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Abstract

The proliferation of educational resource repositories promoted the development

of aggregators to facilitate interoperability, that is, a unified access that would

allow users to fetch a given resource independently of its origin. The CROERA

system is a repository aggregator that provides access to educational resources

independently of the classification taxonomy utilized in the hosting repository.

For that, an automated classification algorithm is trained using the information

extracted from the metadata of a collection of educational resources hosted

in different repositories, which in turn depends on the classification taxonomy

used in each case. Then, every resource will be automatically classified on

demand independently of the original classification scheme. As a consequence,

resources can be retrieved independently of the original taxonomy utilized using

any taxonomy supported by the aggregator, and exploratory searches can be

made without a previous taxonomy mapping. This approach overcomes one of

the recurring problems in taxonomy mapping, namely the one-to-none matching

situation. To evaluate the performance of this proposal two methods were used.

Resource classification in categories existing in all repositories was automatically

evaluated, and a maximum performance (F1 score) of 84% was achieved. In
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the case of resources not belonging to one of the common categories, human

inspection was used as a reference to compute classification performance. In

this case, an F1 score close to 70% was obtained. These results demonstrate

the potential of this approach as a tool to facilitate resource classification, for

example to provide a preliminary classification that would require just minor

corrections from human classifiers.

Keywords: architectures for educational technology systems,

cooperative/collaborative learning, distributed learning environments, media

in education

1. Introduction

Open educational resources (OER) are educational materials in digital form

that are freely available to educators, students and self-learners to be used and

re-used in learning, teaching and research (UNESCO, 2002). One of the biggest

challenges about OER is access (D’antoni, 2006), that is, how to make poten-

tial users aware of the existence of open educational resources to be utilized in

their educational projects. Instruments to promote the use of open educational

resources and to facilitate access to them were developed, including virtual

learning environments, thematic portals, virtual communities, wikis, open mag-

azines, social networks and repositories. Educational resource repositories are

the most widespread platform because they offer benefits such as the preserva-

tion and reuse of content, permanent access, visibility, and ease of search and

retrieval using metadata (Gibbons, 2009). There is a great number and variety

of online repositories (Roy et al., 2010) such as OERCommons (Open Educa-

tional Resources, 2013), MERLOT (Cafolla, 2006), Open Stax CNX, Edna or

Lornet among others (Ternier et al., 2009).

Metadata are the key elements for repositories to represent and organize

educational resources. Due to the huge amount of learning objects available,

manual generation of metadata is not feasible as a general solution. Note that

this would be a resource-consuming process, and metadata created by humans
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are bound to include errors (Meire et al., 2007). As a consequence, automatic

metadata generation techniques were proposed. Although some metadata is

relatively straightforward to obtain (e.g., date of creation, original source of

the resource) other metadata elements are more complicated to create. Thus,

significant efforts have been made in order to automatically generate high quality

metadata (Meire et al., 2007; Rodriguez et al., 2009; Broisin et al., 2005).

Each of the repositories above collects resources according to a particular

metadata schema. Examples of these schemas (Anido-Rifón et al., 2014) are

IEEE LOM, ISO / IEC MLR, or DublinCore Metadata Initiative, as well as

several application profiles such as LRE Metadata Application Profile (Massart

et al., 2011), Open Discovery Space Application Profile (Niemann et al., 2013)

or UK LOM Core (Campbell, 2011) among others.

Due to the large number of existing repositories and providers, several repos-

itory alliances, networks or aggregators were deployed to promote the shar-

ing and reuse of educational materials, such as ARIADNE (Ternier et al.,

2009), MACE (Boeykens et al., 2009), MELT (Kurilovas and Dagiene, 2009),

Edutella (Nejdl et al., 2002), GLOBE, ELENA (Dolog et al., 2004), LRE, Open

Discovery Space (Nikolas et al., 2014) or PROLEARN (Wolpers and Grohmann,

2005). The main challenge in repository aggregation is interoperability, that is,

a unified and integrated access to the collected resources independently of the

underlying metadata scheme or application profile (Stefaner et al., 2007).

Indeed, the heterogeneity of the classification approaches in existing reposi-

tories (Dietze et al., 2012) led to the emergence of several methods to overcome

it, including the most commonly used metadata mapping techniques. One of

the recurring problems is related to the different degrees of equivalence encoun-

tered when mapping individual elements, namely one-to-one, many-to-one and

one-to-none. As a consequence, in many cases there do not exist exact equiv-

alents between elements, and meaning and scope superpositions occur in some

cases (Chan and Zeng, 2006), while in others an existing equivalence will not

be found by the mapping engine (Hillmann and Westbrooks, 2004).

Aggregators allow users to search and retrieve resources in different ways.
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Simple search is used to fetch resources according to the keywords provided,

while advanced search supports resource filtering according to specific values

of metadata elements. Finally, browsing or exploratory search enables users to

navigate a category tree to access specific elements (Neven and Duval, 2002;

Roy et al., 2010).

Despite being a desirable feature, not all aggregators implement exploratory

search or browsing, as it would require all resources being classified according to

a common set of categories or taxonomy. This becomes an issue when trying to

aggregate repositories implementing different taxonomies (e.g., OERCommons

and MERLOT). Approaches exist that try to address this situation, such us the

definition of a new common taxonomy (Kawase et al., 2013), or the application of

ontology mapping, ontology matching or ontology alignment techniques (Doan

et al., 2004), which in turn have several drawbacks. For example, they use to

be performed manually, a laborious and error-prone process (Doan et al., 2004).

To try to overcome this, several authors have proposed the introduction of ma-

chine learning (ML) techniques (Sebastiani, 2002) to automatically generate

mappings between ontologies (Doan et al., 2004; Nezhadi et al., 2011; Shvaiko,

2013). However, in a similar way to metadata mapping, ontology mapping tech-

niques perform mappings between individual elements, so the different degrees

of equivalence mentioned above (i.e., one-to-one, many-to-one, and one-to-none)

are not addressed.

The proposal discussed in this paper follows a different approach. While

ontology mapping techniques act at the taxonomy level by computing equiva-

lences between different nodes (cf. Fig. 1.a), the proposed solution processes

educational resource metadata elements in each of the repositories (e.g., title,

description, keywords) to classify the target resource again according to each of

the taxonomies in existing repositories (Figure 1.b).

Thus, CROERA (Cross-Repository Open Educational Resources Aggrega-

tion) is an approach to the aggregation of repositories that has the features

below:
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Figure 1: Taxonomy matching vs. the approach proposed.

• It provides access to educational resources independently of the taxon-

omy used by each of the integrated repositories. The aggregated resources

are classified automatically using ML techniques according to each of the

taxonomies of the repositories integrated. This allows users to access

resources in several repositories no matter their taxonomies using a tax-

onomy with which the user is most familiar, or that is considered as the

most appropriate or useful in that situation.

• It addresses the heterogeneity of categories, thus enabling browsing (i.e.,

exploratory searching) through any of taxonomies included in the aggre-

gator.
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• It does not require any mapping or matching technique for metadata or

ontologies, thus avoiding the drawbacks of such techniques, in particular

the one-to-none matching situation.

To evaluate the performance of the resource classifier, two approaches were

followed. On the one hand, the quality of the classification of the resources

classified under common categories is addressed automatically. On the other

hand, in order to assess the quality of the classification of those resources not

belonging to the set of common categories, human experts were used.

The rest of this paper is organized as follows. Section 2 introduces CROERA

and the CROERA system1, an aggregator of repositories based on CROERA,

while Sect. 3 is devoted to the evaluation of the proposed system. Section 4 dis-

cusses the results obtained, and Sect. 5 identifies the limitations of this solution.

Finally, Sect. 6 offers some concluding remarks together with an enumeration

of present and future working lines in relation to this research.

2. Materials and Methods

Existing ontology mapping solutions include GLUE (Doan et al., 2004), a

system that takes as input two taxonomies and uses multi-strategy learning and

the Näıve Bayes algorithm to compute the distribution of joint probabilities

between each pair of nodes in the taxonomies. Then, using these values and a

similarity function (Jaccard’s or Most-Specific-Parent) the similarity matrix is

computed for the nodes in the two taxonomies, which in turn is used for the

configuration of the mapping that best meets the restrictions of the domain,

providing high levels of accuracy.

Straccia and Troncy (2005) introduced OMAP, a framework that aims to au-

tomatically align two ontologies looking for the best mappings between entities

defined in the target ontologies, together with their weights. Final mappings are

obtained by means of predictions from different classifiers (terminology-based,

1http://croera.gist.det.uvigo.es
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ML-based, and based on the structure and semantics of ontologies). The main

limitations of OMAP are its high computational complexity and that it only

addresses ontologies described in the same knowledge representation language.

Nezhadi et al. (2011) trained a classification algorithm (K-Nearest Neighbor

(KNN), Support Vector Machines (SVM), Decision Tree (DT) (Yang and Liu,

1999) or AdaBoost) from pairs of ontologies, where the relations between nodes

in both ontologies was marked by experts as Aligned or Not Aligned. Once the

training phase is completed, a fresh pair of ontologies is fed the algorithm to

decide which nodes of one of the taxonomies are aligned to nodes in the other

taxonomy.

Ngo and Bellahsene (2012) proposed the YAM++ tool. Firstly, a classifica-

tion algorithm (Decision Tree, or Näıve Bayes or SVM) is trained with pairs of

ontologies parsed and converted to graphs. Once trained, the tool computes the

mappings in a new pair of non-aligned ontologies, also in the form of graphs. Fi-

nally, YAM++ displays them to the user through a graphical interface for them

to assess the correctness of the mapping according to their knowledge about the

domain.

All the aforementioned proposals experience the one-to-none matching prob-

lem. Thus, when this situation occurs, elements classified under unmatched

categories or nodes will not be accessible from a taxonomy different from the

original one. In the case of Straccia and Troncy (2005), it also refers as lim-

itations the high computational complexity and the limitation to taxonomies

described in the same knowledge representation language. Section 4 discusses

how CROERA solves the limitations above.

The CROERA approach (cf. Fig. 2.b) is quite different from previous pro-

posals no matter it is also ML-based, as it automatically classifies each of the

resources collected according to all taxonomies in the repositories aggregated,

thus facilitating exploratory search among all resources regardless of the tax-

onomy used. For this, an ML algorithm is trained with a set of educational

resources from different repositories labeled according to the taxonomy of the

repository of origin. The information used for training is extracted from the
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Figure 2: Ontology mapping vs. the approach proposed.

metadata of the resources, and more specifically from their title, description

and keywords. After training is completed, a new educational resource will be

classified according to each of the taxonomies of the repositories used to train

the algorithm.

2.1. Background

The terminology utilized and some background on techniques for automatic

document classification are introduced below, together with the classification

algorithm selected, the representation of the documents used, and the metrics

used for evaluation.

2.1.1. Multi-label Classification and the Support Vector Machines Algorithm

Classification is a typical machine learning technique. In particular, CROERA

utilizes classification techniques based on supervised ML. The classifier is trained

with several documents whose category is known and then the algorithm is ap-

plied to documents whose category is unknown (Sebastiani, 2002). Classification

problems are divided into two groups: single-label and multi-label. In the first

case, each document is associated to a unique label from a disjoint set of labels.

In multi-label classification, each document can be associated to one or more

labels from the set of labels (Tsoumakas and Katakis, 2007).
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To implement the classifier, the Scikit-learn (Pedregosa et al., 2012) library

was used, a suite of algorithms for supervised and unsupervised machine learn-

ing providing a rich environment implementing the most relevant algorithms

from the state of the art. The one-vs-rest (Hsu and Lin, 2002) strategy was

applied, which divides the multi-label classification problem into several single-

label problems. This strategy offers a high computational efficiency and inter-

pretability, and can be combined with different classification algorithms.

A large variety of classification algorithms exists, KNN, DT, Neural Net-

works, Bayesian or SVM (Yang, 1999) among them. For our proposal, the SVM

algorithm was selected. SVM is a set of algorithms to solve clustering, regres-

sion and classification problems. It was selected because it is one of the most

successful machine learning models, with a proven applicability to tasks related

to automatic text classification (Rigutini et al., 2005). Besides, it offers a better

performance than other relevant state of the art alternatives such as KNN or

Näıve Bayes (Yang and Liu, 1999). Given a set of elements belonging to one of

two possible categories, the algorithm will construct a model that can predict

whether a new element belongs to one category or another (Hearst et al., 1998;

Joachims, 1998).

2.1.2. Document representation

The operation of the automatic classifier in this research is based on the ap-

plication of natural language processing (NLP) techniques to the documents to

be classified. A software agent will recognize the category to which a document

belongs by analyzing some NLP feature of its content, such as the frequency

of occurrence of words or the language structure used (Settles, 2010). The

Vector Space Model (VSM) (Salton et al., 1975) is the most often used rep-

resentation, where each document in a collection is represented as a point in

an N-dimensional space, N being the number of distinct features in the col-

lection, using as weights the frequency of occurrence of such features. When

words are used as features, the model is known as Bag-of-Words (BoW), and it

is one of the traditionally used representations in document classification and
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information retrieval (Täckström, 2005). A bag or multiset is a set of elements

where each element may occur more than once (Blizard, 1988). Thus, in the

approach proposed in this paper, a document is represented as a Bag-of-Words

collecting all the meaningful words appearing in the title and description of the

document, and also the keywords. Unigrams (i.e., individual words) are used

as features when they are extracted from the title and description of the educa-

tional resource, while n-grams (with n ≥ 1) are used as features when they are

extracted from the keywords of the educational resource (e.g., “Social Sciences”

or “History about DNA”).

2.1.3. Performance Assessment Metrics

Different metrics exist for evaluating multi-label classification (Tsoumakas

and Katakis, 2007; Sokolova and Lapalme, 2009). In our case, precision (P ) and

recall (R), F1 score, the area under the receiver operator characteristic curve

(AROC (Hanley and McNeil, 1982)), the area under the precision-recall curve

(APR (Boyd et al., 2013)) and the Cohen’s kappa coefficient (κ (Cohen, 1960))

are used.

Let LT denote the correct set of labels for a given instance, and LP the set

of labels predicted by the classifier. Precision P is defined as the fraction of the

labels correctly predicted with respect to the total set of labels predicted:

P =
|LT ∩ LP |
|LP |

(1)

Recall R is defined as the fraction of the labels correctly predicted with

respect to the total set of correct labels:

R =
|LT ∩ LP |
|LT |

(2)

The F1 score is a metric commonly used in text classification tasks that

combines precision and recall to provide an indication of the global perfor-

mance (Sokolova and Lapalme, 2009). It is defined as:
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F1 =
2× P ×R
P +R

(3)

A receiver operator characteristic (ROC) curve is a graphical plot that illus-

trates the performance of a classifier vs. its discrimination threshold. In other

words, ROC curves show how the number of correctly classified positive exam-

ples varies with the number of incorrectly classified negative examples. The

ROC curve is generated by plotting the true positive rate (TPR) or sensitivity

vs. the false positive rate (FPR) (i.e. 1 − specificity) for several threshold

settings. The true and false positive rates are defined as follows (TP is the

number of true positives and FN the number of false negatives):

TPR =
TP

TP + FN
(4)

FPR =
FP

TN + FP
(5)

The area under the ROC curve (AROC) is a single-number summary of the

information in the ROC curve.

Precision-recall (PR) curves facilitates the visualization of performance by

depicting precision-recall value pairs for several probability thresholds. They

illustrate the tradeoff between precision and recall. Thus, the area under the

precision-recall curve (APR) is a single number summarizing the information in

the precision-recall curve. A large area under the curve would mean both high

recall and high precision values.

The Cohen’s kappa coefficient is a statistic that measures inter-rater agree-

ment for categorical items. In opther words, it expresses the level of agreement

between two annotators in a classification problem. This indicator is more ro-

bust than percent agreement, as it takes into account the possibility of the

agreement occurring by chance. It is defined as:

κ =
(po − pe)
(1− pe)

(6)
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where po is the empirical probability of agreement on the label assigned to any

sample, and pe is the expected agreement when both annotators assign labels

randomly.

2.2. Theoretical Formulation

As discussed in Sect. 2.1.2, documents (i.e., educational resources) will be

represented according to the BoW paradigm. In other words, each resource will

be represented according to the frequency of occurrence of the meaningful words

extracted from its title and description, and also its keywords.

Let F be the feature domain, that is, the set of words in the training se-

quence, except stop words, previously processed according to the Porter algo-

rithm (Porter, 1980). A learning object ~lom is defined as a vector:

~lom = (w1m, w2m, ..., w|F|m), 1 ≤ m ≤|LO| (7)

where wim represents the weight of feature fi in ~lom. |S| represents the

cardinality of set S.

Let LO represent the domain of learning objects. The weighting problem is

defined as the problem of approximating a function

W̌ : LO×F→ R+ (8)

provided that W̌( ~lom, fi) = wim, where wim is the weight of feature fi in

object ~lom defined as the frequency of the occurrence of fi in ~lom.

To increase the performance of the classifier, instead of using just the features

(i.e., words) extracted from the description and the title of the resource, the

resource’s keywords will also be included among the features when creating the

BoW of the document. Besides, to avoid loss of semantics, spaces are replaced by

underscores in entities composed of more than one word (e.g., “Social Sciences”

→ “Social Sciences”). Finally, a parameter tuning exercise will be conducted

to determine the relevance or optimal weight k to be assigned to each feature

in the BoW of each document. Thus, a learning object ~lom will be defined as
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~lom = (w1m, w2m, ..., w|F|m, k1m, k2m, ..., knm),

1 ≤ m ≤|LO|, 0≤ n ≤|N | (9)

where kim represents the weight of keyword ki in ~lom and N the total number

of keywords in the document.

A repository Rep = { ~lo1, ~lo2, ..., ~lo|Rep|} is a set of |Rep| educational objects,

where the ~loi represent the objects in the repository.

A repository aggregator AggRep = {r1, r2, ..., r|A|} is a set of |AggRep|

repositories, where the ri represent individual repositories.

Let cji be a category belonging to repository ri. The taxonomy of ri is the

set of all categories cji in ri, that is,

Ci = {c1i, c2i,, ..., c|Ci|i}, 1 ≤ i ≤ |A| (10)

Note that domain of learning objects LO = r1 ∪ r2 ∪ ... ∪ r|AggRep| is the

set of all learning objects belonging to any of the repositories integrated by the

aggregator.

The classification problem is defined as the problem of fitting a set of func-

tions

Či : LO×Ci → {True,False}, 1 ≤ i ≤|A| (11)

such that Či( ~lom, cji) = True when educational object ~lom belongs to cate-

gory cj in repository ri, and Či( ~lom, cji) = False otherwise.

The fitting of the Či is performed by means of classification techniques based

on supervised ML. Firstly, the training sequence is obtained from ri. The train-

ing sequence for repository ri is defined as

TSi = { ~loj | ~loj ∈ rand ri, 1 ≤ j ≤ L}, 1 ≤ i ≤ |A| (12)

where L is the length of the sequence and rand ri the outcome of random-

izing repository ri.
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Figure 3: Classification Strategy

Once the classification algorithm has been trained, a fresh object ~lo will be

automatically classified according to each of the taxonomies of the |AggRep|

repositories in the aggregator AggRep as directed by the Či

2.3. Qualitative Description

The study presented in this article consists on the implementation and val-

idation of an aggregator of educational resource repositories that operates ac-

cording to the steps below (cf. Fig. 3):

1. Fetching of educational resources in aggregated repositories. For this,

web scraping techniques are used (cf. Sect 2.4) on each of the repositories
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integrated.

2. Training. For each of the integrated repositories, an SVM classifier is

trained (cf. Sect. 2.1.1) with information from metadata from the re-

sources being classified, namely their title, description and keywords, and

the category to which they belong.

3. Classification. Finally, all educational resources obtained in step 1 are

classified according to all the classifiers trained in step 2, so that the algo-

rithm is able to predict to which category each resource belongs, according

to the information provided by the metadata.

As a result of performing the above three steps, each educational resource will

be eventually classified according to all taxonomies of the different repositories

integrated. Then, users will be able to perform exploratory searches across

all available resources in the aggregator using the taxonomy considered most

appropriate, useful or convenient.

2.4. Architecture

The architecture of the proposed aggregator (cf. Fig. 4) is based on a collec-

tion of cooperating software components, namely a web application, an indexer,

the database system and the web scrappers.

The web application was developed on Ruby on Rails (RoR), the combina-

tion of the Ruby programming language and the Rails framework, especially

designed for web application development (Jazayeri, 2007). In recent years, an

important developers’ community grew around this framework. This, together

with the large amount of programming libraries available (known as gems) make

it an attractive option to serve as the foundation of complex web applications.

RoR follows the model-view-controller paradigm (MVC) (Krasner et al., 1988).

The database system collects all the (relevant metadata and references of

the) aggregated educational resources. MySQL was selected as the technological

solution to implement it.

Performing queries directly on a large database is a time consuming task.

In our case, inverse indexing techniques are applied to increase the performance
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Figure 4: System Architecture

of database access (Zobel et al., 1998). To implement the indexer we selected

Apache Solr (Smiley and Pugh, 2009), a mature technology that ensures stability

and scalability together with fast response time.

The so-called Web scrapers are responsible for obtaining the educational re-

sources from the target repositories to be stored in the database and indexed.

These are software modules able to scan web sites and automatically extract

relevant information from them. For this research, a different scraper was pro-

grammed for each target repository. Information extraction from the source

repository is carried out according to an ontology that defines which fields are
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Figure 5: Ontology defining what fields are to be extracted.

to be extracted (cf. Fig. 5).

To make scraping as efficient as possible, several considerations were taken

into account:

• The process is time-consuming, so scraping processes were run as back-

ground tasks.

• The number of requests per unit of time should be kept below a certain

threshold on each server to avoid being incorrectly considered a denial-of-

service attack.

• As information sources are dynamic, scrapers would periodically check for

new information. As a side effect, special care had to be taken to filter

out duplicate items. For this, hashing techniques are used (cf. Sect. 4).

2.5. Repositories Integrated

Although CROERA was developed to support the integration of any existing

resource repository, for the initial version discussed in this paper three actual

repositories were selected, namely OERCommons, MERLOT and Open Stax
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CNX. These repositories are characterized by the high quality of the resources

collected and their metadata, as communities of experts supervise content qual-

ity in all cases. Besides, each repository has its own taxonomy, which is a key

aspect to evaluate one of the most relevant features of this study (i.e., taxonomy-

independent content fetching).

• OERCommons (Open Educational Resources, 2013) is a repository cre-

ated by the Institute for the Study of Knowledge Management in Edu-

cation (ISKME) to support the deployment of a network of learning and

teaching materials. Users can navigate and fetch content on a database

with more than 98,000 resources organized around 21 categories: Arts,

Education, Business, Humanities, Mathematics and Statistics, Physics,

Geoscience, Computing and Information, Ecology, Engineering, Science

and Technology, Forestry and Agriculture, Space Science, Mathematics,

Life Science, Politics, Law, Technology, Social Sciences, Chemistry and

History.

• MERLOT (Cafolla, 2006) is a community of users centered on the pro-

vision of open educational resources. It collects more than 47,000 OER

organized around 9 broad categories: Academic Support Services, Arts,

Business, Education, Humanities, Mathematics and Statistics, Science and

Technology, Social Sciences and Workforce Development.

• Open Stax CNX (OpenStax, 1999) is a digital ecosystem created by the

Rice University for the distribution and sharing of educational content to

improve the learning experience of its users. It hosts tens of thousands

of educational resources organized around 6 major categories: Arts, Busi-

ness, Humanities, Mathematics and Statistics, Science and Technology

and Social Sciences.

2.6. Usage Example

The next paragraphs illustrate the operation of the solution proposed with

an exploratory search performed using the CROERA system. Figure 6 shows
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how a user accustomed to Open Stax CNX tries to locate educational resources

on “Science and Technology”. Let us suppose that this user is a regular user

of the repository, so they will utilize the particular taxonomy or classification

scheme of this repository.

First, the user selects the taxonomy for Open Stax CNX as the reference

taxonomy (step 1), and then selects the category on which educational resources

are to be fetched, “Science and Technology” in our case (step 2).

After this, the system offers the user a variety of educational resources

about the category selected from all the repositories aggregated, OERCommons,

MERLOT and Open Stax CNX in this example (step 3). Note that the user

may obtain educational resources on a particular category from any repository

and using any classification scheme available. CROERA supports this through

the re-classification of every educational resource according to each of the tax-

onomies, so that a resource is always accessible regardless of the taxonomy used

(step 4).

By accessing the detail of a particular resource, the user can view metadata

elements such as title, description and keywords. In addition, information about

the repository of origin is also displayed, OERCommons in this example (step

5), together with the original classification in the source repository (step 6) and

the classification performed by the CROERA system (step 7) .

As pointed out above, a given resource is classified according to the three

existing taxonomies in OERCommons, MERLOT and Open Stax CNX. Thus,

although the resource in this example was originally classified in category “Geo-

science”, the system was able to correctly classify it in the most appropriate

category in this case (i.e., “Science and Technology” within Open Stax CNX

and MERLOT). Thus, category heterogeneity is overcome and access to all

resources available in the aggregator is provided, solving the one-to-none map-

ping situation, that is, those cases where there is no correspondence among the

elements in the different taxonomies.

Note that mainstream ontology-matching techniques may not be able to

match category “Geoscience” in OERCommons to any of the categories in MER-
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Figure 6: Usage example. Target repository: Open Stax CNX.

LOT or Open Stax CNX without the assistance of a human expert. In such

cases, the resource object would be accessed using the taxonomy in OERCom-

mons only, remaining hidden for the rest of the repositories (i.e., taxonomies).

3. Results

The evaluation of the repository aggregator is discussed along the next para-

graphs. The experiments carried out to compute the optimal weight of the

features extracted from the keywords associated to educational resources are

described (cf. Sect. 2.2). Finally, the actual evaluation of the aggregator is

discussed. Note that evaluation is focused on evaluating the performance of the

classifier of the CROERA system. In this context, performance means how well

the classifier classifies the educational resources contained in the platform. The

performance is measured in terms of precision, recall, F1 score, AROC , APR,

and Cohen’s κ (cf. Sect. 2.1.3).
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3.1. Parameter tuning

To maximize the classifier’s performance, a parameter tuning exercise was

carried out to compute the optimal weights to be assigned to the features ob-

tained from content keywords. To define the relevance or optimal weight to be

assigned within each document’s BoW, the process below was implemented for

each repository:

1. 5,000 elements were randomly selected from each repository.

2. 500 additional elements were randomly selected as the testing sequence.

3. The range of values for the relevance is defined as the set including 0 and

the first 8 values in the Fibonacci sequence (i.e., {0, 1, 2, 3, 5, 8, 10, 13, 21}).

4. The classification algorithm is trained and tested using the sets of elements

in points 1 and 2 above. Features obtained from keywords are weighted

according to the relevance values defined in point 3.

Figure 7 shows the F1 values from the experiments carried out. This figure

illustrates how high relevance values affect the classifier’s performance due to

the higher relative weight of features in the BoW obtained from keywords with

respect to features extracted from document titles and descriptions. According

to this figure, optimal weights for keywords depend on the target repository,

which are 3 for OERCommons; 2 in the case of MERLOT, and 2 again for

Open Stax CNX. As depicted in Figs. 8, 9 and 10, the performance offered

by the classifier after enriching the BoW with (weighted) keywords is higher

than the performance without them, especially in the case of OERCommons.

Table 1 shows that p-values obtained by 10-fold cross validation and a two-

tailed t-test (Sacchet et al., 2015) are below the significance level of 0.05, thus

indicating that the enrichment of the BoW with keywords significantly improves

classification performance.

3.2. Performance Assessment

Due to the different taxonomies of the repositories aggregated, two comple-

mentary strategies were considered to carry out the assessment of the perfor-

mance of the classifier. First, the classification performance for resources in
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Figure 7: Performance of the classifier vs. keyword weight (F1 values)

Figure 8: OERCommons: performance (F1 values) of the classifier vs. training sequence

length, with keywords (dots) and without keywords (crosses).
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Figure 9: MERLOT: performance (F1 values) of the classifier vs. training sequence length.

Figure 10: Open Stax CNX: performance (F1 values) of the classifier vs. training sequence

length.

common categories to all three repositories was evaluated. Then, in order to

evaluate the classification performance for the resources not belonging to com-
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Table 1: Precision (P ), recall (R), F1, area under the ROC curve (AROC), area under the

precision-recall curve (APR) and Cohen’s kappa coefficient (κ) (averaged over all classes) for

the three repositories considered with and without keywords.

OERCommons MERLOT OpenStaxCNX

F1 w/o keywords 0.468 0.550 0.691

F1 with keywords 0.911 0.613 0.750

F1 improvement 94.00% 11.45% 8.54%

AROC w/o keywords 0.687 0.728 0.792

AROC with keywords 0.943 0.758 0.827

AROC improvement 37.26% 4.12% 4.42%

APR w/o keywords 0.570 0.640 0.810

APR with keywords 0.92 0.70 0.85

APR improvement 61.40% 9.38% 4.94%

κ w/o keywords 0.411 0.490 0.636

κ with keywords 0.900 0.563 0.706

κ improvement 118.9% 14.90% 11.01%

p− value < 0.0001 0.0230 0,0335

mon categories, an alternate approach was followed based on human experts.

The combination of both strategies offers a broader picture of classification per-

formance.

3.2.1. Performance for Common Categories

Evaluation is carried out according to the steps below:

1. Selection of the common categories in the three aggregated repositories,

namely Arts, Business, Humanities, Mathematics and Statistics, Science

and Technology and Social Sciences.

2. Selection of those resources classified in just the common categories.

3. Training of the classification algorithm using 5,000 randomly selected doc-

uments (i.e., their metadata) from all three repositories.
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4. Classification of 500 documents randomly selected from each of the repos-

itories (i.e., OERCommons, MERLOT and Open Stax CNX).

Table 2 collects precision, recall, F1, AROC , APR and κ (averaged over all

classes) for the classification performed according to the steps above. It can

be observed that average values for the six metrics considered are fairly high

(e.g., around 80% precision, AROC and APR, and around 75%-77% recall and

F1 values). According to the widely used rating scale proposed in (Landis

and Koch, 1977), Cohen’s kappa values obtained show an agreement strangth

between moderate (0.41 - 0.60) and substantial (0.61 - 0.80). Besides, the best

results are obtained when resources originally in OERCommons are classified,

and the worst results correspond to resources in MERLOT.

Although the performance values offered by the classifier are high, a number

of factors prevent this value from being optimal:

• Category scope. Although categories common to the three repositories

were selected, this selection was made according to just the name of the

category. Note that two categories having the same name may have dif-

ferent scope, that is, a category may include a number of resources in a

repository that would not be an exact match of the resources in the same

category in a different repository.

• Differences in the criteria applied by human experts. The classification

of the resources of each repository was performed by different groups of

human experts, and as a consequence the classification of a resource in

one category or another depended on the judgment of the actual experts

deciding upon the classification.

• Sub-optimal training. The computing resources available prevented the

use of all the documents in the repositories to train the classification al-

gorithm. This causes classifier training to be sub-optimal, which in turn

has a negative impact on the performance of the classification.
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Table 2: Precision P , recall R, F1 , area under the ROC curve (AROC), area under the

precision-recall curve (APR) and Cohen’s κ (averaged over all classes) for the common cate-

gories in the three repositories considered.

Test elements P R F1 AROC APR κ

OERCommons 0.863 0.812 0.840 0.878 0.860 0.751

MERLOT 0.745 0.666 0.705 0.748 0.730 0.525

Open Stax CNX 0.781 0.746 0.764 0.788 0.790 0.583

Average 0.796 0.743 0.770 0.804 0.790 0.620

3.2.2. Performance for Disjoint Categories

Expert-based evaluation was carried out by 68 participants (cf. Table. 3) in-

cluding university and secondary education teachers from several fields of study.

Participants interacted with the platform and were asked to classify, in the most

appropriate category for each of the three taxonomies available, a collection of

educational resources. Participants should consider only the metadata elements

utilized in automatic classification, that is title, description and keywords. Each

participant classified a randomly assigned sample of the resources available in

the platform. A total of 647 documents (475 unique documents) were classified.

The classification made by human experts served as a reference for assessing

the classification made by the CROERA system on the same resources, and

thus for obtaining an indication of the performance of the classification system

proposed.

Obviously, classification abilities were not uniform among human experts.

Factors such as the level of expertise in different areas or their subjectivity had

an influence on their decisions. To obtain an indication of a human expert’s clas-

sification skills, the classification performed was compared to the classification

in the repository of origin. This way, numeric values measuring the classification

abilities of human experts can be computed. In our case, the values correspond

to precision, recall, F1, AROC , APR and κ, computed for the experts and their

classification exercise. Table 4 collects the average values obtained. As ex-

pected, human experts were not infallible and perfect values were not obtained.
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Table 3: Human experts participating in the evaluation of the CROERA system.

CS Ma L Me Ed Ch El CA Tot

HE teachers 19 6 3 1 6 1 1 1 38

SE teachers 3 0 1 0 0 0 1 0 5

Total teach. 22 6 4 1 6 1 2 1 43

Other 20 1 0 0 3 0 1 0 25

Legend: CS=Computer Science, Ma=Maths, L=Languages,

Me=Medicine, Ed=Education, Ch=Chemistry, El=Electronics,

CA=Culture & Arts; HE=Higher Education, SE=Secondary Educa-

tion.

The lowest values are those obtained for the OERCommons repository, followed

by the MERLOT ones. Finally, the highest values are those obtained for the

Open Stax CNX repository. This behavior is due to two factors, which are

enumerated below.

• Each educational resource to be classified by experts may belong to more

than one category, thus adding complexity to the classification problem.

Indeed, complexity increases with the number of categories which can be

applied to a given element. For instance, for the elements from the OER-

Commons repository, experts had to select the more appropriate category

(or categories) from among a set of 21 different categories. In the case

of MERLOT, experts had to select one or more categories from a pool

of 9 categories. Finally, for the elements in Open Stax CNX repository,

experts only have to decide among 6 categories. As a consequence, experts

performed better when classifying elements belonging to Open Stax CNX,

followed by MERLOT and OERCommons, as Table 4 indicates.

• OERCommons holds the highest average number of categories per educa-

tional resources, followed by MERLOT and Open Stax CNX. This also

adds complexity to the classification problem. It is more difficult for ex-
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Table 4: Average classification abilities of human experts for the three repositories considered.

Test elements P R F1 AROC APR κ

OERCommons 0.426 0.514 0.465 0.648 0.420 0.289

MERLOT 0.494 0.650 0.561 0.644 0.470 0.293

Open Stax CNX 0.748 0.886 0.811 0.829 0.77 0.554

Figure 11: Distribution of human experts according to their classification skills (F1 value).

perts to classify well elements belonging to repositories which hold a high

number of categories per element.

Then, human experts were grouped according to their classification skills.

Figure 11 summarizes the distribution of human experts according to this cri-

terium. Note that there are relevant differences in the classification abilities of

different experts.

Finally, the performance of CROERA is computed taking as a reference the

elements manually classified by each of the experts’ groups. Again, precision,

recall, F1, AROC , APR and κ (averaged over all classes) are computed.

As it can be observed in Tables 5 & 6, performance seems to increase with
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Table 5: Performance of CROERA, taking as a reference experts’ classification (I).

Class. OERCommons MERLOT CNX Avg.

Skills P R F1 P R F1 P R F1 F1

>0.80 0.563 0.308 0.436 0.579 0.567 0.573 0.710 0.687 0.698 0.569

>0.75 0.453 0.305 0.379 0.596 0.636 0.615 0.700 0.686 0.693 0.563

>0.70 0.363 0.280 0.322 0.581 0.619 0.599 0.667 0.668 0.667 0.530

>0.65 0.370 0.224 0.297 0.594 0.597 0.595 0.664 0.656 0.654 0.518

>0.60 0.388 0.216 0.302 0.596 0.536 0.564 0.682 0.635 0.658 0.509

>0.55 0.381 0.228 0.305 0.582 0.538 0.559 0.667 0.627 0.646 0.504

>0.50 0.351 0.226 0.289 0.575 0.533 0.554 0.658 0.626 0.642 0.495

>0.45 0.337 0.233 0.285 0.558 0.526 0.542 0.617 0.581 0.598 0.475

>0.40 0.331 0.234 0.283 0.545 0.512 0.528 0.614 0.571 0.592 0.468

>0.35 0.332 0.237 0.285 0.545 0.515 0.530 0.614 0.570 0.591 0.469

>0.30 0.326 0.235 0.281 0.538 0.511 0.524 0.608 0.564 0.585 0.464

>0.25 0.326 0.235 0.281 0.538 0.511 0.524 0.608 0.564 0.585 0.464

>0.20 0.326 0.235 0.281 0.538 0.511 0.524 0.608 0.564 0.585 0.464

>0.15 0.326 0.235 0.281 0.538 0.511 0.524 0.608 0.564 0.585 0.464

>0.10 0.322 0.232 0.277 0.535 0.510 0.522 0.604 0.562 0.582 0.461

>0.05 0.322 0.232 0.277 0.535 0.510 0.522 0.604 0.562 0.582 0.461

> 0.00 0.322 0.232 0.277 0.535 0.510 0.522 0.604 0.562 0.582 0.461

experts’ classification skills, except in the case of AROC , APR and κ for the

OERCommons repository, which do not increase or slightly increase. In order

to validate this hypothesis, regression analysis techniques (Rawlings et al., 1998;

Kahane, 2007), namely a 2-degree polynomial regression, was applied to F1 val-

ues in Table 5. The results obtained are depicted in Figs. 12, 13 and 14 for

the three repositories considered. Figure 15 depicts the average performance.

Tables 5 & 6 and regression curves in the four figures show that the performance

of the classifier of the proposed system increases with the threshold that deter-

mines the classifying ability of human experts. In other words, performance
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Table 6: Performance of CROERA, taking as a reference experts’ classification (II).

Class. OERCommons MERLOT CNX

Skills κ AROC APR κ AROC APR κ AROC APR

>0.80 0.117 ∗ 0.290 0,435 ∗ 0.610 0,543 ∗ 0.720

>0.75 0.211 ∗ 0.320 0.432 0.710 0.670 0.472 0.736 0.750

>0.70 0.228 0.642 0.290 0.385 0.682 0.630 0.485 0.738 0.740

>0.65 0.197 0.631 0.260 0.350 0.673 0.590 0.433 0.710 0.730

>0.60 0.197 0.644 0.240 0.303 0.658 0.540 0.425 0.708 0.690

>0.55 0.215 0.640 0.260 0.330 0.666 0.540 0.439 0.718 0.690

>0.50 0.239 0.643 0.280 0.311 0.660 0.530 0.445 0.722 0.680

>0.45 0.242 0.641 0.290 0.322 0.660 0.540 0.403 0.700 0.650

>0.40 0.240 0.639 0.290 0.306 0.654 0.520 0.393 0.693 0.630

>0.35 0.245 0.642 0.290 0.305 0.653 0.520 0.391 0.692 0.630

>0.30 0.244 0.641 0.290 0.306 0.654 0.530 0.390 0.691 0.630

>0.25 0.244 0.641 0.290 0.306 0.654 0.530 0.390 0.691 0.630

>0.20 0.244 0.641 0.290 0.306 0.654 0.530 0.390 0.691 0.630

>0.15 0.244 0.641 0.290 0.306 0.654 0.530 0.390 0.691 0.630

>0.10 0.242 0.640 0.290 0.307 0.654 0.530 0.390 0.691 0.630

>0.05 0.242 0.640 0.290 0.307 0.654 0.530 0.390 0.691 0.630

> 0.00 0.242 0.640 0.290 0.307 0.654 0.530 0.390 0.691 0.630

∗ Only one class present in ground truth. AROC is not defined in that case.

increases when the elements taken as a reference are those classified by experts

with better classification abilities. Besides, the values of the four coefficients of

determination R2 are very high (i.e., 0.954, 0.851, 0.810, and 0.981) confirming

the high quality of the regression models. Furthermore, in 4 cases the p-value

is less than 0.05, eliminating the null hypothesis and providing evidence on the

statistical relationship between data and models. All evidence confirm that,

as the quality of the base truth increases, the performance of the classification

made by the CROERA system increases.
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Figure 12: Regression Analysis. CROERA vs. human experts. CNX case.

Figure 13: Regression Analysis. CROERA vs. human experts. MERLOT case.

4. Discussion

The most relevant proposals using ML techniques for conducting matchings

between ontologies do not address repositories, or do not refer to taxonomies or

ontologies on educational resources. Therefore, no relevant contributions were

found in the literature in relation to the research discussed in this paper. Fur-
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Figure 14: Regression Analysis. CROERA vs. human experts. OERCommons case.

Figure 15: Regression Analysis. CROERA vs. human experts. Average results.

thermore, the development of the most promising initiatives was halted at the

time of writing this paper, and the related software tools are not available (Doan

et al., 2004; Straccia and Troncy, 2005; Otero-Cerdeira et al., 2015). The only

system found to serve as a reference is YAM++ (Ngo and Bellahsene, 2012).

This system was under development between 2009 and 2013 (Otero-Cerdeira
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et al., 2015) and there is functional open-source software available. Therefore,

the results obtained by our system will be compared with those of YAM++.

Note that automatic tools for creating mappings between taxonomies, and par-

ticularly YAM++, are intended to be used with complex taxonomies taking

advantage of all the features offered, such as node, element, structural and

semantic-level analysis (Doan et al., 2003; Straccia and Troncy, 2005; Ngo and

Bellahsene, 2012).

Thus, the three taxonomies introduced in this work, (i.e., OERCommons’,

MERLOT’s and Open Stax CNX’s) were fed to YAM++ to compute mappings

between each pair of them. Results are summarized in Table 7. Note that

YAM++ could only match a few elements in each pair of taxonomies. More

specifically, seven nodes were mapped between OERCommons and MERLOT,

six nodes were matched between OERCommons and Open Stax CNX, and the

same number of nodes between MERLOT and Open Stax CNX. Besides, there

are many existing relations that YAM++ was unable to compute. Specifically,

16 relations between OERCommons and MERLOT, 15 between OERCommons

and Open Stax CNX, and 3 between MERLOT and Open Stax CNX.

Note that the use of automated tools does not provide dramatic advantages

in the case of simple, single-level taxonomies as the ones tackled in this work.

This is because the information available on the taxonomy allows element-level

mappings only, that is, mappings based on the information in each node pro-

vided by categories’ labels. Thus, when the tool does not find a match between

nodes in two categories, a one-to-none mapping situation occurs, so that some

elements will not be matched and others would not be matched optimally. As

a consequence, in the context discussed in this paper, items classified under

categories or nodes that could not be matched will not be accessible from a

repository different from the original one.

For example, the “Physics” category in OERCommons has no correspon-

dence with any category in MERLOT or Open Stax CNX, and therefore items

classified under category “Physics” cannot be accessed using the Open Stax

CNX or MERLOT taxonomies. The same applies to all the elements in cate-
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Table 7: Mappings computed by YAM++.

OERC, MER-

LOT, CNX

Arts, Business, Humanities,

Math&Stat, Sci&Tech, Social Sci

OERC, MER-

LOT

Education

OERC Physics, Geoscience, Comp&Inf,

Ecology, Engineering, Fore&Agr,

Space Sci, Math, Life Sci, Poli-

tics, Law, Tech, Chemistry, His-

tory

MERLOT only Ac.Sup.Serv, Web Deb

gories or nodes that could not be matched. Indeed, using YAM ++ to compute

mappings between elements in the taxonomies of the repositories referenced in

this work, only 79,855 from the 149,856 accumulated resources at the time of

writing this paper would be accessible, that is, more than 46% of the resources

would not be accessible from all taxonomies.

CROERA solves the situation discussed above and enables access to 100% of

the resources available regardless of the selected taxonomy, as all of them would

be classified according to the three taxonomies. The results obtained in Sect. 3

show that the CROERA system provides access to all resources regardless of

the taxonomy used, with an average performance (F1 score) of 77% (maximum

of 84%) for resources belonging to the common categories in the three reposito-

ries. In the case of resources not classified in common categories, average F1 is

reduced to 56.9%, with a maximum close to 70%.

Insofar execution time is concerned, the training of the classifier using 5,000

documents as discussed in Sect. 3.1 took 33 minutes in an office-grade personal

computer (i.e., Intel R© CoreTM 7-4770 CPU @ 3.40GHz × 8 with 16GB RAM).
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Note that training will be performed only once. The classification of 500 new

resources according to the three taxonomies involved took between 1’17” and

1’38”, that is, an average of 168-196 ms. per resource. CROERA will store the

new classifications, so once a resource is re-classified, it would not be required to

be classified again unless a new repository using a new taxonomy or classification

scheme is aggregated.

It has to be taken into account that the classifier selected in this study is a

multi-label classifier, which means that an element may belong to one or more

categories. In other words, an element may be labeled with one or more labels.

Therefore, to achieve a performance of 100% all elements would have to be

classified in all of the categories to which it belongs. A performance value below

100% does not necessarily mean that the resource was misclassified, but that

it was not classified in all applicable categories. For example, a performance

of 60% would not mean that 40% of the resources were misclassified, but 60%

of the resources were classified optimally for each of the applicable categories,

while 40% of the remaining resources were classified sub-optimally.

The fact that each element may belong to more than one category adds fur-

ther complexity to the classification problem, which increases with the number

of categories applicable to a given element. In the case of CROERA, 38% of

the educational resources are classified in at least two categories; 18% in three

or more categories; 8.5% is classified in five or more categories, and there are

more than 1,000 resources that are labeled with 10 or more labels. This causes

that the perceived performance is better than the performance expected from

the values obtained in the evaluation process, as the CROERA system provides

access to all the elements available, either optimally (average F1 of 56.9%) or

sub-optimally (43.1% average F1).

Although it can be argued that the usability and relevance of exploratory

search and browsing may not be as high as expected (Ochoa, 2005) this is still

an open field. For example, in some scenarios exploratory search-based visit

strategies are perceived as both relevant and usable (Phang et al., 2010). On

the other side, previous work (Pérez-Rodŕıguez et al., 2016) indicated that the
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exploratory search of educational resources was perceived as a very convenient

way of interacting with a system that integrates a great number of educational

resources. In particular, 85% of teachers who interacted with an educational

resource repository considered exploratory search as “excellent” or “good”; 10%

of them considered it as “average”, and only the 5% considered exploratory

search as not useful.

With respect to the scalability of the CROERA system, the educational

resources managed are classified only once, at the time they are stored in the

system. When a new repository is aggregated, its resources are also classified

only once according to the existing taxonomies. Although this preliminary

version of the CROERA system does not update the resources it has previously

scrapped, this issue has been addressed in the previous work referenced (Pérez-

Rodŕıguez et al., 2016). The approach used is the following: the first time the

system gets an educational resource, it creates a hash of the resource’s metadata.

As each educational resource is identified by a unique identifier (in this case the

URL), the next times the system gets an already fetched resource, it computes

again the hash of the corresponding metadata. If it is different from the hash

stored in the database, the system will update the resource and will classify it

again according all taxonomies available in the system; if the hash value has not

changed, the resource is assumed to be unchanged and it will not be necessary to

classify it again. As a consequence, in our opinion, there are no relevant concerns

insofar its scalability is concerned. Note that one of the key objectives pursued

with CROERA is to facilitate access to all resources aggregated by providing

alternate ways to access them, independently of the taxonomy originally used

to classify them. On the other side, resource aggregation has its main impact on

the enrichment of the metadata of existing resources, and not necessarily on the

final number of resources obtained. For example, most relevant resources in a

given field would have been discovered and classified by all relevant repositories.
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5. Limitations

No matter that CROERA could contribute in a relevant way to facilitate

the classification, location and fetching of educational resources independently

of the repository of origin, the approach introduced has some limitations.

The CROERA system considers only the top level categories of the tax-

onomies of the repositories aggregated. Automatic classification in CROERA

is based on information provided by the metadata attached to educational re-

sources (i.e., title, description, keywords). However, in most cases educational

resources include some sort of textual content that may provide information rel-

evant to classification beyond the one extracted from metadata. As CROERA

does not consider actual textual content, this may affect performance. This

situation would become more relevant in the case of low-quality metadata (e.g.,

when the description or keywords of a given resource do not correctly char-

acterize its content). Besides, the actual version of the system only considers

repositories and educational resources written in English.

On the other side, state-of-the-art computing equipment prevented us from

using all the items available for training the classification algorithm at a rea-

sonable cost. This causes classifier training to be sub-optimal, which in turn

negatively affects the classification performance.

Finally, the lack of taxonomy-matching ML-based systems different from

YAM++ that could be used to compare our approach with other equivalent

solutions did not contribute to provide the clearest picture possible about the

actual benefits of CROERA in terms of performance or classification power.

6. Conclusions and Future Work

CROERA is an aggregator of educational resource repositories that enables

access to resources independently of the taxonomy utilized to classify the con-

tent in each repository. The aggregated resources are classified automatically

using ML techniques according to each of the taxonomies of the repositories

integrated. This enables users accustomed to the descriptions and classification
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strategy of a particular repository to discover resources in other repositories

without needing to switch to another taxonomy or classification scheme.

This platform was designed to integrate any existing repository. However,

for the discussion in this paper three of the most relevant OER repositories

were utilized (i.e., OERCommons, MERLOT and Open Stax CNX) due to the

high quality of their resources and metadata, and the fact of being backed by

communities of experts and active users.

CROERA provides a solution to the heterogeneity of taxonomies and enables

exploratory searches (i.e., browsing) through any of the taxonomies integrated

without requiring any metadata or ontology mapping, thus eliminating one of

its main drawbacks, that is, the one-to-none mapping situation. This problem

of nonexistence of relations or matchings between nodes in different taxonomies

has as a consequence that items classified under categories or nodes that could

not be mapped would not be accessible from a different repository.

CROERA is most useful tool to facilitate the work of human experts, as

CROERA may be used to perform an initial pre-classification of educational

resources, which in turn will contribute to save time and resources.

Present and future work include addressing the limitations discussed in

Sect. 5, extending the user interface to support simple searches, the integra-

tion of additional repositories, the classification of resources according to the

target educational level, and the definition of a taxonomy based on Wikipedia

categories that would facilitate the use of Wikipedia categories to navigate any

of the repositories integrated.
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