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Summary. In this work we present a new strategy, employing optimal control techniques
of partial differential equations, to automate the optimization of locations for a given
number of exit doors at gathering places, so that the evacuation of crowds takes place in
a safer and faster way. Once given a detailed mathematical formulation of the problem,
in order to solve the constrained optimal control problem numerically, we propose its
full discretization, with a space semi-discretization via the finite element method over a
family of triangular meshes of the domain under study, and a time semi-discretization
via the Euler algorithm. Finally, for the resulting discretized minimization problem,
we try its optimization by means of a derivative-free algorithm. Numerical examples,
corresponding to different scenarios for a real-world study case posed on “Plaza de la
Liberación” (Guadalajara, Mexico), are presented and discussed to assess the effectiveness
of our approach.

1 INTRODUCTION

Effective crowd evacuation in emergencies is a key public safety priority. Modelling
and analysis of crowd dynamics have been a very active study area in traffic engineering
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in recent decades, both from a numerical and an analytical viewpoint [1, 2]. Nevertheless,
optimal control and optimization of these evacuation processes have been much more
sparsely addressed within the scientific literature.

In this work we introduce a method, based on optimal control techniques of partial
differential equations, to automate the optimization of locations for a given number of
exit doors at gathering places, so that the evacuation of crowd takes place in a safer and
faster way.

For a rigorous mathematical setting of the problem, we consider a reformulation of the
classical Hughes system with a suitable set of initial/boundary conditions -modelling the
flow of pedestrians, characterized by their density and walking velocity- which constitutes
the state system of the optimal control problem. The objective function to be optimized
in our problem corresponds to minimizing the number of pedestrians left inside the place
at the end of the evacuation process. Moreover, we also need to include some constraints
on the control (the location of the exit doors), since not all possible door positions are
admissible for geometric, organizational or security reasons.

In order to obtain the numerical solution of the constrained optimal control problem,
we give a full discretization of the state system, where space is discretized by a finite
element method (for a family of triangular meshes of the domain under study), and time
is discretized by the Euler algorithm. Then, once rewritten the discretized minimization
problem, we suggest its optimization by means of any derivative-free algorithm, due to
the hard numerical difficulties involved in the possible computation of the cost functional
gradients. In our case, we have chosen two of them: the classical Nelder-Mead algorithm,
and a controlled random search procedure.

Some numerical examples, corresponding to two different scenarios for a real-world
study case posed on “Plaza de la Liberación” in Guadalajara (Mexico), are presented and
discussed in the congress, to assess the effectiveness of our approach. Interested readers
can find all of them in our recent publication [3], since only one is shown here.

This full paper is organized as follows: First, the mathematical model proposed to
simulate the evolution of pedestrian flow is given. Then, the full details of the formulation
of our problem under the structure of an optimal control problem are presented, including
some details of the numerical algorithm to solve this problem. Finally, a computational
example and some concluding remarks are summarized in last section.

2 THE MATHEMATICAL MODEL

2.1 The State Equations

In the numerical resolution of our control problem we will use a two-dimensional
mathematical model, where we denote by Ω ⊂ R2 and [0, T ] ⊂ R the meeting place
and the time interval under study, respectively.

Our formulation is based on the original model introduced by Hughes [4] for the flow
of pedestrians, which couples the eikonal system with the continuity equation:
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∥∇ϕ∥ =
1

f(ρ)
in Ω× (0, T ), (1)

u(ρ) = −f(ρ) ∇ϕ
∥∇ϕ∥

in Ω× (0, T ), (2)

∂ρ

∂t
+∇ · (ρu(ρ)) = 0 in Ω× (0, T ), (3)

that must be closed with a suitable set of boundary conditions on Γ = ∂Ω and initial
conditions at t = 0. Equation (2) describes the walking velocity u(x, t) for pedestrians,
with the direction is prescribed by the normalized gradient of ϕ(x, t) and the speed
computed by a fundamental diagram f . In our case, we will use the affine diagram:
f(ρ) = umax(1 − ρ

ρmax
). For this fundamental diagram, equation (1) represents walking

difficulties for high density cases. At last, equation (3) guarantees the conservation of
pedestrians’ mass, where its density is represented by ρ(x, t).

Rewriting equation (1) as ∥∇ϕ∥2 = 1
f2(ρ)

, and including a Laplacian term in order to

increase the stability in its numerical resolution, we can reformulate equation (1) as the
nonlinear second order partial differential equation:

∥∇ϕ∥2 − ϵ21∆ϕ =
1

f 2(ρ)
. (4)

In this way, for a small enough parameter ϵ1 > 0, the viscosity solution of (4) can be
understood as a regularization of the original solution of (1).

Then, by introducing the standard direct transformation:

ψ = e
− ϕ

ϵ1 (5)

(with inverse transformation given by ϕ = −ϵ1 ln(ψ) [5]), we arrive to the following
equivalent equation:

1

f 2(ρ)
ψ − ϵ21∆ψ = 0. (6)

With respect to boundary conditions, we will consider the Γ split into three parts:
Γ = Γw ∪ Γin ∪ Γout, representing, respectively, the lateral walls, the entry doors, and the
exit doors. Original Hughes model imposes that ϕ must be null on the exit doors, and
that u(ρ) · n must vanish on the rest of the boundary (with n the outward unit normal
vector to Γ). Thus, from above transformation (5), we need to impose on ψ the boundary
conditions ψ = 1 on Γout × (0, T ), and ∇ψ · n = 0 on (Γw ∪ Γin)× (0, T ).

Finally, to prevent computational instabilities in (2) and (3), we replace those equations
by the respective regularized ones:

u(ρ) = −f(ρ) ∇ϕ√
∥∇ϕ∥2 + ϵ22

, (7)

∂ρ

∂t
+∇ · (ρu(ρ))− ϵ23∆ρ = 0, (8)
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where ϵ2, ϵ3 > 0 are small enough parameters.
Thus, the state system used in this work will be the following novel reformulation of

the Hughes model:

1

f 2(ρ)
ψ − ϵ21∆ψ = 0 in Ω× (0, T ), (9)

∇ψ · n = 0 on (Γw ∪ Γin)× (0, T ), (10)

ψ = 1 on Γout × (0, T ), (11)

ϕ = −ϵ1 ln(ψ) in Ω× (0, T ), (12)

u(ρ) = −f(ρ) ∇ϕ√
∥∇ϕ∥2 + ϵ22

in Ω× (0, T ), (13)

∂ρ

∂t
+∇ · (ρu(ρ))− ϵ23∆ρ = 0 in Ω× (0, T ), (14)

∇ρ · n = 0 on Γw × (0, T ), (15)

ρ = ρin on Γin × (0, T ), (16)

ρ(0) = ρ0 in Ω. (17)

Then, arguing in the standard way, that is, multiplying equations (9) and (14) by test
functions ω, integrating by parts in Ω, applying Green’s formula and considering above
Dirichlet and Neumann boundary conditions (10), (11), (15) and (16), we arrive to a
classical variational formulation of the state system. However, to enhance the evacuation
of pedestrians avoiding jams in the exit doors, we will replace in this formulation the
boundary term

∫
Γout

(ρu(ρ) · n)ω dΓ by the reinforcement term
∫
Γout

γout (ρu(ρ) · n)ω dΓ,
where γout ≥ 1 represents a strengthening parameter.

2.2 The Optimal Control Problem

This subsection is devoted to formulating, in a mathematically rigorous way, our control
problem: the characterization of the optimal locations of the exit doors -that must remain
inside an admissible part Γad of the boundary Γ of Ω- in such a way that the evacuation of
the mass of pedestrians gathered together in Ω can be carried out as quickly as possible.

With this objective in mind, we will choose as the cost function to be minimized, the
number of pedestrians still remaining inside Ω at final time, that is,

J =

∫
Ω

ρ(x, T ) dx, (18)

where ρ represents the pedestrians density, solution of above variational formulation of
the state system (9)-(17). Other possible alternative expressions for the cost functional
J can be found in [3].

Thus, the optimal control problem to be solved consists of finding the optimal locations
of the exit doors, such that these locations minimize the cost function J , remaining in
the admissible part of the boundary Γad.
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3 THE NUMERICAL MODEL

Above optimal control problem needs to be treated with a suitable computational
approach. Firstly, in the discretization of the state system (9)-(17) we will propose a
standard finite element method, in order to compute a numerical approximation of the
nonlinear optimization problem (resulting from the full space-time discretization of the
control problem) by any gradient-free algorithm.

3.1 Discretization in Space and Time

For the time semi-discretization, we consider a natural number N ∈ N, and define the
time step ∆t = T

N
. Then, we take the discretized times tn = n∆t, for n = 0, . . . , N .

Then, we discretize the time derivative of ρ in (14) by the Euler explicit method, that is:

∂ρ

∂t
(·, tn) ≃ ρ(·, tn)− ρ(·, tn−1)

∆t
, for n = 1, . . . , N. (19)

For the space semi-discretization of the domain Ω, we consider a family of triangular
meshes τh for the polygonal approximation Ωh of Ω, with characteristic size h, associated
to the Lagrange finite element space P1 (globally continuous, piecewise linear polynomials
on Ωh).

Thus, taking into account this space-time discretization, above variational formulation
of the state system can be rewritten as a large system of nonlinear equations, whose
solution ρnh(·) ≃ ρ(·, tn), n = 0, . . . , N , will be used to compute the value of the discretized
version of the cost function J defined by (18):

Jh =
∑
τ∈τh

∫
τ

ρNh (x) dx, (20)

where the integral on each element τ of the mesh τh can be approximated by any quadrature
formula.

It is worthwhile remarking here that the location of the exit doors (the control in our
problem) enters the value of Jh via the definition of the exit boundary Γout in boundary
condition (11).

3.2 Numerical Optimization

Once we know how to calculate the value of the discretized cost function Jh for any
arbitrary location of the exit doors, we will now center our attention into the minimization
of this function Jh.

In our particular case, due to the fact that we are managing a control-constrained
optimal control problem, we previously have to rewrite our original constrained optimiza-
tion problem as an unconstrained problem by means of the addition of a penalty term Ph to
the discretized cost function Jh, where the penalty term Ph corresponds to the compliance
with constraints Γout ⊂ Γad (that is, Ph takes a very high value if the constraints are not
satisfied, and is zero in the other case).
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Figure 1: Satellite photo of the real-world domain Ω: Plaza Liberación in Guadalajara (Mexico), a
rectangular square of approximately 180 by 92 meters, including many green areas with access restricted
to pedestrians.

Then, to minimize this new cost function Fh = Jh + Ph, we propose the use of a
gradient-free algorithm. In particular, we will use here two alternative methods: the
Nelder-Mead simplex algorithm [6], and a controlled random search procedure for global
optimization [7].

4 COMPUTATIONAL EXAMPLES

We have developed many computational simulations for a real-world case posed in the
main square (Plaza Liberación) of the city of Guadalajara (Mexico), whose satellite photo
can be seen in Fig. 1. Several numerical results are presented at the congress, and can be
found in our recent paper [3]. A particular example of one of the several finite element
meshes of the square employed in our optimization process can be found in Fig. 2.

Figure 2: Example of one of the many finite element meshes for the computational domain Ωh used in
the optimization process.
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In order to perform our numerical simulations, we have employed the open source
scientific software FreeFem++ [8], interfaced with the optimization packages NelderMead
(for the Nelder-Mead simplex algorithm) and CRS2 (for the controlled random search
with local mutation method).

We have performed a very large number of numerical experiences for very different
scenarios, in particular for the optimal location of two exit doors -with fixed width- in
two different configurations of the admissible set Γad: in a first case the exit doors will be
located on the oblique sides at the bottom left and top left corners, and in a second case,
in the longer left and right sides. In Fig. 3 we show a graphical description of these two
possible admissible regions Γad for the computational examples.

Figure 3: Admissible parts Γad (marked with solid blue lines) of the boundary Γ where exit doors can
be located for the first case (left) and for the second one (right).

For both scenarios we have solved the optimal control problem by two optimization
algorithms (the Nelder-Mead simplex algorithm and the controlled random search with
local mutation method), being the former the one that gives better results in these cases,
with a lower value of the cost function Fh.

From the results obtained by our methodology, we can deduce that the choice of exit
doors in the left corners is a better option (in the sense of an easier evacuation) than
doors located in the lateral sides, since the number of pedestrians remaining inside the
square in lower for the optimal locations obtained in the first case. In Fig. 4 we show
the pedestrian density ρ at final time for the optimal configuration achieved in one of the
numerical experiments. We can observe how the area is almost evacuated at final time,
except in the neighbourhoods of the exit doors, where a small number of pedestrians
remains still inside the square. This fact may show the need for a greater number of exit
doors or the extension of their width, in order to ensure the complete evacuation of the
enclosure in the given time.
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Figure 4: Pedestrian density ρ at final time T = 350 seconds for the optimal location of two exit doors,
corresponding to the first case of scenario (left corners).
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[1] N. Bellomo and C. Dogbé, “On the Modeling of Traffic and Crowds: A Survey of
Models, Speculations, and Perspectives”, SIAM Revue, 53, 409–463, 2011.

[2] B. Maury and S. Faure, Crowds in Equations: An Introduction to the Microscopic
Modeling of Crowds, World Scientific, Singapore, 2019.
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