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THE RESTRAINED MONOPHONIC NUMBER OF A GRAPH

A. P. SANTHAKUMARAN1, P. TITUS2, K. GANESAMOORTHY3∗, §

Abstract. A set S of vertices of a connected graph G is a monophonic set of G if each
vertex v of G lies on a x−y monophonic path for some x and y in S. The minimum cardi-
nality of a monophonic set of G is the monophonic number of G and is denoted by m(G).
A restrained monophonic set S of a graph G is a monophonic set such that either S = V
or the subgraph induced by V − S has no isolated vertices. The minimum cardinality
of a restrained monophonic set of G is the restrained monophonic number of G and is
denoted by mr(G). We determine bounds for it and determine the same for some special
classes of graphs. Further, several interesting results and realization theorems are proved.

Keywords: monophonic set, monophonic number, restrained monophonic set, restrained
monophonic number.
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1. Introduction

By a graph G = (V,E) we mean a finite undirected connected graph without loops or
multiple edges. The order and size of G are denoted by p and q, respectively. For basic
graph theoretic terminology we refer to Harary [16]. For vertices u and v in a connected
graph G, the distance d(u, v) is the length of a shortest u− v path in G. A u− v path of
length d(u, v) is called u− v geodesic. It is known that d is a metric on the vertex set V
of G. The neighborhood of a vertex v is the set N(v) consisting of all vertices u which are
adjacent with v. The closed neighborhood of a vertex v is the set N [v] = N(v)

⋃
{v}. A

vertex v is an extreme vertex if the subgraph induced by its neighbors is complete. The
closed interval I[x, y] consists of all vertices lying on some x− y geodesic of G, while for
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S ⊆ V, I[S] =
⋃

x,y∈S
I[x, y]. A set S of vertices of G is a geodetic set if I[S] = V, and

the minimum cardinality of a geodetic set is the geodetic number g(G). A geodetic set
of cardinality g(G) is called a g-set. The geodetic number of a graph was introduced in
[6, 17] and further studied in [1, 3, 4, 7, 8]. A geodetic set S of a graph G is a restrained
geodetic set if the subgraph G[V −S] has no isolated vertex. The minimum cardinality of
a restrained geodetic set of G is the restrained geodetic number. The restrained geodetic
number of a graph was introduced and studied in [2, 5].

A chord of a path P is an edge joining two non-adjacent vertices of P . A path P is
called a monophonic path if it is a chordless path. A set S of vertices of G is a monophonic
set of G if each vertex v of G lies on a x − y monophonic path for some x and y in S.
The minimum cardinality of a monophonic set of G is the monophonic number of G and
is denoted by m(G). The monophonic number of a graph and its related concepts have
been studied in [9, 10, 11, 12, 13, 14, 15, 18, 21, 22, 23]. For any two vertices u and v
in a connected graph G, the monophonic distance dm(u, v) from u to v is defined as the
length of a longest u− v monophonic path in G. The monophonic eccentricity em(v) of a
vertex v in G is em(v) = max {dm(v, u) : u ∈ V (G)}. The monophonic radius, radm(G) of
G is radm(G) = min {em(v) : v ∈ V (G)} and the monophonic diameter, diamm(G) of G
is diamm(G) = max {em(v) : v ∈ V (G)}. A vertex u in G is monophonic eccentric vertex
of a vertex v in G if em(u) = dm(u, v). The monophonic distance was introduced and
studied in [19, 20]. These concepts have interesting applications in Channel Assignment
Problem in FM radio technologies. The monophonic matrix is used to discuss different
aspects of certain molecular graphs associated to the molecules arising in special situations
of molecular problems in theoretical Chemistry.

The following theorems will be used in the sequel.

Theorem 1.1. [5] Each extreme vertex of a connected graph G belongs to every restrained
geodetic set of G.

Theorem 1.2. [21] Each extreme vertex of a connected graph G belongs to every mono-
phonic set of G.

Theorem 1.3. [21] Let G be a connected graph with a cutvertex v and let S be a mono-
phonic set of G. Then every component of G− v contains an element of S.

Throughout this paper G denotes a connected graph with at least two vertices.

2. Restrained monophonic number

Definition 2.1. A restrained monophonic set S of a graph G is a monophonic set such
that either S = V or the subgraph induced by V −S has no isolated vertices. The minimum
cardinality of a restrained monophonic set of G is the restrained monophonic number of
G and is denoted by mr(G).
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Example 2.1. For the graph G given in Figure 2.1, it is easily verified that S = {x,w}
is a minimum monophonic set of G and so m(G) = 2. Since the subgraph induced by
V − S has an isolated vertex y, S is not a restrained monophonic set of G. It is clear
that, S ∪ {y} is a minimum restrained monophonic set of G so that mr(G) = 3. Thus the
monophonic number and the restrained monophonic number of a graph are different.

Definition 2.2. A vertex v of a connected graph G is said to be a restrained monophonic
vertex of G if v belongs to every minimum restrained monophonic set of G.

If G has the unique minimum restrained monophonic set S, then every vertex in S is
a restrained monophonic vertex. In the next theorem, we show that there are certain
vertices in a non-trivial connected graph G that are restrained monophonic vertices of
G. Observe that, every restrained monophonic set of G is a monophonic set of G. This
together with Theorem 1.2 gives the next result.

Theorem 2.1. Each extreme vertex of a connected graph G belongs to every restrained
monophonic set of G.

Corollary 2.1. For the complete graph Kp(p ≥ 2), mr(Kp) = p.

Since the complement of each restrained monophonic set has cardinality greater than
or equal 2, the next result follows.

Theorem 2.2. There is no graph G of order p with mr(G) = p− 1.

Corollary 2.2. If T is a tree of order p with k endvertices and p−k ≥ 2, then mr(T ) = k.

Proof. This follows from Theorems 2.1 and 2.2. �

The next theorem follows from Theorem 1.3.

Theorem 2.3. Let G be a connected graph with a cutvertex v and let S be a restrained
monophonic set of G. Then every component of G− v contains an element of S.

Theorem 2.4. For any connected graph G, 2 ≤ m(G) ≤ mr(G) ≤ p, and mr(G) 6= p− 1.

Proof. Any monophonic set needs at least two vertices and so m(G) ≥ 2. Since every
restrained monophonic set of G is also a monophonic set of G, it follows that m(G) ≤
mr(G). Also, since V (G) induces a restrained monophonic set of G, it is clear that
mr(G) ≤ p. Theorem 2.2 gives mr(G) 6= p− 1. �

It is observed that, the bounds in the above theorem are sharp. For the complete graph
Kp(p ≥ 2), m(Kp) = mr(Kp) = p. The set of two endvertices of a path Pn(n ≥ 4) is its
unique minimum monophonic set and unique minimum restrained monophonic set so that
m(Pn) = mr(Pn) = 2. For the graph G given in Example 2.1, m(G) < mr(G).

Corollary 2.3. Let G be a connected graph. If mr(G) = 2, then m(G) = 2.

The converse of Corollary 2.3 need not be true. For the graph G given in Figure 2.1,
the monophonic number of G is 2 and the restrained monophonic number of G is 3.

Theorem 2.5. If G is a connected graph of order p with m(G) = p− 1, then mr(G) = p.

Proof. This follows from Theorems 2.2 and 2.4. �

Theorem 2.6. For any connected graph G, 2 ≤ mr(G) ≤ gr(G) ≤ p, mr(G) 6= p − 1,
gr(G) 6= p− 1.
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Proof. Any restrained monophonic set needs at least two vertices and so mr(G) ≥ 2. Since
every restrained geodetic set of G is also a restrained monophonic set of G, it follows that
mr(G) ≤ gr(G). Also, since V (G) induces a restrained geodetic set of G, it is clear that
gr(G) ≤ p. From the definitions of the restrained monophonic number and the restrained
geodetic number, we have mr(G) 6= p− 1, gr(G) 6= p− 1. �

Remark 2.1. The bounds in Theorem 2.6 are sharp. For the star graph K1,p−1, mr(K1,p−1)
= gr(K1,p−1) = p. For a non-trivial path Pn(n ≥ 4), mr(Pn) = gr(Pn) = 2. Also, if G is
an even cycle of order at least 6, then mr(G) = gr(G) = 2. All the inequalities in Theo-
rem 2.6 can be strict. For the graph G given in Figure 2.2, S = {v1, v2, v6} is a minimum
restrained monophonic set of G so that mr(G) = 3 and no 3-element subset of the vertex
set is a restrained geodetic set of G. Since S ∪ {v5} is a restrained geodetic set of G, it
follows that gr(G) = 4. Thus we have 2 < mr(G) < gr(G) < p.

In view of this remark, we leave the following problem as an open question.

Problem 2.1. Characterize graphs G for which mr(G) = gr(G).

Theorem 2.7. For the path Pn (n ≥ 4) or a cycle Cn(n ≥ 6) or G = K2 + H, where H
is a connected graph of order p− 2, (p ≥ 4), mr(G) = 2.

Proof. It is easily verified that the end vertices of the path Pn is a minimum restrained
monophonic set of Pn so that mr(Pn) = 2. For any cycle Cn(n ≥ 6), a set S = {u, v}
on Cn with d(u, v) ≥ 3, is obviously a restrained monophonic set so that mr(Cn) = 2 if
n ≥ 6. Next, suppose that G = K2 +H, where H is a connected graph of order p− 2. Let
V (K2) = {u1, u2}. It is easily verified that the set S = {u1, u2} is a minimum restrained
monophonic set of G and so mr(G) = 2. �

Remark 2.2. The last part of the Theorem 2.7 shows that it is always possible to construct
a graph G of given order p ≥ 4 with gr(G) = mr(G) = 2.

This leads to the following problem.

Problem 2.2. Characterize graphs G for which (i) gr(G) = 2 (ii) mr(G) = 2.

Theorem 2.8. If G is a non-trivial connected graph of order p and monophonic diameter
dm ≥ 3, then mr(G) ≤ p− dm + 1.

Proof. Let u and v be vertices of G such that dm(u, v) = dm and let P : u = v0, v1, ..., vdm =
v be a u − v monophonic path of length dm. Let S = V − {v1, v2, ..., vdm−1}. Then, it is
clear that S is a restrained monophonic set of G so that mr(G) ≤ |S| = p− dm + 1. �

Corollary 2.4. If G is a connected graph with order p ≥ 2 and mr(G) = p, then its
monophonic diameter dm ≤ 2.
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This shows that for a connected graph G of order p ≥ 2 and mr(G) = p, the monophonic
diameter satisfies dm = 1 and dm = 2. Both bounds are attained for the complete graph
Kp(p ≥ 2) and the cycle C4.

Theorem 2.9. For any cycle Cp, mr(Cp) =


2 if p ≥ 6

3 if p = 3 and p = 5

4 if p = 4.

Proof. If p = 3, then G = C3 is a complete graph, by Corollary 2.1, we have mr(C3) = 3.
If p = 4, no 2-element subset or no 3-element subset of V (C4) forms a restrained

monophonic set of C4 and so mr(C4) = 4.
If p = 5, it is easily observed that, any three consecutive vertices of G = Cp form a

minimum restrained monophonic set of G = Cp and so mr(Cp) = 3.
If p ≥ 6, any two antipodal vertices of G = Cp form a minimum restrained monophonic

set of G = Cp and so mr(Cp) = 2. �

Theorem 2.10. For any wheel Wp = K1 + Cp−1, (p ≥ 4),

mr(Wp) =

{
4 if p = 4

2 if p ≥ 5.

Proof. If p = 4, then G = W4 is a complete graph, and so by Corollary 2.1, mr(Wp) = 4.
If p ≥ 5, it is easily observed that, any two non-adjacent vertices of Cp−1 form a

minimum restrained monophonic set of G = Wp and so mr(Wp) = 2. �

Theorem 2.11. For the star graph K1,p−1(p ≥ 2), mr(K1,p−1) = p.

Proof. Let S = {v1, v2, · · · , vp−1} be the end vertices of G = K1,p−1. By Theorem 2.1,
every restrained monophonic set of G contains S. Clearly S is not a restrained monophonic
set of G and so S = V (K1,p−1) is the unique restrained monophonic set of K1,p−1, so that
mr(K1,p−1) = p. �

Theorem 2.12. If G = K1 +
⋃
mjKj, where j ≥ 2,

∑
mj ≥ 2, then mr(G) = p.

Proof. Let G = K1 +
⋃
mjKj , where j ≥ 2,

∑
mj ≥ 2. Let K1 = {v} and S be the set of

all extreme vertices of G. Since every vertex of G is an extreme vertex except the vertex
v and v is the only cutvertex of G, by Theorem 2.1, every restrained monophonic set of
G contains S. It is clear that, S is not a restrained monophonic set of G. Hence V (G) is
the unique minimum restrained monophonic set of G and so mr(G) = p. �

Remark 2.3. Thus there are a number of classes of graphs G (complete and non-complete)
of order p with mr(G) = p.

This leads to the following open problem.

Problem 2.3. Characterize the class of graphs G of order p for which mr(G) = p.

A caterpillar is a tree for which the removal of all the endvertices gives a path.

Theorem 2.13. For every non-trivial tree T of order p and monophonic diameter dm ≥ 3,
mr(T ) = p− dm + 1 if and only if T is a caterpillar.

Proof. Let T be any non-trivial tree. Let P : u = v0, v1, ..., vdm be a monophonic diametral
path. Let k be the number of endvertices of T and l be the number of internal vertices of
T other than v1, v2, ..., vdm−1 . Then dm − 1 + l + k = p. By Corollary 2.2, mr(T ) = k and
so mr(T ) = p− dm − l + 1. Hence mr(T ) = p− dm + 1 if and only if l = 0, if and only if
all the internal vertices of T lie on the monophonic diametral path P , if and only if T is
a caterpillar. �
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Theorem 2.14. For the complete bipartite graph G = Km,n(2 ≤ m ≤ n),

mr(G) =

{
n + 2 if 2 = m ≤ n

4 if 3 ≤ m ≤ n.

Proof. Let G = Km,n and let V1 = {x1, x2, · · · , xm} and V2 = {y1, y2, · · · , yn} be the
partite sets of G. If m = n = 2, then G = K2,2 is a cycle of order 4 so that by Theorem
2.9, mr(G) = 4. If m = 2 < n, then V1 is a minimum monophonic set of G, and since the
subgraph induced by G − V1 has isolated vertices, V1 is not a restrained monophonic set
of G. It is clear that S = V1 ∪ V2 is the unique minimum restrained monophonic set of G
and so mr(K2,n) = n + 2.

Now, if m ≥ 3 and let S = {x1, x2, y1, y2}. Clearly S is a restrained monophonic set of
G and so mr(G) ≤ 4. It remains to show that if X is a 3 - element subset of V (G), then
X is not a restrained monophonic set of G. If m = 3 and X contains all the elements
from V1 then the subgraph induced by G − X has an isolated vertex. Hence X is not a
restrained monophonic set of G. Then X ∩ V1 = {xi, xj} and X ∩ V2 = {yk}. Since X
contains two elements from V1, there exist an element xl ∈ V1 and xl /∈ X, it is clear that
xl is not an internal vertex of any u− v monophonic path, for some u, v ∈ X and so X is
not a monophonic set of G. Hence mr(G) = 4. �

3. Some Realization Results

Theorem 3.1. For any integer k such that 2 ≤ k ≤ p and k 6= p− 1, there is a connected
graph G of order p ≥ 4 such that mr(G) = k.

Proof. For k = p, the theorem follows from Theorem 2.11 and by taking G = K1,p−1.
For 2 ≤ k ≤ p − 2. Let P3 : u1, u2, u3 be a path of order 3. Add p − 3 new vetices
v1, v2, · · · , vk−2, w1, w2, · · · , wp−k−1 to P3 by joining each vi(1 ≤ i ≤ k − 2) to u2 and
joining each wj(1 ≤ j ≤ p − k − 1) to u1, u2, u3; and joining each wi(1 ≤ i ≤ p − k − 2)
with wj(i + 1 ≤ j ≤ p − k − 1), thereby producing the graph G in Figure 3.1. Let
S = {v1, v2, · · · , vk−2, u1, u3} be the set of all extreme vertices of G. By Theorem 2.1,
every restrained monophonic set of G contains S. It is clear that S is a monophonic set
of G and the subgraph induced by S has no isolated vertex, S is the unique minimum
restrained monophonic set of G and so mr(G) = k. �

In view of Theorem 2.4, we have the following realization theorem.

Theorem 3.2. If p, a and b are positive integers such that 2 ≤ a ≤ b ≤ p− 3, then there
exists a connected graph G of order p, m(G) = a and mr(G) = b.
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Proof. We prove this theorem by considering four cases.
Case 1. a = b = p− 3. By Theorem 1.2 and Corollary 2.2, any tree of order p with three
internal vertices has the desired properties.
Case 2. a = b < p− 3. For the graph G given in Figure 3.1 (put a = b = k), it is proved
that, there is a connected graph of order p with m(G) = mr(G) = b.
Case 3. a < b = p − 3. Let P3 : v1, v2, v3 be a path of order 3. Now, add p − a − 3 new
vertices u1, u2, · · · , ua−2, w1, w2, ..., wp−a−1 to P3 by joining each wi(1 ≤ i ≤ p− a− 1) to
v1 and v3 and joining each uj(1 ≤ j ≤ a − 2) to v2, thereby producing the graph G of
order p, which is shown in Figure 3.2. Let S = {u1, u2, · · · , ua−2} be the set of all extreme
vertices of G.

By Theorems 1.2 and 2.1, every monophonic set and every restrained monophonic set
of G contain S. Clearly, S is not a monophonic set of G and also for any x ∈ V (G)− S,
S ∪ {x} is not a monophonic set of G. Let S1 = S ∪ {v1, v3}. It is easily verified that S1

is a monophonic set of G and so m(G) = a. Since the subgraph induced by V − S1 has
the isolated vertices v2, w1, w2, · · · , wp−a−1, S1 is not a restrained monophonic set of G.
Observe that every restrained monophonic set of G contains {w1, w2, · · · , wp−a−1}. Let
S2 = S∪{w1, w2, · · · , wp−a−1}. Clearly, S2 is a monophonic set and the subgraph induced
by V − S2 has no isolated vertex, S2 is a minimum restrained monophonic set of G and
so mr(G) = b = p− 3.

Case 4. a < b < p − 3. Let P3 = x, y, z be a path of order 3. Add p − 3 new vertices
u1, u2, · · · , ua−2, v1, v2, . . . , vb−a, w1, w2, · · · , wp−b−1 to P3 by joining each ui (1 ≤ i ≤ a−2)
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to the vertex y; joining each vertex wj (1 ≤ j ≤ p − b − 1) to the vertices x, y and z;
and joining each vertex vk (1 ≤ k ≤ b− a) to the vertices x and z, thereby producing the
graph G of order p which shown in Figure 3.3. Let S = {u1, u2, . . . , ua−2} be the set of
endvertices of G. By Theorems 1.2 and 2.1, every monophonic set and every restrained
monophonic set of G contain S. Also for any u ∈ V (G)− S, S ∪ {u} is not a monophonic
and restrained monophonic set of G. Let S′ = S ∪ {x, z}. It is easily verified that S′

is a monophonic set of G and so m(G) = a. Since the induced subgraph G[V − S′] has
an isolated vertex, S′ is not a restrained monophonic set of G. Clearly, every restrained
monophonic set of G contains {v1, v2, · · · , vb−a}. Hence S′′ = S′ ∪ {v1, v2, · · · , vb−a} is a
restrained monophonic set of G and so mr(G) = b. �

In view of Theorem 2.6, we have the following realization theorem.

Theorem 3.3. For every pair a, b of positive integers with 2 ≤ a ≤ b, there is a connected
graph G with mr(G) = a and gr(G) = b.

Proof. For 2 ≤ a = b, the graph K1,a−1 of order a has the desired properties, by Theorems
1.1 and 2.11. So, assume that 2 ≤ a < b. Let Pi : xi, wi, yi (1 ≤ i ≤ b− a) be b− a copies
of a path of length 2 and P : v1, v2, v3, v4 a path of length 3. Let G be the graph obtained
by joining each xi(1 ≤ i ≤ b−a) in Pi and v2 in P , joining each yi(1 ≤ i ≤ b−a) in Pi and
v4 in P ; and adding a− 1 new vertices u1, u2, ..., ua−1 and joining each ui(1 ≤ i ≤ a− 1)
to v4. The graph G is shown in Figure 3.4. Let S = {v1, u1, ..., ua−1} be the set of all
extreme vertices of G. It is easily verified that S is a restrained monophonic set of G and
so by Theorem 2.1, mr(G) = |S| = a. Next, we show that gr(G) = b. By Theorem 1.1,
every restrained geodetic set of G contains S. Clearly, S is not a geodetic set of G. It
is easily verified that at least one vertex of each Pi(1 ≤ i ≤ b − a) must belong to every
restrained geodetic set of G. Since T = S ∪ {w1, w2, ..., wb−a} is a restrained geodetic set
of G, it follows from Theorem 1.1 that T is a minimum restrained geodetic set of G and
so gr(G) = b. �

For any connected graph G, radm(G) ≤ diamm(G). It is shown in [19] that every
two positive integers a and b with a ≤ b are realizable as the monophonic radius and
monophonic diameter, respectively, of some connected graph. This theorem can also be
extended so that the restrained monophonic number can be prescribed when radm(G) <
diamm(G).

Theorem 3.4. For positive integers r, d and k ≥ 4 with r < d, there exists a connected
graph G such that radm(G) = r, diamm(G) = d and mr(G) = k.
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Proof. We prove this theorem by considering two cases.
Case 1. r = 1. Then d ≥ 2. Let Cd+2 : v1, v2, ..., vd+2, v1 be a cycle of order d + 2. Let

G be the graph obtained by adding k− 2 new vertices u1, u2, ..., uk−2 to Cd+2 and joining
each of the vertices u1, u2, ..., uk−2, v3, v4, ..., vd+1 to the vertex v1. The graph G is shown
in Figure 3.5. It is easily verified that 1 ≤ em(x) ≤ d for any vertex x in G and em(v1) =
1, em(v2) = d. Then radm(G) = 1 and diamm(G) = d. Let S = {u1, u2, ..., uk−2, v2, vd+2}
be the set of all extreme vertices of G. Since S is a restrained monophonic set of G, it
follows from Theorem 2.1 that mr(G) = k.

Case 2. r ≥ 2. Let C : v1, v2, ..., vr+2, v1 be a cycle of order r+2 and let W = K1+Cd+2

be the wheel with V (Cd+2) = {u1, u2, ..., ud+2}, K1 = {x} and all other vertices distinct.
Let H be the graph obtained from C and W by identifying v1 of C and the central vertex
K1 of W . Now, add k − 3 new vertices w1, w2, ..., wk−3 to the graph H and join each
wi(1 ≤ i ≤ k − 3) to the vertex v1 and obtain the graph G of Figure 3.6. It is easily
verified that r ≤ em(x) ≤ d for any vertex x in G and em(v1) = r and em(u1) = d. Thus
radm(G) = r and diamm(G) = d. Let S = {w1, w2, ..., wk−3} be the set of all extreme
vertices of G. By Theorem 2.1, every restrained monophonic set of G contains S. It is
clear that S is not a monophonic set of G. Let T = S

⋃
{u1, u3, v3}. It is easily verified

that T is a minimum restrained monophonic set of G and so mr(G) = k. �

Problem 3.1. For any three positive integers r, d and k ≥ 4 with r = d, does there exist
a connected graph G with radm(G) = r, diamm(G) = d and mr(G) = k?

Theorem 3.5. For each triple d, k, p of integers with 2 ≤ k ≤ p− d + 1 and d ≥ 2, there
is a connected graph G of order p such that diamm(G) = d and mr(G) = k.
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Proof. Let Pd+1 : u1, u2, ..., ud+1 be a path of length d. Add p − d − 1 new vertices,
v1, v2, ..., vk−2, w1, w2, ..., wp−d−k+1 to Pd+1 and join each wi(1 ≤ i ≤ p− d− k + 1) to u1,
u2 and u3, and also join each vj(1 ≤ j ≤ k − 2) to u2, thereby producing the graph G
of Figure 3.7. Then G has order p and monophonic diameter d. If p − d − k + 1 ≤ 1,
then S = {v1, v2, ..., vk−2, u1, ud+1} is the set of all extreme vertices of G. Since S is a
restrained monophonic set of G, it follows from Theorem 2.1 that mr(G) = k. So, let
p− d− k + 1 ≥ 2. If d = 2, then S1 = {v1, v2, ..., vk−2} is the set of all extreme vertices of
G. It is clear that neither S1 nor S1∪{x}, where x /∈ S1, is a restrained monophonic set of
G. Since S2 = S1 ∪ {u1, u3} is a restrained monophonic set of G, it follows from Theorem
2.1 that mr(G) = k. If d ≥ 3, then S3 = {v1, v2, ..., vk−2, ud+1} is the set of all extreme
vertices of G. Now, S3 is not a restrained monophonic set of G. Since S4 = S3 ∪ {u1} is a
restrained monophonic set of G, it follows from Theorem 2.1 that mr(G) = k. �

4. Conclusions

In this paper, the concept of restrained monophonic number of a graph is introduced
and certain general properties satisfied by this parameter are studied. This parameter is
determined for several standard graphs. Also, certain realization results of this parameter
are proved with regard to the parameters monophonic number and restrained geodetic
number of a graph. As a future work of this paper, new parameters like connected re-
strained monophonic number of a graph, forcing restrained monophonic number of a graph
etc., can be developed and investigated.
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