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APPROXIMATION BY NONLINEAR q-BERNSTEIN-CHLODOWSKY

OPERATORS

ECEM ACAR1∗, SEVILAY KIRCI SERENBAY2, §

Abstract. Max-Product algebra is new direction in constructive approximation of func-
tions by operators. In this study, we introduce the q-analog of Bernstein-Chlodowsky
operators using max-product algebra and investigate approximation properties of a se-
quence of these operators. Also, an upper estimate of the approximation error of the
form Cω1(f ; 1/

√
n + 1) with C > 0 obvious constant is obtained.
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1. Introduction

In recent years, many articles have focused on the problem of approximating continuous
functions using q-Calculus (see [2]-[4],[8]-[11]) and (p, q)-calculus (see [19]-[22]). Initially,
Lupas [10] and Philips [11] introduced the generalization of q-Bernstein operators and
investigated approximation of these operators. Then, Derriennic introduced many prop-
erties of the q-analogue of the Durrmeyer operators in [8]. Later, generalized q-Durrmeyer
operators were studied in [9], [12].

In addition to these studies, the nonlinear positive operators by means of discrete linear
approximating operators were introduced by Bede et al., in [6]. In [13]-[15]-[18] ”max-
product kind operators” were introduced by using maximum in the name of sum in usual
linear operators and gave Jackson-type error estimate in terms of modulus of continuity.
Since max-product kind of approximation theory is a very rich and useful phenomena of
approximating continuous functions, researchers have turned to this new field in recent
years. Especially, Bernstein-Chlodowsky polynomials have not been studied so exten-
sively. The nonlinear Bernstein-Chlodowsky operators of max-product type are defined
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by Güngör et al., in [13], as below

C(M)
n (f) (x) =

∨n
k=0 hn,k(x)f

(
bnk
n

)∨n
k=0 hn,k(x)

, (1)

with

hn,k(x) =

(
n

k

)(
x

bn

)k (
1− x

bn

)n−k
which 0 ≤ x ≤ bn and n is a sequence of positive real numbers such that limn→∞ bn =∞.

In this study, we define nonlinear q-Bernstein-Chlodowsky operators of max-product
kind and give the approximation properties of these operators. Firstly, we indicate some
basic definition and general notations which will be used in this paper. We consider the
operations ”

∨
” (maximum) and ”.” (product) over the max-product algebra (R+,∨, ·).

Let I ⊂ R be a finite or infinite interval, and set

CB+(I) = {f : I −→ R+; f continous and bounded on I} .

The general form of discrete max-product-type approximation operators

Ln(f)(x) =

n∨
i=0

Kn(x, xi)f(xi), Ln(f)(x) =
∞∨
i=0

Kn(x, xi)f(xi),

where n ∈ N, f ∈ CB+(I), Kn(., xi) ∈ CB+(I) and xi ∈ I, for all i. These operators are
nonlinear positive operators satisfying pseudo-linearity property

Ln(α.f ∨ β.g)(x) = α.Ln(f)(x) ∨ β.Ln(g)(x),

where ∀α, β ∈ R+, f, g : I → R+. Additionally, the max-product operators are positive
homogenous, in other words ∀λ ≥ 0, Ln(λf) = λLn(f) (for the other details one can see
[5]).

Now, let give some basic definition of the q-calculus. For the parameter q > 0 and
n ∈ N, we define the q-integer [n]q as follow

[n]q =

{ 1−qn
1−q if q 6= 1

n if q = 1
, [0]q = 0 (2)

and q-factorial [n]q! as

[n]q! = [1]q[2]q...[n]q for n ∈ N and [0]q! = 1. (3)

For integers 0 ≤ k ≤ n q-binomial is defined as[
n

k

]
q

=
[n]q!

[k]q![n− k]q!
. (4)

2. Construction of The Operators

In this section, we define nonlinear q-Bernstein-Chlodowsky operators of max-product
kind as below:

CMn,q (f) (x) =

∨n
k=0 sn,k(x, q)f

(
αn[k]q
[n]q

)
∨n
k=0 sn,k(x, q)

, (5)

with

sn,k(x, q) =

[
n

k

]
q

(
x

αn

)k (
1− x

αn

)n−k
q

,

(
1− x

αn

)n−k
q

=
n−k∏
s=1

(
1− qs x

αn

)
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where 0 ≤ x ≤ αn, αn is a sequence of positive numbers such that limn→∞ αn = ∞ and
limn→∞

αn√
[n]q

= 0, n ∈ N, q ∈ (0, 1), and the function f : [0, αn]→ R+ is a contiuous.

The operators CMn,q (f) (x) are positive and continuous on the interval [0, αn] for a con-

tinuous function f : [0, αn] → R+. Also, these operators satisfy the pseudo-linearity
property and these operators also are positive homogenous. Since it is esay to show that
CMn,q (f) (0)− f (0) = 0 for all n, we may assume that 0 ≤ x ≤ αn.

Additionally, we provide an error estimate for the operators CMn,q (f) (x) defined by (5)
in terms of the modulus of continuity. Therefore, we need some notations an lemmas for
the proof of the main results.

For each k, j ∈ {0, 1, 2, · · · , n} and x ∈
[
αn[j]q
[n+1]q

,
αn[j+1]q
[n+1]q

]
, we obtained in the following

structure

Mk,n,j(x, q) =
sn,k(x, q)

∣∣∣αn[k]q[n]q
− x
∣∣∣

sn,j(x, q)
, (6)

mk,n,j(x, q) =
sn,k(x, q)

sn,j(x, q)
. (7)

It can easily see that if k ≥ j + 1, then

Mk,n,j(x, q) =
sn,k(x, q)

(
αn[k]q
[n]q

− x
)

sn,j(x, q)
(8)

and if k ≤ j − 1, then

Mk,n,j(x, q) =
sn,k(x, q)

(
x− αn[k]q

[n]q

)
sn,j(x)

. (9)

Additionally, for each k, j ∈ {0, 1, 2, · · · , n}, k ≥ j + 2 and x ∈
[
αn[j]q
[n+1]q

,
αn[j+1]q
[n+1]q

]
, we will

obtain the following

Mk,n,j(x, q) =
sn,k(x, q)

(
αn[k]q
[n+1]q

− x
)

sn,j(x, q)
(10)

and for each k, j ∈ {0, 1, 2, · · · , n}, k ≤ j − 2 and x ∈
[
αn[j]q
[n+1]q

,
αn[j+1]q
[n+1]q

]
, we will get the

following

M̂k,n,j(x, q) =
sn,k(x, q)

(
x− αn[k]q

[n+1]q

)
sn,j(x, q)

. (11)

Lemma 2.1. Let q ∈ (0, 1), j ∈ {0, 1, · · · , n} and x ∈
[
αn[j]q
[n+1]q

,
αn[j+1]q
[n+1]q

]
. Then, we have

(1) for all k ∈ {0, 1, · · · , n} and k ≥ j + 2

Mk,n,j(x, q) ≤Mk,n,j(x, q) ≤
(

1 +
2

qn+1

)
Mk,n,j(x, q).

(2) for all k ∈ {0, 1, · · · , n} and k ≤ j − 2

Mk,n,j(x, q) ≤ M̂k,n,j(x, q) ≤
(

1 +
2

qn

)
Mk,n,j(x, q).

The proof process is similar to the book [7].
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Lemma 2.2. For all k, j ∈ {0, 1, 2, · · · , n} and x ∈
[
αn[j]q
[n+1]q

,
αn[j+1]q
[n+1]q

]
we obtain the fol-

lowing inequalities:
mk,n,j (x, q) ≤ 1. (12)

Proof. We have two cases for the proof of the above lemma: 1) k ≥ j, 2) k ≤ j. Case 1:

Let k ≥ j. From the definition mk,n,j (x, q) given (7) and since the function αn−qn−kx
x is

nonincreasing on
[
αn[j]q
[n+1]q

,
αn[j+1]q
[n+1]q

]
, we get

mk,n,j(x)

mk+1,n,j(x)
=

[k + 1]q
[n− k]q

· αn − q
n−kx

x
≥ [k + 1]q

[n− k]q
·
αn − qn−k αn[j+1]q

[n+1]q

αn[j+1]q
[n+1]q

=
[k + 1]q
[j + 1]q

[n+ 1]q − qn−k[j + 1]q
[n− k]q

≥ 1

which indicates

mj,n,j(x, q) ≥ mj+1,n,j(x, q) ≥ mj+2,n,j(x, q) ≥ · · · ≥ mn,n,j(x, q).

Case 2: Let k ≤ j.

mk,n,j(x)

mk−1,n,j(x)
=

[n− k + 1]q
[k]q

· x

αn − qn−k+1x
≥ [n− k + 1]q

[k]q
·

αn[j]q
[n+1]q

αn − qn−k+1 αn[j]q
[n+1]q

=
[n− k + 1]q

[k]q

[j]q
[n+ 1]q − qn−k+1[j]q

≥ 1.

which implies

mj,n,j(x, q) ≥ mj−1,n,j(x, q) ≥ mj−2,n,j(x, q) ≥ · · · ≥ m0,n,j(x, q).

Since mj,n,j(x, q) = 1, the proof of lemma is finished. �

Lemma 2.3. Let q ∈ (0, 1), j ∈ {1, 2, · · · } and x ∈
[
αn[j]q
[n+1]q

,
αn[j+1]q
[n+1]q

]
.

(i) If k ∈ {j + 2, j + 3, · · · , n− 1} is such that [k + 1]q −
√
qk[k + 1]q ≥ [j + 1]q, then

Mk,n,j(x, q) ≥Mk+1,n,j(x, q)

(ii) If k ∈ {1, 2, · · · , j − 2} is such that [k]q+
√
qk[k]q ≤ [j]q, then M̂k,n,j(x) ≥ M̂k−1,n,j(x).

Proof. (i) Let k ∈ {j + 2, j + 3, · · · , n− 1} with [k + 1]q −
√
qk[k + 1]q ≥ [j + 1]q. Then

we have

Mk,n,j(x, q)

Mk+1,n,j(x, q)
=

[k + 1]q
[n− k]q

· αn − q
n−kx

x
·

αn[k]q
[n+1]q

− x
αn[k+1]q
[n+1]q

− x
.

Since the function h(x) = αn−qn−kx
x ·

αn[k]q
[n+1]q

−x
αn[k+1]q
[n+1]q

−x
is nonincreasing, it follows that

h(x) ≥ h
(
αn[j + 1]q
[n+ 1]q

)
=

[n+ 1]q − qn−k[j + 1]q
[j + 1]q

· [k]q − [j + 1]q
[k + 1]q − [j + 1]q

Then, since the condition [k + 1]q −
√
qk[k + 1]q ≥ [j + 1]q is congruent to [k + 1]q −√

[k + 1]2q − [k]q[k + 1]q ≥ [j+1]q and this inequality is equivalent to [k+1]q ([k]q − [j + 1]q) ≥
[j + 1]q ([k + 1]q − [j + 1]q). Therefore, we obtain

Mk,n,j(x, q)

Mk+1,n,j(x, q)
≥ 1.
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(ii) Let k ∈ {1, 2, · · · , j − 2} and [k]q +
√
qk[k]q ≤ [j]q. Then, we have

M̂k,n,j(x)

M̂k−1,n,j(x)
=

[n− k + 1]q
[k]q

· x

αn − qn−k+1x
·
x− αn[k]q

[n+1]q

x− αn[k−1]q
[n+1]q

.

Then, since the function r(x) = x
αn−qn−k+1x

·
x−αn[k]q

[n+1]q

x−αn[k−1]q
[n+1]q

is nondecreasing on the interval

x ∈
[
αn[j]q
[n+1]q

,
αn[j+1]q
[n+1]q

]
, we get

r(x) ≥ r
(
αn[j]q

[n+ 1]q

)
=

[j]q
[n+ 1]q − qn−k+1[j]q

· [j]q − [k]q
[j]q − [k − 1]q

.

Since the condition [k]q +
√
qk[k]q ≤ [j]q implies [j]q ([j]q − [k]q) ≥ [k]q ([j]q − [k − 1]q),

we obtain
M̂k,n,j(x)

M̂k−1,n,j(x)
≥ 1.

Therefore, we prove the lemma. �

Lemma 2.4. Let indicate

sn,k(x, q) =

[
n

k

]
q

(
x

αn

)k n−k∏
s=1

(
1− qs x

αn

)n−k
,

q ∈ (0, 1), j ∈ {0, 1, 2, · · · } and for all x ∈
[
αn[j]q
[n+1]q

,
αn[j+1]q
[n+1]q

]
we get

n∨
k=0

sn,k(x, q) = sn,j(x, q)

Proof. Firstly, we demonstrate that for fixed n ∈ N and 0 ≤ k < k + 1 ≤ n, we get

0 ≤ sn,k+1(x, q) ≤ sn,k(x, q) if and only if x ∈
[
0,
αn[j + 1]q
[n+ 1]q

]
.

Let estimate the following inequality

0 ≤
[

n

k + 1

]
q

(
x

αn

)k+1(
1− x

αn

)n−k−1
q

≤
[
n

k

]
q

(
x

αn

)k (
1− x

αn

)n−k
q

after some simplifications,we can reduce the above inequality to

0 ≤ x ≤ αn[k + 1]q
[n+ 1]q

Therefore, if we take k = 0, 1, · · · , n in the ineqaulity above, we get

sn,1(x, q) ≤ sn,0(x, q), if and only if x ∈
[
0,

αn
[n+ 1]q

]
,

sn,2(x, q) ≤ sn,1(x, q), if and only if x ∈
[
0,

αn[2]q
[n+ 1]q

]
,

sn,3(x, q) ≤ sn,2(x, q), if and only if x ∈
[
0,

αn[3]q
[n+ 1]q

]
,

and

sn,k+1(x, q) ≤ sn,k(x, q), if and only if x ∈
[
0,
αn[k + 1]q
[n+ 1]q

]
,
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and at last

sn,n−2(x, q) ≤ sn,n−3(x, q), if and only if x ∈
[
0,
αn[n− 2]q

[n+ 1]q

]
,

sn,n−1(x, q) ≤ sn,n−2(x, q), if and only if x ∈
[
0,
αn[n− 1]q

[n+ 1]q

]
,

sn,n(x, q) ≤ sn,n−1(x, q), if and only if x ∈
[
0,

αn[n]q
[n+ 1]q

]
.

Eventually, we obtain

if x ∈
[
0,

αn
[n+ 1]q

]
then sn,k(x, q) ≤ sn,0(x, q), for all k = 0, 1, · · · , n;

if x ∈
[

αn
[n+ 1]q

,
αn[2]q

[n+ 1]q

]
then sn,k(x, q) ≤ sn,1(x, q), for all k = 0, 1, · · · , n;

if x ∈
[
αn[2]q

[n+ 1]q
,
αn[3]q

[n+ 1]q

]
then sn,k(x, q) ≤ sn,2(x, q), for all k = 0, 1, · · · , n;

and in general

if x ∈
[
αn[n]q

[n+ 1]q
, αn

]
then sn,k(x, q) ≤ sn,n(x, q), for all k = 0, 1, · · · , n,

which completes the proof of lemma. �

3. Degree of approximation by C
(M)
n,q (f)(x)

In this section, we obtain the main results about the nonlinear q-Bernstein-Chlodowsky
operator of max-product kind using the Shisha-Mond Theorem given for nonlinear max-
product type operators in [5, 6].

Theorem 3.1. Let f : [0, αn]→ R+ be a bounded and continuous function and C
(M)
n,q (f)(x)

are the max-product q-Bernstein-Chlodowsky operators given in (5). Then, we get the
following estimation∣∣∣C(M)

n,q (f)(x)− f(x)
∣∣∣ ≤ 4

(
1 +

2

qn+1

)
ω1

(
f ;

αn√
[n+ 1]q

)
(13)

which n ∈ N, q ∈ (0, 1), x ∈ [0, αn] and

ω1 (f ; δ) = sup {|f(x)− f(y)| ;x, y ∈ [0, αn], |x− y| ≤ δ} .

Proof. Since C
(M)
n,q (e0)(x) = 1, by using the Shisha-Mond Theorem∣∣∣C(M)

n,q (f)(x)− f(x)
∣∣∣ ≤ (1 +

1

δn
C(M)
n,q (ϕx)(x)

)
ω1 (f ; δn) , (14)

where ϕx(t) = |t− x|. Estimation of the following term is enough for the proof of lemma:

An,q(x) := C(M)
n,q (ϕx) (x) =

∨n
k=0 sn,k(x, q)

∣∣∣αn[k]q[n]q
− x
∣∣∣∨n

k=0 sn,k(x, q)

Let x ∈
[
αn[j]q
[n+1]q

,
αn[j+1]q
[n+1]q

]
, where j ∈ {0, 1, · · · , n} is fixed and arbitrary. By Lemma 2.4,

we get

An,q(x) =

n∨
k=0

Mk,n,j(x, q).
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Initially, for j = 0 we obtain An,q(x) ≤ αn/[n]q for all x ∈
[
0, αn

[n+1]q

]
, so we can

claim that j = {1, 2, · · · , n}. We will find an upper estimate for each Mk,n,j(x), where

j ∈ {0, 1, · · · , n} is fixed, x ∈
[
αn[j]q
[n+1]q

,
αn[j+1]q
[n+1]q

]
and k ∈ {0, 1, · · · , n}. Under the circum-

stances, the proof will be divided into 3 cases:

1)k ∈ {j − 1, j, j + 1} 2)k ≥ j + 2 and 3)k ≤ j − 2

Case 1) If k = j then Mj,n,j(x, q) =
∣∣∣αnj[n]q

− x
∣∣∣. Since x ∈

[
αn[j]q
[n+1]q

,
αn[j+1]q
[n+1]q

]
, one can see

that Mj,n,j(x, q) ≤ αn
[n+1]q

.

If k = j + 1 then Mj+1,n,j(x, q) = mj+1,n,j(x, q)
(
αn[j+1]q

[n]q
− x
)

. From Lemma 2.2, we

have mj+1,n,j(x, q) ≥ 1, it refers to

Mj+1,n,j(x, q) ≤
αn[j + 1]q

[n]q
− x ≤ αn[j + 1]q

[n]q
− αn[j]q

[n+ 1]q

=
αn ([j + 1]q[n+ 1]q − [j]q[n]q)

[n]q[n+ 1]q
≤ 3αn

[n+ 1]q
.

If k = j−1 then Mj−1,n,j(x, q) = mj−1,n,j(x, q)
(
x− αn[j−1]q

[n]q

)
. By Lemma 2.2, we have

mj−1,n,j(x, q) ≥ 1, it refers to

Mj−1,n,j(x) ≤x− αn[j − 1]q
[n]q

≤ αn[j + 1]q
[n+ 1]q

− αn[j − 1]q
[n]q

=
αn ([j + 1]q[n]q − [j − 1]q[n+ 1]q)

[n]q[n+ 1]q
≤ 2αn

[n+ 1]q
.

Case 2) Subcase (a) Let take [k]q −
√

[k + 1]q < [j]q and using Lemma 2.2, we obtain

Mk,n,j(x, q) =mk,n,j(x, q)

(
αn[k]q

[n+ 1]q
− x
)
≤ αn[k]q

[n+ 1]q
− x

≤ αn[k]q
[n+ 1]q

− αn[j]q
[n+ 1]q

≤ αn[k]q
[n+ 1]q

−
αn
(
[k]q −

√
[k + 1]q

)
q

[n+ 1]q

=
αn
√

[k + 1]q

[n+ 1]q
≤ αn√

[n+ 1]q
.

Subcase (b) Let [k + 1]q −
√
qk[k + 1]q ≥ [j + 1]q. Since the function g(k) = [k + 1]q −√

qk[k + 1]q is nondecreasing on the interval x ∈
[
αn[j]q
[n+1]q

,
αn[j+1]q
[n+1]q

]
, it follows that there

exist k = {0, 1, 2, · · · , n} of maximum value such that

[k + 1]q −
√
qk[k + 1]q < [j + 1]q

. Let take k∗ = k + 1, for all k ≥ k∗ one get

[k + 1]q −
√
qk[k + 1]q ≥ [j + 1]q.

Let substitute

[j]q ≥ [k + 1]q − qj −
√
qk[k + 1]q,
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then one obtain

Mk∗,n,j(x, q) =mk∗,n,j(x, q)

(
αn[k∗]q
[n+ 1]q

− x
)
≤ αn[k + 1]q

[n+ 1]q
− x

≤αn[k + 1]q
[n+ 1]q

− αnj

[n+ 1]q
≤ αn[k + 1]q

[n+ 1]q
−
αn

(
[k + 1]q − gj −

√
qk[k + 1]q

)
[n+ 1]q

=

αn

(
gj +

√
qk[k + 1]q

)
[n+ 1]q

≤
αn

(
1 +

√
[k + 1]q

)
[n+ 1]q

≤ 2
αn

√
[k + 1]q

[n+ 1]q

≤ 2αn√
[n+ 1]q

.

Moreover, we have k∗ ≥ j + 2, Indeed, this is a consequence of the fact that the function
g is nondecreasing on the interval [0, αn] and it is easy to see that g(j + 1) < j.

By Lemma 2.3 (i) it follows that Mk+1,n,j(x) ≥Mk+2,n,j(x) ≥ · · · ≥Mn,n,j(x).

Therefore, we obtain Mk,n,j(x) ≤ 2αn√
[n+1]q

for any k ∈
{
k + 1, k + 2, · · · , n

}
. Thus, for

the same k’s, it follows from Lemma 2.1 that

Mk,n,j(x) ≤
2
(

1 + 2
qn+1

)
αn√

[n+ 1]

Case 3) Subcase (a) Let [k]q +
√
qk−1[k]q ≥ [j]q. Then, we obtain

M̂k,n,j(x, q) =mk,n,j(x, q)

(
x− αn[k]q

[n+ 1]q

)
≤ αn[j + 1]

[n+ 1]q
− αn[k]q

[n+ 1]q

=
αn([j]q + qj)

[n+ 1]q
− αn[k]q

[n+ 1]q
.

By hypotesis, we get

M̂k,n,j(x) ≤
αn

(
[k]q +

√
qk−1[k]q + qj

)
[n+ 1]q

− αn[k]q
[n+ 1]q

=
αn

(√
qk−1[k]q + qj

)
[n+ 1]q

≤
αn
(√

[k]q + 1
)

[n+ 1]q
≤
αn
(√

[j − 2]q + 1
)

[n+ 1]q

=
αn√

[n+ 1]q
·
√

[j − 2]q + 1√
[n+ 1]q

≤ αn√
[n+ 1]q

· 2
√
j√

[n+ 1]q
≤ 2αn√

[n+ 1]q
.

Subcase (b) Now let [k]q+
√
qk−1[k]q < [j]q. Let k̃ = {0, 1, 2, · · · , n} be the minimum value

such that [k̃]q +

√
qk̃−1[k̃]q ≥ [j]q. Then k∗ = k̃− 1 satisfies [k̃− 1]q +

√
qk̃−2[k̃ − 1]q < [j]q

and

M̂
k̃−1,n,j(x, q) =m

k̃−1,n,j(x, q)

(
x− αn[k̃ − 1]

[n+ 1]q

)
≤ αn[j + 1]q

[n+ 1]q
− αn[k̃ − 1]q

[n+ 1]q

≤
αn
(
[j]q + qj

)
[n+ 1]q

− αn[k̃ − 1]q
[n+ 1]q

.
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Also, we have [k̃]q +

√
qk̃−1[k̃]q ≥ [j]q then, we obtain

M̂
k̃−1,n,j(x, q) ≤

αn

(
[k̃]q +

√
qk̃−1[k̃]q + qj

)
[n+ 1]q

+
αn[k̃ − 1]q
[n+ 1]q

=

αn

(
qk̃−1 +

√
qk̃−1[k̃]q + qj

)
[n+ 1]q

≤
αn

(
2 +

√
[k̃]q

)
[n+ 1]q

≤ 3αn√
[n+ 1]q

.

Also, in this case we have j ≥ 2, which implies k∗ ≤ j − 2. By Lemma 2.3 (ii), we get

M̂
k̃−1,n,j(x, q) ≥ M̂k̃−2,n,j(x, q) ≥ · · · ≥ M̂0,n,j(x, q). Therefore, we obtain

M̂k,n,j(x, q) ≤
3αn√

[n+ 1]q
for any k ≤ j − 2 and x ∈

[
αn[j]q

[n+ 1]q
,
αn[j + 1]q
[n+ 1]q

]
.

Hence, in subcases(a) and subcases(b) we have M̂k,n,j(x, q) ≤ 3αn√
n+1

. From (9) and (11) it

is obvious that Mk,n,j(x, q) ≤ M̂k,n,j(x, q) so we obtain Mk,n,j(x) ≤ 3αn√
n+1

. Consequently,

collecting all the above estimates, we obtain

Mk,n,j(x) ≤ 6αn√
[n+ 1]q

∀x ∈
[
αn[j]q

[n+ 1]q
,
αn[j + 1]q
[n+ 1]q

]
, k = {0, 1, 2, · · · , n}

which implies that

An,q(x) ≤
2
(

1 + 2
qn+1

)
αn√

[n+ 1]q
∀x ∈ [0, αn], n ∈ N

and indicating δn =
2
(
1+ 2

qn+1

)
αn√

[n+1]q
in (14), we get the estimate

∣∣∣C(M)
n,q (f)(x)− f(x)

∣∣∣ ≤ 4

(
1 +

2

qn+1

)
ω1

(
f ;

αn√
[n+ 1]q

)
, ∀n ∈ N, x ∈ [0, αn].

�

4. Conclusions

In this study, nonlinear max-product type q-Bernstein-Chlodowsky operators are de-
fined and some upper estimates of approximation error for some subclasses of functions
are obtained.
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