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Abstract. With the goal of developing didactic tools, we consider the
geometrization of the addition of velocities in special relativity by using Minkowski
diagrams in momentum space. For the case of collinear velocities, we describe
three ruler-and-compass constructions that provide simple graphical solutions
working with the mass-shell hyperbola in a 1+1-dimensional energy-momentum
plane. In the spirit of dimensional scaffolding, we use those results to build a
generalization in 1+2 dimensions for the case of non-collinear velocities, providing
in particular a graphical illustration of how the velocity transverse to a boost
changes while the momentum remains fixed. We supplement the discussion with
a number of interactive applets that implement the diagrammatic constructions
and constitute a visual tool that should be useful for students to improve their
understanding of the subtleties of special relativity.
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1. Introduction

Special relativity is one of the cornerstones of modern physics and it has been an
essential underlying formalism for many scientific and technological breakthroughs.
However, since the typical velocities found in daily experience are much smaller than
the speed of light, it is not easy to develop correct intuitions when first getting
acquainted with the subject. Plenty of learning difficulties have been reported for
students facing the topic both at the secondary school and undergraduate levels, see
[1, 2] for recent literature reviews. Thus, developing didactic tools for concepts of this
century-old theory remains useful and interesting.

A particularly compelling perspective is that of emphasizing the utilization of
graphics and visual tools to complement the more standard approach based on
equations. The convenience of representing relativistic phenomena in plots has
been clear since Minkowski introduced his spacetime diagrams soon after Einstein
formulated the theory. More recently, several authors have followed this kind of visual
path to the didactics of relativity, see for instance [3, 4, 5] for enlightening discussions.
Another interesting contribution is [6], where the author put forward the pedagogical
usefulness of Minkowski diagrams in momentum space to analyze the kinematics of
relativistic collisions. Several aspects of the approach were later studied in more detail
in [7, 8].

Our main goal is to show that Minkowski diagrams in momentum space are also
well suited to provide illustrative visual displays for another basic aspect of special
relativity, the addition of velocities. The geometrization of the velocity addition
formulas has been addressed in two beautiful papers, [9] and [10]. However, the
methods of [9, 10] rely on the definition of auxiliary geometrical objects, circles and
spheres, that do not have a clear interpretation in the framework of special relativity.
By working directly in momentum space with mass-shell hyperbolas, we present an
alternative perspective on the problem, opening new possibilities for the students’
learning process. By relating aspects of the geometry of hyperbolas with basic results
of spacetime dynamics, we hope that we can also contribute to the amusement of the
knowledgeable reader.

In order to make clear what is the question at hand and to fix notation, let us
formulate the problem. Suppose an object A (e.g. a train) is moving with velocity
vA with respect to a particular inertial frame of reference S (e.g. the rails). A second
object B (e.g. a passenger walking in the train) is moving with velocity vB with
respect to A. We want to know the velocity of the object B with respect to S, which
we will call vC. Notice that the same problem can be rephrased as the change of
reference frame from S′ (the inertial frame in which the object A is at rest) to S,
produced by a boost of velocity −vA. In section 2 we address the case in which vA

and vB are parallel and in section 3 we generalize the discussion to the non-parallel
situation.

Furthermore, in order to supplement the reading of this paper, we have developed
a series of interactive applets that can be easily accessed through the internet [11].
These applets, presented in section 4, show the constructions of sections 2 and 3,
allowing the reader to modify the parameters and to see how the results change.
This kind of virtual visual tools are interesting for students since they can enhance
their learning process and can help in engaging and motivating them, see [12, 13] and
references therein. Moreover, they are particularly well-suited for remote learners [14],
a fact that is particularly relevant in these years when online education has greatly
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expanded throughout the world.
Before entering the technical discussion, it is important to put in perspective

the methods that will be discussed below. One of the most fundamental issues to
be understood about special relativity is that of Lorentzian geometry in Minkowski
space. In fact, the results for the relativistic composition of velocities arise naturally
in that framework. However, it is easier to develop visual intuitions working in
Euclidean geometry, especially for neophytes. Thus, we will base our analysis on
an auxiliary Euclidean geometry that can be built by choosing a particular inertial
reference frame, to which the constructions refer and which should be understood as
providing an additional input to build the plots‡. It is in that sense that we can define
the orthogonal energy-momentum system of coordinates and define ordinary angles
in the E − p plane. In this context, we hope that our analysis will supply a useful
additional viewpoint on the important topics of velocity addition and reference frame
boosts. It provides geometrical tools and an amusing playground where to work with
relativistic concepts. Nevertheless, it should be understood that this perspective can
complement, but cannot substitute, more standard approaches based on Minkowski
geometry, which, being fundamental for special relativity, students must undoubtedly
comprehend to fully grasp the subtleties of this beautiful theory.§

2. Geometrical representation of velocity addition in 1+1 dimensions

In this section we restrict the problem to the case in which both velocities are parallel
and the interesting dynamics takes place in the temporal dimension and just one
spatial dimension. Since in this case their vectorial nature is inconsequential, we will
just denote the velocities as vA, vB . In Galilean physics, the answer would of course
be simply vC = vA + vB . However, this is in clear contradiction with the postulate
of special relativity asserting that the speed of light c is independent of the motion of
the emitting body, namely vC = c if vB = c, independently of the value of vA. The
well-known expression for the relativistic velocity addition in 1+1 dimensions, first
discovered by Poincaré, is [15] (from now on, we will use natural units c = 1):

vC =
vA + vB
1 + vAvB

(1)

A useful way of rewriting this expression is [3]:

1− vC
1 + vC

=
1− vA
1 + vA

1− vB
1 + vB

(2)

(Notice that in this collinear case this expression can be interpreted in terms
of the relativistic Doppler effect that states that the ratio of frequencies in different

frames is
√

1+v
1−v and therefore Eq. (2) yields ν′′

ν = ν′′

ν′
ν′

ν .) Our goal is to provide a

novel geometric perspective on the velocity addition formula (1). With that purpose,

‡ As a technical note for experts, this Euclidean metric with respect to an inertial observer can
be written in covariant form as ηµν + 2uµuν where ηµν is the Minkowski metric in mostly plus
convention and uµ the normalized timelike direction of the observer. In this way, in the frame in
which the observer is static, we have ds2E = (−dt2 + dx2) + 2dt2 = dt2 + dx2. Let us also point out
that both Minkowskian and Euclidean geometries are flat (in the Riemannian sense), allowing for the
definition of global parallelism, that is essential for our discussion.
§ We gratefully thank an anonymous referee for emphasizing the questions discussed in this
paragraph.
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we will represent a series of Minkowski diagrams in momentum space [6]. The relation
of energy and momentum with velocity for a body of mass m are:

E = mγ, p = mγv, with γ =
1√

1− v2
(3)

and therefore a particle of mass m is represented by its mass shell hyperbola
E2−p2 = m2. We can define the hyperbolic angle φ by parameterizing E = m coshφ,
p = m sinhφ such that v = p/E = tanhφ. From this definition it is immediate to
check that e−2φ = 1−v

1+v and the velocity addition formula (1) corresponds simply to
a sum of hyperbolic angles φC = φA + φB . This makes obvious the usefulness of
Eq. (2) and the introduction of φ. Since it is well known that the hyperbolic angle
is proportional to the shaded area depicted in figure 1(a), we can conclude that Eq.
(1) can be rephrased as a sum of such shaded areas. However, this somewhat trivial
geometrization of (1) hardly provides any visual insight on the problem. Our real aim
is to find more intuitive and didactic geometrical realizations of Eq. (1) and, for that
reason, in figure 1(a) we also define angles α and θ, which for any momentum p are
given by: ‖

tanα =
p

E
= v, θ =

π

4
− α (4)

We have also defined a scale “1” on the vertical line such that, according to Eq. (4),
the horizontal segment from the vertical axis to the solid line is precisely v. This is
a kind of “ruler for velocities” in the energy-momentum plot. We will not plot it in
the rest of figures to avoid confusion with too many lines but one should keep in mind
this quantitative way of graphically determining the velocity once a point in the p−E
plane is known.

We now look for a simple relation between angles that solves the addition of
velocities. Using the trigonometric identity:

tan
(π

4
− x
)

=
1− tanx

1 + tanx
(5)

we immediately find that

tan θ =
1− v
1 + v

(6)

and therefore we can rewrite the velocity addition formula (2) as:

tan θC = tan θA tan θB (7)

The angles for a particular case are depicted in figure 1(b).
Notice that θ ∈ [0, π/2] and therefore the tangents are positive numbers. Negative

velocities correspond to π/4 < θ ≤ π/2. Let us comment on how basic features of the
velocity addition formula are apparent from Eq. (7). First, since v = 1 corresponds
to tan θ = 0 and v = −1 corresponds to tan θ =∞, it is clear that the velocity found
by combining any number of velocities in the −1 < v < 1 interval will still produce a
velocity within the same interval. Moreover the product of tan θ = 0 with any other
tan θ will remain zero, meaning that adding the speed of light to any other velocity
will remain the speed of light. The same is obviously true for v = −1, tan θ = ∞.
The exception is the ill-defined case of adding v = −1 and v = 1, which produces

‖ Notice that we have related a hyperbolic angle and an ordinary angle to the velocity, v = tanhφ =
tanα. Recalling the relation tanh(ix) = i tanx and that v = dx/dt, this shows the interest of defining
a “complex time” it that links the Euclidean and Minkowskian presentations.
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θα

v

α

(a)

m

1

π /4

p

E

θA

θB

θC

(b)

A
B

A'
B'

C'

C

m

p

E

Figure 1. In plot (a), the blue solid line represents the mass shell hyperbola for
a given m and the dashed lines correspond to the light cone E = |p|. The shaded
area is proportional to the hyperbolic angle φ defined in the text (more precisely,
the area is 1

2
m2φ). We also define the angles α and θ. The horizontal line is a

measure of the velocity in terms of the scale defined by the 1 in the vertical axis.
In plot (b), we depict an example of a solution of the velocity addition formula
expressed as in Eq. (7). For later use, we also define A′, B′, C′ as projections
onto the light cone (AA′, BB′, CC′ are perpendicular to the E = p line)

an indetermination, as expected. Following [10], we may also wonder what would
be the result if we allow for tachyonic velocities |v| > 1. They would correspond to
tan θ < 0. Thus adding a tachyonic velocity with a subluminal one would remain
tachyonic whereas adding two tachyonic velocities results in a subluminal one, in
agreement with [10].

It is also worth commenting on the role of the mass shell hyperbola. It can
be illustrative for students to see that different points in the same hyperbola can
correspond to different states of motion with respect to a particular reference frame
or to the same state of motion as seen by different observers. Finally, notice that the
velocity vA, as defined above, is a relative velocity between reference frames and not a
velocity of the body of rest mass m and, thus, the point A of the figure does not really
correspond to a physical motion of the body. However, since the relation between
velocities and angles in equation (4) does not depend on m, it can be depicted in the
same plot.

Let us now take an extra step and show how the point C can be found from the
diagram with three simple ruler-and-compass constructions, once the hyperbola, A
and B are given. We analyze in turn both types of constructions.

For the first construction, consider the projection of A and B on the light cone
to find the points A′ and B′, as depicted in figure 1(b). We also define M as the rest
point on the hyperbola and its projection M ′. The length OA of the segment OA is:

OA =
√
E2
A + p2A = m

√
γ2A + v2Aγ

2
A = m

√
1 + v2A
1− v2A

(8)

From Eq. (4), it is straightforward to check that cos θ = 1+v√
2
√
1+v2

and therefore we
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can find OA′ = OA cos θ and similarly OB′ and OM ′:

OA′ = m

√
(1 + vA)

2(1− vA)
, OB′ = m

√
(1 + vB)

2(1− vB)
, OM ′ =

m√
2

(9)

Therefore, the velocities enter the expressions for the projections along the light cone
as the inverse of the fractions appearing in Eq. (2). This allows us to rephrase the
velocity addition formula (2) in terms of products of these segment lengths.

OC ′ = OA′ OB′/OM ′ (10)

We can solve this equation graphically using the trick depicted in figure 2(a). First,
we find B′′ and M ′′ as the mirror images of B′ and M ′ with respect to the vertical
axis. Then, we draw the segment M ′′A′ and a parallel to this segment from B′′, that
cuts the E = p line at C ′. Noticing that OM ′ = OM ′′ and OB′ = OB′′ and that the
triangle OB′′C ′ is similar to OM ′′A′, Thales’ theorem ensures the relation (10).

(a)

A
B

M

O

A'

C'
C

B'B''

M'M''

p

E

A
M

O

A'
B'

B

M'C'

C

(b)

p

E

Figure 2. In plot (a), we display the ruler-and-compass construction based on
Thales’ theorem for similar triangles that allows us to graphically determine the
position of C′ and then C, thereby solving the relativistic addition of velocities.
In plot (b), we depict a solution when vA and vB have different signs.

An analogous but even simpler graphical procedure also leads to the solution of
the velocity addition in the case in which vA and vB have opposite signs, see figure
2(b). For the example, let us assume vB < 0, vA > 0 and |vB | > vA. In this case, the
expression of OB′ in Eq. (9) has to be modified to

OB′ = m

√
(1− vB)

2(1 + vB)
(11)

The easiest way to understand this is to realize that, in fact, OB′ = m
√

(1+|vB |)
2(1−|vB |) ,

and similarly for OA′ and OC ′. Taking this into account, the equivalent of Eq. (10) is
OC ′ = OB′ OM ′/OA′. The construction depicted in the figure ensures this equality
due to the similarity of the OC ′M ′ and OB′A′ triangles.

The second ruler-and-compass construction is shown in Fig. 3(a). First define
the point −A as the reflection of A to negative momenta. Then, draw from −A the
parallel to the MB segment and the result is the point where it cuts the hyperbola¶.

¶ In fact, once the position in the p−E plane of A and B are known, the point C can be determined
with ruler and compass even without having the hyperbola. This is because a straight line connecting
the midpoints of two parallel chords of a hyperbola passes through the center and, thus, the green
dashed line of figure 3(a) bisects the chords. Taking that into account and drawing the parallel to
the BM segment through −A, the position of C is immediately found. A similar comment applies
to the construction described in figure 4.
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Analytically, this can be proven by requiring that the slopes of the parallel segments
are equal, EB−m

pB
= EC−EA

pC+pA
, and thus:

γB − 1

vBγB
=

γC − γA
vCγC + vAγA

(12)

This expression can be shown to be equivalent to Eq. (1). However, a maybe more
intuitive way of thinking of this construction is that it relies on a graphical way of
adding hyperbolic angles, which can be found by analogy with a similar procedure for
ordinary angles, shown in Fig. (3(b).

(a)

A-A
B

M

O

C

p

E

O M

A

-A

B
C(b)

Figure 3. In plot (a), we show a simple graphical construction for the addition of
hyperbolic angles and therefore for the relativistic addition of velocities. In plot
(b), we show the analogous construction for the addition of ordinary angles. The
chords joining B with M and −A with C are parallel and the line through their
middle points therefore passes through the center. This shows that the arcs from
B to C and from −A to M are equal. This then implies that the arc MC is MA
plus MB. In both figures, the green dashed line bisects the parallel chords.

Actually, there exists an even simpler construction without need of any auxiliary
points+. In fact, the segments AB and MC are parallel, as can be proved by verifying
that:

EB − EA
pB − pA

=
EC −m
pC

(13)

This is graphically depicted in figure 4. In the same figure, we reinsert the “ruler for
velocities” defined in figure 1 by inserting an arbitrary scale that we identify with 1.
Then, the quantitative relation between vA, vB , vC and c can be directly read along
the horizontal axis.

In summary, we have provided visual representations of the velocity addition
formula in 1+1 dimensions by presenting four geometrical versions of it working in
momentum space:

• The sum of shaded areas as the one of Fig. 1(a).

• The trigonometric identity (7), with the angles as represented in Fig. 1(b).

• A ruler-and-compass construction based on Eq. (9) and Thales’ theorem for
similar triangles, see Fig. 2.

• Two ruler-and-compass constructions for the addition of hyperbolic angles, Figs.
3 and 4.

+ We thank an anonymous referee for pointing out this construction.
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A

B

M

1

O

C

vA vB vC 1
p

E

Figure 4. We show the simplest graphical construction for the addition of
hyperbolic angles and therefore for the relativistic addition of velocities. A
segment parallel to the AB chord is drawn from M and the point C is found
from its intersection with the hyperbola. In this plot, we also explicitly depict the
value of the three velocities by arbitrarily introducing a scale “1” for the speed of
light along the energy and momentum axes.

Notice that the first and fourth representations rely on the fact that velocity
addition is equivalent to the addition of hyperbolic angles along the mass-shell
hyperbola. On the other hand, the second and third ones are related to the formulation
displayed in Eq. (2). The ruler-and-compass methods are the main results of this
section and can be visualized with the applets described in section 4.

3. Geometrical approach to velocity addition in 1+2 dimensions

In this section, we will address the case in which the velocities to be added, defined as in
the first paragraph of section 2, are not collinear. Let us assume for simplicity that the
velocity vA = (vA, 0, 0) is directed along the x-axis and that vB = (vBx, vBy, 0) lies in
the x−y plane (this can always be achieved by a rotation of the Cartesian coordinates).
The result of the addition of velocities in this case is not symmetric, in the sense that
vA and vB cannot be interchanged, as a consequence of the noncommutativity of
Lorentz transformations [15]. We have:

vCx =
vA + vBx
1 + vAvBx

, vCy =
vBy

√
1− v2A

1 + vAvBx
. (14)

In order to represent these transformations in Minkowski diagrams in momentum
space, first notice that the mass shell is a hyperboloid that is the surface of
revolution of the hyperbola used in section 2, E2 = m2 + p2x + p2y. A Lorentz
transformation consisting of a boost along x leaves unchanged the transverse
component of momentum, namely:

py = mvByγB = mvCyγC (15)
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where we have defined γB = 1√
1−v2Bx−v2By

and similarly for γC . Thus, the

transformation takes place in a plane of constant py, and, once we have reduced
the problem to this plane, it is obvious that the transformation of velocity along x is
exactly as in section 2, see figures 5 and 6. The intersection of the hyperboloid with
the fixed py plane is a hyperbola whose distance to the origin is the transverse mass

mT =
√
m2 + p2y, see figure 6(a). Looking at the geometry in this plane, one can

directly follow the arguments of section 2. In fact, since the result of velocity addition
does not depend on the mass, it is natural that the first equation in (14) coincides with
(1). Both the identity (7) and the ruler-and-compass constructions of figures 2, 3 and
4 can also be applied in this case to provide a geometrical insight on the behaviour of
the velocities along x. Figure 6(b) provides a geometric interpretation of the change
of the velocity along y even if py does not change: moving to a different hyperbola
implies having a different angle α and therefore a different velocity.

Figure 5. A three-dimensional plot in Minkowski momentum space representing
the addition of non-collinear velocities. The hyperboloid represents the mass-
shell of the body of mass m. Its energy and momentum with respect to S′ are
represented by the black dot and those with respect to S by the green dot. The
red dot represents the relative velocity between frames as explained in section 2.
The highlighted plane of constant py includes the three dots and its intersection
with the hyperboloid is the hyperbola of figure 6(a). The two highlighted planes
of constant px correspond to the momentum in both reference frames and their
intersections with the hyperboloid are the hyperbolas depicted in figure 6(b). We
also highlight the hyperbolas corresponding to the py = 0 and px = 0 cuts, that
have also been included in figures 6(a) and 6(b) respectively.

In fact, it is possible to understand from the geometry that the change in velocity
along the y-axis is precisely the one needed to maintain the y-momentum fixed when
the relativistic factor γ changes due to the addition of velocities along x. Consider
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θA

θB

θC

(a)-constant py

AB

C

mT

m

pBx pCx
px

E

B

C

O

m2 + pBx
2

m2 + pCx
2

m
αCy

αCy

αBy

π-αBy

(b)-constant px

pBy=pCy
py

E

Figure 6. Plot (a) corresponds to a fixed py plane within the graph of figure
5. Taking into account that, in analogy with Eq. (4), tan( π

4
− θA) = vA,

tan(π
4
− θB) = vBx, tan(π

4
− θC) = vCx, equation (7) still holds. The procedures

of figure 2 or 3(a) can be applied here to find point C from A and B, but we do
not depict them again. Knowing pBx and pCx, we can construct plot (b), where
both hyperbolas are at constant (though different) px. Taking into account that
(see Eq. (4)) tanαBy = vBy and tanαCy = vCy , we see how changing px results
in a change of vy , a purely relativistic effect. In both plots we have included the
hyperbola with its tip at E = m (py = 0 and px = 0 respectively) in order to
emphasize how having momentum in the transverse directions is in some aspects
equivalent to having a larger mass.

the law of sines applied to the OBC triangle of figure 6(b):

OC

sin(π − αBy)
=

OB

sin(αCy)
(16)

leading to

mγC

√
1 + v2Cy

√
1 + v2By

vBy
= mγB

√
1 + v2By

√
1 + v2Cy

vCy
(17)

where we have taken into account that tanαBy = vBy (see Eq. (4)), yielding
sinαBy =

vBy√
1+v2By

(and similarly for αCy). We have also used a simple generalization

of Eq. (8) to find the expressions for OB and OC. Thus, after simplifying some
factors, we recover Eq. (15).

We close this section with one last illustrative geometrical curiosity, albeit this
one not in Minkowski momentum space. If we consider that vB is fixed, we find from
Eq. (15) the possible velocities vC that can be obtained by adding a velocity along
the x-axis to vB . This turns out to be a semi-ellipse in the vCx − vCy plane given by:

v2Cx + v2Cy

(
1− v2Bx
v2By

)
= 1 (18)

where vBy and vCy cannot have different signs. This is plotted in figure 7. The graph
clearly shows that, as expected, when vCx approaches ±1, one has vCy → 0 in a way
such that |vC | ≤ 1. The maximum possible value of vCy is attained at the covertex
of the semi-ellipse, when vA = −vBx such that vCx = 0.
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BvBy

1 - vBx
2

C

-1 1
vCx

1

vCy

Figure 7. If we have a velocity vB and perform a boost along the x direction
with velocity −1 ≥ −vA ≥ 1, the possible final velocities vC form a semi-ellipse
in the vCx − vCy plane. The dashed line marks the speed of light. The depicted
points B and C are the same as in the previous figures of this section. For a
fixed B, the semi-ellipse is fixed and C would move to the different points of the
ellipse as vA changes (namely, as the red and green dots of figure 5 move along
the hyperbola).

4. Interactive applets

In order to complement the presentation of sections 2 and 3, we have developed a
series of interactive dynamical geometry applets that can be found at [11]∗. The
applets are based on the geometric constructions explained in the previous sections.
The goal of these simple virtual laboratories is to help with the visualization of the
concepts related to velocity addition and boosts, strengthening the learning process
while engaging and motivating students [12]. This set of dynamic geometry apps has
a didactic utility to explain typical concepts of relativistic kinematics and to solve
problems associated with the change of inertial reference frame. In order to improve
the possibilities of visualization, all these apps can be rotated and scrolled to observe
the figures from the better suited perspective in each case.

The first applet corresponds to the resolution of the one-dimensional case of
section 2, in which the two velocities to be added are collinear. The mass and
momentum of the moving body and the velocity of the boost can be chosen by the
user by clicking and dragging the corresponding dots within the figure. The auxiliary
lines needed for the ruler-and-compass construction, the hyperbolic mass shell, and
a horizontal velocity segment stretching from v = −1 to v = +1 are shown. It
is interesting to observe how a boost with the speed of light stretches any (E, p)
vector towards infinite energy and momentum along the mass shell hyperbola, without
surpassing v = 1, in accordance with the postulates of special relativity. Even if the
graphs are based on the geometric construction, the app can also be used as a numerical
calculator, since it presents the values of both the selected variables and the result of
the addition.

The second app corresponds to section 3, where collinearity of the two
velocities/momenta is not required. Again, the mass and momentum of the particle
and the speed of the boost can be freely chosen, and the app returns the resulting

∗ The apps and the eBook in which they are included were created using the free software resources
available at http://geogebra.org.

http://geogebra.org
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velocity and momentum in the px−py plane. In addition, a three-dimensional view of
the Minkowski space of momenta is also presented, where the geometrical procedure
for the resolution is depicted. It involves a projection of the initial (E, p) vector on
the plane of the boost, where the one-dimensional procedure is then applied. Then,
the result is projected back onto the initial plane and we obtain the final result of the
velocity addition. A colour code for the points and their projections is introduced for
the purpose of clarity. As in the one-dimensional case, this applet can also be used as
a numeric calculator, since it displays the selected initial values and the results.

Finally, we have included a third app that allows the user to visualize a general
boost in the three-dimensional space of momenta. In a sense, the 1+2 dimensional case
is the most general one since the 1+3D case can be reduced to it by an appropriate
rotation of the coordinate axes. However, we include this last case for the sake of
completeness and because it provides further interesting visualization possibilities.

5. Conclusions and final remarks

Let us briefly summarize the main findings of this contribution. In section 2, we present
several geometrizations of the velocity addition formula in 1+1 dimensions, based on
constructions in the energy-momentum plane. In particular, we have shown that tan θ,
with the angle θ defined in figure 1(a) depends on the velocity in a way which can be
directly connected to Eq. (2). The same is true for the length of the segment along
the light cone from the origin to the projection of a (p,E) value (e.g. OA′ in figure
2(a)) and, therefore, these projections are well-suited to establish a connection with
the velocity addition formula. In figure 2 we show how this notion, together with
Thales’ theorem for similar triangles leads to a ruler-and-compass procedure to find
the result of velocity addition. Then, two further ruler-and-compass methods are put
forward in figures 3 and 4. They are remarkably simple ways of visually solving the
addition of hyperbolic angles and, therefore, the relativistic addition of velocities.

Section 3 builds on the results of section 2 to generalise them to the case of non-
collinear velocities. In fact, this is done in the spirit of dimensional scaffolding [16]: by
gradually going up in the number of dimensions, conceptual complications are found
sequentially, facilitating the learning process. In figure 5 we show that, graphically, the
composition of velocities in 1+2 dimensions can be reduced to the one-dimensional case
by cutting the mass-shell hyperboloid along the appropriate plane. The resulting 1+1
dimensional plane includes a hyperbola in which the tip corresponds to the transverse
mass instead of the mass. Then, it also becomes clear from the plots why the velocity
transverse to the boost is modified, even when the momentum remains fixed: the
result of the addition will in general lie on a different hyperbola, as shown in figure
6(b). It is curious to see how the law of sines in the resulting triangle is equivalent
to the known result of Eq. (15), depending on the relativistic γ factor. Let us also
notice that generalizing the construction to 1+3 dimensions introduces difficulties for
the graphical visualization but, in fact, it does not introduce new conceptual issues
since any pair of three-dimensional velocities can be brought to lie on the x− y plane
by an adequate rotation of the Cartesian coordinates.

The purpose of this work has been the development of tools and strategies that can
be applied in educational contexts in order to complement more standard approaches
and provide an additional perspective. The geometrization of the velocity addition
formula in connection to the energy-momentum plane and mass-shell hyperbolas
and hyperboloids yields an interesting visual playground in which learners can work
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with several important concepts of special relativity, in connection with notions of
trigonometry and Euclidean geometry. This auxiliary Euclidean geometry was built
by choosing a particular reference frame in Minkowskian geometry, in which special
relativity is naturally defined but which does not allow for the visual realizations
developed here. Moreover, the interactive applets provide an entertaining but
accurate visual implementation of the described solutions, and should contribute to the
maturation of correct intuitions in the students who test them carefully. The author
of [6] emphasized the pedagogical usefulness of Minkowski diagrams in momentum
space when discussing particle interactions. We believe that our discussion shows that
they can also be useful for the understanding and visualization of velocity addition.
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