þ
p∗

18

p∗
19
x2 þ 1

þ p21 : ð42cÞ

The above model is not directly interpretable, but the reformulation process is able to find

the following interpretable and identifiable reformulation M*:

_x1 ¼ p1x1 þ
p2x

2

1

1 þ x1p4

; ð43aÞ

_x2 ¼ p5x2 þ p6x1 þ
p7x

2

2

1 þ p8x2

þ
p9x

2

1

1 þ p10x1

; ð43bÞ

_x3 ¼ p11x2 þ p12x3 þ
p13x

2

2

p14x2 þ 1
: ð43cÞ

This discovered model M* is fully equivalent to the identifiable version of the ground truth

model in terms of structural, parametric and predictive accuracy, as shown in Fig 7. This

example reinforces the importance of checking the identifiability of both the ground truth and

the inferred model.

Oscillations in yeast glycolysis (Glycolysis)

Glycolysis is the transformation (in a series of reactions catalyzed by enzymes) of glucose into

smaller molecules to produce energy for the cell. In many cell types, glycolysis exhibits oscilla-

tions in the concentrations of many intermediate metabolites. This phenomena has been par-

ticularly well studied in yeast cells. Wolf and Heinrich [62] studied the oscillatory dynamics of

a simplified reaction scheme for yeast glycolysis under anaerobic conditions, where alcoholic
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fermentation takes place, proposing the following mathematical description:

_x1 ¼ c1 þ
c2x1x6

1 þ c3x4
6

; ð44aÞ

_x2 ¼
d1x1x6

1 þ d2x4
6

þ d3x2 � d4x2x7 ; ð44bÞ

_x3 ¼ e1x2 þ e2x3 þ e3x2x7 þ e4x3x6 ; ð44cÞ

_x4 ¼ f1x3 þ e2x4 þ f3x5 þ f4x3x6 þ f5x4x7 ; ð44dÞ

_x5 ¼ g1x4 þ g2x5 ; ð44eÞ

_x6 ¼ h3x3 þ h5x6 þ h4x3x6 þ
h1x1x6

1 þ h2x4
6

; ð44fÞ

_x7 ¼ j1x2 þ j2x2x7 þ j3x4x7 : ð44gÞ

where the state variables represent the concentrations in the cell of glucose (x1), the pool of

Fig 7. Crypt case study. Structural accuracy: on the left, active terms in ξ (non-zero terms of the prior model PM in black, and of the inferred model

M* in green). Parameter accuracy: center, matching parametric ODEs for PM and M*. Predictive accuracy: on the right, time evolution of the different

states (x1, x2 and x3) of the PM and M*models.

https://doi.org/10.1371/journal.pcbi.1011014.g007
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triose phosphates (x2), 1,3-bisphosphoglycerate (x3), pool of pyruvate and acetaldehyde (x4),

NADH (x5), ATP (x6), and x7 represents the pool of pyruvate and acetaldehyde in the external

solution. We consider here the same formulation and parameter values as in [31, 37].

We take the above as GT, and assume PM = GT. Considering all parameters as unknown

(ci, i = 1, 2, 3; di, i = 1, ‥, 4; ei, i = 1, . . ., 4; fi, i = 1, . . ., 5; gi, i = 1, 2; hi, i = 1, . . ., 5 and

ji, i = 1, 2, 3), our algorithm confirms that the model is structurally identifiable and observable,

i.e. PM* = PM.

This problem is quite challenging for SINDy-PI due to its large number of states and

parameters, and the large degree in several terms, leading to a very large library of candidate

functions (over 3000 terms). However, it is able to correctly recover the following candidate

model (CM):

_x1 ¼ p1 þ
p2x1x6

p4 þ p3x4
6

; ð45aÞ

_x2 ¼ p5x2 þ p6x2x7 þ
p7x1x6

p8x4
6

þ p9

; ð45bÞ

_x3 ¼ p10x2 þ p11x3 þ p12x2x7 þ p13x3x6 ; ð45cÞ

_x4 ¼ p14x3 þ p15x4 þ p16x5 þ p17x3x6 þ p18x4x7 ; ð45dÞ

_x5 ¼ p19x4 þ p20x5 ; ð45eÞ

_x6 ¼ p21x3 þ p22x6x3 þ p23x6 þ
p24x6x1

p25 þ p26x4
6

; ð45fÞ

_x7 ¼ p27x2 þ p28x2x7 þ p29x4x7 : ð45gÞ

This model has 29 inferred coefficients, pi, i = 1, . . ., 29. Our algorithm analyzes their identifia-

bility and finds that the parameters with indices i = 2, 3, 4, 7, 8, 9, 24, 25, 26 are unidentifiable.

Next, the reformulation step finds possible reparameterizations by scaling the rational terms.

That is, considering the first rational term scaled by p4, then p∗
2

¼
p2

p4
and p∗

3
¼

p3

p4
; scaling the

second term with p9 produces p∗
8

¼
p8

p9
and p∗

7
¼

p7

p9
; and using p25 yields p∗

24
¼

p24

p25
and p∗

26
¼

p26

p25

for the last rational term. The end result is an interpretable and identifiable model M*:

_x1 ¼ p1 þ
p∗

2
x1x6

1 þ p∗
3
x4

6

; ð46aÞ

_x2 ¼ p5x2 þ p6x2x7 þ
p∗

7
x1x6

p∗
8
x4

6
þ 1

; ð46bÞ

_x3 ¼ p10x2 þ p11x3 þ p12x2x7 þ p13x3x6 ; ð46cÞ

_x4 ¼ p14x3 þ p15x4 þ p16x5 þ p17x3x6 þ p18x4x7 ; ð46dÞ

_x5 ¼ p19x4 þ p20x5 ; ð46eÞ
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_x6 ¼ p21x3 þ p22x6x3 þ p23x6 þ
p∗

24
x6x1

1 þ p∗
26
x4

6

; ð46fÞ

_x7 ¼ p27x2 þ p28x2x7 þ p29x4x7 ð46gÞ

Fig 8 illustrates the excellent structural, parametric and predictive accuracy of the inferred

model.

Discussion

In recent years, innovations in numerical methods and machine learning have been combined

to improve our ability to understand complex systems. Currently, the three main classes of

methods to learn equations from data are symbolic regression [65], neural-network

approaches [13], and library-based sparse regression [12]. Recent reviews of these categories

and their overlaps can be found in [66, 67].

In particular, data-driven model discovery methods for nonlinear dynamic systems have

seen very significant advancements [22, 24]. The field has seen growth in terms of both sophis-

tication and the range of applications. The fundamental aim remains the same: to discern the

Fig 8. Yeast-Glycolysis case study. Structural accuracy: on the left, active terms in ξ (non-zero terms of the prior model PM in black, and of the

inferred model M* in green). Due to the large number of terms in ξ, the candidate functions are not shown. Parameter accuracy: center, matching

parametric ODEs for PM and M*. Predictive accuracy: on the right, time evolution of the different states (x1, x2, x3, x4, x5, x6 and x7) of the PM and M*
models.

https://doi.org/10.1371/journal.pcbi.1011014.g008
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underlying mathematical models that govern the behaviour of complex, possibly high-dimen-

sional and nonlinear systems, using measurement data. In this study we have investigated cer-

tain aspects of automatic model discovery techniques to derive mechanistic models of

biological systems from time-series data. Specifically, we have focused on possible structural

deficiencies of their end result, the inferred model equations. As a reference method we have

chosen SINDy-PI [37], a recent sparse regression-based methodology that is particularly suited

for computational biology due to its ability to capture complex nonlinearities and rational

terms.

However, it should be noted that our approach can be combined with other model discov-

ery methods. In any case, SINDy-PI has several advantages over other model discovery meth-

ods. First, it is several orders of magnitude more robust to noise than previous approaches

based on sparse regression. This means that it can learn implicit ordinary and partial differen-

tial equations and conservation laws from limited and noisy data. Second, it can discover mod-

els with very complex structure, including implicit dynamics and rational nonlinearities (such

as e.g. Michaelis-Menten kinetics), which are common in biological applications. Third, it is

still quite computationally efficient thanks to its parallel nature and the exploitation of a library

of canonical nonlinear terms. Such a library is particularly attractive when modelling the

dynamics of biological networks based on mechanistic assumptions, such as mass-action

kinetics.

Since by design SINDy-PI enforces parsimonious models (with the lowest complexity to

support the data), it usually produces interpretable equations with excellent predictive power.

However, we have shown that sometimes these models lack structural identifiability, which

means that using the discovered model structure for parameter estimation might give wrong

estimates, compromising its usefulness and reliability.

To address this issue we have presented a methodology that, combined with SINDy-PI,

facilitates the inference of identifiable and interpretable dynamic models. Our method inte-

grates symbolic algorithms that analyse a model’s structural identifiability and observability

(SIO), reparameterize it to achieve SIO if needed, and reformulate it to make it biologically

interpretable. We have illustrated its use in two scenarios, with and without prior knowledge,

using six challenging case studies corresponding to different kinds of biological systems,

including complex regulatory mechanisms.

Our results highlight additional challenges due to non-obvious issues in the relationship

between model reformulation, identifiability and interpretability, and show how our approach

is able to successfully surmount them. Importantly, our method is modular and can be easily

integrated with other model discovery strategies. While we have demonstrated its application

in combination with SINDy-PI, other methods could have been used as well. Furthermore, its

calculations are entirely symbolic, i.e. they are not affected by numerical issues caused by insuf-

ficient or noisy data (which do however limit the application of the accompanying model dis-

covery method).

Future work will be devoted to model discovery in partially observed systems, where the

structural identifiability problem will surely be exacerbated, and observability issues—i.e. the

impossibility of inferring some of the unmeasured state variables—are to be expected. It

should be noted that, as a matter of fact, our methodology is applicable to partially observed

systems in its present form. However, model discovery for such systems is still in its infancy

(see the recent work by [68]), hence in this study we have considered fully observed systems.

Another possible area of improvement is computational efficiency. While our pipeline can be

applied to systems with several states and a few dozen parameters, as demonstrated with the

Glycolysis example, scaling up to larger models is challenging. The main bottleneck is

currently the model reparameterization step performed with AutoRepar, which involves
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symbolic computations that can be very memory-consuming. We are working on improving

the efficiency of the algorithms in order to alleviate its computational cost.

Other important avenues of research which are currently being explored include (i)

improved approaches for the design of the library of candidate functions [69], (ii) better incor-

poration of partial prior knowledge [70], and (iii) taking into account noisy and missing data,

uncertainty quantification and applications to real-world data-sets [71–73]. Since identifiabil-

ity and observability play a major role in these scenarios, we believe that our methodology will

be a useful tool in these explorations.
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69. Gelß P, Klus S, Eisert J, Schütte C. Multidimensional approximation of nonlinear dynamical systems.

Journal of Computational and Nonlinear Dynamics. 2019; 14(6).

70. Kaheman K, Kaiser E, Strom B, Kutz JN, Brunton SL. Learning discrepancy models from experimental

data. arXiv preprint arXiv:190908574. 2019;.

71. Reinbold PA, Kageorge LM, Schatz MF, Grigoriev RO. Robust learning from noisy, incomplete, high-

dimensional experimental data via physically constrained symbolic regression. Nature communications.

2021; 12(1):3219. https://doi.org/10.1038/s41467-021-23479-0 PMID: 34050155

72. Fasel U, Kutz JN, Brunton BW, Brunton SL. Ensemble-SINDy: Robust sparse model discovery in the

low-data, high-noise limit, with active learning and control. Proceedings of the Royal Society A. 2022;

478(2260):20210904. https://doi.org/10.1098/rspa.2021.0904 PMID: 35450025

73. Kaheman K, Brunton SL, Kutz JN. Automatic differentiation to simultaneously identify nonlinear dynam-

ics and extract noise probability distributions from data. Machine Learning: Science and Technology.

2022; 3(1):015031.

PLOS COMPUTATIONAL BIOLOGY Identifiable model discovery

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011014 October 18, 2023 27 / 27

https://doi.org/10.1103/PhysRevE.92.012920
https://doi.org/10.1103/PhysRevE.92.012920
http://www.ncbi.nlm.nih.gov/pubmed/26274260
https://doi.org/10.3390/sym14030467
https://doi.org/10.1002/rnc.5887
https://doi.org/10.1098/rsif.2019.0043
http://www.ncbi.nlm.nih.gov/pubmed/31266417
https://doi.org/10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2
https://doi.org/10.4236/jamp.2016.45097
https://doi.org/10.4236/jamp.2016.45097
https://doi.org/10.1038/nature04588
http://www.ncbi.nlm.nih.gov/pubmed/16554821
https://doi.org/10.1016/S0025-5564(98)00004-2
https://doi.org/10.1016/S0025-5564(98)00004-2
http://www.ncbi.nlm.nih.gov/pubmed/11121562
https://doi.org/10.4161/cc.6.17.4649
http://www.ncbi.nlm.nih.gov/pubmed/17873520
https://doi.org/10.1042/bj3450321
http://www.ncbi.nlm.nih.gov/pubmed/10702114
https://doi.org/10.1371/journal.pcbi.1008248
http://www.ncbi.nlm.nih.gov/pubmed/33141821
https://doi.org/10.1016/0025-5564(82)90061-X
https://doi.org/10.1016/0025-5564(82)90061-X
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1209/0295-5075/acc3bf
https://doi.org/10.1038/s41467-021-23479-0
http://www.ncbi.nlm.nih.gov/pubmed/34050155
https://doi.org/10.1098/rspa.2021.0904
http://www.ncbi.nlm.nih.gov/pubmed/35450025
https://doi.org/10.1371/journal.pcbi.1011014

