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Abstract

The Laser Interferometer Space Antenna (LISA) is a future ESA-led space-based observatory
to explore the gravitational universe in the frequency band between 10−4Hz and 1Hz. LISA
implements picometer-precise inter-satellite ranging to measure tiny ripples in spacetime induced
by gravitational waves (GWs). However, the single-link measurements are dominated by laser
frequency noise, which is about nine orders of magnitude larger than the GW signals. Therefore,
in post-processing, the time-delay interferometry (TDI) algorithm is used to synthesize virtual
equal-arm interferometers to suppress laser frequency noise.

In this work we identify several laser frequency noise coupling channels that limit the per-
formance of TDI. First, the on-board processing, which is used to decimate the sampling rate
from tens of megahertz down to the telemetry rate of a few hertz, requires careful design. Ap-
propriate anti-aliasing filters must be implemented to mitigate folding of laser noise power into
the observation band. Furthermore, the flatness of these filters is important to limit the impact
of the flexing-filtering effect. We demonstrate that this effect can be effectively reduced by using
compensation filters on ground. Second, the post-processing delays applied in TDI are subject
to interpolation and ranging errors. We study these laser and timing noise residuals analytically
and perform simulations to validate the models numerically. Our findings have direct implica-
tions for the design of the LISA instrument as we identify the instrumental parameters that are
essential for successful laser noise suppression and provide methods for designing appropriate
filters for the on-board processing.

In addition, we discuss a dedicated ranging processing pipeline that produces high-precision
range estimates that are the input for TDI by combining the sideband and pseudo-random noise
(PRN) ranges. We show in this thesis that biases in the PRN measurements limit the laser noise
suppression performance. Therefore, we propose time-delay interferometric ranging (TDI-R)
as a third ranging sensor to estimate bias-free ranges that can be used to calibrate the biases
in the PRN measurements. We present a thorough statistical study of TDI-R to evaluate its
performance. Therefore, we formulate the likelihood function of the interferometric data and
use the Fisher information formalism to find a lower bound on the estimation variance of the
inter-satellite ranges. We find that the ranging uncertainty is proportional to the inverse of the
integration time and the ratio of secondary noise power, that limits the interferometric readout,
to the laser noise power. To validate our findings we implement prototype TDI-R pipelines and
perform numerical simulations. We show that we are able to formulate optimal estimators of
the unbiased range that reach the Cramér-Rao lower bound previously expressed analytically.
The developed TDI-R pipeline will be integrated into the ranging processing pipeline to perform
consistency checks and ensure well-calibrated inter-satellite ranges.

Keywords: Gravitational waves, LISA, Time-Delay Interferometry
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Kurzzusammenfassung

Die Laser Interferometer Space Antenna (LISA) ist eine Mission der europäischen Weltrau-
magentur (ESA) zur Detektion von Gravitationswellen im Frequenzbereich zwischen 10−4Hz
und 1Hz. Gravitationswellen induzieren relative Abstandsänderungen, die LISA mithilfe von
Laserinterferometrie mit Picometerpräzision misst. Ein großes Problem hierbei ist das Frequen-
zrauschen der Laser. Um dieses zu unterdrücken, ist es notwendig, mithilfe eines Algorithmus
namens TDI (engl. time-delay interferometry), virtuelle Interferometer mit gleichlangen Armen
zu konstruieren, wie z.B. das klassische Michelson-Interferometer.

In dieser Arbeit untersuchen wir die Performanz von TDI unter realistischen Bedingungen
und identifizieren verschiedene Kopplungsmechanismen des Laserfrequenzrauschens. Als erstes
betrachten wir die Datenverarbeitung an Bord der Satelliten, die benötigt wird, um die Abtas-
trate der interferometrischen Messungen zu reduzieren. Hierfür sind Anti-Alias-Filter vorgese-
hen, die der Faltung von Laserrauschleistung in das Beobachtungsband vorbeugen. Außerdem
wirkt sich die Ebenheit der Filter auf die Effektivität von TDI aus (engl. flexing-filtering-effect).
Dieser Effekt ist bereits in der Literatur beschrieben und wir demonstrieren in dieser Arbeit die
Möglichkeit, ihn mithilfe von Kompensationsfiltern effektiv zu reduzieren. Als zweites betrachten
wir Kopplungsmechanismen von Laserfrequenzrauschen im TDI-Algorithmus selbst. Fehler in
der Interpolation der interferometrischen Messungen und Ungenauigkeiten in den absoluten Ab-
standsmessungen zwischen den Satelliten führen ebenfalls zu einer unzureichenden Reduzierung
des Laserfrequenzrauschens. Wir beschreiben die oben genannten Kopplungsmechanismen an-
alytisch und validieren die zugrundeliegenden Modelle mithilfe von numerischen Simulationen.
Das tiefere Verständnis dieser Residuen ermöglicht es uns, geeignete instrumentelle Parameter
zu wählen, die von hoher Relevanz für das Missionsdesign von LISA sind.

Des Weiteren beschäftigen wir uns in dieser Arbeit mit der möglichst genauen Bestimmung
der absoluten Abständen zwischen den Satelliten, die für den TDI Algorithmus erforderlich sind.
Hierfür werden die Abstandsinformationen aus den Seitenbändern und der PRN-Modulation
(engl. pseudo-random noise) kombiniert. Wir zeigen, dass die PRN-Messung von systema-
tischen Verzerrungen betroffen ist, die zu Laserrauschresiduen in den TDI-Variablen führen.
Um diesen Fehler zu korrigieren, schlagen wir als zusätzliche Abstandsmessung TDI-Ranging
(TDI-R) vor. TDI-R ist zwar ungenauer, aber frei von systematischen Verzerrungen und kann
daher zur Kalibrierung der PRN-Messungen herangezogen werden. Wir präsentieren in dieser
Arbeit eine ausführliche statistische Studie, um die Performanz von TDI-R zu charakterisieren.
Dafür formulieren wir die Likelihood-Funktion der interferometrischen Messungen und berech-
nen die Fisher-Informationsmatrix, um die theoretisch mögliche untere Grenze der Schätzvarianz
zu finden. Diese verhält sich invers proportional zur Integrationszeit und dem Verhältnis von
Sekundärrauschleistung, die die interferometrische Messung fundamental limitiert, und Laser-
rauschleistung. Zusätzlich validieren wir die analytische untere Grenze der Schätzvarianz mithilfe
von numerischen Simulationen und zeigen damit, dass unsere Implementierung von TDI-R opti-
mal ist. Der entwickelte TDI-R-Algorithmus wird Teil der Datenverarbeitungspipeline sein und
Konsistenzprüfungen und Kalibrierung der primären Abstandsmessmethoden ermöglichen.

Schlagwörter: Gravitationswellen, LISA, Time-Delay Interferometry
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Table 1: Table of symbols and notation used in the manuscript.
Symbol Unit Description

c ms−1 Speed of light in vacuum (299 792 458m s−1)
ϕ cycles General phase of a system (e.g. laser, clock or beatnote)
ν Hz Instantaneous frequency, defined as time derivative of the phase ϕ̇(t)
ν0 Hz Central laser frequency, nominally 281.6THz
L m Physical arm length of interferometer
xo [x ] Slow varying (out-of-band) offsets of quantity x(t)
xϵ [x ] Fast (in-band) fluctuations of quantity x(t)
ϕc
ij cycles Carrier phase of laser ij

ϕm
ij cycles Optical phase modulation of laser ij

ϕ
usb/lsb
ij cycles Upper or lower sideband phase of laser ij

S - Decimation stage operator (includes anti-aliasing and decimation)
F - Filtering operator
SM↓ - Decimation operator (where M denotes the decimation factor)
Ts s Sampling time, defined as time interval between samples
fs Hz Sampling frequency, defined as 1

Ts

fn Hz Nyquist frequency, defined as half the sampling frequency
x̄ [x ] Signal x(t) passed through the decimation stage

Ta
b - Time reference frame transformation operator (from b to a)

t s Barycentric coordinate time (global time reference frame)1
τi s Proper time on spacecraft i (includes relativistic effects)
δτi s Deviation of proper time on spacecraft i from TCB
τ̂i s Onboard time on spacecraft i (includes clock imperfections)
δτ̂i s Deviation of on-board timer from proper time on spacecraft i
Dij - Delay operator, applies propagation delay dij(t) from spacecraft j to i
D̄ij - Delay operator, applies decimated propagation delay Sdij(t)
Dij - Post-processing delay operator, applies to discrete data
D̂ij - Delay operator, applies estimated delay d̂ij(t)

D̂ij - Post-processing delay operator, applies estimated delay d̂ij(t)
ˆ̄Dij - Post-processing delay operator, applies estimated and decimated delay ˆ̄dij(t)

Rx(τ) [x ]
2 Auto-correlation function of quantity x(t)

Sx(f) [x ]
2
/Hz Power spectral density of quantity x(t), defined as Fourier transform of Rx(τ)√

Sx(f) [x ]/
√
Hz Amplitude spectral density of quantity x(t), defined as square-root of PSD

oij Hz Megahertz-frequency offset from nominal laser frequency of laser ij
pij cycles Laser phase noise of laser ij
qi s Timing jitter of clock i
Mij s Modulation noise on MOSA ij
Hij s Path length variation (in units of seconds) along link ij caused by a GW
Nob

ij s Path length noise (in units of seconds) on optical bench ij
N ro

ij s Equivalent path length noise (in units of seconds) due to readout noise
Nbl

ij s Equivalent path length noise (in units of seconds) due to backlink fiber noise
Nδ

ij s Path length noise (in units of seconds) due to acceleration noise of the TM
Bij s Ranging bias of the PRN measurement
NR

ij s Ranging noise of the PRN measurement

E{X} [X ] Expected value of random variable X
Var{X} [X ] Variance of random variable X, defined as E

{
(X − E{X})2

}

1The symbol t is often used as the “muted” variable for time dependent functions in which case it can represent
the evolution of time in any time reference frame (not just the TCB).
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Chapter 1

Introduction

Gravitational waves (GWs) are tiny perturbations of the metric tensor that defines the structure
of spacetime. They are emitted by heavy masses that are accelerated; most commonly in binary
system, where two compact objects revolve around each other. Due to the radiation of gravi-
tational energy, such compact binary systems lose angular momentum over time, and therefore
their orbital distance shrinks and the orbital period decreases. This enabled Taylor (1994) to
perform the first indirect detection of GWs using radio observations of a system consisting of a
pulsar and another neutron star. The loss of angular momentum over time was perfectly con-
sistent with Einstein’s theory of general relativity, so he concluded that the binary system must
radiate energy in form of GWs. This initial proof of the existence of GWs led to the construction
of the first ground-based detectors.

1.1 Gravitational Wave Detection

GW astronomy is a new and fast moving field that opens up new windows for observing the
most energetic events in the Universe. In 2015, the Laser Interferometer Gravitational-Wave
Observatory (LIGO) announced the first direct detection of GWs emitted by a stellar-mass
black hole merger. Shortly after, many more compact binary coalescences were added to the
catalogue (Abbott et al., 2019; Abbott et al., 2021), among them, the first multi-messenger
observation of a binary neutron star inspiral (Abbott et al., 2017). Recently, pulsar timing array
(PTA) collaborations around the world reported strong evidence for an isotropic stochastic
GW background at nanohertz-frequencies (Reardon et al., 2023; Agazie et al., 2023; EPTA
Collaboration et al., 2023; Xu et al., 2023). This leaves a wide unexplored GW landscape
between PTAs and ground-based detectors ultimately limited below a few hertz by seismic and
Newtonian noise. The Laser Interferometer Space Antenna (LISA) (Amaro-Seoane et al., 2017)
is a space mission selected by ESA as the third large mission in the Cosmic Visions program
themed “The Gravitational Universe” to fill-in parts of the gap left by PTAs and ground-based
detectors. It will be sensitive between 0.1mHz and 1Hz. Moving the detector to space allows
for much larger baselines and provides a much more quiet environment for the test masses that
serve as inertial references for the relative length measurement.

Stable references in time and translation are the fundamental ingredients to probe the ripples
in spacetime caused by GWs. Figure 1.1 shows the most basic detector design consisting of two
stations at different locations hosting clocks that are synchronized via an optical link. The
transferred clock reading is sensitive to the differential effect of time dilation at the two stations
and to the travel time the light takes to traverse the space between stations. Both effects
depend on the spacetime metric that is disturbed by the GW. It is possible to form a ranging
and timing observable from the remote clock comparison (Reynaud et al., 2008). The advantage
of this procedure is that the ranging observable is rejecting timing noise of the clocks while the
timing observable is less sensitive to spurious motion of the stations. Laser interferometers like
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Figure 1.1: Artistic illustration of a single baseline GW detector composed of two stations car-
rying clocks that are synchronized via an optical link. The blue fabric, the clocks sit, represents
the spacetime that is perturbed by the passing of GWs. Due to the local spacetime metric at
the stations the clocks tick at different rates, thus accumulating different readings. Furthermore,
the light travel time between the stations is modulated by the GWs. Those two effects are the
fundamental principles to detect GW.

LIGO or LISA rely on ranging by realizing equal-arm Michelson interferometers to measure GW
as frequency standards are not mature enough to be sensitive in the timing observable.

1.1.1 Laser interferometry for GW detection

A laser interferometer is a device to detect tiny changes in relative distance measurements. As
the laser light is coherent over many cycles it effectively acts as a very precise measuring stick.
Laser interferometers are used on ground and in space to perform ranging experiments, e.g.,
lunar ranging and other geodesy experiments.

The first laser ranging interferometer in space is currently flying on the Gravity Recovery
and Climate Experiment follow-on (GRACE-FO) mission (Abich et al., 2019). It consists of
two spacecraft on the same near polar orbit with a separation of 200 km. Laser interferometers
constantly track the inter-satellite range that is modulated by the Earth’s gravity field. The
instrument has reached precisions of tens of 200 pm/

√
Hz.

In the following, we explain the basic working principle of a Michelson interferometer (see
fig. 1.2). This type of interferometer is used in all operational ground-based observatories, like
LIGO. It is constructed from a laser source, a beam splitter, two end-mirrors that serve as test
masses (TMs) and a photodiode detecting the interference pattern.

For simplicity, we model the laser beam as a plane wave propagating along the beam axis
neglecting its transversal profile (which is usually assumed to be Gaussian). Thus the electric
field vector at the longitudinal coordinate z and time t is given as

E(z, t) = E0 · cos
(
2πϕ(z, t)

)
. (1.1)

Here E0 denotes the field amplitude and ϕ(z, t) the phase of the laser light (in cycles). For
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Figure 1.2: Illustration of a basic equal-arm Michelson interferometer setup.

monochromatic light and propagation in vacuum the laser phase is given as

ϕ(x, t) = ν0 ·
(
t− z

c

)
+ ϕ0. (1.2)

The laser phase is quickly increasing quantity (in space and time) with terahertz optical fre-
quencies.

In a Michelson interferometer a laser beam is emitted by the laser source and split into two
identical copies1 at the beam splitter. Both beams traverse the arms reflecting off the end-mirrors
of the interferometer and recombine again to interfere at the output port of the interferometer.

A plus-polarized GW traveling perpendicular to the interferometer stretches one arm by
δL(t) while compressing the other one by the same amount. Therefore, after the round-trip
though the arms the phases of the beams have evolved differently. The phases at recombination
read

ϕ1(t) = ν0 ·
(
2
L+ δL(t)

c
− t

)
(1.3a)

ϕ2(t) = ν0 ·
(
2
L− δL(t)

c
− t

)
(1.3b)

The photodetector at the output port measures the intensity of the incident light which is
proportional to the square of the superposition of the electric fields. The terahertz-oscillations
of the intensity are much too fast for the photodiodes bandwidth. Therefore, it effectively acts
as a low-pass filter rejecting oscillating components at the optical frequency of the laser. This
is indicated in the equation below by the angular brackets.

I(t) ∝
〈(

E1(t) + E2(t)
)2〉

=
〈
E2

1(t)
〉
+
〈
E2

2(t)
〉
+ 2
〈
E1(t) · E2(t)

〉
(1.4)

The first two contributions are the individual intensities of the beams. They oscillate at twice
the optical frequency and, therefore, they yield a constant photocurrent. The cross term can be

1This is not exactly true as the beam that is transmitted at the beam splitter picks up extra phase π
2
. However,

transmitted and reflected beam switch roles after traversing the arms and, hence, are in phase again at the output
port of the interferometer.
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rewritten by using the trigonometric identity cos(α) cos(β) = cos(α+β)+cos(α−β)
2 .

〈
E2

1/2(t)
〉
= E2

0

〈
cos2

(
2πiϕ1/2(t)

)〉
≃ E2

0

2
(1.5)〈

E1(t) · E2(t)
〉
= E2

0

〈
cos
(
2πϕ1(t)

)
· cos

(
2πϕ2(t)

)〉
(1.6)

=
E2

0

2

〈
cos
(
2π(ϕ1(t) + ϕ2(t))

)
+ cos

(
2π(ϕ1(t)− ϕ2(t))

)〉
(1.7)

≃ E2
0

2

(
1

2
+ cos

(
2π(ϕ1(t)− ϕ2(t))

))
(1.8)

As we will see below the cosine function of the differential phase δϕ(t) = ϕ1(t)− ϕ2(t) survives
the detector as its evolution in time is driven by the Doppler shift caused by the GW. Therefore,
we find for the total measured intensity2

I(t) ∝ E2
0 ·
(
1 + cos

(
2π(ϕ1(t)− ϕ2(t))

))
. (1.9)

Throughout the manuscript we call δϕ(t) the phase of the beatnote formed by the two beams
recombining at the beam splitter. It can be extracted from eq. (1.9) by a dedicated device, a
phasemeter.

Plugging in the phases calculated in eq. (1.3) the beatnote phase is indeed sensitive to the
disturbance δL(t) that is caused by the GW. We find

δϕ(t) = 4ν0 ·
δL(t)

c
. (1.10)

1.2 The Laser Interferometer Space Antenna

The Laser Interferometer Space Antenna is a future space observatory led by the European
Space Agency that will start observing GWs in the late 2030s (Amaro-Seoane et al., 2017). It
will be sensitive in the 10−4Hz to 1Hz frequency band and thus opening up a complementary
window for GW astronomy between PTAs and ground-based observatories, like LIGO.

In this section we give a brief description of the LISA mission parameters. We start off
by taking a closer look at the high-level measurement principle and then discuss the catalogue
of GW sources LISA is expected (or even guaranteed) to detect. Ultimately, we describe the
individual components that are relevant for appropriately model the LISA measurements that
are further used in this thesis to demonstrate the performance of the instrument.

1.2.1 The LISA constellation

LISA consists of three satellites flying in formation and constantly exchanging laser beams to
realize picometer-precise ranging. The three spacecraft are placed in heliocentric orbits trailing
the earth by approximately 20◦ (see fig. 1.3). Each orbit is tilted towards the ecliptic such that
the satellites form an almost equilateral triangle with arm length of 2.5 million kilometer. The
plane defined by the triangle is inclined towards the ecliptic by 60◦ and its normal vector stays
aligned towards the sun. Furthermore, during the course of a year the constellation performs
its typical cartwheel motion, enabling LISA to resolve the sky location of individual sources.
As the antenna pattern sweeps across the sky the signal is modulated by the time-dependent
instrument response and picks up a characteristic Doppler signature.

The LISA mission relies on picometer-precise ranging measurements along the 2.5 million
kilometer arms to pick up GW strains of the order of 10−21. As the frequency standard on board
the LISA spacecraft are only 10−13 stable(see LISA Performance Working Group (2021) for the

2Here, we assume an ideal contrast of one.
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Figure 1.3: Orbital trajectory of the LISA constellation. The LISA spacecraft are depicted by
black dots and are separated by 2.5Gm. They form an (almost) equilateral triangle that is
performing a cart-wheel motion around the sun (right panel). Taken from Amaro-Seoane et al.
(2017).

allocated stability of clocks and lasers), measurement of the differential effect of time dilation
is far out of reach. To be insensitive to timing jitter of the local frequency reference (i.e. the
laser source) LISA realizes equal arm interferometers that effectively reject laser noise. This
technique is already implemented in today’s ground-based GW detectors that all implement
equal-arm Michelson interferometers.

Constructing an equal-arm Michelson interferometer with the dimensions of LISA in space
is extremely difficult. As the end-stations of the interferometer are not rigidly connected to the
central station, they will drift around with relative line-of-sight velocities of up to a few tens
of meters per second. Furthermore, the beams strongly diverge when propagating between the
spacecraft such that the light intensity is reduced by a factor 1010 (Amaro-Seoane et al., 2017).
Therefore, it is rather impractical to back-reflect them at the end-stations to form a beatnote at
the center-station which would diminish the light power by another factor of 1010 rendering the
beam immeasurable. The solution is to detect the “one-way links” that compare local with distant
laser light that has traveled along the link. In post-processing the six resulting measurements
can be combined in an algorithm called time-delay interferometry that synthesizes arbitrary
virtual interferometers (see section 3.1.2). The ultimate goal of time-delay interferometry (TDI)
is to seek interferometers with sufficiently equal arms to suppress laser noise to acceptable levels.
At the same time the sensitivity for GW signals must be preserved.

1.2.2 LISA Sources

The LISA band is richly populated with a multitude of astrophysical GW sources (Amaro-Seoane
et al., 2023). Figure 1.4 provides an overview showing the characteristic strain of the various
source types and at which frequencies they emit. The most abundant source type for LISA is
represented by millions of compact galactic binaries (Nissanke et al., 2012) indicated as light
blue dots. The black and blue lines represent black hole binaries as observed by ground based
detector already today. LISA will observe them in their early inspiral phase and be able to
predict their merger. In general, compact binary systems consist of stellar remnants, i.e. white
dwarfs, neutron stars or stellar-mass black holes. As they revolve around each other in a close
orbit they emit a virtually monochromatic signal at twice the orbital frequency. As a result they
lose orbital momentum and slowly spiral into each other. Out of all compact galactic binaries
only roughly a thousand will be loud enough and, therefore, resolvable by LISA. The remaining
binaries will blend into a foreground hum that is indistinguishable from a stochastic signal
(Amaro-Seoane et al., 2023; Sesana, 2016; Périgois et al., 2021). It is represented by the grey
area in fig. 1.4 and limits the detector sensitivity at millihertz-frequencies. Compact binaries
also facilitate a great opportunity for multi-messenger astronomy as they can be observed in
the optical, UV and x-ray spectrum (Gaia Collaboration et al., 2018; Brown et al., 2020; Stella
et al., 1987). This puts LISA in a unique position as those electromagnetic surveys include
“guaranteed sources” (also dubbed “verification binaries”) that will be detected after only a few
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Figure 1.4: Overview of expected LISA sources (see text for detailed explanation) taken from
Amaro-Seoane et al. (2017).

weeks to month (Stroeer and Vecchio, 2006). Those are indicated with blue asterisk in fig. 1.4.
Another class of binary sources are massive black hole (MBH) binaries with component

masses ranging from 103 to 107M⊙. MBHs reside in the center of most galaxies (Kormendy and
Ho, 2013) and were recently observed directly by the Event Horizon Telescope (Akiyama, 2019).
Their origin is assumed to be twofold; some MBH must have already existed at early cosmic
times (Bañados et al., 2014), others may have formed via successive merger events (Fakhouri
et al., 2010). With LISA it will be possible to detect GW signals from MBH binaries out to
redshifts z ∼ 20, thus, will help us to drastically improve our understanding of their formation
and growth across cosmic ages. Depending on their components masses they will sweep across
the LISA band in their final stages of inspiraling and finally merge. Figure 1.4 shows three
examples at z = 3 of different masses as the thick lines changing color from yellow to dark red.
The vertical ticks mark the time to merger. Current estimates of the observed merger rates are
highly uncertain and predict 1 to 100 detection per year (Sesana et al., 2005; Amaro-Seoane
et al., 2023).

The MBHs hosted in the center of most galaxies also form another type of binary system
with stellar-mass compact objects, so-called extreme mass-ratio inspirals. Radio observations
of our own galactic center have revealed a highly dynamic environment where the central MBH
is surrounded by a cluster of stars on highly eccentric orbits (Genzel et al., 2010) suggesting
the existence of extreme mass-ratio inspirals (EMRIs). The name stems from the fact that the
involved masses differ by many orders of magnitude. Common mass-ratios range from 10−8 to
10−5. A sub class is represented by intermediate mass-ratio inspirals which describe systems
consisting of an intermediate-mass black hole either inspiraling into a MBH or stellar-mass
compact objects revolving around it with typical mass-ratios below 10−5. These systems hold a
myriad of exciting science cases (Amaro Seoane, 2021). The orbits of lighter component around
the central black hole are highly eccentric and dynamic. These characteristics can be viewed
in fig. 1.4 as the five red lines. The signal of a single EMRI is not just a chirping sinusoid but
has higher harmonic content due to the elliptic orbit. As a consequence EMRIs probe different
regimes of spacetime curvature along its orbital phase. However, the GW emission is strongest
in the highly relativistic regime where the companions are closest reaching velocities of a few
percent of the speed of light.

The final class of anticipated GW signals are broadband stochastic GW backgrounds. They
can be either of astrophysical or cosmological origin. The former stems from abundant popu-
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lations of compact binaries at various redshifts (Schneider et al., 2001; Rosado, 2011). Their
virtually monochromatic signals spectrally overlap and are indistinguishable from noise. How-
ever, the most prominent background source for LISA will be the combined signal coming from
millions of detached white dwarf binaries from our own galaxy (Nelemans et al., 2001). An
estimate of their expected spectral strain is shown in fig. 1.4 as the grey shaded area. Due to
the stochastic nature of the background it behaves as instrumental noise and impacts the LISA
sensitivity at millihertz-frequencies. The second possible origin of a stochastic GW in the LISA
band are cosmological processes, e.g. a first-order phase transition in the very early universe
(Caprini et al., 2016) or primordial black holes (García-Bellido et al., 2016). The detection of
stochastic background is especially difficult as they can easily be confused with instrumental
noise. Therefore, traditionally to distinguish signal from measurement noise the data taken by
several detectors is cross-correlated to filter out the signal that is common among them. As
shown in section 3.1, LISA can be understood as two Michelson interferometers rotated by 45◦

against each other and a third “null”-channel that is insensitive to GW and thus acts as a monitor
for instrumental noise (Flauger et al., 2021).

1.2.3 Time reference frames

Exact timing plays a crucial role for the discrete sampling of the LISA measurements and data
processing on ground. The measurements are represented by megahertz-beatnotes that contain
tiny GW induced Doppler shifts. Tracking of the beatnote phase at microcycle-precision requires
ultra stable clocks. In section 1.2.4 we will see that the clocks that will be implemented in LISA
drift apart by many seconds over the mission time. Therefore, the measurements taken on the
spacecraft must be resynchronized to a well-defined reference frame prior to handing the data
over to data analysis.

To better understand the various effects determining the spacecraft on-board time, we in-
troduce the various time reference frames relevant to model the LISA measurement chain and
properly design effective data processing algorithms. We indicate the time scale a physical quan-
tity x is defined in by a superscript. For the global time scale barycentric coordinate time (TCB)
we choose t, for the spacecraft proper and on-board clock times we use τi and τ̂i, respectively.
Here the index i = 1, 2, 3 denotes the spacecraft. Furthermore we introduce the operator Tb

a

that transforms a variable xb(t) given in time scale b to time scale a, i.e.,

xa(t) = Ta
bx

b(t). (1.11)

Here, the variable t is used as the “muted variable”. It does not define the reference frame of the
measurement (we could also call it τ) but only indicates the time of evaluation in the reference
frame given by the superscript.

The barycentric coordinate time

The TCB is a well-defined global time reference frame to describe events in the solar system (Ka-
plan, 2006). It places a perfect clock in the barycenter of the solar system neglecting relativistic
effects due to its gravitational potential, therefore realizing a coordinate time in a “mass-less”
universe with a well-defined origin.

For LISA this time frame is relevant to describe effects that apply to the full constellation.
Examples are the individual orbital trajectories of the three satellites or the effect of a passing
GW. It represents the time reference frame in which astrophysical events are usually described,
like solar system ephemerides or the emission of GWs.

The spacecraft proper time

To describe any physics that happens inside the spacecraft it is convenient to define the spacecraft
proper time as a co-moving observer would experience it. In general, this time scale differs for
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each LISA spacecraft and drifts apart by a few milliseconds over the course of the mission
(Bayle et al., 2022b). In our modeling we use it to describe all local physical processes, e.g.,
the evolution of the laser and ultra-stable oscillator (USO) phases or path length noises due to
moving optics.

As the spacecraft proper time is related to the TCB we define the transformation of a physical
quantity xt expressed in the TCB into the spacecraft proper time by

xτi(t) = Tτi
t x

t(t) = xt(tτi(t)) = xt(t+ δti(t)) (1.12)

where we have introduced the operator Tτi
t that effectively shifts the time argument t by the

deviation δti(t) of the TCB with respect to the spacecraft proper time on spacecraft i (Hees
et al., 2014).

The spacecraft on-board time

As opposed to the spacecraft proper time the spacecraft on-board time includes technical im-
perfections of the real clock. The properties of real clocks are characterized by their Allan
deviations which expresses the frequency stability over a certain integration time. A thorough
study of various space qualified clocks can be found in Hartwig (2021).

Analogously to eq. (1.12) we can define the transformation of an on-board physical quantity
xτi(t) into the on-board clock frame. We use this operation to model time-stamping of all LISA
measurements.

xτ̂i(t) = Tτ̂i
τix

τi(t) = xτi(τ τ̂ii (t)) = xτi(t+ δτi(t)) (1.13)

Here, δτi(t) denotes the time difference between the spacecraft proper time and the spacecraft
on-board time as it is observed by the clock.

1.2.4 Instrument overview

In this section we want to give an overview of the LISA instrument. Here, we mainly discuss
the space segment, i.e., the satellites, that host the interferometric detection system.

As discussed in section 1.2.1 the fundamental measurement principle of LISA is to monitor
tiny relative distance changes between the satellites that are induced by GW radiation with
picometer-precision. Therefore, the interferometric detection system must be built such that it
does not introduce spurious path-length noise that buries the GW signals.

In what follows, we discuss the various subcomponents that make up the detection system
and discuss their critical stability parameters. Each spacecraft hosts two identical MOSAs that
facilitates all components required for the optical interferometry. They are attached to a hinge
to be able to follow the far spacecraft with the telescope as the opening angle of the triangle
changes slightly over time. Figure 1.5 shows a sketch of a single MOSA.

As we will see, the sensitivity of LISA is mainly limited by two classes of noises. Spurious
accelerations of the TMs at low frequencies and readout noise of the interferometric detection
system at high frequencies. The level and temporal correlation properties of the noise sources is
characterized by their power spectral density (PSD) or amplitude spectral density (ASD) (the
square-root of the former). They are intimately connected to the auto-correlation function and
represent the spectral content of the noise (for more details see section 1.3). This is relevant
for determining the signal-to-noise ratio of a GW signal. The spectral components of the latter
only compete with the spectral components of the noise at the same frequency. Therefore, the
signal-to-noise ratio of a monochromatic signal is dependent on the signal’s frequency. This
gives rise to the characteristic strain shown in fig. 1.4 which defines the detectors sensitivity and
takes into account instrumental noises and the average detector response (Moore et al., 2015).
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Figure 1.5: Overview of the interferometric readout on a single MOSA. Each MOSA hosts a
laser source, an optical bench, a telescope and a GRS. Adjacent MOSAs are connected via
the backlink fiber to exchange light. The three different beams are ultimately combined in
the inter-spacecraft interferometer (ISI), the test-mass interferometer (TMI) and the reference
interferometer (RFI). Taken from Wissel et al. (2023) with permission from the author.

Geodesic reference sensor

Effective GW detection requires a very quiet environment. In on-ground observatories this is
achieved by suspending mirrors as pendulum masses that strongly decouple them from ground-
motion. Space, on the other hand, is naturally very quiet as any free-falling objects simply
follow their geodetics. However, even the inner solar system is not quiet enough to allow for
GW detection. The solar wind will shake the satellites and spoil the picometer-precise relative
length measurements. The solution to this is to implement a so-called GRS which tracks any
non-gravitational forces on the spacecraft. This yields geodetic references that are much closer
to “free-fall” than the spacecraft itself.

The GRS is inherited from the LISA pathfinder mission and is constructed from an Au-Pt
TM (cube of side length 46mm) placed inside a vacuum housing that is vented to space to reduce
the residual gas pressure further. The latter shields the TM from any external disturbances and
such serves as free-falling inertial reference for the range measurement. Moreover, the GRS
housing is equipped with electrodes that exert electrostatic forces to control the position of the
TM and ultra-violet lamps to discharge it. As the two TMs on adjacent MOSAs follow slightly
different geodesic they would drift apart over time. It can be shown that it is sufficient to
only control the position of the TMs in y and z direction and leave the (sensitive) x direction
untouched.

The TM interferometer reads out the longitudinal position of the TM (see fig. 1.5). The
inertial stability of the TM is limited by residual gas pressure in the GRS housing which is of
the order of a few micropascal. Upon impact, residual gas molecules transfer tiny momenta to
the TM. The performance of the GRS was extensively tested in the LISA pathfinder mission
not just fulfilling the mission requirements but even exceeding the requirements set for the LISA
mission (Armano et al., 2016; Armano et al., 2018). Those are given by

√
Stm(f) = (2πf)−2 · 3 fm/s2/

√
Hz ·

√
1 +

(
0.4mHz

f

)2

·

√
1 +

(
f

8mHz

)4

. (1.14)
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The factor of (2πf)−2 converts the requirement (Amaro-Seoane et al., 2017) from acceleration
units to displacement units for easier comparison later. We plot the requirement curve in fig. 1.6.

Interferometric readout system

As demonstrated in section 1.1.1 laser interferometers are a sensitive tool to measure the relative
path-length difference in an equal-arm Michelson interferometer. All operational ground-based
interferometers use such a setup to sense GWs. For LISA it is impossible to directly construct
an equal-arm interferometer in space for two reasons. First, after propagating a laser beam
from one spacecraft to the other the beam diverges and only a few hundreds of picowatts out
of the few watts originally emitted. Back-reflecting the beam would attenuate the power by
the same factor and would render it immeasurable. Second, the LISA triangle is not perfectly
equilateral. Due to the orbital dynamics governing the trajectory of the satellites the arms of
the constellation are time-dependent and differ by a few percent.

As a solution LISA implements the so called split-interferometry design which leads to three
interferometers per MOSA as shown in fig. 1.5. The TM to TM measurement is performed in
parts. Locally, the TM interferometer measures the TM position with respect to the MOSA.
Then, the inter-spacecraft interferometer performs a measurement between the local and the
distant MOSAs. To relate adjacent lasers via the backlink fiber the reference interferometer is
implemented. The dominating noise in each interferometer is now presented by laser frequency
noise. The origin of this noise is the jitter of the laser frequency around its central value. In this
manuscript we assume a level of3 √

Sṗ(f) = 30Hz/
√
Hz. (1.15)

Converted to displacement units the level reads 5mm/
√
Hz at 1mHz which strongly violates

the targeted picometer-precision by nine orders of magnitude. The solution is to combine the
three interferometers in the TDI algorithm discussed in section 3.2 to form virtual equal-arm
interferometers that effectively suppress laser noise.

After laser noise suppression the performance of the interferometric readout is limited by
several other effective displacements noises. Even though all optical components in the path
of the beams are rigidly fixed to the optical bench they are subject to tiny movements due to,
e.g., temperature fluctuations or vibrations of the telescope. Those result in path-length noises
that couple similar to a GW to the central laser frequency and produce an additional phase
contribution

ϕ(t−Nob(t)) ≃ ϕ(t)−Nob(t) · ν(t). (1.16)

Similarly, the propagation of the adjacent beam through the backlink adds phase noise to the
beam due to scattering centers in the fiber (Fleddermann et al., 2018; Max Rohr et al., 2020).

Another major contribution is photon shot noise which mainly depends on the power level of
the interfering beams. Quadrant photodiodes are used to detect the megahertz beatnote formed
by the interfering beams. Due to the low power level of the distant beam (hundreds of picowatts)
the dominant unsuppressed noise in the inter-spacecraft interferometer is shot noise at a level of
roughly 6 pm/

√
Hz (Bayle and Hartwig, 2023).

Overall, the LISA noise budget allows for 10 pm
√
Hz of effective displacement noise in the

interferometric detection system. The LISA performance model keeps track of the individual
contribution and allocates part of the budget to each. To account for the fact that residual force
noise on the TMs is dominating the noise budget at frequencies below a few millihertz, the white

3Here, for simplicity, we omit the commonly assumed noise shape function that amplifies the noise power at
frequencies below 2mHz.
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Figure 1.6: Comparison of various requirement curves. In blue the requirement of displacement
noise in the interferometric readout system is shown. The acceleration noise requirement on
the TM (converted to displacement units) is plotted in red. The grey dashed line indicates the
microcycle-requirement that serves as a benchmark.

noise budget of 10 pm/
√
Hz is relaxed as

√
Sifo(f) = 10 pm/

√
Hz ·

√
1 +

(
2mHz

f

)4

. (1.17)

We plot the requirement in fig. 1.6. We observe that the relaxation has the desired effect. The
requirement curve for interferometric displacement noise stays below the requirement for TM
acceleration noise.

As a benchmark to judge the relevance of a noise source disturbing the measurements we
define the picometer (displacement units) or equivalently the microcycle (phase units) require-
ment. They denote the same thing and only differ by the unit they are expressed in. To convert
from displacement units to phase units we have to divide by the nominal laser wavelength
λ0 = 1064 nm. √

Sreq
δϕ (f) = 1 µcycle/

√
Hz ·

√
1 +

(
2mHz

f

)4

(1.18)

Again, we add it to the graph in fig. 1.6 to compare it to the other requirement. The rationale
behind it is a factor ten below the other curves and therefore virtually negligible. It would take
100 uncorrelated noise sources with a level of 1 pm/

√
Hz each to add up to a level of 10 pm/

√
Hz.

Onboard clock and frequency distribution system

Each LISA spacecraft houses a single USO that serves as a unique clock to drive all on-board elec-
tronics. Furthermore, the on-board timer is derived from this clock which is used to accurately
time-stamp all measurement. Time-stamping can be modeled as shifting the time argument of
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Figure 1.7: Distribution of the clock signal of the USO. The left panel represents the injection
of the pilot tone into the phase readout of the photoreceiver. The phasemeter’s ADC digitally
samples the sinusoidal beatnote and extracts its phase. The right panel shows how the various
frequencies required in LISA are derived from the 10MHz clock. For more details see the text.
Adapted from Bayle and Hartwig (2023) with permission from the author.

the beatnote phase φ by the timing jitter q of the clock.

φ(t+ q(t)) = ν · (t+ q(t)) = φ(t) + ν · q(t) (1.19)

In this calculation we assume that the derivative of the beatnote phase, the beatnote frequency
ν, is constant. The timing-jitter couples proportionally with the beatnote frequency which is of
the order of 20MHz. To fulfill the microcycle-requirement we need a clock timing stability of
50 fs/

√
Hz. √

Sq · 20MHz ≲ 1 µcycle/
√
Hz (1.20)

However, with current state-of-the-art space-qualified clocks this cannot be achieved. The base-
line design of LISA foresees a temperature-stabilized quartz oscillator with a timing precision
of √

Sq(f) = 10−14 s/
√
Hz ·

(
f

Hz

)− 3
2

. (1.21)

This level of timing jitter results in a phase noise level of approximately 6mcycles/
√
Hz at 1mHz

which strongly violates the microcycle-requirement. The solution to this problem is to distribute
the clock signals among the satellites and measure it differentially in an auxiliary channel. This
is achieved by modulating sidebands on the laser beam via electro-optic modulators.

In addition to the timing jitter of the clock the ADC is subject to sampling jitter. For
mitigation a 37.5MHz pilot tone is injected in the readout of the photodetectors before digitally
sampling the signals (see left panel of fig. 1.7). After sampling it at the phasemeter rate of
80MHz it provides a timing reference to correct all phase readouts. This procedure is called
pilot tone correction.

The right panel of fig. 1.7 shows the distribution of the 10MHz4 clock signal to the different
subcomponents. For sideband modulation it is upconverted to 2.4GHz and 2.401GHz for left-
handed and right-handed MOSAs, respectively. The 2.4GHz signal is then downconverted again
by a factor of 32 to derive the 37.5MHz pilot tone. The 80MHz phasemeter clock can be either
derived directly from the 10MHz clock signal or from the 2.4GHz signal.

Critical for performance is a stable phase relation between the optical 2.4GHz phase mod-
ulation and the pilot tone. The latter indirectly defines the timing of the sampling procedure
via pilot tone correction and is therefore the relevant timing reference for each spacecraft. The
sidebands are read out in the inter-spacecraft and reference interferometers to synchronize the
carrier-carrier beatnote measurements with femtosecond-precision. Here, the stability of the
sideband modulation on right-handed MOSAs is secondary as it can be related to the sideband

4This has been recently changed to 3 ·224Hz ≃ 50.3MHz. However, the particular choice of the USO frequency
does not change the general principle of the conversion chain, so we stick with the 10MHz clock in this manuscript
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modulation on left-handed MOSAs via the sideband-sideband beatnote measured locally by the
reference interferometer. Furthermore, the phase stability of the 80MHz phasemeter clock is
also not performance critical as it is accounted for by the pilot tone correction.

Any deviation of the phase of the optical 2.4GHz signal from the pilot tone due to errors
in the downconversion or the phase modulation is described by modulation noise. The current
best estimate of modulation noise in terms of timing jitter is given by the LISA Performance
Working Group (2021) as

√
SM (f) = 8.3× 10−15 s/

√
Hz ·

(
f

Hz

)−2/3
. (1.22)

For the optical phase modulation error on right-handed MOSAs we assume a level that is ten
times higher to account for the “larger” separation from the pilot tone in the frequency conversion
chain (see fig. 1.7). However, as we will later show this can be mitigated by the ranging processing
algorithm presented in section 3.2.4.

1.3 Time Series Analysis of Stochastic Signals

In this manuscript, we make extensive use of the notation of spectral densities of stochastic
processes. Therefore, in this section, we give a brief overview of the definitions and methods we
use to derive analytical expressions for those. Stochastic processes are, as the term “stochastic”
suggest, random processes that cannot be predicted. However, we can define “ensemble quan-
tities” that describe the temporal correlation properties of a random process. The most basic
random process is represented by the white Gaussian random process. For any distinct times t1
and t2 the values the random process x(t) takes are uncorrelated. We write

E{x(t1) · x(t2)} = 0. (1.23)

Here, E{·} denotes the ensemble average which expresses the mean value over many independent
realisations of the process. This property does not apply to all random processes. Any random
process of finite bandwidth is indeed correlated in time which can be described by the auto-
correlation function (ACF). For zero mean random processes x(t) the ACF is defined as

ACF{x(t)}(τ) = E{x(t) · x(t+ τ)}. (1.24)

In this definition of the ACF, we require that the random process x(t) is stationary which implies
that the statistical properties of the process are independent of absolute time t and only the
relative displacement τ is relevant. Evaluating the ACF at τ = 0 yields the variance or power
of the process.

The PSD views the frequency content of the ACF in the Fourier domain. The PSD is defined
as the Fourier transform of the ACF.

PSD{x(t)}(f) =
∫

R
ACF{x(t)}(τ) · e−2πifτ dτ (1.25)

It indeed represents a density function as the integral over all frequencies yields the total power of
the signal

∫
RPSD{x(t)}(f) df = ACF{x(t)}(0). As the ACF is a real function of even symmetry

the PSD inherits the same properties. Therefore, it is customary to only consider positive
Fourier frequencies f and “discard” negative frequencies. This gives rise to the one-sided PSD
which is defined only for positive frequencies and equals to twice the two-sided PSD to account
for the negative frequencies in the density function. In the remainder of this document, we
implicitly mean the one-sided PSD if we discuss spectral densities and make use of the symbol
Sx(f) = 2 · PSD{x(t)}(f).
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Next, let us discuss the effect of linear time-invariant (LTI) systems on a stochastic process.
A system is called LTI if its properties are constant over time and it reacts linearly to any input
such that the result of the input x(t) = x1(t) + x2(t) equals to the sum of the results of the
individual inputs. We write

F
(
x1(t) + x2(t)) = Fx1(t) + Fx2(t). (1.26)

Here, we have introduce the operator F that maps the input x(t) to the output y(t) of an LTI
system. This can be described by convolving the impulse response h(t) of the system with the
input. Formally we have

y(t) = Fx(t) =

∫
R
h(τ)x(t− τ) dt. (1.27)

The output y(t) of the system is again a random process with a modified PSD. Using eq. (1.24),
eq. (1.25) and common Fourier transformation rules, we find that the PSD of y(t) equals to the
PSD of x(t) multiplied by the magnitude square of the Fourier transform of the impulse response
h̃(f).

Sy(f) = F̃Sx(f) = |h̃(f)|2 · Sx(f). (1.28)

The latter is also called the transfer function of the system. Here, F̃ denotes the effect of the
operation on the PSD, which is a simple multiplication for LTI systems.

In the data analysis presented in chapters 3 and 4 we operate on discretely sampled data.
To apply the formalism introduced above we use the Whittaker-Shannon interpolation formula
given in Oppenheim et al. (1999) as

x(t) =
∞∑

n=−∞
sinc(fst− n) · xn. (1.29)

It perfectly reconstructs the continuous-time representation from the discrete samples. Here,
the sinc-function is defined as sinc(x) = sin(πx)

πx . Furthermore, this identity only holds for signals
x(t) that are band-limited up to the Nyquist frequency which is given by fs

2 .
Next, let us define the effect of a finite impulse response (FIR) filter on a discretely sampled

time series xn. The operation is described by the discrete convolution of the finite length FIR
filter kernel hn with the data

yn =
∑
m

hmxn−m. (1.30)

Then, we use eq. (1.29) to represent this operation in continuous time. It is trivial to show that

y(t) =

∫
R

∑
m

hmδ(τ −mTs)︸ ︷︷ ︸
h(τ)

x(t− τ) dt, (1.31)

where δ(t) denotes the Dirac-delta function. In the equation above we have identified the impulse
response h(τ) of the FIR filter operation which can be used to calculate the transfer function.

Another operation we require for the modeling of the LISA on-board processing is decimation
which describes the reduction of the sampling rate by an integer factor M . Decimation is
implemented by skipping every M -th sample in the time series. Formally we have

yn = xM ·n. (1.32)

In appendix B we show that this process cannot be represented by an LTI system. As a conse-
quence, a transfer function does not exist for this operation but instead the PSD of y(t) is given
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by folding so-called aliases into the new band which is limited up to the new Nyquist rate. From
eq. (B.13) we derive the following expression for the one-sided PSD

Sy(f) = S̃M↓Sx(f) = rect

(
f

fs

)M−1∑
n=0

S(n)
x (f). (1.33)

Here, S̃M↓Sx(f) is a shorthand notation representing the action of the decimation operator in
Fourier space on the PSD of x(t) and the rectangular function is defined to be equal to zero for
|f | > fn and equal to one for |f | < fn such that the decimated signal is band-limited up to the
new Nyquist rate fn which is defined as half the sampling rate fs after decimation. Finally, the
nth alias, S(n)

x (f), on the right-hand-side of eq. (1.33), is given by

S(n)
x (f) =

{
Sx

(
nfn + f

)
if n is even,

Sx

(
(n+ 1)fn − f

)
if n is odd.

(1.34)

Equations (1.33) and (1.34) highlight the typical folding into band of any spectral component
that resides at frequencies higher than the new Nyquist rate (up to the highest frequency Mfn,
which corresponds to the Nyquist rate before decimation). This result is also presented in Staab
et al. (2023b).

1.4 Outline

This thesis is structured as follows. In chapter 2 we present the detailed modeling of the
LISA measurement that serves as a basis for the remaining chapters. We introduce the basic
measurement principle of LISA; performing inter-satellite ranging with picometer-precision using
laser interferometry. To understand what limits the ranging performance we explain the coupling
mechanisms of various instrumental noises. Most relevant in this context are laser frequency
noise and timing jitter of the clocks. They completely dominate the single-link measurements
and cover up any GW signals.

The solution is presented in chapter 3 which discusses the TDI algorithm that can be used
to synthesizes virtual equal-arm interferometers. Those are (almost) immune to laser frequency
noise and clock timing jitter. Prior to TDI the various ranging sensors have to be “fused” in a
dedicated ranging processing pipeline to form accurate, high-precision estimates of the pseudo-
ranges that are required as an input for TDI. Then, we investigate the various coupling channels
of laser and timing noise residuals in the TDI combinations. We find that biases of a few meters
in the pseudo-random noise (PRN) ranges limit the laser noise suppression in TDI.

To calibrate those biases we propose to use time-delay interferometric ranging (TDI-R) which
is a bias-free ranging method for LISA. We present a detailed statistical analysis of TDI-R in
chapter 4 using the Fisher information formalism and present analytical lower bounds on the
estimation variance of the ranges.

Finally, we conclude in chapter 5. We discuss the implications of this thesis for the LISA
mission and point out avenues for future work.
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Chapter 2

Instrumental Modeling

In this section we explain the model behind the LISA measurements that we analyze in the
remaining chapters. Bayle and Hartwig (2023) give a concise overview of the modeling used in
state-of-the-art LISA simulators, like LISA Instrument (Bayle et al., 2022a) and LISANode. We
only reproduce the model in phase units here as frequency units are straight-forward to derive
by taking the time derivative.

Stable frequency standards are the core components of the LISA mission. As explained
in section 1.2.4 lasers and clocks are used to perform inter-satellite ranging with picometer
precision and timing of the measurement chain. Even though lasers and clocks have very different
requirement they both can be described by the same formalism. Therefore, the main task of
LISA modeling is to represent the phase evolution of each frequency standard appropriately. In
general, frequency standards are very stable oscillators with an initial phase ϕ0 = ϕ(t0) and a
nominal frequency ν0. Thus, their ideal phase evolution, according to the local proper time, is
given by

ϕ0 + ν0 · (t− t0). (2.1)

However, in reality, the real frequency of the oscillator is different from the nominal one and
their exact timing is subject to noise. We describe any deviations from the nominal phase in
terms of timing deviations x(t). The real phase is then modeled as

ϕ(t) = ϕ0 + ν0 · (t+ x(t)− t0). (2.2)

Conceptually and numerically it is appropriate to split up the timing deviations x(t) into a large
but slowly varying component and small in-band fluctuations.

x(t) = xo(t) + xϵ(t) (2.3a)
y(t) = yo(t) + yϵ(t) (2.3b)

Here, we also define the fractional frequency deviations y(t) = ẋ(t) that represent the relative
frequency shifts with respect to the nominal frequency. Slow drifts in this variable capture effects
like Doppler shifts in the laser beams or systematic clock offsets that vary over time scales of
a few months. For the frequency standards used in LISA, yo(t) is of the order of 10−7, which
accumulates to a timing deviation of a few seconds over the mission of ten years. On the other
hand, in-band timing fluctuations xϵ(t) account for much less. For example, the LISA lasers
have a fractional frequency stability in terms of ASD of

√
Sy = 10−13 1/

√
Hz. This results in

an in-band noise root mean square (RMS) of1√∫ 1Hz

10−4 Hz

Sy

(2πf)2
df ≈ 1.6× 10−12 s. (2.4)

1For this order-of-magnitude calculation, we neglect again the noise shape function that amplifies the power
at frequencies below 2mHz.
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Therefore, the timing deviations accumulated by the slow drifts is around 12 orders of magni-
tude higher than the timing fluctuations caused by in-band noise. To appropriately describe
both quantities we model the slow varying fractional frequency shifts yo(t) and in-band timing
fluctuation xϵ(t) in separate variables and express the total timing deviations as

x(t) =

∫ t

t0

yo(t′) dt′ + xϵ(t). (2.5)

Consequently, the total phase of a frequency standard can be described by two scalars, the initial
phase ϕ0 and the nominal frequency ν0, and two time series, the out-of-band fractional frequency
deviations yo(t) and the in-band timing fluctuations xϵ(t).

ϕ(t) = ϕ0 + ν0 ·
∫ t

t0

(
1 + yo(t′)

)
dt′ + ν0 · xϵ(t) (2.6)

In the following section we will explain the contents of the main LISA measurements which are
the beatnote phases of the three interferometers and the PRN ranges. We start off by describing
the model of the laser beams. Besides the main carrier phase it also contains sidebands that
are used to transfer the clock signals and spacecraft timers for absolute ranging. Ultimately,
the beatnote phase measurements and PRN ranges are discretely sampled according to the
spacecraft timers and decimated down to the telemetry rate of 4Hz.

2.1 Laser Beam

As already introduced in section 1.1.1, we describe laser beams in the plane-wave approximation.
The electric field at some fixed point along the beam axis is given as

E(t) = E0 · cos
(
2πϕ(t)

)
, (2.7)

where E0 denotes its amplitude and ϕ(t) determines the time-dependent phase of the laser,
which quickly accumulates due to the terahertz optical frequency. Furthermore, we assume that
the laser propagates in vacuum at the speed of light without suffering from dispersion.

For our studies we assume E0 to be constant and therefore irrelevant to the final beatnote
measurement. However, in general, the beatnote phase tracked by the phasemeter is sensitive
to fluctuations in the absolute laser power. This coupling is called relative-intensity noise and
is further detailed in Wissel et al. (2023).

The relevant quantity for modeling the beatnotes are the six laser phases. They encode the
evolution of the carrier phase, the upper and lower sideband phase and the reading of the local
timer. For simpler modeling we keep track of each quantity in a separate variable.

Following this decomposition the laser carrier phase at the source without any modulations
can be described by using eq. (2.6),

ϕc
ij(t) = ϕc

0,ij + ν0 · (t− t0 + xcij(t)) (2.8)

= ϕc
0,ij +

∫ t

t0

(
ν0 + ν0 · ycij(t′)︸ ︷︷ ︸

oij(t′)

)
dt′ + ν0 · xc,ϵij (t)︸ ︷︷ ︸

pij(t)

. (2.9)

Here, we have identified the slowly varying megahertz-offsets oij(t) and the laser frequency noise
pij(t).

2.1.1 Pseudo-random noise modulation

LISA implements absolute ranging by modulating a pseudo-random noise code onto the laser
beam (Esteban Delgado, 2012). This code is read out by the phasemeter on the distant spacecraft
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and correlated with a local copy to infer the propagation delay between the satellites. In essence,
this allows to compare the timer of the emitting and receiving spacecraft at the events when the
beams were emitted and received, respectively. To simplify the modeling we directly compare
the readings of the timers which are defined as

τ̂i(t) = τ̂0,i +

∫ t

t0

1 + yuso,oi (t′) dt′ + xϵi(t)︸︷︷︸
qi(t)

. (2.10)

They are derived from the pilot tone and therefore inherit the properties of the USO. Here,
yuso,oi (t′) describes any slow varying fractional frequency drifts of the clock and qi(t) any in-
band timing jitter. To allow the timers to be started at an arbitrary time we introduce the
initial timer reading τ̂0,i at time t0. For more convenient modeling we rewrite eq. (2.10) in terms
of the nominal spacecraft proper time and timer deviations

τ̂i(t) = t+ δτ̂i(t). (2.11)

The timer deviations collect large drifts and small fluctuations. To retain numerical precision in
the small variable we decompose δτ̂i(t) into δτ̂ oi (t) and δτ̂ ϵi (t). They are related to the quantities
in eq. (2.10) as

δτ̂ oi (t) = τ̂0,i − t0 +

∫ t

t0

yuso,oi (t′) dt′ (2.12)

δτ̂ ϵi (t) = qi(t). (2.13)

2.1.2 Sideband modulation

For clock noise transfer, the local clock is phase-modulated onto the laser carrier phase. The
modulation phase ϕm

ij(t) is derived from the megahertz clock signal which is upconverted to a
few gigahertz. We can therefore model the total phase of the signal as

ϕm
ij(t) = ϕm

0,ij + νm0,ij ·
∫ t

t0

1 + yuso,oi (t′) dt′ + νm0,ij ·
(
qi(t) +Mij(t)

)
. (2.14)

Additionally to the timing jitter of the clocks qi(t), we account for any extra noise that adds
in the modulation chain by the modulation noise Mij(t). The modulation frequency νm0,ij on
left-handed and right-handed MOSAs are 2.4GHz and 2.401GHz, respectively. The 1MHz
difference between left-handed and right-handed MOSAs is needed to allow separation of the
carrier-carrier and sideband-sideband beatnotes.

The modulation phase is then fed to an electro-optical modulator that modulates the phase
of the electric field that passes through the device. We can formally describe this process by
augmenting eq. (2.7) with a modulation term,

E(t) = E0 · cos
(
2πϕc(t) +m cos(2πϕm(t))

)
. (2.15)

For LISA, the modulation index m is about 0.15 , and thus sufficiently small to truncate the
Jacobi-Anger expansion after the linear term and rewrite this expression as

E(t) ≃ E0 · cos
(
2πϕc(t)

)
− E0 ·

m

2
sin
(
2πϕlsb(t)

)
− E0 ·

m

2
sin
(
2πϕusb(t)

)
. (2.16)

We note that the modulated laser beam is represented by a superposition of three frequencies,
the carrier and the lower and upper sidebands. The phase of the latter is defined as

ϕ
usb/lsb
ij (t) = ϕc

ij(t)± ϕm
ij(t). (2.17)

The term sideband comes from the fact that they oscillate at a nominal frequency of νusb/lsb0,ij =
νc0 ± νm0,ij .



20 CHAPTER 2. INSTRUMENTAL MODELING

2.1.3 Free-space propagation

In the next step, we propagate the variables defined above through free space. This is required to
transport the laser beams from the laser source to the photodiodes. We can model propagation
of an arbitrary phase ϕ(t) as a time-delay by d(t). This is possible since the wavefronts travel
at constant rate; the speed of light. We split this delay up into a large slowly drifting quantity
do(t) and small in-band fluctuations dϵ(t). The out-of-band component captures the slowly
evolving inter-spacecraft light travel times due to orbital dynamics or (almost) constant optical
path-lengths on the optical benches. The in-band component describes path length noises due
to the instability of components on the optical bench that limit the relative length measurement
by LISA, but also the effect of GWs on the travel time.

Let us observe the effect of a time-delay on an arbitrary phase ϕ(t) as it is given in eq. (2.6).

ϕ(t− d(t)) = ϕ0 + ν0 ·
∫ t−d(t)

t0

1 + yo(t′) dt′ + ν0 · xϵ
(
t− d(t)

)
(2.18)

≃ ϕ0 + ν0 ·
∫ t−do(t)

t0

1 + yo(t′) dt′ − dϵ(t) · ν0 ·
(
1 + yo(t− do(t))

)
+ ν0 · xϵ

(
t− do(t)

)
(2.19)

= ϕ0 − ν0 ·
∫ t0

t0−do(t)
1 + yo(t′) dt′ + ν0 ·

∫ t

t0

(
1− ḋo(t′)

)
·
(
1 + yo(t′ − do(t′))

)
dt′

+ ν0 ·
(
xϵ
(
t− do(t)

)
− dϵ(t) ·

(
1 + yo(t− do(t))

))
(2.20)

In the second line we expand the integral to first order in the small quantity dϵ(t). Furthermore,
the effect of the later on the time-delay of the already small quantity xϵ(t) can be neglected.
Finally, we perform the substitution t′ → t′ − do(t′) and collect the following terms. We find a
modified initial phase offset

ϕ0 − ν0 ·
∫ t0

t0−do(t)
1 + yo(t′) dt′, (2.21)

the Doppler shifted and delayed out-of-band fractional frequency(
1− ḋo(t)

)
·
(
1 + yo(t− do(t))

)
, (2.22)

and the effective timing jitter of the delayed phase

xϵ
(
t− do(t)

)
− dϵ(t) ·

(
1 + yo(t− do(t))

)
, (2.23)

that consists of the origin delayed timing jitter and the coupling of the small in-band delay
fluctuations to the delayed out-of-band fractional frequency. The modified initial phase offset
and the Doppler shift are illustrated in fig. 2.1.

We recover equivalent expressions for the description of the laser phase including sideband
modulation as reported in the literature (Bayle and Hartwig, 2023). In addition, we explicitly
model the effect of the initial phase ϕ0 in lasers and clocks.

In the following we will make extensive use of the notion of delay operators which are defined
as

Dx(t) = x
(
t− d(t)

)
. (2.24)

The delay operator D effectively delays the argument of an arbitrary time-dependent function
x(t) by the value d(t).
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Figure 2.1: Illustration of total phase propagation by applying an arbitrary time-dependent
time-delay d(t) that models beam propagation between the spacecraft. The blue and red lines
represent the origin phase and propagated phase, respectively. The grey arrows indicate the
time-shifting operation which leads to a reduction of the phase offset and a smaller effective
slope (Doppler shift). The effect of the much smaller in-band component of the time-delay is
not resolved in the picture.
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2.2 Interferometry

Each MOSA hosts three interferometers combining beams from the local laser, the adjacent
laser and the distant laser. The mixing of the beams in each interferometer generates three
beatnotes that are in the bandwidth of the photodetector: the carrier-carrier beatnote and
the two sideband beatnotes. Each of those beatnote phases is tracked by an individual digital
phase-locked loop (DPLL).

Constant optical path lengths on the optical benches are assumed to be zero2. Therefore, we
only model the in-band optical path-length noise that is caused by various effects, like thermal
expansion due to temperature fluctuations. Furthermore, upon detection on the photodiodes,
readout noise enters the beatnote measurements. It is made up of photon shot noise and elec-
tronic noise of the readout chain.

At the time of writing, the LISA simulators do not implement the non-inertial motion of
the spacecraft3 or MOSA translational jitter. The modeling of the spacecraft dynamics is quite
sophisticated as it includes a control loop that adjusts the spacecraft position to follow the TMs
and suppress the influence of external disturbances (Inchauspé et al., 2022). For now we assume
that the optical benches follow perfect geodesics such that the test-mass interferometer only
senses the residual acceleration noise shaking the TMs. Furthermore, we account for translational
MOSA jitter and spacecraft motion in TDI (see section 3.2.1).

The reference and TM interferometers combine beams from adjacent MOSAs. The so-called
backlink fiber is used to optically connect the two optical benches. Propagation through the
fiber introduces phase noise, which we call backlink noise.

As explained in section 1.1.1, interfering two laser beams at optical frequencies and detecting
the time-dependent power of the superposition is equivalent to mixing the two frequencies. The
readout chain is only sensitive to the difference frequency that we call beatnote. The beatnote
frequency is always interpreted as positive by the phasemeter that tracks its phase. In our
modeling we implicitly assume that the sign ambiguity can be resolved, as the signs can be
inferred from the frequency plan. Furthermore, the phasemeter only tracks the phase up to an
integer cycle, such that it reads

φ(t) = ϕ1(t)− ϕ2(t) + n, (2.25)

where n ∈ Z is constant but unknown and resets at any interruption. Interestingly, we will see
later that the transfer function of TDI has a vanishing response to carrier beatnote measurements
and laser phases at d.c. thus it removes any constant offsets. Therefore, the modeling of the
laser initial phase and carrier beatnote phase ambiguity is not required.

2.2.1 Carrier beatnotes

The three carrier beatnotes are produced by beating the carrier phases of two beams against each
other. They represent the main science measurements of LISA and are later processed through
TDI to produce the final observables. Apart from the overwhelming laser noise that is suppressed
in TDI, they contain the GW signal, other path-length noises and test-mass acceleration noise
that ultimately limit the sensitivity of the detector.

Inter-spacecraft interferometer

The inter-spacecraft interferometer interferes the distant beam with the local beam. Below
we express the optical path length both beams have to travel from the laser source to the

2In reality they are not because of the path lengths between components on the optical bench. However, if
they are matched for each interferometer they do not impact the laser noise suppression in TDI as, in the end,
they represent a simple group delay of a few ns

3This feature is already available in the simulation tool LISANode which is not used in this thesis.
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interferometer.

disiij←ϕji
(t) = doij(t) +Hij(t) +N

ob,isiij←ϕji

ij (t) (2.26a)

disiij←ϕij
(t) = N

ob,isiij←ϕij

ij (t) (2.26b)

The distant beam experiences the inter-spacecraft propagation delay that consists of large out-
of-band component doij(t) that is driven by orbital dynamics and the tiny fluctuations Hij(t)
caused by a passing GW. Additionally, it collects any optical path-length noises. The local laser
only experiences the latter.

Let us make use of eqs. (2.9) and (2.20) to express the total phase of the inter-spacecraft
beatnote. For better readability we drop the explicit time-dependence.

isicij = Disiij←ϕji
ϕc
ji −Disiij←ϕij

ϕc
ij +N ro,isic

ij (2.27)

≃ isic0,ij +

∫ t

t0

Ḋo
ijoji − oij − ḋoij · ν0 dt′ +Do

ijpji − pij

−
(
Hij +N

ob,isiij←ϕji

ij

)
·
(
ν0 +Do

ijoji
)
+N

ob,isiij←ϕij

ij ·
(
ν0 + oij

)
+N ro,isic

ij .

(2.28)

For the reason stated above we omit specifying the initial phase isi0,ij . The offset frequency of
the beatnote is now of the order of megahertz as the central laser frequency ν0 drops out. As
small fluctuations, we collect the differential laser phase noise, the GW and optical path-length
noises coupling to the associated carrier frequencies and readout noise.

Reference interferometer

The reference interferometer mixes the adjacent beam and the local beam. Their respective
optical path lengths are entirely made up of optical path-length noises.

drfiij←ϕik
(t) = Nbl,ij←ik

ij (t) +N
ob,rfiij←ϕik

ij (t) (2.29a)

drfiij←ϕij
(t) = N

ob,rfiij←ϕij

ij (t) (2.29b)

As the adjacent beam is connected via the backlink fiber it additionally picks up backlink noise.
Ideally, this noise is identical for counter-propagating beams such that it cancels in TDI (see
section 3.2.2) but in practice, we do expect some non-reciprocity of the fiber backlink.

The resulting beatnote phase has the following form.

rficij(t) = Drfiij←ϕik
ϕc
ik −Drfiij←ϕij

ϕc
ij +N ro,rfic

ij (2.30)

≃ rfic0,ij +

∫ t

t0

oik − oij dt
′ + pik − pij −

(
Nbl,ij←ik

ij +N
ob,rfiij←ϕik

ij

)
·
(
ν0 + oik

)
+N

ob,rfiij←ϕij

ij ·
(
ν0 + oij

)
+N ro,rfic

ij .

(2.31)

Test-mass interferometer

Similar to the reference interferometer, the TM interferometer interferes the adjacent beam and
the local beam. However, the local beam is bounced off the TM and therefore senses the spurious
test-mass acceleration noise N δ

ij(t).

dtmiij←ϕik
(t) = Nbl,ij←ik

ij (t) +N
ob,tmiij←ϕik

ij (t), (2.32a)

dtmiij←ϕij
(t) = 2N δ

ij(t) +N
ob,rfiij←ϕij

ij (t). (2.32b)

It is counted twice as the beam travels forth and back along the additional path length produced
by the motion of the TM.
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The resulting beatnote phase reads

tmicij(t) = Dtmiij←ϕik
ϕc
ik −Dtmiij←ϕij

ϕc
ij +N ro,tmic

ij (2.33)

≃ tmic0,ij +

∫ t

t0

oik − oij dt
′ + pik − pij −

(
Nbl,ij←ik

ij +N
ob,tmiij←ϕik

ij

)
·
(
ν0 + oik

)
+
(
2N δ

ij +N
ob,tmiij←ϕij

ij

)
·
(
ν0 + oij

)
+N ro,tmic

ij .

(2.34)

The results for the carrier beatnote phases are consistent with the existing literature (Bayle
and Hartwig, 2023). The only differences are that we account for the offset frequencies oij of
the lasers for the coupling of in-band path-length fluctuations and that we explicitly model the
initial phase of the interferometers.

2.2.2 Sideband beatnotes

The sideband beatnotes are produced by beating the sideband phases against each other. They
are defined in eq. (2.17) and contain the sum or difference (upper and lower sideband) of the
carrier phase ϕc

ij and the phase modulation ϕm
ij . We model the phase readout of the sideband

beatnotes in a feed-forward configuration. This means that the sideband DPLL receives the
carrier beatnote phase and uses it to offset its error point. As a result, the phase register only
accumulates any additional phase to the carrier phase.

To read out the lower and upper sidebands individually LISA implements two separate
DPLLs. Both signals in principle track the same quantity but have independent readout noise.
Furthermore, they experience slightly different Doppler shifts due to their different absolute
frequency in the beam (νc0 ± νm0 ). Therefore, we propose that the phase readouts of the upper
and lower sidebands are merged on board to avoid sending redundant data and relax the data
budget. However, the exact merging procedure must be able to detect whether the upper or
lower sideband beatnote is degraded to minimize the technical noise in the combined product.

Let us explain the contents of the sideband beatnote using the example of the inter-spacecraft
interferometer. To model the feed-forward readout we subtract the carrier beatnote. The upper
and lower sidebands are then given by

isi
usb/lsb
ij (t) = Disiij←ϕji

(
ϕc
ji ± ϕm

ji

)
−Disiij←ϕij

(
ϕc
ij ± ϕm

ij

)
+N ro,isiusb/lsb

ij − isicij (2.35)

= ±
(
Disiij←ϕji

ϕm
ji −Disiij←ϕij

ϕm
ij

)
+N ro,isiusb/lsb

ij −N ro,isic

ij . (2.36)

Here, we use the definition of the sideband phases in eq. (2.17) and the carrier beatnote in
eq. (2.28). After subtraction, the sideband beatnotes inherit the readout noise of the carrier
beatnotes. However, we notice that it is common mode for the upper and lower sideband
beatnotes while the phase modulation that contains the clock information is differential mode.
We therefore consider in the following the combined sideband signal as

isisbij (t) =
isiusbij − isilsbij

2
(2.37)

= Disiij←ϕji
ϕm
ji −Disiij←ϕij

ϕm
ij +

N ro,isiusb

ij −N ro,isilsb

ij

2︸ ︷︷ ︸
Nro,isisb

ij

(2.38)

= isisb0,ij +

∫ t

t0

νm0,ji − νm0,ij − doij · νm0,ji + νm0,ji(1− ḋoij)D
o
ijy

uso,o
j − νm0,ijy

uso,o
i dt′

+ νm0,jiD
o
ij

(
qj +Mji

)
− νm0,ij

(
qi +Mij

)
+N ro,isisb

ij .

(2.39)

The carrier beatnote readout noise cancels and the inherent sideband beatnote readout noise
is reduced by a factor

√
2 in amplitude. In the last line we plugin the definition of the phase
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modulation (see eq. (2.14)). We neglect the coupling of path-length noises to the gigahertz
modulation frequency as they are much smaller than the picometer readout noise (Nob · νm0 ≪
N ro,ifosb). Furthermore, we find that the sideband beatnote beats at nominal frequency of
νm0,ji−νm0,ij = ±1MHz and tracks the differential clock information contaminated by modulation
noise and readout noise.

The reference and TM interferometer sideband beatnotes are defined similarly and compare
adjacent phase modulations on the same spacecraft. We derive

ifosbij (t) = ifosb0,ij +

∫ t

t0

νm0,ik − νm0,ij + νm0,iky
uso,o
i − νm0,ijy

uso,o
i dt′

+ νm0,ik
(
qi +Mik

)
− νm0,ij

(
qi +Mij

)
+N ro,ifosb

ij .

(2.40)

As they measure the same quantity, we use the placeholder ifoij , which can either be replaced
by rfiij or tmiij . As we will later see, this measurement tracks the differential modulation noise
on adjacent MOSAs and can be used to remove the dominant modulation noise terms.

2.2.3 Absolute ranging

An absolute ranging measurement is achieved in LISA by modulation of a PRN code on the
carrier. It is read out by the phasemeter and correlated with a local copy in a delay-locked loop
to infer the time shift between the codes. As the codes have a finite length corresponding to a
few hundred kilometers, the delay measurement is ambiguous and can only be determined up to
an integer multiple of the code length. However, this ambiguity can easily be resolved on ground
using position and synchronization information of the spacecraft obtained from ground-based
observations.

We model this measurement as the difference of spacecraft timers τ̂i as those drive the timing
of the modulation and extraction of the codes. The six PRN ranges compare the local timer
with the distant timer that has propagated along the link

Rij(t) = τ̂i(t)−Dij τ̂j(t) +Bij +NR
ij (t). (2.41)

To account for noise in the readout process we add a generic ranging noise term to it with a
typical RMS amplitude of 1m at 4Hz. Furthermore, the PRN range is potentially biased due
to various sources of group delays. Most of those are calibrated on ground prior to launch but
might drift over the mission time. We assume that typical values for the residual bias Bij are
of the order of meters.

We plug in the model for the timer given in eq. (2.11) and arrive at

Rij(t) = δτ̂i(t)−Dijδτ̂j(t) + doij(t) +Bij +NR
ij (t). (2.42)

Here, we can clearly see that the PRN range is a pseudo-range, as differential clock information
is entangled with the inter-spacecraft distance. We neglect any coupling to path-length noises
or GW signals (picometer) as they are much smaller than the ranging noise.

2.3 Sampling and Onboard Processing

All LISA measurements defined above are encoded in the differential phase of two interfering laser
beam as they arrive at the photodetector. As already mentioned, DPLLs in the phasemeters are
employed to read out the different components of the beatnote phase (carrier-carrier, sideband-
sideband beatnotes and PRN range). Prior to this, the continuous-time analog signals need to
be converted to discrete-time digital signals. To appropriately capture beatnote frequencies up
to 25MHz, the DPLLs run at 80MHz. Finally, several decimation stages are used to decimate
down to the telemetry rate of 4Hz.
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2.3.1 Sampling by the on-board clock

We model the process of signal sampling as transforming the time reference frame of the mea-
surements from the spacecraft proper time to the spacecraft on-board time as it is dictated by
the spacecraft timer. Therefore, we apply the following transformation to all beatnote phases

ϕτ̂i(t) = Tτ̂i
τiϕ

τi(t) = ϕτi
(
τ τ̂ii (t)

)
, (2.43)

which requires the reading of the spacecraft proper time τ τ̂ii (t) according to the spacecraft on-
board time. However, we currently only model the “inverse” quantity τ̂ τii (t). To calculate it, we
evaluate eq. (2.11) at time τ τ̂ii (τ), which gives

t = τ̂ τii
(
τ τ̂ii (t)

)
= τ τ̂ii (t) + δτ̂i

(
τ τ̂ii (t)

)
, (2.44)

where we also used that, trivially, τ̂ τii
(
τ τ̂ii (t)

)
= t (Bayle and Hartwig, 2023). This procedure pro-

vides an implicit definition of τ τ̂ii (t). Again, to avoid large numbers we only calculate deviations
of the spacecraft proper time from the on-board time δτi(t) and find

δτi(t) = −δτ̂i
(
t+ δτi(t)

)
. (2.45)

Generally, there exists no closed-form solution of this equation for arbitrary δτ̂i(t) so it must
be solved numerically. This is achieved in an iterative fashion. As an initial guess we set
δτ

(0)
i (t) = −δτ̂i(t). Then we calculate more and more accurate estimates by following

δτ
(n+1)
i (t) = −δτ̂i

(
t+ δτ

(n)
i (t)

)
, (2.46)

until the solution has converged close enough for our purposes. If we like to retain numerical
precision we can also operate on the decomposed timer deviations

δτ oi (t) + δτ ϵi (t) = −δτ̂i(t+ δτi(t)
)

(2.47)

≃ −δτ̂i
(
t+ δτ oi (t)

)
− δτ ϵi (t) · δ ˙̂τ oi

(
t+ δτ oi (t)

)
, (2.48)

which yields expressions for the slow drifts and small fluctuations of the deviation of the proper
time from the on-board time. We identify

δτ oi (t) = −δτ̂ oi
(
t+ δτ oi (t)

)
, (2.49a)

δτ ϵi (t) = −
δτ̂ ϵi
(
t+ δτ oi (t)

)
1 + δ ˙̂τ oi

(
t+ δτ oi (t)

) . (2.49b)

Ultimately, we can use eq. (2.49) to describe signal sampling as defined in eq. (2.43).

ϕτ̂i(t) = ϕτi
(
t+ δτi(t)

)
(2.50)

≃ ϕτi
(
t+ δτ oi (t)

)
+ δτ ϵi (t) · ντi,o

(
t+ δτ oi (t)

)
(2.51)

= ϕτi
(
t+ δτ oi (t)

)
−

δτ̂ ϵi
(
t+ δτ oi (t)

)
1 + δ ˙̂τ oi

(
t+ δτ oi (t)

) · ντi,o(t+ δτ oi (t)
)

(2.52)

= Tτi,o
τ̂i

(
ϕτi(t)− δτ̂ ϵi (t)

1 + δ ˙̂τ oi (t)
· ντi,o(t)

)
(2.53)

In the last line we observe how the timing jitter of the clocks (δτ̂ ϵi (t) = qi(t)) couples to the
megahertz-beatnote and enters the beatnote phase measurement.



2.3. SAMPLING AND ONBOARD PROCESSING 27

2.3.2 Onboard processing

The phasemeter DPLLs output measurements of the beatnote phases and instantaneous frequen-
cies at 80MHz. This is required due to the megahertz-Doppler shifts that determine the absolute
beatnote frequencies and therefore, the minimum rate of the DPLLs. However, LISA’s sensitive
band start below 1Hz. To allow for some margin, the baseline design foresees a final sampling
rate of 4Hz that allows some headroom for appropriate filter design. Reducing the sampling rate
by a factor of 2×107 is not a trivial task. It requires several stages of decimation. Each includes
an anti-aliasing filter and a decimator that reduces the sampling rate by an integer factor by
simply “skipping” samples. The filter removes all power at frequencies higher than the Nyquist
rate after the decimator and ensures that aliasing does not contaminate the data irreversibly.
The modeling of the filters and decimation is discussed in more detail in section 3.3.1.
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Chapter 3

Time-delay Interferometry

Time-delay interferometry is a post-processing technique to suppress the overwhelming laser
noise in the LISA interferometric measurements. This is achieved by time-shifting the latter
and linearly combining them to cancel common laser noise terms. Tinto and Armstrong (1999)
first proposed TDI for unequal-arm interferometers. As the two beams departing from the beam
splitter traverse different path lengths (d1 and d2, respectively), upon recombination laser noise
does not cancel perfectly. The solution to this is to read out both arms individually which yields
two round-trip measurements

y1(t) = p(t− d1)− p(t) +H1(t), (3.1a)
y2(t) = p(t− d2)− p(t) +H2(t). (3.1b)

Here, p(t) denotes laser phase noise and H1(t) and H2(t) represent the phase shifts induced by
a passing GW in the arms of the interferometer. The goal of TDI is to find appropriate linear
combinations of time-shifted versions of y1(t) and y2(t) that cancel out the laser phase noise.
Tinto and Armstrong (1999) propose the following combination

X(t) =
(
y1(t− d2)− y1(t)

)
−
(
y2(t− d1)− y2(t)

)
(3.2)

=
(
H1(t− d2)−H1(t)

)
−
(
H2(t− d1)−H2(t)

)
. (3.3)

As we can observe, all laser noise contributions drop out and the GW signal remains in the
combination X(t)1. This TDI combination is commonly referred to as the first generation
Michelson combination as it represents a Michelson interferometer where both arms are traversed
twice by each beam to achieve equal path lengths.

3.1 TDI Combinations

3.1.1 Modeling laser beam propagation

The following sections make extensive use of time-shift operators. Therefore, before we set out
to explain the various TDI combinations, we want to properly define this operations and discuss
some of its properties. The time-delay operator D acts on a time series ϕ(t) by shifting its
argument t→ t− d(t). Formally, we write

Dϕ(t) = ϕ(t− d(t)). (3.4)

Here, d(t) denotes a general time-dependent delay. In LISA time delays operations are used to
model propagation of laser phases between spacecraft which is illustrated in fig. 3.1. The world
lines of two spacecraft with non-zero relative velocity as viewed by an external observer at rest

1The GW signals enter as finite differences which approximate a time derivative at small frequencies.
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are represented by the black lines. At time t1 the first spacecraft emits a laser beam with phase
ϕ1(t1). The laser beam travels towards the second spacecraft (represented by the blue arrow)
and intersects its path at time t2. There, the received phase must equal to the emitted phase
ϕ(t1). We define the delay

d(t2) = t2 − t1 (3.5)

to relate the time of emission t1 and time of reception t2. Therefore, for the received phase we
can write ϕ1(t2−d(t2)). We conclude that the delay operation defined in eq. (3.4) appropriately
models propagation of the laser phase.

Conversely, we can define the “anti”-propagation of a laser beam. Conceptually, photons can-
not only travel forwards in time but also backwards. While in the real world time is a constantly
increasing quantity, post-processing of recorded data allows us to move in both directions; the
past2 and the future. An example is given in fig. 3.1 where the red arrow illustrates a laser beam
traveling backwards in time. It is emitted on spacecraft 2 at time t2 and received by spacecraft
1 at an earlier time t1. These times can be related by the advancement

a(t1) = t2 − t1. (3.6)

In general, we define the advancement operator A as

Aϕ(t) = ϕ(t+ a(t)). (3.7)

The delay d(t) and advancement a(t) are intimately connected. We note that their definition
in eqs. (3.5) and (3.6) are almost identical but differ by the time they are evaluated at. Using
both equations we can relate delays and advancements.

t1
(3.5)
= t2 − d(t2)

(3.6)
= t1 + a(t1)− d(t1 + a(t1)) ⇒ a(t) = d(t+ a(t)) (3.8a)

t2
(3.6)
= t1 + a(t1)

(3.5)
= t2 − d(t2) + a(t2 − d(t2)) ⇒ d(t) = a(t− d(t)) (3.8b)

The resulting equations provide instructions on how to derived advancements from delays and
vice versa. One difficulty is that in both cases the left-hand quantities are defined implicit as
they also appear in the argument of the corresponding right-hand side quantity. This makes
it impossible to write down a closed-form solution of either. However, for the special case of a
linearly evolving delay we can explicitly state the solution for the advancement. It is given by

a(t) =
d(t)

1− ḋ
. (3.9)

The apparent singularity at ḋ = 1 is ruled out by special relativity that ensures ḋ < 1 as the
spacecraft cannot move at superluminal speeds3.

As one can already presume from fig. 3.1 delay and advancement are inverse operations. We
can proof that by observing their successive action on ϕ.

ADϕ(t) = Aϕ(t− d(t)) = ϕ(t+ a(t)− d(t+ a(t)))
(3.8a)
= ϕ(t) (3.10a)

DAϕ(t) = Dϕ(t+ a(t)) = ϕ(t− d(t) + a(t− d(t)))
(3.8b)
= ϕ(t) (3.10b)

We identify eq. (3.8) and conclude that A is indeed the inverse of D and vice versa.

2In the real world this is forbidden as it violates causality; the detection of a photon precedes its emission.
3Here, we assume that the rate of change of the delay is given by ḋ = 1 − v2±1

v1±1
where v1 and v2 denote the

relative velocities of the spacecraft. The ± distinguishes between the two possible directions the laser beam is
sent (represented by the light cone).
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Figure 3.1: Spacetime diagram illustrating the propagation of laser beam from spacecraft 1 to
spacecraft 2 (blue arrow) and the respective anti-propagation (red arrow). The black dots mark
the events of emission and reception depending on the propagation direction (in time) of the
beam.

3.1.2 Virtual interferometry

The aforementioned time-shift operators can be used to build up more complex beam paths.
In LISA those form virtual equal-arm interferometers that suppress laser noise. To distinguish
between the different links we label time-shift operators with two indices ij. Here, i denotes
the index of the receiving and j the index of the emitting spacecraft. Following this, we have
Dij for propagation from spacecraft i to j and its inverse operation Aji for anti-propagation the
reverse path. As there are three LISA spacecraft (i, j = 1, 2, 3) we find six combinations of ij.
In general, opposing time-shifts are not equivalent, e.g. D12 ̸= D21.

The fundamental building blocks for TDI combinations are the six one-way measurements
that interfere distant beams with local beams. We define

ηij(t) = Dijϕj(t)− ϕi(t). (3.11)

Figure 3.2 provides a representation of the one-link measurement η12(t). Here, the blue dot
represents the emission time of the local beam (at coordinate time t) and the red dot followed
by the red arrow the emission time of the distant beam (at time t− d12(t)) and the propagation
to the local spacecraft.

From the basic one-way measurements we can synthesize arbitrary two-beam interferometers.
We require that both beams are emitted on and received by the same spacecraft. However, they
are allowed to traverse different paths in between which makes them sensitive to GWs as the
beams sense the differential strain along their paths.

X(t) = TIϕ(t)−TIIϕ(t) (3.12)

Here, TI and TII define the time-shifts that the beams experience along their round-trips. The
roman numerals are to be replaced by a string of spacecraft indices defining the beam path. To
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Figure 3.2: Illustration of the one-way measurement η12(t) and the round-trip variable
η1←2←1(t).
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indicate the direction of the time-shift we connect the spacecraft indices by arrows. Forward
facing errors denote advancements and backward facing ones delays.

Ti←j ≡ Dij (3.13)
Ti→j ≡ Aij (3.14)

We can generally define time-shift operators representing arbitrary paths by nesting those basic
operators. Here, we have to take care that the right-most index of the time-shift operator
applied to the left is identical to the left-most index of the time-shift operator applied to the
right. This assures that the total time-shift operator still represents a valid photon path. For
example, the time-shift operation Ti←jTj→k = Ti←j→k relates the event of emission at k and
even of reception at i. The sequence of events happening in between is the following: A Photon
is emitted on spacecraft k and propagates backwards in time to reach spacecraft j at an earlier
time. Then, it is reflected towards spacecraft i where it is received after propagating forwards
in time.

Constructing an arbitrary two-beam interferometer from the η variables is done in two steps.
First, two round-trip variables ηI and ηII are computed. They represent interferometers with a
long arm that defines the round-trip path I and II, respectively, and a short arm that is vanishing.
We define two rules to recursively build them up from the six one-way measurements.

Ti···jϕj(t)− ϕi(t) +Ti···jηjk(t) = Ti···j←kϕk(t)− ϕi(t) (3.15)
Ti···jϕj(t)− ϕi(t)−Ti···j→kηkj(t) = Ti···j→kϕk(t)− ϕi(t) (3.16)

We note that we can extend the long arm of an intermediary variable by a delay or advancement
by adding or subtracting an appropriately time-shifted version of the one-way measurements.
For illustration we draw the spacetime diagram for the round-trip variable η1←2←1 in fig. 3.2
where the local beam (blue dot) is interfered with itself after taking a round-trip to the distance
spacecraft 2 and back.

Finally, we take the difference of the two round-trip variables ηI and ηII. The contribution
from the short arms cancels and we have successfully synthesized the interferometer given in
eq. (3.12).

Generally speaking, there exists an infinite number of possible two-beam interferometers. We
can construct round-trip beam paths of as many links as we like. Furthermore, we can combine
any pair of round-trips to realize two-beam interferometers which increases the amount of possi-
bilities further. Vallisneri (2005) conducts an exhaustive “brute force” search of interferometers
involving up to 24 links. In a follow-on study Muratore et al. (2020) identifies combinations that
were previously missed. We propose to explore the space of TDI methodologically by starting off
with the very simplest interferometers and deriving more sophisticated combinations that fulfill
certain conditions for laser noise suppression. We will extensively make use of the terminology
introduced by Vallisneri (2005) and the indexing conventions used in Muratore et al. (2020).

Let us first consider the eight full round-trip paths around the constellation shown in the
upper panel of fig. 3.3. Each arrow head represents an event of reception and each bullet
an event of emission. Photons propagate forwards in time on solid lines and backwards on
dashed lines. Using the six LISA symmetry transformations we find 48 different possibilities in
total. By appending them we can construct any single-beam paths that start and end at the
same spacecraft. The shortest of such paths just takes a two-link round trip to a neighboring
spacecraft. As an example, in the second row of fig. 3.3 we depict the construction of the
round-trip path 1← 2← 1.

In the next step we combine the beams pairwise to form two-beam interferometers. The
most common one is the Michelson variable X. We combine two beams that start at the local
spacecraft and take a simple round-trip to the two distant spacecraft. Here, we have two options:
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Figure 3.3: Overview of simple single beam paths and basic interferometers for the LISA constel-
lation consisting of three stations. Dots indicate emission events, arrow heads reception events,
solid lines propagation of photons and dashed lines “anti-propagation” which is defined as a
photon traveling backwards in time. In the top panel we collect the eight possible beam paths
to take a clockwise round-trip from the bottom spacecraft. In the second panel we demonstrate
how to combine the basic 3-link beams to construct a round-trip beam to a neighboring space-
craft. The +-sign connects the emission event of the second beam with the reception event of
the first. In the last two rows we present some simple interferometers with different properties.
The black arrow for the link failure surviving combinations indicate the links involved.
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Either both beams are traveling forwards/backwards in time or we alternate.

X
(1)
0 (t) = T1←3←1ϕ1(t)−T1←2←1ϕ1(t) (3.17a)

X
(2)
0 (t) = T1→3→1ϕ1(t)−T1←2←1ϕ1(t) (3.17b)

Here, X
(1)
0 represents the classical Michelson interferometer. It is said to be closed as for

equal and constant arms the times of emission of the two beams coincides and therefore close
the loop created by the two beams. In this setup laser noise cancels perfectly. On the other
hand, combination X

(2)
0 is not closed as the times of emission of the beams is vastly different.

Hence, this is not a laser noise suppressing combination. We illustrate the topology of both
combinations in fig. 3.3.

From the three link beams we can readily construct Sagnac-type variables α. In those we
combine two counter-propagating beams where we have many more choices as for the Michelson
combinations. First, let us discuss two members that fulfill the |L| closed property.

α
(1)
0 (t) = T1←3←2←1ϕ1(t)−D1←2←3←1ϕ1(t) (3.18a)

α
(2)
0 (t) = T1→3←2←1ϕ1(t)−D1←2←3→1ϕ1(t) (3.18b)

Combinations are called |L| closed if the times of emission coincide for a static unequal arms
and non-rotating constellation such that dij = dji. These combinations are sensitive to rotations
of the LISA constellation as the beam traveling in the direction of rotation experiences a longer
round-trip path. The reader can find a depiction of α(1)

0 in fig. 3.3. Further we show the standard
first generation Michelson variable X

(1)
1 that is discussed later in this section.

Lastly, we want to discuss the class of the basic link failure combinations. They can be
synthesized by two and three-link beam paths respecting that only four of the six links is used.
In case of a link failure they present fall-back options. They complement the Michelson-type
variables that are already only using four links. They can be categorised into three classes, the
relay U , beacon P and monitor E combinations.

U0(t) = T1←2←1ϕ1(t)−T1←3←2←1ϕ1(t) (3.19a)
P0(t) = T1→2←3←1ϕ1(t)−T1→3←2←1ϕ1(t) (3.19b)
E0(t) = T1←2→3→1ϕ1(t)−T1←3→2→1ϕ1(t) (3.19c)

The names correspond to the specific function one of the spacecraft accepts. The links that
are used are depicted in the last row of fig. 3.3 as black arrows. For the relay-type one satellite
seems to transpond the beam. For the beacon and monitor-type the local spacecraft only emits
or receives. It is easy to verify that those combinations are not closed and therefore have poor
laser noise suppression capability.

Laser noise suppression performance of closed and |L| closed combinations

Some of the TDI combinations defined above cancel laser noise for constant (and equal) arms.
However, the LISA constellation will flex and rotate around its barycenter as the three spacecraft
independently follow their respective heliocentric orbit. Consequently the light travel times
between the satellites vary by a few percent and opposing arms, i.e., ij and ji, differ by about one
millisecond. This is illustrated in fig. 3.4 where the light travel times along the six arms are shown
assuming a realistic numerical orbit file provided by European Space Agency (ESA). The light
travel time difference between opposing links is modulated by the movement of the constellation
around the sun where two effects overlap. First, due to the orbital velocity of approximately
30 km s−1 the apparent distance for a photon traveling parallel to the orbit is extended by
d · v which explains the consistent modulation shown in the lower panel of fig. 3.4. Second,
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Figure 3.4: Evolution of light travel times between spacecraft for realistic LISA orbits (standard
orbit file taken from Bayle et al. (2022b)). The upper panel shows the light travel times for the
six arms (ascending indices in dark shade and descending in light shade). As opposing arms
are difficult to distinguish we plot in the lower panel the difference, e.g., d12(t) − d21(t), which
follows a sinusoid with a period of once a year.

the characteristic cart-wheel motion of the LISA constellation superimposes a subdominant
modulation with an amplitude of a few microseconds as the rotation velocity can be estimated
to be of the order 200m s−1.

To estimate the residual laser noise power due to the arm length mismatch between the two
beams we use the approximation4 √

SδX(f) ≃ ∆t ·
√
Sṗ(f), (3.20)

where ∆t denotes the difference between times of emission. We note that laser frequency noise
couples proportional to mismatch ∆t into the phase measurement.

Let us estimate the residual laser noise for the basic Michelson X
(1)
0 and Sagnac interferom-

eters α0 assuming a stabilized laser source with a white frequency noise of 30Hz/
√
Hz. An arm

length difference of 0.1 s in the basic Michelson interferometer amounts for a phase residual with
an ASD of roughly 3 cycles/

√
Hz. As this violates the microcycle-requirement by many orders

of magnitudes the basic Michelson combination is not a viable option for LISA. On the other
hand, the Sagnac interferometer experiences an arm length mismatch of about 10 µs. In fig. 3.4
we plot in black the numerical value of(

d12(t) + d23(t) + d31(t)
)
−
(
d13(t) + d32(t) + d21(t)

)
, (3.21)

which approximately gives the arm length mismatch for the Sagnac combination α0. As a result
the residual laser noise in this combination stands at 300 µcycles/

√
Hz which is still violating the

4This approximation holds in the limit of small δt. For large values much greater than the correlation time
of the laser the residual power approaches the uncorrelated sum of two (apparently) independent laser sources,
i.e., SδX(f) → 2 · Sp(f).
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microcycle requirement by two orders of magnitude. Therefore, we must synthesize more sophis-
ticated virtual interferometers that have arm length mismatches smaller than 30 ns according to
eq. (3.20).

The generation of L closed and L̇ closed combinations

Traditionally, TDI combinations are grouped into so called “generations”. Above we have pre-
sented members of the zeroth generation (not closed), generation 0.5 (closed) and first generation
(|L| closed). As we have discussed above, inter-spacecraft distances differ by tens of thousands
of kilometers and even light travel times sharing the same link deviate by a few milliseconds.
Thus, in general we have to consider six unequal light travel times dij . This fact calls for L
closed property which requires a combination to represent a closed loop for six constant but
unequal arms. In the literature this property is referred to as modified TDI or generation 1.5.

We can conveniently generate combinations of this class by choosing two beam paths (I and
II) and appending them in an alternating fashion5. The difference of the two beams represents
a L closed combination X by definition.

X(t) = TITIIϕ(t)−TIITIϕ(t) = [TI,TII]ϕ(t) (3.22)

Here, we have introduced the commutator of time-shift operations. This provides us with the
general recipe to turn a zeroth generation variable into its generation 1.5 counterpart. As an
example, we consider the Michelson combinations defined in eq. (3.17).

X
(1)
1 (t) = T1←3←1←2←1ϕ1(t)−T1←2←1←3←1ϕ1(t) (3.23a)

X
(2)
1 (t) = T1→3→1←2←1ϕ1(t)−T1←2←1→3→1ϕ1(t) (3.23b)

Even though combination X
(2)
0 is not even closed, using the recipe in eq. (3.22) turns it into a L

closed variable. Doing the same to the relay, beacon and monitor variables defined in eq. (3.19)
recovers the original combinations reported in the literature (Tinto et al., 2004; Vallisneri, 2005).
They are defined as

U1(t) = T1←2←1←3←2←1ϕ1(t)−T1←3←2←1←2←1ϕ1(t) (3.24a)
P1(t) = T1→2←3←2←1ϕ1(t)−T1→3←2←3←1ϕ1(t) (3.24b)
E1(t) = T1←2→3→2→1ϕ1(t)−T1←3→2→3→1ϕ1(t) (3.24c)

For the beacon P1 and monitor E1 combination we find the sections 3 ⇆ 1 ⇄ 3 and 2 ⇆ 1 ⇄ 2
in the beam paths (upper arrow for beacon, lower arrow for monitor). Those represent null
bigrams, i.e., vanishing paths, and we strike them out. Therefore, U1, P1 and E1 combinations
represent an alternative set of three L closed variables that use eight links6.

It can be shown that the difference in emission times of L closed combinations is of order
d · ḋ. To estimate the magnitude of higher order derivatives of the light travel time d we assume
a sinusoidal modulation on top of the 8.3 s nominal value with an amplitude of 0.1 s and a
characteristic frequency of once per year. This yields the relation∣∣∣∣ dndtn

d(t)

∣∣∣∣ ≃ 0.1 s ·
(
2πyr−1

)n
= ϵn · 0.1 s1−n, (3.25)

with ϵ = 2× 10−7. From this we follow that the rate of change of the light travel time is of the
order of 2× 10−8 s s−1. The difference in emission times for L closed combinations can then be
estimates as 100 ns which still violates the 30 ns projection we have estimated before.

5In a recent publication Tinto and Dhurandhar (2023) refer to this as the “lifting” procedure.
6The relay combination U1 seems to have ten links. However, the last time-shift T2←1 is common to both

beams which makes it effectively an eight link combination
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To improve on laser noise suppression even further we introduce the class of L̇ closed variables.
Members of this class are also called second generation variables. They take multiple round-
trips to equalize the differences in the time-dependent light travel times of an orbiting LISA
constellation (Shaddock et al., 2003; Cornish and Hellings, 2003). The exact condition for this
property to be fulfilled can be taken from Vallisneri (2005). In short, a combination is called
L̇ closed if the beams represent a closed loop in the limit of small travel time derivatives. The
“openness” ∆t of the loop is of the order of d·ḋ2 and d2 ·d̈ which is second order in ϵ and evaluates
approximately to 300 fs. This results in a laser noise residual of 9 ncycles/

√
Hz which is much

smaller than the microcycle-requirement. Hence, second generation TDI is deemed sufficient for
the LISA mission.

To construct L̇ closed variables we can simply apply the recipe for L closed variables intro-
duced in eq. (3.22).

X(t) = (TITII)(TIITI)ϕ(t)− (TIITI)(TITII)ϕ(t) = [TITII,TIITI]ϕ(t) = [[TI,TII],TIITI]ϕ(t)
(3.26)

Interestingly, we recover a second order commutator that already hints towards the L̇ closure
property. As an example we explicitly state the differences in emission times for the classical
Michelson combinations of increasing generation.

∆tX0(t) = D131t−D121t (3.27)
= d121(t)− d131(t), (3.28)

∆tX1(t) = [D131,D121]t (3.29)

= d121(t) · ḋ131(t)− d131(t) · ḋ121(t), (3.30)

∆tX2(t) = [[D131,D121],D12131]t (3.31)

=
(
d121(t) · ḋ131(t)− d131(t) · ḋ121(t)

)(
ḋ121(t) + ḋ131(t)

)
−
(
d121(t) + d131(t)

)(
d121(t) · d̈131(t)− d131(t) · d̈121(t)

)
,

(3.32)

which are of order O(ϵ0), O(ϵ1) and O(ϵ2), respectively. For this calculations we have come back
to the notion of delay operators Dij and also introduce the notation of contracted delays which
are defined as Dijk = DijDjk. We illustrate the beam paths in fig. 3.5 and visually demonstrate
that the emission events become more simultaneous for increasing generation.

Practical considerations

Above we have presented how to construct various TDI combinations that suppress laser noise
for realistic LISA setups. This begs the question whether there exists a set of combinations that
is in some sense “complete”. This is important as it is rather impractical to consider all possible
(infinite amount) combinations at the same time.

From a naive algebraic point of view one would follow that a set of three combinations should
span the entire laser noise free space. In TDI we seek linear combinations of the six one-way
measurements η that cancel out laser noise. As there are only three lasers appearing in the
system of equations it is overdetermined (6 measurements, 3 unknowns). We follow that there
exists a linear transformation that transforms the six one-way measurements into a set of three
laser noise free and three laser noise dominated variables which we discard (cf. section 4.3 and
Armstrong et al. (1999) for more details).

Dhurandhar et al. (2002) demonstrate in a more rigorous algebraic study that this naive
reasoning is incomplete. They show that for a static and non-rotating LISA constellation the
space of laser noise free combinations is appropriately described by a module over polynomials
in the three constant delays. They identify a minimum set of four generators that are required to
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Figure 3.5: Spacetime diagrams of the Michelson variables of increasing generation. The dots
indicate events of emission and arrows in red and blue the two beam paths. We represent the
world lines of the three spacecraft as slightly slanted (non-zero relative velocity) black lines. The
left most plot shows the “classical” Michelson interferometer where events of emission are clearly
separated. For the first generation Michelson variable (center plot) the difference is reduced.
Ultimately, for the second generation Michelson variable the events of emission of the two beams
seems identical by eye.
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span the entire space of laser noise free variables. We note that those four “basis” combinations
are not independent as they can be related to each other up to a global delay polynomial.
However, different generator exhibit different responses and most importantly insensitivities at
characteristic Fourier frequencies towards GW signals. Those are the reason for requiring 4
generators for a “three dimensional” space as once those nulls are present in a combination they
are irreducible. In a follow up study (Nayak and Vinet, 2004) they extend this approach to a
rotating constellation which yields a total of six generators.

Finally, let us take the perspective of a data analyst. The three basic Michelson combinations
redundantly measure the three GW strains along the arms7. We have

X(t) = H3(t)−H2(t) (3.33)
Y (t) = H1(t)−H3(t) (3.34)
Z(t) = H2(t)−H1(t) (3.35)

where Y and Z represent Michelson interferometers centered on spacecraft 2 and 3, respectively
and Hi denotes the GW signal projected on the link opposite to spacecraft i. We can trans-
form this set of three combinations with similar properties into a set of two combinations that
“concentrate” the GW signals and one that is completely insensitive (Cutler, 1998). The latter
is simply given by the sum of the three Michelson combinations. Prince et al. (2002) present a
technique to identify the optimal set of such combinations to maximize the signal-to-noise ratio
of a GW signal uniformly distributed on the entire sky. They obtain the three combinations
which can be equivalently defined from the Sagnac or Michelson variables as

A(t) =
Z(t)−X(t)√

2
(3.36)

E(t) =
X(t)− 2Y (t) + Z(t)√

6
(3.37)

T (t) =
X(t) + Y (t) + Z(t)√

3
(3.38)

Here, A and E are sensitive to GW signals while T represents the null channel. In data analysis
the latter is rather important as it serves as a noise monitor (Muratore et al., 2022) and helps
distinguishing stochastic GWs from instrumental noise in the sensitive channels.

Generalizations of TDI

In standard TDI approach discussed above is well established by now (Tinto et al., 2023).
However, there has been some ideas to generalize the standard method to transform the mea-
surements to a set of observables that suppresses laser noise and is sensitive the GWs. The
general idea is to use principal component analysis to identify the low variance components
that represent laser noise suppressing variables (Romano and Woan, 2006; Baghi et al., 2021b;
Baghi et al., 2021a; Baghi et al., 2023). This initial work is extended to setups assuming perfect
knowledge of the light travel times (Vallisneri et al., 2021) and “fully data-driven” algorithms
that even work without any prior knowledge on the laser noise content in the measurements.

3.2 TDI in Practice

In the split-interferometry setup of LISA, the fundamental one-way measurements ηij , that
compare laser phases from different spacecraft, are not readily available. They have to be
constructed from the three interferometers introduced in section 1.2.4 and further detailed in

7Here, we assume a static, non-rotating constellation in the long wave length approximation such that a link
produces the same GW response in both directions.
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Figure 3.6: Illustration of MOSA jitter suppression. The wiggly and straight black lines represent
the positions of the MOSAs and TMs, respectively. The left panel shows the inter-spacecraft
interferometer formed by the blue beam in the red dot at the arrow head and the two TM
interferometers formed by the red arrows and the blue and yellow dots at the corresponding
error head. The right panel presents the MOSA jitter free variable ξ (see eq. (3.46)).

section 2.2.1. This is achieved in two steps: First, MOSA jitter is removed that affects the
inter-spacecraft interferometer. As a second step, the information contained in the reference
interferometer is used to cancel three of the six laser phases. This procedure yields six one-way
measurements η that are free of MOSA jitter and refer to a single laser per spacecraft. We
discuss both processing steps in more detail below.

3.2.1 Suppression of MOSA jitter

External disturbances in the space environment, like solar radiation pressure shake the space-
craft. Additionally the MOSAs that host the interferometers are not rigidly fixed to the space-
craft but need to independently move to point to the distant spacecraft. Therefore, they are also
subject to displacement noises. To mitigate the effective movement of the MOSAs very quiet
TMs are implemented to act as inertial reference points. Dedicated TM interferometers are
implemented to track the longitudinal motion of the MOSAs with respect to the corresponding
TM. This enables us to correct for it in post-processing (Estabrook et al., 2000).

As defined in eq. (2.34) the TM interferometer compares the same laser beams as the reference
interferometer. However, the important difference is that the local beam probes the TM before
interfering with the adjacent beam. Therefore, it picks up additional path length given by the
round-trip from the MOSA to the TM. The round-trip delay dMOSAij⇄TMij (t) is a small quantity
as the spacecraft is actively controlled to follow the TM. Hence, we can develop the expression
for the TM interferometer as

tmiij(t) = ϕik(t)− ϕij(t− dMOSAij⇄TMij (t)) (3.39)

≃ ϕik(t)− ϕij(t)︸ ︷︷ ︸
rfiij(t)

+dMOSAij⇄TMij (t) · νoij(t). (3.40)

Here, we note two things. First, we recognize that indeed the TM interferometer tracks the same
beatnote phase as the reference interferometer up to the additional phase contribution from the
time-varying MOSA-TM-distance. Second, we realize that the round-trip path can be split up
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into single contributions. Therefore, we write

dMOSAij←TMij (t) ≃
dMOSAij⇄TMij (t)

2
≃ dTMij←MOSAij (t) (3.41)

We use these properties to virtually move the lasers and interferometers on top of the TMs
(which is rather impractical in reality). This is illustrated in fig. 3.6. We construct the MOSA
jitter free variable ξ in two steps. First, we subtract the TM interferometer from the reference
interferometer to yield the following measurements

rfiij(t)− tmiij(t)

2
≃ −dMOSAij←TMij (t) · νoij(t) ≃ DMOSAij←TMijϕij(t)− ϕij(t), (3.42a)

≃ −dTMij←MOSAij (t) · νoij(t) ≃ DTMij←MOSAijϕij(t)− ϕij(t). (3.42b)

In the next step, these two virtual interferometers are used to construct a TM-TM-measurement.

ξij(t) =
rfiij(t)− tmiij(t)

2
+DTMij←MOSAij isiij(t) +DTMij←MOSAji

rfiji(t)− tmiji(t)

2
(3.43)

= DTMij←MOSAijϕij(t)− ϕij(t)

+DTMij←MOSAjiϕji(t)−DTMij←MOSAijϕij(t)

+DTMij←TMjiϕji(t)−DTMij←MOSAjiϕji(t)

(3.44)

= DTMij←TMjiϕji(t)− ϕij(t) (3.45)

In practice, the local delay dTMij←MOSAij is set to zero as it only couples weakly to the megahertz-
beatnote frequency. Furthermore, for the same reasons, we use the “usual” propagation delay
Dij for the distant MOSA to local TM propagation.

ξij = isiij(t) +
rfiij(t)− tmiij(t)

2
+Dij

rfiji(t)− tmiji(t)

2
(3.46)

With this we have successfully constructed the intermediary variable ξ that represents a
virtual interferometer referenced to the (almost) inertial TMs (see right panel of fig. 3.6). Still
at low frequencies the interferometric readout is limited by TM acceleration noise (ignoring
primary noises).

3.2.2 Reduction to three lasers

The intermediary variables ξ given in eq. (3.46) almost resemble what we require as inputs for
TDI. However, the one-way measurements used in eq. (3.11) is defined for a single laser source
per spacecraft. In the following, we explain how to reduce the six laser source contained in ξ to
only three.

The reference interferometer (see eq. (2.31)) relates the lasers on adjacent MOSAs via the
backlink optical fiber. Consequently, we can use it to interchange adjacent laser phases in our
expressions. This is convenient as we can replace all occurrences of lasers on right-handed
MOSAs with their adjacent counterpart on left-handed MOSAs or vice versa. The common
choice in the literature is to keep left-handed lasers and discard right-handed ones.

Before we can proceed, we need to reduce the fiber noise of the backlink. This is achieved
by subtraction of adjacent reference interferometers. As the additional path length due to fiber
noise is a small quantity we can develop the expressions up to first order and find

rfiik(t)− rfiij(t)

2
=
(
DMOSAik←MOSAijϕij(t)− ϕik(t)

)
−
(
DMOSAij←MOSAik

ϕik(t)− ϕij(t)
)

(3.47)

≃ ϕij(t)− ϕik(t) + dMOSAik↔MOSAij (t) ·
(
νoik(t)− νoij(t)

)
(3.48)

≃ ϕij(t)− ϕik(t). (3.49)
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Backlink fiber noise cancels under two conditions. First, the path length noise must be reciprocal,
i.e., counter-propagating beams pick up the same small additional path length dMOSAik↔MOSAij .
Second, the wavelength of the laser beams must be identical as path length noises couple to the
optical frequency of the lasers. This is approximately true as the optical frequencies only differ
by a couple of megahertz and therefore the residual coupling of backlink noise is negligible.

Then, we use of the fiber-noise-suppressed interferometer in eq. (3.49) and reduce the six
lasers to the three left-handed ones. We have to treat the intermediary variable ξij differently
for left-handed MOSAs and right-handed MOSAs. For ij = 12, 23, 31 (left-handed MOSAs) the
distant laser has to be interchanged with its adjacent counterpart. We define

ηij(t) = ξij(t) +Dij
rfiji(t)− rfijk(t)

2
(3.50)

= Dijϕji(t)− ϕij(t) +Dij

(
ϕjk(t)− ϕji(t)

)
(3.51)

= Dijϕjk(t)− ϕij(t). (3.52)

Equivalently for the indices ij = 13, 32, 21 (right-handed MOSAs) the local laser has to be
replaced. We define

ηij(t) = ξij(t) +
rfiik(t)− rfiij(t)

2
(3.53)

= Dijϕji(t)− ϕij(t) + ϕij(t)− ϕik(t) (3.54)
= Dijϕji(t)− ϕik(t). (3.55)

Consequently, the six intermediary variables η only contain three lasers and we can simplify the
notation and write

ηij(t) = Dijϕj(t)− ϕi(t) (3.56)

with ϕ1 ≡ ϕ12, ϕ2 ≡ ϕ23 and ϕ3 ≡ ϕ31.

3.2.3 Clock synchronization

All measurements aboard the satellites are taken according to the spacecraft on-board time
(see sections 1.2.3 and 2.3.1). In order to perform data analysis the measurements need to
be synchronized to a well-defined global reference time frame, e.g., TCB. This is required since
astronomers use it to relate astrophysical events to the recorded LISA data. The on-board timers
are expected to drift by several seconds over the mission duration. The current requirement on
the knowledge of desynchronization to properly conduct parameter estimation is 0.1ms.

LISA implements two measurements to keep track of the timer deviations. First, the space-
craft will send dedicated timing packets down to Earth that contain a reading of the on-board
time at emission. This is combined with the orbital information from ground tracking to synchro-
nize the on-board clocks to TCB with millisecond-accuracy. Second, the clock-sidebands realize
a differential clock comparison that tracks the evolution of the clocks relative to each other
with high precision. This information is used to properly synchronize the megahertz-beatnote
measurements among the satellites.

Synchronizing the beatnote phases to TCB using the ground tracking information is imprac-
tical. As they are taken only once a day and are not precise enough to monitor the in-band clock
timing jitter, clock noise remains in the beatnote phases. Therefore, as proposed by Hartwig
et al. (2022) we first perform TDI in the time reference frames of the spacecraft timers and only
in the very end synchronize the combinations to TCB. This order is convenient as TDI combi-
nations naturally have a small beatnote frequency as compared to the few MHz of the original
interferometric measurements. Furthermore, clock noise is suppressed in the TDI variable and
therefore it is sufficient to make use of the out-of-band timer deviations from TCB to synchronize
the variables.
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We note that the very first publications on TDI all assume interferometric measurements
that are synchronized to TCB and light travel times as an input to TDI. This scheme requires
that clock synchronization and TDI are interchanged. In fact, the two steps are intimately
connected as TDI itself can be regarded as the synchronization of the three spacecraft clocks
to a single one (i.e. each combination receives two virtual laser beams on the same spacecraft
according to the corresponding spacecraft clock). Therefore, one is free to choose any time
reference frame per spacecraft (even fictional ones) and transform the six one-way measurement
into that frame. However, the pseudo-ranges that are an input to TDI have to be corrected for
the particular choice of time reference frames to ensure that TDI is appropriately synchronizing
all one-way measurements to the respective “combination” reference time frame (i.e., the time-
frame of the spacecraft that receives the two beams). A sensible and common choice is to
synchronize the three spacecraft clocks to TCB. As a consequence, the six pseudo-ranges have
to be corrected for the effect of the differential timer deviations such that they only account for
the light travel time between the satellites. We now return to the first scheme described in the
previous paragraph as it requires least processing steps as we take the one-way measurements
and pseudo-ranges in the time reference frames they are originally taken in which eliminates the
need of a re-synchronization step and correction of the pseudo-ranges.

Let us introduce some basic definitions that are relevant for the synchronization process.
First, let us redefine the beatnote phases neglecting any path-length noises. Instead of first
writing the laser phases ϕc

ij and phase modulations ϕm
ij in the spacecraft proper time and then

transforming it to the spacecraft on-board time, we directly define the phases in the spacecraft
on-board time and then account for the different time reference frames when propagating the
beams. We yield the following models for the carrier-carrier and sideband-sideband beatnotes
of the inter-spacecraft and reference interferometer

isi
c/sb,τ̂i
ij (t) = Dτ̂i

ijϕ
c/m,τ̂j
ji (t)− ϕ

c/m,τ̂i
ij (t), (3.57a)

rfi
c/sb,τ̂i
ij (t) = ϕ

c/m,τ̂i
ik (t)− ϕ

c/m,τ̂i
ij (t). (3.57b)

Here, we have introduced the operator Dτ̂i
ij = Tτ̂i

τiD
τi
ijT

τj
τ̂j

where dτ̂iij defines the measured pseudo-
range. It accounts for the relativistic frame transformations, the propagation delay and time
references transformations between the spacecraft on-board time and spacecraft proper time.
The operator Dτi

ij defines the proper pseudo-range which accounts for the time reference frame
transformation between spacecraft proper times and the propagation delay between the space-
craft given by the light travel time as measured by an external observer. Moreover, in the
equation above the phases ϕ

c/m,τ̂i
i now evolve according to the spacecraft on-board time and

thus clock effects enter.

ϕc,τ̂i
ij (t) = Tτ̂i

τiϕ
c,τi
ij (t) = ϕc

0,ij + νc0,ij · (t+ δτi(t)− t0) + pij(t) (3.58a)

ϕm,τ̂i
ij (t) = Tτ̂i

τiϕ
c,τi
ij (t) = ϕm

0,ij + νm0,ij · (t+Mij(t)− t0) (3.58b)

We find that clock noise is entering the carrier phase as it couples to the terahertz-frequency
of the laser. Its level is comparable to the level of laser phase noise. However, in the differential
measurement of the interferometers clock noise becomes subdominant again as it is common to
both beams and consequently couples via the megahertz-beatnote frequency. The modulation
phase, on the other hand, simplifies as the clock related effects drop out. Intuitively, this makes
sense as the spacecraft on-board time is by definition the time reference frame in which the clock
has a constant rate. The phase modulation is only disturbed by modulation noise.

The one-way measurements ητ̂iij recorded in the reference frame of the on-board timers can
be constructed as presented above (using the measured pseudo-range as the propagation delay)
and are modeled analogously as

ητ̂iij (t) = Dτ̂i
ijϕ

τ̂j
j (t)− ϕτ̂i

i . (3.59)



3.2. TDI IN PRACTICE 45

We note that eq. (3.59) has the same algebraic form as eq. (3.11) and therefore the total laser
phase should be suppressed when performing TDI using the measured pseudo-ranges. As a result
we obtain a virtual interferometer with round-trip delays calculated from nested pseudo-range
delay operators. Those are defined as

Dτ̂i
ijD

τ̂j
jk = Tτ̂i

τiD
τi
ij T

τj
τ̂j
T

τ̂j
τj︸ ︷︷ ︸

1

D
τj
jkT

τk
τ̂k

= Tτ̂i
τiD

τi
ijkT

τk
τ̂k

= Dτ̂i
ijk, (3.60)

and conveniently contract to an equivalent pseudo-range delay operator. We can use this prop-
erty to demonstrate that any TDI combination X τ̂i we obtain is indeed equivalent to the same
combination Xτi given in the spacecraft proper time transformed to the spacecraft on-board
time.

Let us discuss this for the example of the second generation Michelson combination X2.

X τ̂1
2 = [Dτ̂1

13121,D
τ̂1
12131]ϕ

τ̂1
1 (t) (3.61)

= Tτ̂1
τ1D

τ1
131212131T

τ1
τ̂1
ϕτ̂1
1 (t)−Tτ̂1

τ1D
τ1
121313121T

τ1
τ̂1
ϕτ̂1
1 (t) (3.62)

= Tτ̂1
τ1 [D

τ1
13121,D

τ1
12131]ϕ

τ1
1 (t)︸ ︷︷ ︸

X
τ1
2 (t)

. (3.63)

By definition Xτ1
2 is free of clock noise as ϕτ1

1 describes the laser phase evolution in the proper
time frame that is only disturbed by laser noise. Furthermore, the virtual beatnote of Xτ1

2 is
sub-millihertz8. Therefore, when performing the time reference frame transformation clock noise
coupling is reduced by a factor 1010 compared to the usual mega-hertz beatnotes. In summary,
TDI applied to total beatnote phases and measured pseudo-ranges timestamped according to
their respective on-board time suppresses both laser and clock noise.

The resulting combination still needs to be synchronized to TCB. This is much easier to do
as clock noise is already suppressed. Therefore, only the out-of-band component of the timer
deviations from TCB is required which is measured by the ground station. The synchronization
step hence reads

Xt(t) ≃ Tt,o
τ̂i
X τ̂i(t). (3.64)

3.2.4 Ranging processing

The main goal of the LISA instrument is to determine the inter-spacecraft ranges with high
precision to measure the strain of a passing GW wave. To achieve that LISA implements the
inter-spacecraft interferometer that is sensitive to the picometer path length changes. However,
laser phase noise obstructs the signal. To mitigate it we build more complex virtual interfer-
ometers using TDI. This recovers the picometer-sensitivity of LISA (which applies now to the
measurement of the length of the differential beam path of the virtual interferometer, not a single
link). TDI relies on a independent absolute ranging estimate with an accuracy of approximately
10m and noise lower than 30 µm/

√
Hz9 (also see Tinto et al. (2003)).

The accuracy and precision of the independent estimate of the measured pseudo-range is
realized with two auxiliary measurement; the PRN range and the sideband beatnotes. The
PRN range is implemented by modulating a pseudo-random code on the laser beams which is
read out and correlated with a local copy of the code at the receiving spacecraft and enables
determination of the absolute range with meter-accuracy. However, the noise properties of this

8The beatnote frequency of a TDI combination is driven by the differential Doppler shift in the two virtual
beams. For the second generation Michelson variable it is given by d

dt
∆tX2(t) · ν0 ≃

(
4d(ḋ121d̈131 − ḋ131d̈121) +

2d(ḋ121 − ḋ131)(d̈121 + d̈131)− 8d2(
...
d 121 −

...
d 131)

)
ν0 < 1mHz assuming approximately equal arms.

9Here, we assume a laser frequency noise level of 30Hz/
√
Hz and a beatnote frequency of 10MHz. For more

details see section 3.3.
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measurement are insufficient with an ASD of roughly 1m/
√
Hz. To achieve the micrometer-

precision stated above LISA modulates the clock signals as gigahertz-sidebands on the carrier.
Therefore, the sideband beatnotes realize a femtosecond-precise relative ranging measurement
(with an unresolved ambiguity of 12.5 cm).

It is possible to combine the PRN range and sideband beatnotes to yield a high-accuracy,
low-noise estimate. A simple scheme is presented by Hartwig et al. (2022) that we will discuss
in the following. For optimal state estimation a Kalman-like filter can be applied (Reinhardt
et al., 2023).

In the first step we reduce six phase modulations to only three. The reason for this is already
discussed in section 3.2.4; the modulation noise on right-handed MOSAs has a ten-fold amplitude
as compared to left-handed MOSAs. To remove the former we form the η intermediary variables
for the sidebands beatnotes.

ηsbij (t) = Dτ̂i
ijϕ

m,τ̂j
j (t)− ϕm,τ̂i

i (t) (3.65)

= ηsb0,ij + νm0 ·
(
Dτ̂i

ijMj(t)−Mi(t)− dτ̂iij(t)
)

(3.66)

Here, single-indexed quantities refer to left-handed MOSAs (and therefore νm0 = νm0,i = 2.4GHz).
The constant phase offset ηsb0,ij is dependent on the absolute phases of the USOs. Its exact value
is irrelevant to us as we are primarily interested in the in-band noise properties that are given
by the modulation noise contributions.

The PRN range in as given in the spacecraft on-board time can be derived from eq. (2.41)
by applying the transformation given in eq. (2.43). It reads

Rτ̂i
ij(t) = Rτi

ij

(
τ τ̂ii (t)

)
= t−Dτ̂i

ijt+Bij +NR
ij (t) = dτ̂iij(t) +Bij +NR

ij (t), (3.67)

and can be used to calibrate the constant in the sideband range. We determine the constant by
taking the mean of the difference of the sideband range and the PRN range. Then, we subtract
it from the sideband range itself

d̂τ̂iij(t) = −
ηsbij (t)

νm0
−mean

{
−
ηsbij (t)

νm0
−Rτ̂i

ij(t)

}
≃ dτ̂iij(t) +Bij −Dτ̂i

ijMj(t) +Mi(t). (3.68)

The resulting estimate of the measured pseudo-range inherits the bias of the PRN range and
the noise of the sideband range. The uncertainty of the determination of the constant can be

estimated as
√

SR
N
T where T is the duration of the data. After only a couple of seconds the

uncertainty drops below the dominant bias terms Bij which is of the order of meters.
To further improve the ranging measurement one can extract the ranging information con-

tained in the carrier-carrier beatnotes. The most dominant in-band contribution comes from
the instability of the lasers’ frequency and appears correlated among the beatnote phases. The
TDI algorithm makes use of this property to suppress laser noise. As it reacts rather sensitive
to errors in the ranges, one can use a technique called time-delay interferometric ranging (TDI-
R) to infer them. Those estimates are by definition unbiased and can be used to validate and
calibrate the PRN measurements. More details on TDI-R can be found in chapter 4.

3.2.5 TDI in units of frequency

A convenient quantity for describing the evolution of the beatnote phases is given by its deriva-
tive, the beatnote frequency. Over the whole mission duration it stays roughly constant and
within the phasemeter’s bandwidth (5MHz to 25MHz). A double precision float (approximately
16 digits of precision) is sufficient to numerically represent it as a 20MHz beatnote frequency
produces a noise floor with an amplitude of approximately 2 nHz/

√
Hz. We require that the

numerical noise floor stays below the microcycle-requirement given in eq. (1.18) which takes its



3.3. LASER AND TIMING NOISE RESIDUALS 47

minimum of 20 nHz/
√
Hz at 2mHz which results in a margin of one order of magnitude. On the

other hand, the beatnote phase is a rapidly increasing quantity which requires a large number
of significant digits to deal with its dynamical range. After a year the phase has accumulated
approximately 1014 cycles and to meet the microcycle requirement we would need around 20
significant digits.

In principle, when converting from phase to frequency no information is lost apart from the
initial phase of the beatnote. The total phase can be reconstructed by integrating the beatnote
frequency and inferring the integration constant from some other measurement.

ϕ(t) = ϕ0 +

∫ t

0
ν(t′) dt′ (3.69)

The standard TDI combinations representing two-beam equal arm interferometers seem to
be insensitive to the initial beatnote phase ϕ0. They effectively act like differentiators at low
frequencies as one-way measurements ηij enter TDI combinations multiple times with different
delays. As an example we consider the first generation Michelson variable X1 where η13 enters
as

(1−D121)η13(t) =

∫ t

t0

η̇13(t
′) dt′ +

∫ t−d121(t)

t0

η̇13(t
′) dt′ (3.70)

=

∫ t

t0

η̇13(t
′) +

(
1− ḋ121(t

′)
)
η̇13
(
t′ − d121(t

′)
)︸ ︷︷ ︸

η̇13(t′)+Ḋ121η̇13(t′)

dt′ −
∫ t0

t0−d121(t0)
η̇13(t

′) dt′.

(3.71)

We insert the definition of the beatnote phase and find that the initial phase drops out. Similarly,
TDI combinations act like derivatives on the laser phase. Therefore, they are insensitive to the
initial phase of the lasers.

Consequently, the computation of TDI combination in units of total phase should be possible
from beatnote measurement given in frequency units as sketched in eq. (3.71). Here, we also
introduce the Doppler delay operator Ḋ that applies additional to the time-shift a multiplicative
Doppler factor and is defined as

Ḋν(t) =
(
1− ḋ(t)

)
ν(t− d(t)). (3.72)

The additional last term in eq. (3.71) represents a constant phase offset and drops out if
considering the TDI variable in frequency units.

3.3 Laser and Timing Noise Residuals

Onboard the spacecraft and in on-ground data processing laser noise and other timing noises
enter the beatnote measurements through various channels (Staab et al., 2023b). We discuss
the residuals due to the non-commutativity of the decimation stage and the delay operation
(partially described in Bayle et al. (2019)) and the impact of ranging (Tinto et al., 2003) and
interpolation errors arising in post-processed TDI (Shaddock et al., 2004).

3.3.1 On-board processing residuals

As discussed in section 2.3 decimation stages are used on board to reduce the data rate from
80MHz down to 4Hz. Those involve filters to mitigate aliasing, and decimators. In the following
we will discuss how those operations give rise to residual laser noise.

In section 3.2 we have discussed several reduction steps that are needed to suppress laser and
clock noise to the fundamental limit that is given by the arm-length mismatch. However, we
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have left out the description of the on-board processing. Before telemetry, each measurement is
passed through several stages of decimation that we denote by the operation S. Therefore, the
measurements relevant for laser noise suppression are given as

isiij = S
(
Dijϕji − ϕij

)
, (3.73a)

rfiij = S
(
ϕik − ϕij

)
. (3.73b)

Here, we introduce the bar notation that indicates decimated measurements.
To carry out TDI we require precise measurements of the propagation delays between the

satellites. Those are subject to the same decimation procedure such that we have only access to

d̄ij = Sdij . (3.74)

We denote the corresponding delay operator by D̄ij . Next, let us observe the effect of applying
this operator two a generic decimated phase ϕ̄ = Sϕ. We aim to find a rule to commute the
delay operation with the decimation stages to pull S in front of the expression. We find that
this commutation gives raise to a commutator.

D̄ϕ̄(t) = D̄(ϕo(t) + Sϕϵ(t)) (3.75)
≃ Doϕo(t)− Sdϵ(t) ·Doνo(t) +DoSϕϵ(t) (3.76)
≃ S

(
Doϕo(t)− dϵ(t) ·Doνo(t) +Doϕϵ(t)

)
− [S,Do]ϕϵ(t) (3.77)

≃ SDϕ(t)− [S,Do]ϕϵ(t) (3.78)

Here, we made use of the fact that the decimation stages have no effect on the out-of-band
part of the phase10. Furthermore, we have used the property given in eq. (2.20) to develop the
delayed total phase into its in-band and out-of-band components. The operator Do denotes a
delay by the out-of-band component of d(t) = do(t) + dϵ(t).

To demonstrate the use of eq. (3.78) we derive the form of the intermediary variable η for
left-handed and right-handed MOSAs. The former is defined as

η̄ij = isiij − D̄ij
rfijk − rfiji

2
(3.79)

= S
(
Dijϕji − ϕij

)
− D̄ijS

(
ϕji − ϕjk

)
(3.80)

= S
(
Dijϕjk − ϕij

)
+ [S,Do

ij ]
(
ϕji − ϕjk

)ϵ
. (3.81)

We yield two terms. The first one has the same algebraic form as eq. (3.11) and the second
resembles an additive term that will remain even after TDI. This demonstrates the general
coupling mechanism of residual laser noise due to the non-commutativity of the decimation
stages with the out-of-band delay operator.

The intermediary variable η for right-handed MOSAs does not pick up the commutator as
there are no delay operators applied to form it. It is easy to verify that

η̄ij = isiij +
rfiik − rfiij

2
= S

(
Dijϕji − ϕik

)
. (3.82)

Adopting the single-index notation for left-handed laser (ϕ1 = ϕ12, ϕ2 = ϕ23 and ϕ3 = ϕ31) we
find a general expression that holds for all ηij .

η̄ij = S
(
Dijϕj − ϕi

)︸ ︷︷ ︸
ηij

+[S,Do
ij ]
(
ϕji − ϕj

)ϵ︸ ︷︷ ︸
pji−pj

(3.83)

10For this to hold we require that the filters have vanishing group delay. This can be achieved by implementing
acausal digital filters, where an integer group delay is compensated by reassigning shifted timestamps to the
samples.
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Here, we identify ηij (without the bar) and the difference of the laser phases in the second term
can be approximated by just their laser noise content. This is possible since laser noise is the
dominant in-band contribution in beatnote phase.

Next, we want to give a more detailed description of the commutator. As already mentioned
above, in the current baseline design of LISA the decimation procedure is performed in stages.
Each stage consists of a digital filter to prevent aliasing and a decimator. Therefore, the entire
decimation procedure can be represented by

S =
1∏

i=N

SMi↓Fi. (3.84)

Commutator rules can be applied to study the effect of each stage individually. In this manuscript,
to simplify the modeling we only consider a single stage. This also reflects the implementation of
the state-of-the-art LISA simulators that we will use to verify our models. Therefore we redefine

S = SM↓F. (3.85)

and insert it into the commutator of eq. (3.78). Next, using commutator rule eq. (A.2) we split
it up into two terms.

[SM↓F,D
o] = SM↓[F,D

o] + [SM↓,D
o]F. (3.86)

We find two contributions, the filter-delay commutator that is decimated, and the decimation-
delay commutator of the filtered signal. In the following sections we will take a closer look at
those and discuss the conditions for them to be non-vanishing.

Filtering-delay commutator

The magnitude of the filtering-delay commutator strongly depends on the time-dependence of
the delay do(t). Intuitively, the commutator becomes zero for a constant delay as then both,
filtering and delay operation, represent LTI systems that commute by definition. However, in
case of a time-dependent delay the commutator is non-vanishing. The first description can be
found in Bayle et al. (2019) where it was dubbed “flexing-filtering effect”.

In what follows, we rederive the result using the definitions established in section 1.3. We
set off by expanding the expression

FDoϕϵ(t) =

∫
R
hF(τ)ϕ

ϵ(t− τ − do(t− τ)) dt (3.87a)

=

∫
R
hF(τ)ϕ

ϵ(t− τ − do(t) + τ ḋo(t)) dt (3.87b)

≃
∫

R
hF(τ)ϕ

ϵ(t− do(t)− τ) dt+

∫
R
hF(τ)τ ḋ

o(t)ϕ̇ϵ(t− do(t)− τ) dt (3.87c)

= DoFϕϵ(t) + ḋo(t)DoG
d

dt
ϕϵ(t). (3.87d)

Here, we assume a small delay derivative ḋo ≪ 1. As we will later see ḋo is dominated by the
clock drifts q̇o which are of the order of 5 × 10−7. Relative inter-spacecraft velocities play a
minor role as tens of ms−1 corresponds to ḋo ∼ 10−8. In the next step, we expand the laser
phase to first order in τ ḋo. This is appropriate as τ takes as its maximum value half the filter
kernel length such that the product τ ḋo remains small. In the last line of eq. (3.87) we collect
the two convolution integrals and identify two terms. The first one resembles the application of
the operators in reverse order. The second term represents exactly the commutator we sought
for, therefore, we write

[F,Do]ϕϵ(t) = FDoϕϵ(t)−DoFϕϵ(t) = ḋo(t)DoG
d

dt
ϕϵ(t) (3.88)
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Here, the operator G represents a filter operation with kernel hG(τ) = τ ·hF(τ). To express the
PSD of eq. (3.88) we assume a constant delay derivative and find

S
[F,Do]
δϕ (f) =

∣∣∣∣∣ ḋo2π dh̃F(f)

df

∣∣∣∣∣
2

Sϕ(t). (3.89)

Consequently, the amplitude of the flexing-filtering effect is dependent on two factors. First, it is
directly proportional to the delay derivative ḋo, and second, it relies upon a flat filter response.
For a filter that is unity throughout the band the magnitude of dh̃F(f)

df would be exactly zero.
However, realizing such a filter comes with high computational cost as many taps would be
required. Therefore, in principle, one has to trade off number of filter taps against the level of
flexing-filtering residual. Another solution is to correct the non-flat response of the anti-aliasing
filters on ground by means of a compensation filter. This is discussed in more details at the end
of the section.

Decimation-delay commutator

The non-commutation of the decimation and the delay operation also affects the residual in
eq. (3.78). As explained in section 1.3 decimation describes the process of reducing the sampling
rate of a discrete-time signal from M · fs to fs. Here, fs denotes the sampling rate after
decimation. For the decimation-delay commutator applied to a general phase noise we write

[SM↓,D
o]ϕϵ(t) = SM↓D

oϕϵ(t)−DoSM↓ϕ
ϵ(t). (3.90)

We can directly infer that the condition for a vanishing commutator is that Do corresponds to
an integer shift (after decimation, so do · fs equals to an integer k). In discrete time we write

SM↓D
oϕϵ

n = SM↓ϕ
ϵ
n−M ·k = ϕϵ

M ·(n−k), (3.91)

DoSM↓ϕ
ϵ
n = Doϕϵ

M ·n = ϕϵ
M ·(n−k). (3.92)

As both expressions yield the same result we conclude that the statement above is correct. For
non-integer delays we cannot rely on the discrete formulation of the expression but have to make
use of the Whittaker-Shannon interpolation formula (see eq. (1.29)) to transform the problem
into continuous time. The derivation of the commutator of decimation and the application of a
general LTI system is given in appendix B.1.

To express the PSD of equation eq. (3.90) we use eq. (B.18) of appendix B and plugin the
transfer function of a constant delay h̃(f) = e−2πifd

0 . We find

S
[SM↓,Do]
δϕ (f) = rect

(
f

fs

)M−1∑
n=1

4 · cn(do) · S(n)
ϕ (f) (3.93)

where the weighting factors cn(d
o) are given by

cn(d) =

{
sin2(πfs

n
2d

o) for n even,
sin2(πfs

n+1
2 do) for n odd.

. (3.94)

As the delay do generally varies over time the amplitude of the residual is modulated. We find
an upper bound of the PSD by setting all cn = 1. On average, assuming that do covers many
multiples of the sampling time Ts, cn takes the value 1

2 .
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Compensation filter

As mentioned above the aforementioned flexing-filtering effect can be suppressed by means of
a compensation filter. This filter is placed after the last decimator and can even be moved to
the on-ground processing pipeline to relax computational requirement on the spacecraft. It is
used to “lift” the transfer function of the decimation stage to ensure unity gain in-band. We can
model it as having a decimation stage operator

S = F+SM↓F. (3.95)

We model the compensation filter F+ as an FIR filter running at the decimated sampling rate
fs. Hence, for modeling we can commute it with the decimator by

FSM↓xn = FxM ·n =
∑
k

hkxM ·(n−k) =
∑
k

h̊kxM ·n−k = SM↓F̊xn. (3.96)

Here, the filter kernel h̊n is defined as

h̊k =

{
hk/M if k mod M = 0

0 else
(3.97)

which is equivalent to the original filter kernel filled with M − 1 zeros in between taps. The
[S,Do] commutator is now given as

[F+SF,Do] = [SF̊+F,Do] (3.98)

= S[F̊+F,Do] + [S,Do]F̊+F. (3.99)

We have again proceeded as in eq. (3.86) and split the commutator into two contributions. The
first one is responsible for the flexing-filtering effect and the second one for aliasing. Note that
the level of flexing-filtering is reduced as the transfer function of F̊+F is closer to unity in-band.
On the other hand, the effect of aliasing is amplified as the compensation filter lifts up the
response in the stop band of the filter F.

To demonstrate the effect of the compensation filter and validate the models derived for the
filter-delay and decimation-delay commutators, we run numerical simulations and compare them
against our models. In our setup, we simulate a time series of red phase noise with an ASD of√

Sp(f) =
√
Sṗ(f) · (2πf)−1 = 30Hz/

√
Hz · (2πf)−1 = 4.77 cycles/

√
Hz · Hz

f
, (3.100)

at a rate of 16Hz. We use the optimized filter design for phase units described in appendix C as
the anti-aliasing filter and suggest a compensation filter that uses 81 taps. The latter is computed
via sampling of the impulse response of a continuous-time filter that has the reciprocal transfer
function of the original anti-aliasing filter in-band.

To investigate frequencies down to 10−4Hz we choose 250 000 s as the duration. Then,
we simulate two commutators. The first one involves the simple decimation stage presented
in eq. (3.85). The second simulation additionally uses a compensation filter to suppress the
flexing-filtering effect.

δϕ[S4↓F,Do](t) ≃ [S4↓F,Do]p(t) = S4↓FDop(t)−DoS4↓Fp(t) (3.101a)

δϕ[F+S4↓F,Do](t) ≃ [F+S4↓F,Do]p(t) = F+S4↓FDop(t)−DoF+S4↓Fp(t) (3.101b)

In both cases we decimate by a factor of four. The calligraphic D indicates that we are using
a fractional delay filter to numerically approximate the delay operation for discrete time series.
The impact of that is further discussed in detail in section 3.3.2. To suppress interpolation
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Figure 3.7: Commutator residuals due to the flexing-filtering effect and aliasing. The numerical
ASDs of the filtered laser phase noise is shown in yellow, and the commutator residuals with
(blue) and without (red) compensation filter are plotted. For more details on the models see
text.

residuals sufficiently we choose the Lagrange interpolation method with a high interpolation
order of 101 which is implemented in the Python package PyTDI (Staab et al., 2023a). As the
simplest time-varying delay we choose a linear dependence of the delay

do(t) = d0 + ḋ · t (3.102)

with d0 = 8 s and ḋ = 5 × 10−7. With those parameters the delay will scan from 8 s through
8.125 s which correspond to an integer delay and a mid-sample delay (ϵ = 0.5), respectively.

The numerical ASDs of the simulation outlined in eq. (3.101) are shown in fig. 3.7. The
yellow line represents the level of laser phase noise after filtering. In solid blue and red the
results of the commutator with and without compensation filter is plotted. For comparison, we
also show models for the flexing-filtering effect (with compensation in dashed-dotted red and
without compensation in dashed red) and aliasing effect (dashed blue). They are given as

S
S4↓[F,Do]
δϕ (f) = S̃4↓

∣∣∣∣∣ ḋo2π dh̃F(f)

df

∣∣∣∣∣
2

Sṗ(f)

 , (3.103)

S
S4↓[F+F,Do]
δϕ (f) = S̃4↓


∣∣∣∣∣∣ ḋ

o

2π

d
(
h̃F+(f) · h̃F(f)

)
df

∣∣∣∣∣∣
2

Sṗ(f)

 , (3.104)

S
[S4↓,Do]F+F
δϕ (f) = rect

(
f

fs

)M−1∑
n=1

4 · cn(d̄o) ·
(
F̃+F̃Sp(f)

)(n)
(f). (3.105)

Here, we note that the flexing-filtering contributions residing at f > 2Hz are potentially aliased
into band. Therefore, the not only the flatness in-band is relevant for this coupling but also
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Figure 3.8: Illustration of the discrete convolution of the fractional delay filter kernel km (the
comb-shaped structure) with the time series ϕn. As an example we choose a kernel length N = 4,
an integer shift j = −5 and a fractional shift ϵ = 0.25.

out-of-band. The last equation represent aliased noise that dominates the on-board processing
residual after appropriately compensating for the non-flatness.

In fig. 3.7 we indeed observe that without compensation the flexing-filtering effect dominates
the residual for frequencies higher than 3× 10−2Hz. With compensation, on the other hand, it
is pushed below the residual due to aliasing which cannot be further reduced by any means.

3.3.2 TDI residuals

The post-processed implementation of TDI requires an independent measurement of the prop-
agation delays between the satellites and an appropriate interpolation method to time-shift the
discretely sampled data. Errors in the ranges and inaccurate interpolation will introduce residual
laser and timing noise in the resulting combinations.

Therefore, we introduce the post-processing delay operation D̂ that is subject to ranging noise
in the ranging estimates. As an example we observe its action when forming the intermediary
variable η on left-handed MOSAs.

η̂ij = isiij + D̂ij
rfiji − rfijk

2
(3.106)

= isiij +
(
Dij + D̂ij −Dij

)rfiji − rfijk
2

(3.107)

= ηij +
(
D̂ij −Dij

)rfiji − rfijk
2

(3.108)

We recover the “true” variable and an additional residual that is produced by the difference
between the post-processing delay operation and the actual delay operation. Let us further split

(D̂ −D)ϕ(t) = (D̂ − D̂)ϕ(t) + (D̂−D)ϕ(t). (3.109)

Here, we distinguish between the residual caused by interpolation errors (first term) and ranging
errors (second term). Let us now study both effects individually.

Interpolation error

In order to time-shift the discretely sampled beatnotes by arbitrary delays we require an inter-
polation method. In practice, this operation is carried out by a fractional delay filter which is
represented by an FIR system. In fig. 3.8 we illustrate this operation. For optimal performance
the filter kernel km is centered around the time of evaluation. We split the delay into an integer
shift j and a fractional shift ϵ such that we can write −d = (j + ϵ)Ts where Ts denotes the sam-
pling time. This is convenient because a time-shift by an integer amount of samples is trivial
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and can be performed beforehand. Furthermore, the filter kernel km is then only dependent on
the fractional shift ϵ. We can formally represent the fractional delay filter by

(Dϕ)n =

N/2−1∑
m=−N/2

km(ϵ) · ϕn−j−m. (3.110)

Here, ϕn are the discrete-time samples of the beatnote phase and N is the length of the length
of the kernel. Here, we only work with even length kernels but a similar expression for odd N
can be easily derived.

Let us now apply the rule for transforming this discrete-time operation into a continuous
LTI system. We find the continuous-time kernel

hD(τ) =

N/2−1∑
m=−N/2

km(ϵ) · δ(τ − (j +m)Ts). (3.111)

with a transfer function of

h̃D(f) =

N/2−1∑
m=−N/2

km(ϵ) · e−2πif(j+m)Ts . (3.112)

Using those definitions we write the interpolation residual as

δϕD(t) = (D −D)ϕ(t) = D (D−1D − 1)︸ ︷︷ ︸
∆

ϕ(t) (3.113)

Here, the operator ∆ effectively describes the dissimilarity of D−1D from unity. We use eq. (1.28)
to derive the PSD of the residual and find

SDδϕ(f) =
∣∣∣h̃D(f) · e2πifd − 1

∣∣∣2︸ ︷︷ ︸
∆̃

Sϕ(f). (3.114)

In general, the propagation delays in LISA vary slowly over time. As the interpolation error
is dependent on the value of the fractional shift ϵ the amplitude of the residual is modulated
over the year. It is easy to verify that it vanishes for ϵ = 0, 1 as an integer shift is trivially
implemented. For any other fractional value the delay filter can be designed such that the
interpolation residual stays below some requirement.

Classically, Lagrange interpolation is used to interpolate LISA data (Shaddock et al., 2004).
This method fits a Lagrange polynomial of order N −1 to the data which is centered around the
time of evaluation. It can be shown that this method produces a maximal flat response at DC.
Therefore, it is well suited to interpolate LISA data at low frequencies. However, the optimal
response at low frequencies comes at the cost of slow convergence at high frequencies close to
the Nyquist frequency.

To relax this behavior we introduce a new class of fractional delay filters in appendix D.
They are based on the design of FIR type II filters which have an even number of coefficients
and are symmetric. As a result, the transfer function of this filter naturally exhibits a fractional
group delay of 0.5. An arbitrary fractional delay filter can be derived from this with a similar
magnitude response. Therefore, we can tailor the frequency response over the LISA band to
fulfill a specific frequency-dependent requirement and at the same time minimize the number of
coefficients of the interpolation kernel.

To test the performance of the two interpolation methods we run a simple numerical simu-
lation using PyTDI (Staab et al., 2023a). As in section 3.3.1 we generate a time series of red



3.3. LASER AND TIMING NOISE RESIDUALS 55

10−4 10−3 10−2 10−1 100

Frequency (Hz)

10−11

10−9

10−7

10−5

10−3

10−1

101

103

105

A
S
D

(c
y
cl

es
/
√

H
z)

laser

interpolation residual

model FIR type II (ε = 0.5)

model FIR type II (ε = 0.25)

model Lagrange (ε = 0.5)

Figure 3.9: Interpolation residual of fractional delay filters. The ASD of raw laser phase noise
is shown in yellow and the solid blue line represents the ASD of the resulting interpolation
residual for ϵ = 0.25 using the FIR type II design with N = 28. For comparison the dashed lines
represent models for ϵ = 0.5 for the FIR type II design (blue) and Lagrange interpolation (red)
with N = 42. For reference we indicate the upper bound of the LISA band and the 1µcycle/

√
Hz

requirement with grey dashed lines.
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laser phase noise with the ASD given in eq. (3.100). Then we choose a constant delay d and
apply it to the time series. For one copy we use the fractional delay filter we want to test and
for another we use Lagrange interpolation of very high order (N = 102) that serves as the “true
reference”. The difference of the two should then be an approximate numerical representation
of eq. (3.113).

The result of this experiment is shown in fig. 3.9. The level of raw laser phase noise is shown
in yellow. For both interpolation methods we choose the minimum number of coefficients to push
the interpolation residual below the 1µcycle/

√
Hz requirement in the LISA band. For the FIR

type II design (blue) we find N = 28 and for the Lagrange interpolation method (red) N = 42.
The superior performance of the latter at low frequencies is obvious as the red dashed line
quickly drops to very small number not resolved in the graph. However, the FIR type II design
only uses two thirds of the number of coefficients and trades off low-frequency performance for
drop rate close to the Nyquist frequency to still fulfill the requirement. To demonstrate the
effect of leakage (non-zero at DC) in the design procedure of this kernel type we choose ϵ = 0.25
(d = 8.1975 s at fs = 4Hz) for the numerical simulation. The model represented by the blue
dashed-dotted line perfectly explains the residual.

Ranging error

The second contribution in eq. (3.109) is due to ranging errors. We define the estimated delay
operator as D̂ which applies a delay of d̂(t) = d(t) + r(t). Here, r(t) describes any deviation
from the true delay d(t). As we assume a small delay error we can expand to first order and find

δϕD̂(t) = (D̂−D)ϕ(t) ≃ −r(t)Dν(t). (3.115)

We note that the delay error couples to the beatnote frequency ν(t) = ϕ̇(t). From section 3.2.4
we know that r(t) contains nano-second slowly drifting offsets and femto-second in-band noise.
Therefore, analogously to the beatnote frequency we distinguish between ro(t) and rϵ(t). Let us
develop eq. (3.115).

r(t)Dν(t) = ro(t)Dνo(t)︸ ︷︷ ︸
out-of-band

+ ro(t)Dνϵ(t)︸ ︷︷ ︸
residual laser noise

+ rϵ(t)Dνo(t)︸ ︷︷ ︸
ranging noise coupling

+ rϵ(t)Dνϵ(t)︸ ︷︷ ︸
second order

(3.116)

The ranging residual splits into four terms. The product of the two out-of-band components is
itself out-of-band and therefore irrelevant for us11. The second term represents the coupling of
laser frequency noise to slow varying ranging offsets. Similarly, any timing jitter in the ranging
error couples to the mega-hertz beatnote frequency. Lastly, the product of the two in-band
component is second order in small quantities and can therefore be safely dropped.

To model the PSDs of the two relevant terms above we assume a constant ranging bias B
for the out-of-band component of the ranging error and constant beatnote frequency a. Then,
the PSD of eq. (3.115) is trivially given by

SD̂
δϕ(f) = B2Sν(f) + a2Sr(f). (3.117)

To numerically validate theses findings we have to also consider the quickly increasing phase
ramp in the simulation of the beatnote phase. As this produces large numbers that reduce
the numerical precision of the floating point representation we switch to frequency units. The
beatnote frequency is easier to handle as it does not grow arbitrarily large but stays within
certain bounds. Therefore, we simulate it as the sum of the beatnote offset a = 10MHz and
laser frequency noise ṗ(t).

ν(t) = a+ ṗ(t) (3.118)
11We will later see that it is further suppressed by TDI that acts like a derivative at low frequencies.
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We express eq. (3.115) in frequency units by taking the derivative

δνD̂(t) =
(
˙̂D− Ḋ

)
ν(t), (3.119)

where Ḋ is the Doppler delay that also includes the Doppler shift (cf. section 3.2.5). As the
dominant ranging noise in LISA we assume modulation noise with an ASD given in eq. (1.22).

The PSD of eq. (3.119) follows by multiplying eq. (3.115) by the factor (2πf)2. We find

SD̂
δν(f) = (2πf)2

(
B2Sṗ(f) + a2SM (f)

)
. (3.120)

The numerical results of eq. (3.119) for a bias of B = 5×10−8 s ≃ 15m are presented in fig. 3.10.
The ASD of the ranging residual (blue) is well explained by the model. At low frequencies the
contribution from modulation noise coupling to the beatnote frequency dominates, while at high
frequencies the laser noise coupling with the ranging bias takes over.

3.3.3 Michelson combinations

In this section we apply the formalism we have derived in the previous sections to the second
generation Michelson variable. In the first step we bring together the results on the effect of
on-board processing and the post-processing delay operator for the intermediary variable η.
We use the definition given in eq. (3.56) and replace each occurrence of the propagation delay
D by the corresponding decimated post-processing delay ˆ̄D. Furthermore, we operate on the
decimated interferometric measurement as they are produced by the spacecraft. Using eqs. (3.83)
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and (3.108) we find

ˆ̄ηij =

isiij +
ˆ̄Dij

rfiji−rfijk
2 if ϵijk = 1

isiij +
rfiij−rfiij

2 if ϵijk = −1
(3.121)

= Sηij − [S,Do
ij ]pj + [S,Do

ij ]pji︸ ︷︷ ︸
δη

[S,D]
ij

+
( ˆ̄Dij − D̄ij

)
(ϕ̄ji − ϕ̄j)︸ ︷︷ ︸

δηD̂ij

, (3.122)

where ϵijk denotes the Levi-Civita symbol which equals to 1 for even permutations of i, j, k =
1, 2, 3 and -1 for odd permutations. The first two terms in the last line are grouped together as
they will form the fundamental laser noise residual in the final TDI combination. We identify
the other two as the residual due to on-board processing and the use of the post-processing
delay.

TDI relies on constructing more and more complex beam paths. For illustration we form the
intermediary variable ηijk = Dijkϕk − ϕi that represents an interferometer which combines the
local beam with a beam that has traveled from spacecraft k over j to i. We construct it from
the single-link intermediary variables defined in eq. (3.122).

ˆ̄ηijk = ˆ̄ηij +
ˆ̄Dij ˆ̄ηjk (3.123)

= Sηijk − [S,Do
ijk]pk + δη

[S,D]
ijk + δηD̂ijk (3.124)

Again, we collect residuals related to fundamental laser noise residual in the first two terms and
the remaining ones in the last two terms.

Finally, we build the second generation Michelson variable X2 via several intermediary vari-
ables to save up on computational cost. This is possible as X2 possesses a high degree of
symmetry as it is composed of two beams taking several round-trips of increasing complexity.
Results for Y2 and Z2 can be obtained by circular permutation of the indices. We have

ˆ̄ηiji = ˆ̄ηij +
ˆ̄Dij ˆ̄ηji (3.125a)

ˆ̄ηijiki = ˆ̄ηiji +
ˆ̄Diji ˆ̄ηiki (3.125b)

ˆ̄ηijikikiji = ˆ̄ηijiki +
ˆ̄Dijiki ˆ̄ηikiji (3.125c)

ˆ̄X2 = ˆ̄η131212131 − ˆ̄η121313121 (3.125d)

We apply the rule given in eq. (3.124) repeatedly and find

ˆ̄X2 = SX2 −
[
S, [Do

13121,D
o
12131]

]
p1 + δX

[S,D]
2 + δXD̂2 . (3.126)

Let us first develop the terms that produce the fundamental laser noise residual and out-of-
band drifts due to time-varying delays. Therefore, we expand the decimated Michelson variable
X2. Here we need to specify the time reference frame all measurements and delay operators are
naturally given in, the spacecraft on-board time τ̂i.

SX τ̂1
2 = S[Dτ̂1

13121,D
τ̂1
12131]ϕ

τ̂1
1 (3.127)

= STτ̂1
τ1 [D

τ1
13121,D

τ1
12131]ϕ

τ1
1 (3.128)

= STτ̂1,o
τ1

(
[Dτ1

13121,D
τ1
12131]ϕ

τ1,o
1 + [Dτ1

13121,D
τ1
12131]p

τ1
1

)
(3.129)

= Tτ̂1,o
τ1 [Dτ1

13121,D
τ1
12131]ϕ

τ1,o
1 + S[Dτ̂1,o

13121,D
τ̂1,o
12131]p

τ̂1
1 (3.130)

In the second line we transform the commutator into the proper time of spacecraft 1. Then,
the laser phase ϕτ1,o

1 now given with respect to its proper time is free of clock noise. Therefore,
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we can split it up into slow drifts ϕτ1,o
1 and in-band laser noise pτ11 . Furthermore, all time-shift

operators can be reduced to their out-of-band version as they are applied to small quantities,
such that the coupling of the in-band component is negligible. Here, the delay operator Dτi

ij

accounting for the proper pseudo-range is naturally free of in-band components since we neglect
the effect of GW signals. Let us now combine the decimated and the second-order commutator
in eq. (3.126).

SX τ̂1
2 −

[
S, [Dτ̂1,o

13121,D
τ̂1,o
12131]

]
pτ̂11 = Tτ̂1,o

τ1 [Dτ1
13121,D

τ1
12131]ϕ

τ1,o
1︸ ︷︷ ︸

Xo
2

+ [Dτ̂1,o
13121,D

τ̂1,o
12131]Sp

τ̂1
1︸ ︷︷ ︸

δX2

(3.131)

We obtain two terms. The first one collects the out-of-band drifts of the TDI combination and
the second one represents the fundamental laser noise residual due to arm length mismatch.
With this, we summarize the contents of ˆ̄X2 as

ˆ̄X2 = Xo
2 + δX2 + δX

[S,D]
2 + δXD̂2 . (3.132)

The remaining terms are discussed in the respective section. We collect the laser noise
residual due to on-board processing δX

[S,D]
2 and TDI residuals that we further distinguish as

interpolation residuals δXD2 , bias residuals δXB
2 and modulation noise residuals δXM

2 .

δXD̂2 = δXD2 + δXB
2 + δXM

2 (3.133)

We verify the models developed above by running numerical simulations using the LISA
Instrument simulator. This simulator generates the LISA interferometric measurements (see
chapter 2) in units of total frequency for the reasons discussed in section 3.2.5. To obtain the
most realistic LISA setup but at the same time observe the residuals we include only laser
and clock related effects. We choose six laser sources locked to a cavity such that they are
independent and have the same level of laser frequency noise√

Sṗ(f) = 30Hz/
√
Hz. (3.134)

The central frequency of each laser is offset from the nominal value ν0 = 281.6THz by a constant
amount of a few megahertz to obtain valid absolute beatnote frequencies in range from 5MHz
to 25MHz. As the baseline mission design of LISA foresees locked lasers, we discuss the impact
of laser locking later.

For the clocks we consider the most complete model available in the simulator. Their devi-
ations from the nominal frequency is described in terms of a fractional frequency shift y(t). It
includes a random jitter component represented by a flicker noise with an ASD of

√
Sq̇(f) = 6.32× 10−14

√
Hz ·

(
f

Hz

)− 1
2

, (3.135)

and an out-of-band drift that is modeled by a second order polynomial

y0,i + y1,i · t+ y2,i · t2. (3.136)

We summarize the individual numerical values of yn,i in table 3.1. As described in section 2.1.1
the spacecraft timer is derived by integrating the fractional clock frequency. If we assume
synchronized timers at launch and a transfer time of 400 d we find that the timers will be desyn-
chronized by a few seconds. Therefore, we consider initial timer offsets δτ̂0,i in the simulation.

Prior to any processing we convert the data type of each simulation output from a double
precision float (64 bit) to an extended precision float (equivalent to 80 bit for the machine used
in this study). This measure avoids adding numerical noise that potentially limits the result
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δτ̂0,i (s) y0,i (s s−1) y1,i (s−1) y2,i (s−2)

clock 1 - 5× 10−8 1.6× 10−15 9× 10−24

clock 2 - 6.25× 10−7 2× 10−14 6.75× 10−23

clock 3 - −3.75× 10−7 −1.2× 10−14 −1.125× 10−22

Table 3.1: Summary of the numerical values used in the LISA Instrument simulator for the
initial timer offsets δτ̂i and the polynomial coefficients yn,i that parameterize the out-of-band
fractional clock frequency deviations defined in eq. (2.11).

when operating on the megahertz-beatnotes in TDI. We then process the simulation output
in two steps. First, we combine the sideband beatnotes and the PRN ranges to form a high
accuracy, high precision estimate of the measured pseudo-ranges. Then, we use the Python
package PyTDI (Staab et al., 2023a) to evaluate the second generation Michelson variable X2.
Ultimately, to check the validity of the derived models and the level of residual laser noise we
evaluate the ASDs.

Let us define a nominal configuration of the secondary instrumental noises, the on-board
processing and the implementation of TDI. The goal of the nominal configuration is to well
suppress any laser noise residuals. To analyze the individual residual laser noise contributions
we change certain parameters in the simulation and processing chain. The nominal on-board
processing consists of a strong anti-aliasing filter and decimation from 16Hz to 4Hz. To account
for the flexing-filtering effect the filter is very flat in the pass-band. More details on the filter
can be found in appendix C. Furthermore, ranging biases are set to zero and modulation noise
that acts as ranging noise in TDI is turned off. For the interpolation method used in TDI we use
high order Lagrange interpolation (N = 62) which leaves negligible interpolation error in-band.

In the following sections we discuss the individual residual laser and timing noise contribu-
tions. Each experiment modifies some relevant parameters in the simulation and processing.
We will discuss those and demonstrate that we can relax the nominal configuration to use less
stringent filter and interpolation kernel design and allow for ranging errors. We compare the
resulting PSDs to the microcycle-requirement which is propagated through TDI and reads

Sreq
δX2

(f) = 64 · sin2(2πfd̄) sin2(4πfd̄) · Sreq
δϕ (f), (3.137)

where d̄ represents an average arm length over all arms. The additional factor of four accounts
for the number of inter-spacecraft interferometers involved in the Michelson combination.

For brevity we omit specifying the time reference frame of physical quantities and delay
operators and implicitly assume that they are given in the spacecraft on-board time and Dij

denotes the delay by the out-of-band component of the measured pseud-range dτ̂iij . Furthermore,
for the coupling of laser noise residuals we assume constant arms in the models for simplifying
the expressions and enabling us to express their PSDs (which requires stationary processes).

Onboard processing residual

Let us first discuss the laser noise residuals in X2 that are caused by the non-commutativity
of the decimation stage and the propagation delay. To “turn on” this residual we modify the
nominal configuration defined above by introducing a more relaxed anti-aliasing filter. We use
the optimized design for frequency units described in appendix C.

As the optimized anti-aliasing filter design amplifies the flexing-filtering coupling, we also
include a compensation filter that we design similarly to the procedure outlined in section 3.3.1.
For comparison we process two sets of data; with and without the compensation filter.
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The laser noise residual in X2 due to a general decimation stage S is given as

δX
[S,D]
2 = −(1−D131)(1−D12131)

(
[S,D12]p21 +D12[S,D21]p12

)
+ (1−D121)(1−D12131)

(
[S,D13]p31 +D13[S,D31]p13

)
.

(3.138)

We substitute S by S4↓F for the simple decimation stage and by F+S4↓F for the decimation
stage including the compensation filter. Furthermore, we split up the contributions coming from
the flexing-filtering coupling and aliasing an find the following analytical models for their PSDs

S
S4↓[F,Do]
δX2

(f) = 16 sin2(πfd12131)
(
sin2(πfd131)

(
S
S4↓[F,Do

12]
δϕ21

(f) + S
S4↓[F,Do

21]
δϕ12

(f)
)

+ sin2(πfd121)
(
S
S4↓[F,Do

13]
δϕ31

(f) + S
S4↓[F,Do

31]
δϕ13

(f)
)) (3.139)

S
[S4↓,Do]F
δX2

(f) = 16 sin2(πfd12131)
(
sin2(πfd131)

(
S
[S4↓,Do

12]F
δϕ21

(f) + S
[S4↓,Do

21]F
δϕ12

(f)
)

+ sin2(πfd121)
(
S
[S4↓,Do

13]F
δϕ31

(f) + S
[S4↓,Do

31]F
δϕ13

(f)
)) (3.140)

where the individual contributions of each laser is given by

S
S4↓[F,Do

ij ]

δϕji
(f) = S̃4↓

∣∣∣∣∣ ḋoij2π

dh̃F(f)

df

∣∣∣∣∣
2

Sṗ(f)

 (3.141)

S
[S4↓,Do

ij ]F

δϕji
(f) = rect

(
f

fs

)M−1∑
n=1

4 · cn(d̄oij) ·
(
F̃Sp(f)

)(n)
(f) (3.142)

To reproduce models including the compensation filter each occurrence of F has to be re-
placed by F̊+F (and h̃F(f) must be replaced by h̃F̊+(f) · h̃F(f)) in the expressions above.

As the simulations are performed in units of frequency we have to slightly modify the PSD
models. To transfer the models to frequency units it is not sufficient to multiply by a factor
of (2πf)2 as the decimation operation is non-linear and does not commute with the derivative.
Therefore, we have to proceed more thoroughly and replace each occurrence of pij by ṗij . The
effect of this is that all PSDs of laser noise Sp(f) (or Sṗ(f)) collect an additional (2πf)2 factor
in the expressions above.

Next, we compare the analytical models to numerical simulations. In fig. 3.11 we show the
results for the Michelson combination X2 computed with (blue) and without (red) the compen-
sation filter. The analytical models match well and demonstrate that indeed the compensation
is required for this particular filter design to not violate the microcycle-requirement. When
applying the compensation filter the flexing-filtering effect is reduced below the residual due
to aliasing. Between 10−4Hz and 10−2Hz the numerical residual is dominated by numerical
noise in the simulation. We verify this by running a noise-free simulation that only includes
the megahertz-offsets of the beatnotes and the deterministic clock drifts. The result is shown in
light grey and determines the numerical noise floor of any simulation.

Interpolation residual

The interpolation residual stems from the deviation of the interpolation kernel’s transfer function
from an ideal time-shift. We implement an interpolation method that uses a 28-coefficient kernel
which is based off of an FIR type II low-pass filter design (for more details see appendix D).
Otherwise, we adopt the nominal simulation and data processing setup.

The coupling of interpolation errors to the TDI variables is dependent on the particular
implementation of the algorithm. Nested delays can be realized either by successively applying
fractional delay filters DijDjk to a measurement or, alternatively, by shifting the measurement
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Figure 3.11: Commutator residuals due to on-board processing. The numerical results for the
Michelson combination X2 with and without compensation filter are shown in solid blue and
solid red. We superimpose models for the flexing-filtering effect (dashed red and dotted red) and
aliasing (dashed blue). Additionally, we plot the microcycle-requirement in dashed grey and the
numerical noise floor of the simulation in leight grey.



3.3. LASER AND TIMING NOISE RESIDUALS 63

10−4 10−3 10−2 10−1
10−11

10−9

10−7

10−5

10−3

A
S
D

(H
z/
√

H
z)

0.2 0.4 0.6 0.8 1.0

X2 laser + clock

X2 free

1 µcycle requirement

interpolation

Frequency (Hz)

Figure 3.12: Interpolation residual in TDI. The solid blue line shows the numerical result using
the FIR type II interpolation method which is well described by the model in dashed blue with
the exception of the numerical noise floor arising at frequencies below 10−2Hz.

in one go by using Dijk that delays it by the effective delay dijk(t) = dij(t) + djk
(
t − dij(t)

)
.

From a computational stand-point, collecting all delays in a single time-shift operation is often
less expensive as delay operations can be factored such that they can be reused (e.g., Dijiki =
DijiDiki in eq. (3.125)). Whether atomic delay operations DijDjk or contracted ones Dijk

perform better depends on the numerical value of the delays. As a general rule, delaying time
series by a small fractional delay is favorable as the interpolation error tends to zero for an
integer time-shift.

To simplify the coupling and modeling of the residual we decide to use atomic delay op-
erations for the evaluation of eq. (3.125) ( ˆ̄Dijk → ˆ̄Dij

ˆ̄Djk). Then, the interpolation residual
appearing in eq. (3.132) is given as

δXD2 = (1−D131)(1−D12131)
(
∆12p̄21 +D12∆21p̄12

)
− (1−D121)(1−D12131)

(
∆13p̄31 +D13∆31p̄13

)
.

(3.143)

Here, the bar on top of pij indicates laser frequency that was passed through the decimation
stage S. The PSD of this expressions reads

SDδX2
(f) = 16 sin2(πfd12131)

(
sin2(πfd131)

(
∆̃12 + ∆̃21

)
+ sin2(πfd121)

(
∆̃13 + ∆̃31

))
S̃Sp(f),

(3.144)

with ∆̃ij as defined in eq. (3.114).
We show the results of the numerical simulation (solid blue) alongside with the analytical

model (dashed blue) converted to frequency units in fig. 3.12. The model explains the residual
well above 10−2Hz. Below this frequency numerical effects take over which are not covered by
the numerical noise floor of the simulation (light grey) but have another origin. At the time of
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Bij (s) aij (MHz) bij (MHz)

MOSA 12 −1.1× 10−8 16.5 10.0
MOSA 23 1.5× 10−8 17.9 20.0
MOSA 31 1.6× 10−8 17.9 8.00
MOSA 13 −6.5× 10−9 −6.09 −10.0
MOSA 32 2.5× 10−8 −10.0 −8.00
MOSA 21 9.5× 10−9 −7.85 −20.0

Table 3.2: Overview of ranging biases Bij , mean inter-spacecraft interferometer beatnote fre-
quencies aij and mean reference interferometer beatnote frequencies bij for each MOSA.

writing, for the FIR type II interpolation method the kernel that is convolved with the data is
only available in double precision (64 bit). Therefore, the result is limited by a white noise floor
with an amplitude of approximately 3 × 10−8Hz/

√
Hz. We estimate that the level scales with

the number of coefficients in the interpolation kernel, that are all subject to numerical noise, and
the megahertz-beatnote frequency. This additional noise floor can be mitigated by updating the
interpolation kernel to extended precision. However, the calculation involves Numpy routines
that are only available in double precision. In the future we will seek for suitable alternatives.

Ranging residuals

Lastly, we discuss the ranging residual that is caused by biases in the absolute ranging measure-
ment and modulation noise in the sidebands. For studying this residual we add both effects to
the simulation. The ranging biases are chosen randomly and their values are given in table 3.2.
The level of modulation noise is assumed to be ten times higher in the right-handed MOSAs
as compared to the left-handed ones. However, after ranging processing (see section 3.2.4) only
left-handed modulation noise remains and we can model the ranging error per MOSA as

rij(t) = Bij −DijMj(t) +Mi(t) (3.145)

where we define M1 = M12, M2 = M23 and M3 = M31. The ASD of left-handed modulation
noise has the usual level as given eq. (1.22).

Inserting eq. (3.145) into eq. (3.132) yields the following residuals due to the ranging bias
and modulation noise, respectively.

δXB
2 = −(1−D131)(1−D12131)

(
D12B12 ˙̄p21 +D121B21 ˙̄p12

)
+ (1−D121)(1−D12131)

(
D13B13 ˙̄p31 +D131B31 ˙̄p13

) (3.146)

δXM
2 = −(1−D131)(1−D12131)

(
a12M̄1 +D12a21M̄2

)
+ (1−D121)(1−D12131)

(
a13M̄1 +D13a31M̄3

)
+ (1−D121)(1−D131)(1−D12131)b1M̄1

(3.147)

The mean beatnote frequencies of the inter-spacecraft interferometer aij and the reference inter-
ferometer bij

12 appearing in the simulation are listed in table 3.2. Their values range between
5MHz to 25MHz and are relevant for the coupling of modulation noise. Again, the bar on top of
laser frequency noise and modulation noise terms mark the decimation process applied to them.

12As reference interferometers are symmetric we use the short-hand notation b1 = b12 = −b21, b2 = b23 = −b32
and b3 = b31 = −b13.
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Figure 3.13: Laser and timing residuals due to ranging errors. The solid blue line represents
the ASD of the simulated data including ranging biases and modulation noise. We model both
effects in dashed blue and dashed-dotted blue, respectively.

The PSDs of the residuals are given by

SB
δX2

(f) = 16 sin2(πfd12131)
(
sin2(πfd131)

(
B2

12 +B2
21

)
+ sin2(πfd121)

(
B2

13 +B2
31

))
(2πf)2S̃Sp(f),

(3.148)

SM
δX2

(f) = 16 sin2(πfd12131)
(
sin2(πfd131)a

2
21 + sin2(πfd121)a

2
31

+
∣∣∣(1− e−2πifd121

)
a13 −

(
1− e−2πifd131

)
a12

+
(
1− e−2πifd121

)(
1− e−2πifd131

)
b1
∣∣2)S̃SM (f).

(3.149)

They agree with the expressions given in the literature assuming equal arms (Hartwig et al.,
2022; Staab et al., 2023b). To properly account for the fact that the decimation stage is applied
to data in frequency units we need to replace each occurrence of Sp(f) and SM (f) by Sṗ(f) and
SṀ (f), respectively.

As before we compare the models to numerical simulations. In fig. 3.13 we show the results
of the simulation (solid blue) superimposed with the models for the coupling of laser noise to the
ranging bias (dashed blue) and modulation noise coupling to the beatnote frequencies (dashed
dotted blue). We see that the models explain the excess noise very well (apart from frequencies
below 4 × 10−4Hz where the numerical noise floor dominates). Furthermore, we note that the
microcycle-requirement is violated by the modulation noise coupling at low frequencies. As
a consequence, the planning of the noise budget has to allocate more than the conservative
1 µcycle/

√
Hz to this particular source of noise.
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3.3.4 Discussion

In this chapter we have demonstrated the performance of TDI for realistic LISA measurements.
We show how the sideband beatnotes and PRN measurements can be combined to accurately
determine a precise estimate of the measured pseudo-range. We then study the different coupling
mechanisms of laser and timing jitter to the final TDI combination. We identify three main
channels; the standard laser noise residual caused by an arm length mismatch, residuals due to
on-board processing and residuals that arise during TDI.

To check the validity of the derived models we run numerical simulations. Prior to processing
of the data we convert it two a higher precision data type (in our case an 80 bit long double). This
is required as the computation of second generation TDI variables reproduces a transfer function
that looks like a double derivative at low frequencies with a dependency of f2. Evaluating the
microcycle-requirement in frequency units propagated through TDI yields 10−10Hz/

√
Hz which

is 17 orders of magnitudes below the nominal values of the beatnote frequency and hence double-
precision float is not sufficient. As the use of extended precision requires more computational
resources we propose a similar treatment as in the simulation of the LISA data; decomposing
the total frequency into slow varying offsets and small in-band fluctuations. As a result, the
variable with the fluctuations has a reduced dynamic range as it is dominated by laser frequency
noise at levels of hundreds of Hz/

√
Hz. This would allow us to return back to double-precision

which is supported more widely in today’s CPU architectures.
The fundamental laser noise residual due the arm length mismatch dictates the choice of the

generation of TDI combinations. In this chapter, we only discuss combinations up to the L̇ closed
property as this reduces the fundamental laser noise residual sufficiently for LISA. However, in
theory, there is no limit to the “closureness” of virtual interferometers. The third generation of
TDI combinations would cancel laser noise up to second order in the inter-spacecraft velocities,
and up to first order in accelerations. The study of higher generation combinations might be
relevant for future LISA-like missions that are challenged with more constraining requirements,
higher level of laser noise or more dynamic relative motion of the stations.

The on-board design of the decimation process reducing the sampling rate of the interfero-
metric data from 80MHz to 4Hz induce laser noise residuals due to non-flatness of the overall
filter response of the decimation stages and the aliasing effect. We demonstrate the ability of
compensation filters to lift the pass-band droop and make the in-band response sufficiently unity.
This results in a reduction of the flexing-filtering effect. The compensation filters can run on
ground to relax the computational requirement on board. On the other hand, the aliasing effect
must be dealt with already on the spacecraft as it is irreducible after the fact. To keep residuals
below the microcycle-requirement we suggest an appropriate FIR filter design for the last stage
of the decimation process; decimating the sampling rate from 16Hz to 4Hz. We show that a
filter with 29 coefficients suppresses the aliasing effect sufficiently which reduces the number of
coefficients by a factor of five compared to previous filter designs which are currently used as
the default in the LISA simulators.

The last category of laser noise residuals are introduced in TDI processing. The TDI al-
gorithm relies on the implementation of discrete fractional delay filters and estimates of the
inter-spacecraft ranges. To interpolate the data in between samples we design an appropriate
interpolation kernel that uses a minimum set of coefficients. With that we reduce the compu-
tational cost13 and the number of samples that need to be truncated where the filter kernel
does not fully overlap with the data. As the computation of the filter kernel has to be repeated
for every value of the time-shift we propose to evaluate it on a grid beforehand for selected
fractional shifts. The grid has to be dense enough to interpolate linearly between them. This
look-up table can then be used for computing interpolation kernels for arbitrary fractional shifts.

13Reducing the computational cost for on ground processing might be beneficial for the early alert pipeline.
However, we generally expect TDI not to be the computational bottleneck of the processing chain.
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Furthermore, errors in the ranges estimated from the PRN ranges and the sideband-sideband
beatnotes introduce laser and timing jitter residuals in the final TDI combination. The former
couples to slowly evolving biases in the ranging estimates which have to be below a couple of
meters. The limiting in-band noise of the ranges is given by modulation noise that enters in the
frequency distribution and modulation chain of the sidebands. We demonstrate that modulation
noise couples to the megahertz beatnote frequencies and surpasses the microcycle-requirement
at low frequencies. Therefore, this has to be appropriately reflected in the instrument noise
budget.

As opposed to secondary noises the transfer function of laser noise residuals in TDI is de-
pendent on laser locking (Nam et al., 2022; Staab et al., 2023b). Intuitively, this makes sense
as laser locking introduces strong correlations among the six laser sources. This needs to be
considered in the conclusions drawn above. However, Staab et al. (2023b) find that laser locking
changes the overall transfer function only slightly. We suggest a follow-on study that evaluates
a worst case over all locking configurations (Heinzel, 2018) under consideration for LISA.
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Chapter 4

Time-delay Interferometric Ranging

Time-delay interferometric ranging (TDI-R) is a method to determine the propagation delays in
LISA from the carrier-carrier beatnotes. It was first discussed in the literature by Tinto et al.
(2005) and tested experimentally by Mitryk et al. (2012) in a table-top experiment as well as
proposed for the GRACE-FO mission (Francis et al., 2015). The basic concept behind TDI-R is
that TDI combinations are rather sensitive to ranging errors. As a consequence, if slightly wrong
estimates of the ranges are used, the power in the TDI combinations will increase. In TDI-R we
seek those ranges that minimize the residual laser noise power in the TDI combinations. The
classical TDI-R estimator that was introduced by Tinto et al. (2005) reads

θ̂LS = argmin
θ̂

1

T

∫ T

0

∣∣X(t | θ̂)
∣∣2 dt. (4.1)

Here, the parameter vector θ contains the delays d12, d21, d13 and d31 as the Michelson com-
bination X only depends on the arms adjacent to the central spacecraft. The integral on the
right-hand side of the expression calculates the power of the combination. The argmin-function
finds the delays that minimize the power. The index LS stands for “least squares”.

This heuristic approach to estimate the delays can be easily extended to all six arms including
Y and Z in the calculation of the power. Analogously, any other set of TDI combinations can
be used, e.g., the orthogonal set of A, E and T (Page and Littenberg, 2021). It has been
shown that for an “optimal” TDI-R estimator the secondary noise in the TDI combinations has
to be “whitened” (and “de-correlated”) before calculating their power (Baghi et al., 2021b). In
this chapter, we conduct a thorough analysis of the stated problem; how to optimally estimate
the propagation delays required for TDI from the carrier-carrier beatnotes. We give analytical
estimates of the lower bound on the estimation variance using the Fisher information matrix
formalism.

4.1 Mathematical Foundation

The aim of this section is to derive from first principals an optimal estimator of the inter-
satellite ranges appearing in the definition of the inter-spacecraft interferometer. We start by
formulating the likelihood function of the available data streams and then study the Fisher
information matrix (FIM) in the limit of dominant laser frequency noise.

4.1.1 Basics of statistical inference

In probability theory a random variable X describes the results of an experiment with an un-
certain outcome. Before conducting the experiment one can only describe the probability of a
particular result. As an example we consider the toss of a coin. We know that the outcome of
this experiment is either heads or tails with a probability of 0.5. After repeating the experiment
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ten times we yield seven times heads and three times tails. How can we be sure that it was a
fair coin with equal probability for both, heads and tails? What is the significance of the result?
And what might be the most probable probability for heads and tails?

Those questions are the concern of the theory of statistical inference which makes certain
statements about the outcome of an experiment after it was performed. To do this we have
to choose a sampling distribution that describes the joint probability distribution of the obser-
vations. In the example above we assume that each coin toss can be regarded as a Bernoulli
experiment repeated n = 10 times. The probability to observe k times heads is given by the
binomial distribution. It is given by

f(k | p, n) =
(
n

k

)
pk(1− p)n−k, (4.2)

where the parameter p denotes the probability to toss heads.
A reasonable question to ask after observing k = 7 is: What if the coin is biased (p ̸= 0.5)?

What is the most probable value of the probability p? Evaluating the sampling distribution
given in eq. (4.2) for the outcome of the experiment yields the likelihood function L(p). It is a
function of the parameter p and allows one to test different values. The value p that maximizes
the likelihood is called maximum likelihood estimate. It is defined as

p̂MLE = argmax
p̂

L(p̂). (4.3)

Here, we have introduced the hat-notation that indicates that p̂ is not the true value of p but
just an estimate. If we evaluate the maximum likelihood estimator by demanding dL(p)

dp = 0 we
find that p̂MLE = k

n which is 0.7 in our case. This result might not be surprising at first but it
relies strongly on the assumption we made before on the sampling distribution and the choice
of the estimator.

Properties of estimators

Estimators are objects that infer a set of parameters θ from measured data d. They are them-
selves random variables with a probability density function f(θ̂). The maximum likelihood
estimator introduced above is just one example but in general there exists infinitely many es-
timators to do the job. However, only some will perform well with regards to some optimality
criterion. To illustrate this point let us look at a classical example, the sample variance.

We intend to infer the variance σ2 of an unknown distribution. Therefore, we draw a finite
number of samples (xi)

N
i=1 from this distribution and estimate the sample variance. Let us

consider two estimators

σ̂2
1 =

1

N

∑
i=1

(xi − x̄)2 (4.4a)

σ̂2
2 =

1

N − 1

∑
i=1

(xi − x̄)2 (4.4b)

Here, x̄ denotes yet another estimator, in this case, for the sample mean. It is defined as
x̄ = 1/N

∑N
i=1 xi.

Which of the estimators for the sample variance given in eq. (4.4) performs better? In an
attempt to answer this question let us take a look at their expected value and their variance (for
reference see, e.g., Jenkins and Watts (1968)). For σ̂2

1 we find

E{σ̂2
1} =

N − 1

N
σ2, (4.5a)

Var{σ̂2
1} =

2(N − 1)

N2
σ4, (4.5b)
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and for σ̂2
2

E{σ̂2
2} = σ2, (4.6a)

Var{σ̂2
2} =

2

N − 1
σ4. (4.6b)

As we see there is no definitive answer. Estimator σ̂2
1 has a lower variance which is a measure of

the spread of its distribution. However, estimator σ̂2
2 is said to be unbiased as on average it will

determine the true variance σ2 of the distribution in question. Therefore, whether to use either
of the estimators depends on the criteria one is interested in.

In summary, the two fundamental measures of the performance of an estimator θ̂ is its bias
B{θ̂} and its variance Var{θ̂} defined as

B{θ̂} = E{θ̂} − θ (4.7)

Var{θ̂} = E{(θ̂ − E{θ̂})2} (4.8)

The maximum likelihood estimator

In section 4.1.1 we have introduced the likelihood function L(θ). It is equal to the probability
to observe data d for given parameters θ.

L(θ) = f(d |θ) (4.9)

The likelihood function should not be confused with the probability distribution of the parame-
ters θ. The latter can be expressed using Bayes’ theorem which assumes a prior distribution of
the parameters that is informed by the likelihood function to yield the posterior distribution.

The maximum likelihood estimator is defined yield the parameters θ that maximizes the
likelihood function.

θ̂MLE = argmax
θ̂

L(θ̂) (4.10)

Similarly, it is sometimes more convenient to work with the log-likelihood that is defined as

l(θ) = log(L(θ)). (4.11)

Since the logarithm is a strictly increasing function maximizing the likelihood function is equiv-
alent to maximizing the log-likelihood. Often the latter is easier to handle numerically as it has
reduced dynamical range. Furthermore, the logarithm of normal likelihood functions becomes a
quadratic form which is convenient to evaluate on a computer.

The maximum likelihood estimator has two properties that are very useful in our applica-
tion. First, it is a consistent estimator. Consistency mean that increasing the sample size (i.e.,
integration time) will result in a more precise estimate without limit. Second, it is an efficient
estimator. The variance of the maximum likelihood estimate approaches the Cramér-Rao lower
bound in the limit of an infinite sample size. The Cramér-Rao lower bound is the lower bound
for the variance of any unbiased estimator and is defined as the inverse of the Fisher information
matrix with entries

Ii,j(θ) = −E

{
∂2l(θ)

∂θi∂θj

}
. (4.12)

For a multivariate estimator θ̂ the Cramér-Rao bound on the covariance matrix Σ is expressed
as the matrix inequality

Σ ≥ I(θ)−1, (4.13)

which means that the difference of the left-hand side and right-hand side is a positive semidefinite
matrix.



72 CHAPTER 4. TIME-DELAY INTERFEROMETRIC RANGING

Figure 4.1: Toy model setup with two long-arm readouts η121(t) and η131(t) given in eq. (4.14).
The round-trip delays are given by d121 and d131.

In the following we use this formalism to statistically describe the LISA beatnote phases
to extract the inter-satellite ranges. The beatnote phases contain large deterministic drifts
and Gaussian distributed noise1. Therefore, we will start of by using a Gaussian likelihood
function that represents the distribution of the data. Then, we use the Fisher information
matrix formalism to find the lower bound on the delay estimates. In the last step, we verify our
analytical findings numerically with simulations.

4.2 Toy Model

Let us start off by considering a simplified LISA setup to discuss the basic properties of the
analysis. As a toy model we assume a static unequal-arm Michelson interferometer where both
arms are read out separately. The setup is shown in fig. 4.1 and consists of a single laser source
that is split at the central beam splitter. The beams pick up constant delays d121 and d131,
respectively, and recombine with an original copy at their corresponding beam splitter. Hence,
the photodetector track the beatnote phases

η121(t) = (D121 − 1)p(t) +N ro
121(t), (4.14a)

η131(t) = (D131 − 1)p(t) +N ro
131(t). (4.14b)

Here, N ro
iji(t) denotes the readout noise of the photodetectors and p(t) the in-band laser frequency

noise of the laser. The photodiodes detect a homodyne signal as the interfering beams are not
subject to Doppler shifts and thus the terahertz optical laser frequency drops out. Furthermore,
we intentionally make use of the LISA notations as indeed this setup can be reproduced by
assuming a locking configuration where spacecraft 1 hosts the primary laser and spacecraft 2
and 3 act as transponders. Then the inter-spacecraft interferometers on spacecraft 1 effectively
measure the beatnotes in eq. (4.14).

The goal of TDI-R is to estimate the round-trip delays encoded in those beatnotes. The
traditional approach (Tinto et al., 2005) minimizes the residual power in the laser noise canceling

1This is a rather strong assumption which is found typically wrong in real-world experiments. Those usually
comprise non-stationarities and glitches which violate the previous assumption.
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TDI combination. For this setup it is given as

X(t) = (1− D̂121)η131(t)− (1− D̂131)η121(t) (4.15)

≃ (1− D̂121)N
ro
131(t)− (1− D̂131)N

ro
121(t). (4.16)

Here, the hat on top of the delay operators indicates that we use estimates of the round-trip
delays as the true values are not accessible. We formulate the traditional least-squares estimate
as the parameter set θ̂ = (d̂121 d̂131)

T that minimizes the power in the TDI combination X(t).

θ̂LS = argmin
θ̂

P (θ̂) = argmin
θ̂

1

T

∫ T

0

∣∣X(t | θ̂)
∣∣2 dt (4.17)

As an alternative, we propose the maximum likelihood estimator

θ̂MLE = argmax
θ̂

L(θ̂) = argmax
θ̂

f(d | θ̂), (4.18)

where d = (η121 η131)
T. Here, the challenge is to find a convenient parameterization of the

data d to express its probability distribution f(d |θ). Ultimately, from this we can derive the
likelihood function L(θ) to seek the Cramér-Rao lower bound on the covariance matrix of the
estimates of any unbiased estimator.

4.2.1 The reduced likelihood function

The aim of this section is to derive the likelihood function for the toy model setup to compute
the Cramér-Rao lower bound. In our analysis the data d is represented by a discretely sampled
time-series of duration T = NTs where N is the number of samples and Ts the sampling time. As
we assume zero-mean colored Gaussian noise the probability distribution of the measurements
in eq. (4.14) is given by

f(d |θ) = e−
1
2
ηTΣ−1η√

(2π)MN det(Σ)
. (4.19)

The data vector has elements η =
(
η121(t0) η131(t0) η121(t1) . . .

)
∈ RM ·N . Here, M denotes

the number of channels and is equal to two for the toy model. The covariance matrix Σ ∈
RM ·N×M ·N is quite a big matrix and numerically expensive to operate on.

Therefore, it is convenient to describe the data in the Fourier domain. In appendix E
we derive the statistics of the Fourier coefficients of zero-mean Gaussian time series. More
specifically, the calculations below hold for multivariate T -periodic time series in the limit T →
∞. Conveniently, Fourier coefficients η̃k are independent for different k and complex multivariate
normal. Therefore, the joint distribution is given by the product of distributions of the individual
components.

f(d |θ) ≃
K∏
k=1

f(η̃k |θ) =
K∏
k=1

e−η̃
†
kΓ
−1
k η̃k

πM det Γk
(4.20)

Here, the dagger denotes the conjugate transpose. We use common Fourier transform rules to
express the Fourier coefficients and find

η̃k =

(
e−2πik∆fd121 − 1
e−2πik∆fd131 − 1

)
︸ ︷︷ ︸

Mk

p̃k + ñk. (4.21)

The delay operations in eq. (4.14) become multiplicative factors and such much easier to handle
in further calculations. The scalar p̃k and vector ñk denote the Fourier coefficients of the laser
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noise p(t) and the readout noises n(t) =
(
N ro

121(t) N ro
131(t)

)T. Consequently, using eq. (4.21)
we can express the covariance matrix Γk as

Γk = E{η̃kη̃
†
k} = Mk E{|p̃k|2}︸ ︷︷ ︸

Pk

M†k + E{ñkñ
†
k}︸ ︷︷ ︸

Nk

(4.22)

where we identify the variance of p̃k and the covariance matrix of ñk which are given by

Pk =
Sp(k∆f)

2T
, (4.23)

Nk =
Sro
N (k∆f)

2T

(
1 0
0 1

)
. (4.24)

Here, we assume that the readout noises are uncorrelated such that Nk becomes diagonal.
Similar to eq. (4.20) the log-likelihood function of the data can be written as the sum of the

individual log-likelihood functions lk(θ) of the vector of k-th Fourier coefficients.

l(θ) =

K∑
k=1

lk(θ) =

K∑
k=1

− log(πM det Γk)− η̃†kΓ
−1
k η̃k (4.25)

In the next step, we attempt to simplify this expression further by introducing the unitary
transformation U†kη̃k =

(
Ek Fk

)†
η̃k of the Fourier coefficients. The matrix Ek is chosen such

that it spans the null space of M†k, i.e., the subspace E†kη̃k represents laser noise free channels.
We insert Uk into lk(θ) defined in eq. (4.25) and yield

lk(θ) = − log(πM det Γk)− η̃†k UkU
†
k︸ ︷︷ ︸

1

Γ−1k UkU
†
k︸ ︷︷ ︸

1

η̃k, (4.26)

= − log(πM det Γ)− (U†η̃)†(U†ΓU)−1(U†η̃). (4.27)

For better readability, we have dropped the subscript k. The last term in eq. (4.27) can be
further expanded into four terms adopting the blocked definition of the matrix U =

(
E F

)2.
The blocked entries of (U†ΓU)−1 are approximately given by

(U†ΓU)−1 =

(
E†(MPM† +N)E E†(MPM† +N)F
F†(MPM† +N)E F†(MPM† +N)F

)−1
(4.28)

=

(
E†NE E†NF
F†NE F†(MPM† +N)F

)−1
(4.29)

≈
(
E†NE E†NF
F†NE F†MPM†F

)−1
(4.30)

≈
(

(E†NE)−1 −(E†NE)−1E†NF(F†MPM†F)−1

−(F†MPM†F)−1F†NE(E†NE)−1 (F†MPM†F)−1

)
(4.31)

Here, we make use of the inversion formula for block matrices and the fact that the laser noise
PSD is dominating across the entire band such that P ≫ N. If we insert this into eq. (4.27)
we find that out of the four terms only one is relevant for maximum likelihood estimation of
the delay parameters as the remaining terms are only weakly dependent on those. Maximizing
the log-likelihood with respect to the parameters is therefore approximately equivalent to only
maximizing this single term. We write the maximum likelihood estimator as

θ̂MLE = argmax
θ̂

l(θ̂) ≃ argmax
θ̂

l̄(θ̂), (4.32)

2Here, the matrix E should not be confused with the expectation value operator E{·}.
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where l̄(θ) is the reduced log-likelihood function defined as

l̄(θ) =
∑
k

−η̃†kEk(E
†
kΓEk)

−1E†kη̃k︸ ︷︷ ︸
l̄k(θ)

. (4.33)

Similarly, in the definition of the Fisher information matrix (see eq. (4.12)) we can readily
replace l(θ) by l̄(θ) as parameter independent terms drop out after taking the derivatives. As
the Fourier component are statistically independent we can calculate their Fisher information
matrices individually and sum them up in the end. The Fisher information matrix for the k-th
contribution is given by

Ii,j(fk) = −E

{
∂2lk(θ)

∂θi∂θj

}
≃ −E

{
∂2 l̄k(θ)

∂θi∂θj

}
(4.34)

= E
{
η̃†k ∂i∂j(Ek(E

†
kNkEk)

−1E†k)η̃k

}
(4.35)

≃ 2Pk Re
{
Tr{M†k(∂iEk)(E

†
kNkEk)

−1(∂jEk)
†Mk}

}
. (4.36)

In the last line we use the identity E{x̃†Ax̃} = Tr{ΓA} where Γ = E{x̃x̃†} and again the limit
Pk ≫ Nk. Furthermore, we can see that the columns of Ek do not have to be orthonormal
as required for the unitary transform introduced above. To demonstrate this we can define
E′k = EkA where A is full rank and mixes the orthonormal basis vectors to forms a new non-
orthonormal but complete basis. If we plug this into eq. (4.36) we find that the transformation
matrix A drops out and we have effectively substituted Ek with E′k. Consequently, we redefine
Ek requiring that its column vectors represent some basis of the null space of M†k.

For the toy model the null space has dimension one and we choose

Ek =

(
−1 + e2πfkd131

1− e2πfkd121

)
, (4.37)

such that it coincides with the definition of the laser noise canceling TDI combination X(t) in
eq. (4.16).

In the next step we plug eq. (4.37) into eq. (4.36) and find

I(f) =
Sṗ(f)

Sro
N (f)

(
4 sin2(πfd131)

2−cos(2πfd121)−cos(2πfd131) −4 cos(πf∆d) sin(πfd121) sin(πfd131)
2−cos(2πfd121)−cos(2πfd131)

−4 cos(πf∆d) sin(πfd121) sin(πfd131)
2−cos(2πfd121)−cos(2πfd131)

4 sin2(πfd121)
2−cos(2πfd121)−cos(2πfd131)

)
. (4.38)

Interestingly, the information at frequency f is proportional to the “signal-to-noise” ratio Sṗ(f)
Sro
N (f) .

In this context, the signal is represented by laser noise. Conversely, TDI requires better knowl-
edge of the delays for higher levels of laser noise. So increasing the laser noise power in the LISA
band to improve the performance of TDI-R is self-defeating.

To derive the full Fisher information matrix over all Fourier components we take the discrete
sum over the individual contributions. In the limit of long observation times T the sum can be
approximated by an integral.

I =

K∑
k=1

I(fk) ≃ T

∫ ∞
0

I(f) df (4.39)

We find that the information grows proportional with the “integration time” T .
In the special case of equal arms (d121 = d131) the full Fisher information matrix becomes

singular as we find

I = T

∫ ∞
0

Sṗ(f)

Sro
N (f)

df ·
(

1 −1
−1 1

)
, (4.40)
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which has a determinant of zero. Therefore, we reparameterize the parameter vector θ to
represent the sum Σd and difference ∆d of the two round-trip delays.

θ′ =

(
Σd
∆d

)
=

(
d121 + d131
d121 − d131

)
=

(
1 1
1 −1

)
︸ ︷︷ ︸

V

θ. (4.41)

Indeed, the transformed Fisher information matrix of the parameters θ′ has only one non-zero
entry, the Fisher information on the delay difference ∆d.

I′ = V−1IV−T = T

∫ ∞
0

Sṗ(f)

Sro
N (f)

df ·
(
0 0
0 1

)
(4.42)

The interpretation of this is that for equal round-trip delays it is impossible to infer information
on the sum of the delays Σd as the likelihood function is completely degenerate in this parameter.
On the other hand, the difference can be estimated and we find the Cramér-Rao bound on the
variance

σ2
∆d ≥

1

T

(∫ ∞
0

Sṗ(f)

Sro
N (f)

df

)−1
. (4.43)

In the next step, we verify our finding in this section by using numerical simulations.

4.2.2 Numerical simulations

Unfortunately, the reduced likelihood function in eq. (4.33) is not valid for short integration times
T and non-periodic data. Therefore, we seek a better representation by formulating the reduced
likelihood function in time-domain. As introduced in eq. (4.19) the time-domain representation
makes use of the time-discrete nature of the data η =

(
η121(t0) η131(t0) η121(t1) . . .

)T ∈ R2N

with covariance matrix Σ ∈ R2N×2N . We can apply the same reasoning as in the previous section
and project the measurements onto two subspaces, one laser noise dominated and the other laser
noise free, both roughly of dimension N (cf. Vallisneri et al., 2021). We assume the following
reduced likelihood function analogous to eq. (4.33)

l̄(θ) = −1

2
XTΣ−1X X. (4.44)

Here, the vector of laser noise free TDI variables is defined as X =
(
X(t0) X(t1) . . .

)
and

ΣX is its covariance matrix. The maximum likelihood estimator in time-domain is then given
by

θ̂MLE = argmax
θ̂

l̄(θ̂). (4.45)

The (negative) cost function presented in eq. (4.44) is equivalent to a cost function used in
weighted least-squares estimation. Here, the covariance matrix ΣX accounts for correlations
among the samples and weights them according to their noise variance.

To evaluate the reduced likelihood function we need to model the entries of the covariance
matrix ΣX . We assume independent and identically distributed readout noises in the two beat-
note measurements and find(

ΣX

)
i,j

= E{X(ti) ·X(tj)} (4.46)

= E

{
(1−D131)N

ro
121(t)

∣∣∣
t=ti

(1−D131)N
ro
121(t)

∣∣∣
t=tj

}
+ E

{
(1−D121)N

ro
131(t)

∣∣∣
t=ti

(1−D121)N
ro
131(t)

∣∣∣
t=tj

} (4.47)

= 2Rro
N (tj − ti)−Rro

N (tj − ti + d131)−Rro
N (tj − d131 − ti)

+ 2Rro
N (tj − ti)−Rro

N (tj − ti + d121)−Rro
N (tj − d121 − ti)

(4.48)

= Rro
X(τ). (4.49)
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Figure 4.2: ASDs of toy model channels. The yellow line shows the numerical ASD of η121 which
is dominated by laser phase noise modulated by the round-trip transfer function. In solid blue
and red we represent the numerical ASDs of the TDI variable X prior to and after filtering.
Residual laser phase noise in X at frequencies above 1.2Hz are well suppressed by the filter.
Furthermore, We superimpose the model for the ASD in X (dashed red).

As the arms are static the covariance matrix is composed of constant diagonals and we can
write τ = tj − ti. Furthermore, Rro

N denotes the auto-correlation function of the readout noise.
As we consider a white shape that is naturally band-limited up to the Nyquist frequency, the
auto-correlation function is proportional to the sinc-function

Rro
N (τ) =

A2

2
fs sinc(fsτ), (4.50)

where fs denotes the sampling frequency and A = 6µcycles/
√
Hz is the level in units of ASD.

To check how well the model fits the numerical simulations we simulate the one-way mea-
surements η for 25 000 s and compute the variable X with the true delays (d121 = 16.332 s and
d131 = 16.145 s) using PyTDI (Staab et al., 2023a). Then, we compare the numerical ASD of
the resulting laser noise free variable with the model Sro

X (f) by taking the Fourier transform of
eq. (4.49). For the simulation of the one-way beatnote phase measurement defined in eq. (4.14)
we generate red laser phase noise eq. (3.100) and readout noise with a level of 1 µcycle/

√
Hz.

The simulation is performed directly at a sampling rate of 4Hz and no filters or decimators are
used. To apply the propagation delays we use Lagrange interpolation of very high order (= 131).

In fig. 4.2 we plot the numerical ASD of X in blue and superimpose the model in dashed red.
It agrees well up to a frequency of approximately 1.2Hz. For higher frequency residual laser
noise is limiting the combination that is introduced by interpolation errors. To suppress those
effects and emulate the fact that we obtain reliable data only in the LISA band (10−4Hz to 1Hz)
we use an FIR filter with a cut-off frequency at the band-edge. As a consequence, the model
overestimates the ASD of the filtered combination (red) by around four orders of magnitude at
frequencies higher than 1Hz. This is acceptable as overestimation of the power only results in
less weighting of those frequencies in the cost function.
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Figure 4.3: Histograms of estimation errors. In the left panel we show the two dimensional joint
sample distribution of the maximum likelihood estimates. The ellipse (dashed line) traces a
line of equal probability and encloses 68% probability assuming a bivariant normal distribution
with a covariance matrix given by the Cramér-Rao bound. The right panel demonstrates the
advantage of the maximum likelihood method r(red) over the traditional least-squares method
(blue). As an example we only plot the estimation error of arm d121.

In the next step we want to validate the lower bound for the covariance matrix of the
delay estimates d121 and d131. We perform a Monte-Carlo simulation to sample the probability
distribution of the maximum likelihood estimate given in eq. (4.45). Therefore, we choose the
integration time T = 1000 s and run N = 10 000 simulations with independent noise realisations.
Then, for each run we calculate the maximum likelihood estimate θ̂MLE. To minimize the reduced
log-likelihood function we use the conjugate gradient method as implemented by SciPy (Virtanen
et al., 2020).

The calculation of the reduced log-likelihood function in eq. (4.44) is performed in two steps.
First, the TDI combination X is calculated using fractional delay filters using the Lagrange
interpolation method (of order 61). Second, the product XTΣ−1X X is evaluated. To safe com-
putational time we precompute the Cholesky decomposition of the covariance matrix ΣX . It is
defined from the auto-correlation function of the readout noise and the delays estimates which
we do not know beforehand. However, the result is not sensitive to small errors3 in the delays
used for the computation of the covariance matrix. To simplify we assume the true delays in this
calculation. Once we have obtained the Cholesky decomposition of the covariance matrix we can
calculate the product XTΣ−1X X in two steps. First, Σ−1X X is interpreted as an equivalent linear
system of equations ΣXY = X. The solution Y is exactly the result of the earlier expression.
In the last step, we only have to take the scalar product XTY . This concludes the calculation
of the log-likelihood function.

The results of the Monte-Carlo simulation are shown in fig. 4.3. The left panel shows the
sampled distribution of the maximum likelihood estimate. We find a strong correlation between
the two arms as predicted in the analytical work before; in the limit of equal arms the sum of
the arms cannot be determined as it the likelihood function is fully degenerate in this variable
and only the arm difference is available.

3We ran some quick numerical checks to confirm this assumption. The estimator yields the same result for
delay errors over many standard deviations of the final estimate. In practice, the covariance matrix and its
Cholesky decomposition can be recomputed in each iteration, however, which would result in a vast increase of
computational cost.
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For our particular choice of arm length and integration time T let us explicitly state the
lower bound on the covariance matrix Σθ. It is given by the inverse of the Fisher information
matrix (see eq. (4.40)) and evaluates to

Σθ ≥
(
2.52 1.79
1.79 2.51

)
· 10−18 s2. (4.51)

Here, we can clearly see the correlated property of the parameters d121 and d131 as the off-
diagonal terms are positive. For visual inspection we superimpose the line of equal probability
of a normal distribution (which has the shape of an ellipse) with the covariance above (red
dashed line in left panel of fig. 4.3). The probability is chosen such that the resulting ellipse
encloses approximately 68% which is equivalent to the one-sigma confidence interval in the
univariate normal case. To validate the result we count the number of samples of the Monte-
Carlo simulation that resides inside the 68%-confidence ellipse and find a slightly lower fraction
of 67%. This is in good agreement with the theoretical lower bound as the lower percentage
indicate the real distribution is slightly broader then the theoretical limit.

In the right panel of fig. 4.3 we compare the traditional least-squares estimator with our
maximum likelihood estimator (see eq. (4.17)). The calculation of the power of the TDI variable
X is much simpler as we can just use a discrete sum to approximate the integral. We can clearly
see that the distribution function of the least-squares estimates is broader and, therefore, a
less optimal estimator of the delays. To compare the performance we estimate the width of the
distributions in the sensitive direction (in the case of equal arms) which is given by the arm length
difference. We find sample standard deviations of σLS

∆d = 1.38×10−9 s and σMLE
∆d = 1.18×10−9 s.

This results in an improvement of 14% of the maximum likelihood method over the least-squares
method.

4.3 Full LISA

In this section we want to return to the full LISA case by generalizing the results we have
obtained for the toy model in the precious section. The setup becomes more complex as the
split interferometry setup produces long arm and local reference measurements. Furthermore,
we need to consider six arms that are time-dependent. As Doppler shifts in the beams become
relevant, the interferometric measurements must be defined in terms of total phase (instead of
just laser phase noise as in eq. (4.14))

isiij(t) = Dijϕji(t)− ϕij(t) +N ro
ij (t) (4.52a)

rfiij(t) = ϕik(t)− ϕij(t) (4.52b)

where ϕij(t) denotes the laser phases that we model as ϕ0,ij + ν0,ij · t + pij(t). Here, ϕ0,ij is
the initial phase of the laser, ν0,ij its nominal central frequency and pij(t) any phase deviations
from the nominal phase. Moreover, the only noise apart from the latter is readout noise in the
inter-spacecraft interferometer.

As before, we collect all measurements in a single vector ordered as

y =

({{
isiij(tk)

}
ij=12,23,31,13,32,21

{
rfiij(tk)

}
ij=12,23,31

}N−1

k=0

)T

∈ R9N . (4.53)

Here, we take the six inter-spacecraft interferometers in standard order and append the three
reference interferometers on left-handed MOSAs. This is sufficient as we do not model the
influence of fiber noise which necessitates the extra step described in section 3.2.2.

In section 3.1.2 we argue that in a static but rotating constellation of three spacecraft the
number of independent laser noise free variables is three (we discuss this in more detail in
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section 4.3.2). The classical choice is the three Michelson variables defined from the intermediary
variables ηij as

X1 = (1−D121)(η13 +D13η31)

− (1−D131)(η12 +D12η21),
(4.54)

X2 = (1−D121 −D12131 +D1312121)(η13 +D13η31)

− (1−D131 −D13121 +D1213131)(η12 +D12η21).
(4.55)

The remaining combinations Y and Z follow by cyclic permutation. The first generation Michel-
son variable cancels laser noise for six constant arms. Therefore, it is well suited for the analytical
computation of the Fisher information matrix to compute the Cramér Rao lower bound (see sec-
tion 4.3.2). On the other hand, we require the second generation Michelson variables to apply
the TDI-R algorithm to a realistic LISA setup with flexing arms where the first generation
suppresses laser noise insufficiently.

The intermediary variables ηij in eqs. (4.54) and (4.55) can be computed as

ηij = isiij

{
−Dijrfijk if ϵijk = 1,
+rfiik if ϵijk = −1.

(4.56)

Before we set off to formulate the likelihood function of the data let us investigate the
implications of considering total phase instead of only the in-band phase fluctuations.

4.3.1 Absolute laser frequency estimation

For a flexing LISA constellation the absolute laser frequency couples to the interferometric
measurements and even persists after TDI4. The reason for this is that the slow-drifting Doppler
shifts caused by the time-dependent arms shift the terahertz-frequency by a few megahertz.
This results in megahertz-beatnotes in the inter-spacecraft interferometers. As a result we can
directly monitor the lasers’ optical frequencies and their Doppler shifts. Let us investigate the
inter-spacecraft interferometer in units of frequencies. By taking the derivative of eq. (4.52) we
obtain

˙isiij(t) =
(
1− ḋij(t)

)
Dij

(
ν0,ji + ṗji(t)

)
−
(
ν0,ij + ṗij(t)

)
(4.57a)

≃ (ν0,ji − ν0,ij)− ḋij(t) · ν0,ji + Ḋij ṗji(t)− ṗij(t) (4.57b)
˙rfiij(t) = (ν0,ik − ν0,ij) + ṗik(t)− ṗij(t). (4.57c)

We note that the measurements are indeed sensitive to the relative laser frequencies ν0,ji− ν0,ij
and the Doppler shift ḋij(t) · ν0,ji. The “common mode” nominal laser frequency couples only
via the Doppler shift which is nominally around 10−8. In the limit of vanishing inter-spacecraft
velocities the Doppler term cancels and the inter-spacecraft interferometer becomes insensitive
to the absolute laser frequency.

To disentangle the relative laser frequency and the Doppler shift in eq. (4.57) we require an
independent sensor for the Doppler factors ḋij . Those are provided by the sideband beatnotes
(see section 3.2.4) with high accuracy. If we assume constant inter-spacecraft velocities and
constant laser frequencies (integration times T that are much smaller than the dynamics of the
system) we can set a figure on the estimation performance. As we consider white laser frequency
noise with a level of 30Hz/

√
Hz we can simply use the average of the time series to yield a good

estimate of the dc component of the signals in eq. (4.57). We follow that the variance of the dc
4This coupling is not to be confused with the need of a scale factor to convert the relative phase measurement

back to a relative distance measurement. This scale factor is given by the laser wavelength which must be properly
calibrated beforehand or estimated online (e.g., using the method proposed here).
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component estimate depends on the integration time T and reads σ2
∆ν0

= 2
Sṗ

T where the factor
two accounts for the independent laser noise contributions in each interferometer. Therefore,
we conclude that the relative laser frequency ν0,ji − ν0,ij can be determined with a precision of
σ∆ν0 . The determination of the absolute laser frequency requires knowledge of the Doppler shift
ḋ. Its estimation precision σν0 is worse by a factor ḋ−1. If we choose an integration time of one
day we find σ∆ν0 ≃ 0.1Hz and σν0 ≃ 10MHz.

4.3.2 Delay estimation

In this section we want to apply the Fisher information matrix formulation developed in sec-
tion 4.2.1 to the LISA constellation with six independent lasers. Furthermore, we consider six
static delays dij which define the parameter vector θ that we seek to estimate. Under the condi-
tion of dominating laser frequency noise we can analogously follow that the likelihood function
can be simplified and restricted to the space of laser noise free combinations. Then, it is suffi-
cient to only consider the reduced likelihood function in the Fisher information analysis which
yields an lower bound of the estimation variance.

As for the toy model we work in Fourier space to make the calculation tractable. This requires
circular noise time-series such that the Fourier coefficients of the time series are statistically
independent (see appendix E). Therefore, the joint probability distribution of the data can be
written as a product of the individual probability distributions of the Fourier coefficients. Let
us redefine the variables that are used in the simplified calculation of the Fisher information
matrix in Fourier space (see eq. (4.36)).

The Fourier coefficients that describes the vector of measured time series y(t) is given by

ỹk =



−1 0 0 0 0 e−2πik∆fd12

0 −1 0 0 e−2πik∆fd23 0
0 0 −1 e−2πik∆fd31 0 0
0 0 e−2πik∆fd13 −1 0 0
0 e−2πik∆fd32 0 0 −1 0

e−2πik∆fd21 0 0 0 0 −1
−1 0 0 1 0 0
0 −1 0 0 0 1
0 0 −1 0 1 0


︸ ︷︷ ︸

Mk

p̃k + ñk.

(4.58)
Here, the matrix Mk mixes the laser sources to form the inter-spacecraft and reference interfer-
ometers. The vectors p̃k and ñk collect the Fourier coefficients of the laser noise and readout
noise in standard order

p(t) =
(
p12(t) p23(t) p31(t) p13(t) p32(t) p21(t)

)T
, (4.59)

n(t) =
(
N ro

12(t) N ro
23(t) N ro

31(t) N ro
13(t) N ro

32(t) N ro
21(t) 0 0 0

)T
. (4.60)

The trailing zeros in the definition of n(t) indicate that we only consider readout noise in
the inter-spacecraft interferometer and neglect any other secondary noise processes (especially
readout noise in the reference interferometer as it couples only subdominantly in the final TDI
variables).

The complex covariance matrix of the k-th Fourier coefficient follows analogously as

Γk = E{ỹkỹ
†
k} = Mk E{p̃kp̃

†
k}︸ ︷︷ ︸

Pk

M†k + E{ñkñ
†
k}︸ ︷︷ ︸

Nk

, (4.61)
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where we identify the covariance matrices of p̃k and ñk which are given by

Pk =
Sp(k∆f)

2T



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , (4.62)

Nk =
Sro
N (k∆f)

2T



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


. (4.63)

As the laser noises are independent but identically distributed their covariance matrix is (con-
stant) diagonal. On the other hand the covariance matrix of the readout noise reproduces the
zeros in the lower right corner.

In the next step let us analyze the mixing matrix Mk in more detail. It has rank 6 which
indicates the number of linearly independent rows. The null space of Mk that is spanned by
the columns of Ek projects the laser noise dominated interferometric measurements onto a set
of three TDI combinations. We choose the set of first generation Michelson combinations and
define the combination in two steps. First, we construct the intermediary variables with the
matrix Eη

k and only then projects those onto the laser noise free subspace using EX
k .

Eη
k =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 −e2πi∆fd31 1 0 0

−e2πi∆fd12 0 0 0 0 1
0 −e2πi∆fd23 0 0 1 0


(4.64)

EX
k =



−
(
1− e2πi∆f(d13+d31)

) (
1− e2πi∆f(d23+d32)

)
e2πi∆fd21 0

0 −
(
1− e2πi∆f(d21+d12)

) (
1− e2πi∆f(d31+d13)

)
e2πi∆fd32(

1− e2πi∆f(d12+d21)
)
e2πi∆fd13 0 −

(
1− e2πi∆f(d32+d23)

)
1− e2πi∆f(d12+d21) 0 −

(
1− e2πi∆f(d32+d23)

)
e2πi∆fd31

0 −
(
1− e2πi∆f(d21+d12)

)
e2πi∆fd23 1− e2πi∆f(d31+d13)

−
(
1− e2πi∆f(d13+d31)

)
e2πi∆fd12 1− e2πi∆f(d23+d32) 0


(4.65)

To perform both steps at once we must multiply the two matrices

Ek = Eη
k · E

X
k . (4.66)

At first the order seems counter-intuitive, however, to project the measurement ỹk into the
laser noise free space we have to perform X̃k = E†kỹk = EX

k
†
Eη
k
†
ỹk. Additionally, we can check

whether we have captured the entire null space by calculating the rank of E†k; it is full rank.
We then proceed with the calculation of the Fisher information matrix. For a single Fourier

coefficient the result is equivalent to eq. (4.36) with Pk =
Sp(k∆f)

2T (the identity matrix in
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Figure 4.4: Cramér-Rao bound σd as a function of integration time T (blue). For comparison
the horizontal dashed line in grey represent the maximum allowed bias to limit the laser noise
residual in the Michelson variable below the microcycle-requirement.

eq. (4.62) vanishes during calculations). To obtain the full Fisher information we take the sum
over all single information matrices that can be approximated by an integral (cf. eq. (4.39)).
To simplify the expression we directly assume the case of equal arm length. We find that the
Fisher information matrix is independent of the arm length. It reads

I = T

∫ ∞
0

Sṗ(f)

Sro
N (f)

df ·



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (4.67)

Furthermore, we do not encounter any degeneracies as it was the case for the toy model in the
equal arms limit. They are broken by the fact that all six lasers must cancel (as opposed to one)
in three (as opposed to one) TDI combination. As the Fisher information matrix is (constant)
diagonal the delay estimates are mutually uncorrelated and we can readily write down their
individual Cramér-Rao bound. It is given by

σ2
d ≥

1

T

(∫ ∞
0

Sṗ(f)

Sro
N (f)

df

)−1
(4.68)

Analogously to eq. (4.43) we find that the lower bound on the estimation variance of the delays
is inversely proportional to the integration time T and the integrated PSD of laser frequency
noise weighted by the PSD of readout noise.

In fig. 4.4 we evaluate the Cramér-Rao bound given in eq. (4.68) for different integration
times T . We assume the usual level of 30Hz/

√
Hz for laser frequency noise and 6µcycles/

√
Hz for

the readout noise in the inter-spacecraft interferometer. The evaluation of the integral becomes
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trivial and we set the upper integration limit to 1Hz (the high frequency end of the LISA band).
We see that after about a minute of integration the standard deviation of the delay estimate
falls below 10m which represents the maximum allowed arm length error to limit the laser noise
residual in the Michelson combination below the microcycle-requirement.

4.3.3 Bias calibration

As already hinted towards in section 3.2.4 TDI-R can be used to calibrate ranging biases in the
PRN ranges. Therefore, we set up a numerical experiment where we use TDI-R to calculate
independent estimates of the ranges that are by definition free of any ranging bias. We run
numerical simulations using LISA Instrument (Bayle et al., 2022a). Here, for the sake of realism,
we choose numerical orbits provided by ESA (Martens and Joffre, 2021) generated by LISA
Orbits (Bayle et al., 2022b). The simulation is performed over a duration of 20 000 s in units
of frequency fluctuations. For convenience, we omit total frequency units to avoid trends in
the TDI variables that have to be properly modeled and removed prior to evaluation of the
reduced likelihood function. Furthermore, for all numerical calculations we can rely on double
precision floats (as opposed to extended precision) which speeds up the computation. Similar to
the toy model simulations, we only include laser noise and readout noise in the inter-spacecraft
interferometer with the following white levels√

Sṗ = 30Hz/
√
Hz, (4.69)√

Sro
N = 6 µcycles/

√
Hz. (4.70)

Furthermore, we also simulate ranging biases in the PRN ranges that we attempt to estimate
in this experiment. They are chosen as given in table 3.2.

As the arms are flexing we have to parameterize them appropriately. Therefore, we use
splines to model them. We choose polynomial order three and five knots such that there is one
knot every 5000 s. The rationale behind it is that we want to avoid overfitting any noise or
signal in the LISA band. With a “sampling rate” of 2× 10−4Hz the delay models contain only
frequency components up to the Nyquist rate of 10−4Hz by construction. As a consequence,
the parameter vector θ is of dimension 6× 5 = 30.

As in section 4.2.2 we need to formulate the likelihood function in time-domain as the
frequency-domain representation is only valid for periodic noises and long integration times T .
Furthermore, in the realistic LISA setup considered here, the arm lengths are time-dependent
which makes the measurements non-stationary for which the Fourier series representation does
not exist. Therefore, we formulate the reduced likelihood as in eq. (4.44) where

X =
(
Ẋ2(t0) Ẏ2(t0) Ż2(t0) Ẋ2(t1) . . .

)
∈ R3·N (4.71)

now collects the second generation Michelson variables Ẋ2, Ẏ2 and Ż2 in frequency units for all
times. We require second generation variables as those sufficiently approximate the null space
for flexing arms. We calculate them numerically using PyTDI (Staab et al., 2023a).

The entries of the covariance matrix ΣX consists of N ×N (where N = 80 000 is the number
of samples) blocks of dimension 3×3 that describe the covariance between the three combination
at times ti and tj

(ΣX)i,j = E


Ẋ(ti) · Ẋ(tj) Ẋ(ti) · Ẏ (tj) Ẋ(ti) · Ż(tj)

Ẏ (ti) · Ẋ(tj) Ẏ (ti) · Ẏ (tj) Ẏ (ti) · Ż(tj)

Ż(ti) · Ẋ(tj) Ż(ti) · Ẏ (tj) Ż(ti) · Ż(tj)

 . (4.72)

Plugging in the definition of the second generation Michelson combinations (eq. (4.55)) and
taking into account readout noise in the inter-spacecraft interferometer yields a rather lengthy
expression that is left out here for the sake of brevity. It is composed of terms involving the
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Figure 4.5: Differences between PRN range and TDI-R range for delay d12. Each blue line
represents a single realization. The horizontal dashed line in black indicates the true value of
the bias B12 = −1.1 × 10−8 s. The grey area indicates the region covered by the Cramér-Rao
bound evaluated for T = 5000 s. The interval that we consider in our analysis is marked by the
vertical dashed lines in grey.

auto-correlation function of the readout noise (derivative) Rro
Ṅ
(τ) evaluated at different times

τ =
(
tj − dI(tj)

)
−
(
ti − dII(ti)

)
. Here, the roman indices I and II indicate nested time-delays.

We make use of the rule that the auto-correlation function of the time derivative of a process is
given by the negative second derivative of the auto-correlation function of the process itself.

Rro
Ṅ
(τ) = − d2

dτ2
Rro

N (τ) =
A2

2
fs(πfs)

2 ·
(
sinc(fsτ)− 2

sinc(fsτ)− cos(πfsτ)

(πfsτ)2

)
(4.73)

Here, Rro
N (τ) represents the auto-correlation function of readout noise in phase units which we

assume to be band-limited and white with a level of A = 6 µcycles/
√
Hz (analogues to eq. (4.50)).

When calculating the matrix ΣX we run into computational problems. Storing the full matrix
requires roughly 50GB which exceeds the memory of the machine we run our simulations on.
Fortunately, the matrix ΣX arranged in the order we have defines in eq. (4.72) is concentrated
around the diagonal. The reason for this is that the ACF of the readout noise quickly decays for
large τ . Therefore, we only store a finite band of the matrix along the diagonal with maximum
|τ | = |tj − ti| of 100 s (those account for a maximum delay of 8 × 10 s and margin for the
finite width of the ACF). To achieve actual zeros outside of the band we use a Kaiser window
to smoothly taper off the ACF with a total width of 40 s and an attenuation of 240 dB. The
windowing results in a mismodeling of the noise process. As we have chosen quite a conservative
window, the effect will only be visible at very low frequencies which are lifted by the window.
This results in overestimating the PSD which is acceptable as it only leads to less weighting at
those frequencies (as discussed already in section 4.2.2)

To investigate the statistics of the reduced maximum likelihood estimator described here and
check consistency with the Cramér-Rao bound estimated in section 4.3.2 we run an ensemble of
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20 simulations. For each realization we individually calculate the maximum likelihood estimate
θ̂
(i)
MLE (here, i indicates the run) using the conjugate gradient method. The results are presented

in fig. 4.5. Each blue line represents the difference between the PRN range and the TDI-R range
for one realization. Here, we only show the results for the delay d12. The horizontal dashed
line in black shows the true value of the bias we set in the simulation. We can observe that the
TDI-R estimate is unbiased as the range difference fluctuates around the true bias. The grey
area represents the expected minimal uncertainty given by the Cramér-Rao bound evaluated for
T = 5000 s. The reason for using the knot separation of the splines is that it determines the
degrees of freedom of the model. By allowing a high number of the latter the model will “overfit”
the data. Furthermore, we can see that TDI-R performs poorly at the boundaries. Therefore, in
our further analysis, we only consider the central 10 000 s indicated by the vertical dashed lines
in grey. We denote this interval in the following by the symbol P .

Ranging performance

To assess the ranging performance of TDI-R we consider the metric

σ2

d̂
(i)
ij

=
1

P

∫
P

(
PRNij(t)− TDIR

(i)
ij (t)−Bij

)2
dt. (4.74)

It represents the mean squared error of the TDI-R estimate from the true range. We construct
the true range by subtracting the true bias from the PRN estimate. We calculate this metric for
every realization i and take the mean over all arms and realizations. The square root of the result
represents the root mean squared of the ranging error of TDI-R. We yield σ̄d̂ = 2.81 × 10−9 s
which is consistent with the analytical Cramér-Rao bound given in eq. (4.68) for T = 5000 s
which reads 2.83× 10−9 s. We therefore conclude that we have formulated a minimum variance
and unbiased estimator of the six ranges dij . The result can be further improved by smoothing
the result using a Kalman-like filter (Reinhardt et al., 2023) or models with less degrees of
freedom.

Bias calibration performance

In the last step of our analysis, we estimate the six biases Bij using the results from TDI-R.
To estimate those we subtract the TDI-R ranges from the PRN ranges which are contaminated
with the bias. Then, we take the temporal mean by integrating the difference and dividing by
the length of the time series P . Formally we yield estimates of the six biases

B̂
(i)
ij =

1

P

∫
P

(
PRNij(t)− TDIR

(i)
ij (t)

)
dt, (4.75)

for the i-th realisation. We analyze them by calculating the squared error from the true biases

σ2

B̂
(i)
ij

=
(
B̂

(i)
ij −Bij

)2
. (4.76)

To reduce the variance of the latter we take the average over all arms and realizations. The
square root of the result yields a mean estimation error of 2.07 × 10−9 s which is consistent
with the analytical Cramér-Rao bound for T = P = 10 000 s which reads 2.00× 10−9 s. Again,
we conclude that we have found the optimal estimator for the ranging bias in the PRN ranges
using TDI-R. To improve the performance further the integration time P must be increased (see
fig. 4.4).
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4.3.4 Discussion

In this chapter, we have presented a thorough analysis of an optimal TDI-R estimator by for-
mulating the likelihood function of the LISA carrier-carrier beatnotes. We calculate the Fisher
information matrix in the limit of dominating laser noise and find simple expressions for the
limit of equal arms. Then, we derive the Cramér-Rao bound that is defined as the inverse of
the Fisher information matrix. It determines the lower bound on the estimation uncertainty of
any unbiased estimator of the parameters of the likelihood function, i.e., the delays in LISA. We
validate those analytical limits by running numerical simulations and demonstrate that we are
able to formulate optimal estimators that reach the Cramér-Rao bound. Ultimately, we show
that TDI-R can be used to calibrate biases present in the PRN ranges.

In the studies presented in this manuscript, we concentrate more on the analytical under-
standing of TDI-R. As a next step it is important to implement this method in the ranging
processing pipeline for LISA. In a ranging sensor fusion study by Reinhardt et al. (2023), the
traditional TDI-R estimator (Tinto et al., 2005) has been already successfully applied to resolve
the ambiguity of the PRN ranges and calibrate their bias. To implement the optimal TDI-R
estimator introduced here in state-of-the-art LISA processing pipelines it has to be adapted for
more realistic data.

Realistic LISA data comprises beatnote phases or frequencies in total units. Due to Doppler
shifts and the Frequency plan the central frequency of the lasers is time-varying. Consequently,
we need to appropriately model both the Doppler shifts and drifting absolute laser frequencies to
remove the deterministic trend present in the TDI variables to properly express their likelihood
function. Furthermore, more realistic models for the lasers have to be assumed. First, the ASD
of realistic laser frequency noise deviates from white noise below a few mHz. However, we expect
that this adjustment will only have a negligible effect on the results. Second, the baseline design
of LISA foresees locked lasers. Those effect the correlation properties of the six lasers as they
are not independent anymore but follow each other with a time lag. The consequences of laser
locking are currently investigated in dedicated studies.

To make the TDI-R algorithm more robust against instrumental glitches and the impact of
GWs it can be beneficial to artificially amplify laser frequency noise in a frequency band that
is free of any disturbances. The simplest scheme is to modulate a tone at around 1Hz (Francis
et al., 2015). Then, only the power at a single frequency has to be analyzed which makes this
method more robust. Furthermore, the amplitude of the tone can be tuned such to achieve a
particular ranging precision.

Overall, the run time of the algorithm and its memory demands can be improved. Therefore,
we propose to reformulate the likelihood function in the Frequency domain. For finite-length
time series that are not periodic and non-stationary the Fourier coefficients will be correlated.
Therefore, their covariance matrix will have off-diagonal terms and require a similar treatment
as we do in the time domain. However, assuming appropriate windowing of the time series,
the covariance matrix of the Fourier coefficients will be much more concentrated around its
diagonal.
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Chapter 5

Summary and Conclusion

In this thesis, we have discussed various aspects of the initial noise reduction pipeline for the
Laser Interferometer Space Antenna (LISA); a space mission led by ESA to measure gravita-
tional waves (GWs) in the 10−4Hz to 1Hz frequency band. Time-delay interferometry (TDI)
represents an integral part of the initial noise reduction pipeline to suppress laser frequency noise
by synthesizing virtual equal-arm interferometers. We provide an overview of various TDI com-
binations suitable for LISA and discuss their operational advantages. To numerically compute
TDI combinations we have developed the Python package PyTDI (Staab et al., 2023a) that is
extensively used in this thesis and also widely adopted in the LISA consortium. It can handle
interferometric data given in either phase or frequency units. Prior to performing TDI, precise
estimates of the inter-spacecraft pseudo-ranges have to be calculated. We present a ranging pro-
cessing pipeline that combines ranging information from the sideband-sideband beatnotes and
the PRN ranging measurements to yield femtosecond-stable propagation delays that serve as an
input for TDI. Furthermore, we demonstrate the ability to calibrate biases in the PRN ranges
using a technique named time-delay interferometric ranging (further discussed below). To vali-
date the performance of the ranging processing pipeline and the TDI algorithm, we analytically
model laser and timing residuals and compare them to numerical simulations using the LISA
simulation suite developed by the consortium. The residuals arise due to on-board processing of
the interferometric data and errors introduced by the post-processing implementation of TDI.
We demonstrate good agreement between the PSD of the numerical results and the models that
describe the coupling of the residuals to the final TDI output analytically.

From the modeling of laser and timing noise residuals, we have identified direct implications
for the design of the LISA instrument. First, modulation noise that is introduced when deriving
the phase modulation signal from the pilot tone and modulating it on the laser beam represents
the limiting in-band ranging noise. It has to be appropriately accounted for in the LISA noise
budget as it exceeds the microcycle-requirement, which serves as benchmark in our investiga-
tions. Second, the design of the on-board decimation stages reducing the sampling rate of the
interferometric data from initially 80MHz down to the telemetry rate of 4Hz requires careful de-
sign of anti-aliasing filters. We suggest the use of FIR type I filters, which have an odd number of
coefficients and therefore an integer group delay which can be easily compensated. Furthermore,
they exhibit zero phase distortion. The design of these filters is trading-off the amount of aliased
laser noise and computational effort. Therefore, we propose filter designs for the final decimation
stage (16Hz to 4Hz) that use a minimum number of coefficient and, at the same time, produce
a laser noise residual below the microcycle requirement. Previously, it was assumed that the
so-called flexing-filtering effect also poses requirements on the filter design. However, we show
that this effect can be mitigated by applying a compensation filter on ground that flattens the
response of the decimation stage in the LISA band. Lastly, we investigate different interpolation
methods used to implement time shifts in post-processed TDI. We present a novel method to
design minimum length interpolation kernels that fulfill the microcycle-requirement.
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In the second part of this thesis, we present our advances on the statistical description of time-
delay interferometric ranging. TDI-R is a post-processing technique to extract ranging informa-
tion from the carrier-carrier beatnotes. We derive the optimal TDI-R estimator by formulating
the likelihood function of the interferometric data that contains the inter-spacecraft propagation
delays as parameters. Using the Fisher information formalism we express the Cramér-Rao bound
which sets the theoretical limit on the estimation variance of the delays. We then demonstrate
prototype TDI-R pipelines. We run Monte-Carlo simulations to test their performance and
characterize their estimation statistics. Ultimately, we show that our implemented algorithms
perform very close to the theoretical limit we have calculated analytically before. Hence, we
conclude that we have found the optimal TDI-R estimator.

For future studies, we propose to combine the presented data processing pipelines and in-
crease the complexity of the LISA data that is analyzed. Especially, the TDI-R algorithm needs
to be prepared for data in total phase or frequency units which requires estimation of the ab-
solute laser frequency to detrend the TDI variables. Furthermore, the effect of laser locking,
which is foreseen in the baseline design of LISA, on the performance of the various pipelines
has to be studied. Staab et al. (2023b) already investigated the coupling of laser noise residuals
in the second generation Michelson variable X2 for the N1-12 locking topology. This study has
to be extended to the remaining locking topologies that are considered for LISA. In turn, this
also means that the ability of TDI-R to estimate biases in the PRN measurements is dependent
on the locking topology used. Therefore, we should evaluate the performance of TDI-R for the
various locking topologies. Furthermore, the performance of TDI-R can be enhanced by modu-
lating a low frequency tone around 1Hz on the frequency of the primary laser. This artificially
increases the laser noise power in a narrow frequency band and would make the TDI-R algo-
rithm more robust against in-band disturbances like glitches, non-stationary instrumental noise
or even GWs.
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Appendix A

Commutator Algebra

In this manuscript we make extensive use of the notion of commutators. They express whether
it is allowed to interchange the order of two operators A and B applied to a timer series x(t).
We define the commutator of A and B as

[A,B]x(t) = ABx(t)−BAx(t). (A.1)

which itself defines an operator again. If [A,B] = 0 the operators A and B are said to commute.
Commutators possess a set of identities that we use to simplify expressions and split them

up into individual contributions. Relevant for our calculations are

[A+B,C] = (A+B)C−C(A+B) = [A,C] + [B,C] (A.2a)
[A,B] = −(BA−AB) = −[B,A] (A.2b)

[A,BC] = ABC−BAC+BAC︸ ︷︷ ︸
=0

−BCA = [A,B]C+B[A,C] (A.2c)

[AB,C] = ABC−ACB+ACB︸ ︷︷ ︸
=0

−CAB = A[B,C] + [A,C]B (A.2d)
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Appendix B

Aliasing for Stochastic Processes

Aliasing occurs when decimating the sampling rate of a discrete time series. The resulting time
series has a reduced band-limit and therefore any power that resides at higher frequencies will
be folded into band. To mitigate this, it is important to implement appropriate anti-aliasing
filters before decimation that act as low-pass filters which remove any signal content above the
new Nyquist frequency.

Here, we describe the effect of aliasing on stochastic processes. As introduced earlier, due to
their random nature they are best characterized by their ACF or PSD. We follow the definitions
given in section 1.3.

Let yn be a discrete time series with sampling rate fs that is derived from xn by decimating
it by a factor M . Formally we write

yn = xnM (B.1)

y(t) =
∞∑

n=−∞
sinc(fst− n) · xnM (B.2)

In the second line we use the Whittaker-Shannon interpolation formula (see eq. (1.29)) to rep-
resent the discrete time series as a continuous one.

In the next step, we use the definition in eq. (1.24) to write down the ACF of y(t). We
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develop

ACF{y(t)}(τ) = E{y(t)y(t+ τ)} (B.3)

= E

{( ∞∑
m=−∞

sinc
(
fst−m

)
· xmM

)( ∞∑
n=−∞

sinc
(
fs(t+ τ)− n

)
· xnM

)}
(B.4)

=

∞∑
m,n=−∞

sinc
(
fst−m

)
sinc

(
fs(t+ τ)− n

)
ACF{x(t)}

(
(n−m)Ts

)
(B.5)

=

∞∑
m,n=−∞

sinc
(
fst−m

)
sinc

(
fs(t+ τ)− n

) ∫
R
PSD{x(t)}(f) e2πif(n−m)Ts df (B.6)

=

∫
R
PSD{x(t)}(f)

( ∞∑
m=−∞

sinc
(
fst−m

)
e−2πifmTs

)( ∞∑
n=−∞

sinc
(
fs(t+ τ)− n

)
e2πifnTs

)
df

(B.7)

=

∫
R
PSD{x(t)}(f)

∞∑
m,n=−∞

rect

(
f −mfs

fs

)
e−2πi(f−mfs)t rect

(
f − nfs

fs

)
e2πi(f−nfs)(t+τ) df

(B.8)

=

∫
R
PSD{x(t)}(f)

∞∑
n=−∞

rect

(
f − nfs

fs

)
e2πi(f−nfs)τ df (B.9)

=

∫
R
rect

(
f

fs

)( M∑
n=−M

PSD{x(t)}(f + nfs)

)
e2πifτ df. (B.10)

In eq. (B.6) we replace the ACF by the inverse Fourier transform of the PSD. This enables us
to factor terms containing m and n, respectively. Then, in eq. (B.8) we use common discrete-
time Fourier transformation laws which convert the sinc-functions into rect-functions which are
defined by

sinc(x) =
sin(πx)

πx
(B.11)

rect(x) =


0, if |x| > 1

2
1
2 , if |x| = 1

2

1, if |x| < 1
2 .

(B.12)

In the next line, we observe that the constituents of the sum are only non-vanishing if m = n
which leave us with a single sum running over index n. Finally, in eq. (B.10), we perform the
substitution f → f + nfs and identify the PSD of y(t) as the Fourier Transform of the ACF
which is given by

PSD{y(t)}(f) = rect

(
f

fs

) M∑
n=−M

PSD{x(t)}(f + nfs). (B.13)

B.1 Decimation-Filtering Commutator

In this section we derive the PSD of the commutator of the decimation and filtering operations.
In general, the filtering operation represents any LTI system, e.g. also a constant time-shift.
Formally, the commutator is given by

y(t) = [SM↓,F]x(t) = SM↓Fx(t)− FSM↓x(t). (B.14)

One has to make sure that the operator F is well defined for both sampling rates, before deci-
mation and after decimation.
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As eq. (B.14) represents a difference of two time series, its PSD can be expanded into

PSD{y}(f) = PSD{SM↓Fx(t)− FSM↓x(t)}(f) (B.15)

= PSD{SM↓Fx(t)}(f) + PSD{FSM↓x(t)}(f)
− CSD{SM↓Fx(t),FSM↓x(t)}(f)− CSD{FSM↓x(t),SM↓Fx(t)}(f).

(B.16)

The first two terms are already explained in the previous section. The cross spectral densities
(CSDs) can be derived in a similar manner and we find that

CSD{SM↓Fx(t),FSM↓x(t)}(f) = h̃(f) rect

(
f

fs

) M∑
n=−M

h̃∗(f+nfs) PSD{x(t)}(f+nfs) (B.17)

Therefore, the PSD of the commutator is given by

PSD{y(t)}(f) = rect

(
f

fs

) M∑
n=−M
n̸=0

∣∣∣h̃(f)− h̃(f + nfs)
∣∣∣2 PSD{x(t)}(f + nfs). (B.18)
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Appendix C

Filter Design

In this work we use three different filter designs for anti-aliasing before decimation. The first
design is used as the default in the LISA simulators as it is very flat in the pass-band and has
high suppression in the stop-band. As it is a rather conservative design using N = 145 filter taps
we seek a less stringent design for phase and for frequency units. Here, we require that aliased
noise resides below the microcycle-requirement. We find that 29 taps for phase units and 33
for frequency units are sufficient. This is a vast improvement compared to 145 taps. We show
the transfer function and its derivative of each design in fig. C.1. Furthermore, a more detailed
investigation on the aliased noise for the two optimized designs is presented in fig. C.2.

C.1 LISA Instrument design

The calculation of the filter taps for LISA Instrument’s default implementation relies on the
windowing method (see e.g. Oppenheim et al., 1999). We use the firwin-funtion from the
scipy.signal Python package (Virtanen et al., 2020). We choose a Kaiser window with an
attenuation of 240 dB which amounts to a stop-band suppression of 12 orders of magnitude.
To allow for some margin the transition-band starts at 1.1Hz and the stop-band at 2.9Hz. In
fig. C.1 we see the transfer function in blue. It exhibits high flatness in the LISA band and high
suppression in the stop-band.

C.2 Optimized design for phase units

To relax the filter design and use fewer filter taps we introduce another design method. We
image1 the microcycle-requirement (that only holds in-band) up until the Nyquist rate before
decimation. Then, we design a filter such that it has unity gain at dc and fulfills the following
optimality criterion. We require that the filter design minimized the absolute maximum weighted
error of the transfer function in the stop-band. Here, the weighted error is given as

E(f) = W (f)
(
h̃(f)− h̃d(f)

)
. (C.1)

Here, we restrict ourselves to FIR type I filters that have an odd number of taps and even
symmetry such that their transfer function h̃(f) is real up to a linear phase. The desired
transfer function hd(f) is zero in the stop-band such that the error function simplifies.

To find the filter taps that minimize the maximum weighted error in the stop-band there
exists a number of quickly converging algorithms (Parks and McClellan, 1972; McClellan et al.,
1973). We adopt the Parks-McClellan algorithm also discussed in Oppenheim et al. (1999). To
account for the red shape of the laser phase noise

√
Sp(f) = 30Hz/

√
Hz ·(2πf)−1 we put a lower

1Imaging denotes the inverse process to aliasing. Instead of folding aliases into band upon decimation we fold
in-band power out-of-band to determine the maximal allowed power of the aliases.
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Figure C.1: Transfer functions (solid) and derivatives (dashed) of various filter designs.
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Figure C.2: Effect of anti-aliasing filter designs on laser noise for phase units (left panel) and
frequency units (right panel). The raw laser noise is shown in yellow. It has a red shape in
phase units and is white in frequency units. The ASD after anti-aliasing is shown in blue and
the aliased contribution after decimation to 4Hz is shown in red. The grey and white bands in
the frequency range 2Hz to 8Hz indicate orientation of the sub-bands after folding. Grey sub-
bands are mirrored before they are added to the 0Hz to 2Hz band. As the filter for frequency
units is compiled from two filter we show the effect of the first filter in blue dashed (for more
details see the text).
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weighting on higher frequencies. Therefore, the weighting function is given by W (f) = f−1. As
a result the transfer function (yellow) plotted in fig. C.1 slowly increases in the stop-band (which
is hard to see). In fig. C.2 (left panel) we show the effect of the transfer function on the red
laser phase noise. Here, we observe that after filtering (blue line) the phase noise is equi-ripple
in the stop-band. This is as intended since folding the frequency range 2Hz to 8Hz into band
produces aliased noise (red line) that stays below the flat microcycle-requirement.

C.3 Optimized design for frequency units

The design of the anti-aliasing filter in frequency is more complicated as the microcycle-requirement
appears now as

√
Sreq
δν (f) = 1 µcycle/

√
Hz · (2πf). Imaging this requirement to frequencies up

to 8Hz produces zeros at 4Hz and 8Hz. To automatically impose zeros in the transfer function
of the anti-aliasing filter at those frequencies we construct a composite filter from two FIR type
I filters, one running at 16Hz and the other one running at 8Hz. As each of those filter has a
definite zero at their respective Nyquist frequency we fulfill the above requirement.

The stop-band of the first filter starts at 7Hz and we use a weighting function that is
equivalent to the imaged microcycle-requirement. To stay below it we require 9 taps. The ASD
of laser noise after the application of the first filter is shown as the dashed blue line in fig. C.2
(right panel). In the next step we design the second filter that runs at 8Hz with a stop-band
ranging from 3Hz to 4Hz. We choose the same weighting function and find that 11 taps suffice.
We combine the two filter designs into a single filter by discrete convolution of the coefficients
which gives in total 9+ 2 · 11− 2 = 31 taps. The total transfer function of this filter is shown in
fig. C.1 as the red line. Characteristically, the transfer function has a bump between 5Hz and
7Hz. This is allowed and only relaxes the number of required taps as this band is aliased to the
interval 1Hz to 2Hz which is not part of the LISA band.
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Appendix D

Fractional Shift Filters Based on FIR
Type II Filters

In section section 3.3.2 we discuss about interpolation residuals and propose a new kernel design
that relaxes the required number of coefficients. As consequence the interpolation error increases
at low frequencies. Therefore, we carefully derive an interpolation kernel based off of a FIR type
II low-pass filter design that respects the microcycle-requirement at all frequencies.

We start by designing an FIR type II filter that has even number of taps and even symmetry.
We proceed with a similar algorithm as already introduced in appendix C. We seek the filter
taps that minimize the maximum weighted error in the domain of interest. Here, we desire a
response of unity up to a frequency of 1Hz. As an additional constraint we fix the response at
dc to exactly one. This procedure yields equi-ripples in the pass-band of the filter.

The interpolation error is formulated in frequency domain as the deviation of the interpola-
tion kernel transfer function from a pure delay which is represented as a complex linear phase
(cf. eq. (3.114)). To fulfill the microcycle-requirement we demand

∆̃Sp(f) < Sreq
δϕ (f) ⇒ ∆̃ <

Sreq
δϕ (f)

Sp(f)
, (D.1)

which yields a constraint on the maximal allowed interpolation error. In fig. D.1 we plot the
right-hand side of the equation above as the black dashed line. Here, we assume a laser phase
noise ASD of 30Hz/

√
Hz · (2πf)−1. Therefore, the requirement picks up a slope of one which

dictates a weighting function of W (f) = f−1 for the weighted error function such that the
response is closer to unity at low frequencies. Using the Parks-McClellan algorithm we solve
for the filter coefficients and find that 18 taps are sufficient to push the absolute error of the
transfer function (dashed red line in fig. D.1) below the requirement.

The transfer function of the resulting FIR type II filter designs naturally possesses a group
delay of half a sample. Therefore, it already represents a fractional shift filter for the special
case of ϵ = 0.5. Next, we seek to generalize this approach for all ϵ between 0 and 1. To achieve
this we first come up with a continuous-time representation of the interpolation kernel k(t). By
discretely sampling a shifted version of it we yield the coefficients of any fractional shift filter.
As an integer shift is equivalent to convolving by a Dirac-delta pulse we already identify the
values of k(t) for times that are integer multiples of the sampling time Ts. We summarize this in
fig. D.2 where we show in the left panel the FIR type II filter coefficients in blue and the Dirac
pulse in grey. The red line represents k(t) that smoothly interpolates between the fixed values.

v(t) = w(t) · sinc(2fst) (D.2)

k(t) =
∑
n

v

(
t− n · Ts

2

)
· h̊n = v(t) +

N/2−1∑
n=−N/2

v

(
t− (n+ 1/2) · Ts

2

)
· hn (D.3)
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Figure D.1: Comparison of the interpolation error of different kernel designs with the projected
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newly proposed FIR type II method (solid red) and the standard Lagrange interpolation method
(solid blue) is shown. Additionally, the magnitude response of the FIR filter the interpolation
kernel is based off of is plotted in dashed red. For more details on the design parameters see the
text.
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Figure D.2: Illustration of the design procedure of the interpolation kernel using the FIR type
II method for N = 8 and fs = 4Hz. The left panel shows the continuous-time kernel function
k(t) that smoothly interpolates the filter taps that are interleaved with a Dirac pulse. In the
right panel we show the shape of the constituent of the Fourier transform of k̃(f) that defines
the frequency response of the interpolation kernel.

Here, h̊n are all supports including the Dirac pulse and hn denotes only the filter coefficients.
We choose a window function w(t) such that k(t) has a finite length. The Fourier transform of
the kernel defines the frequency response. We find

k̃(f) =
1

fs

(
w̃(f ′) ∗ rect

(
f ′

2fs

))
(f)︸ ︷︷ ︸

B(f)

·1
2

(
1 +

N
2
−1∑

n=0

2 cos

(
2πf(n+ 1/2)

Ts

2

)
· hn︸ ︷︷ ︸

A(f)

)
(D.4)

where A(f) denotes the amplitude response of the FIR filter and B(f) the frequency response
of the windowed sinc-function.

In the right panel of fig. D.2 we plot both the periodic response of the term 1
2

(
1 +A(f)

)
in

blue and the effect of the windowed sinc which acts like a low pass filter with magnitude response
B(f) in yellow. A proper choice of the window function w(t) is crucial for the performance of
the filter as it reduces the effect of aliasing when discretely sampling the interpolation kernel
k(t) again. The coefficients of the interpolation kernel follow as

km(ϵ) = k
(
(m+ 1− ϵ) · Ts

)
(D.5)

Finally, let us describe the parameters we choose to interpolate the beatnote measurements
sampled at 4Hz. We follow the algorithm above to calculate FIR filter taps that fulfill the
microcycle-requirement which yields 18 taps. Then, we choose a Kaiser window (Nuttall, 1981)
given as

w(t) =


I0
(
β
√

1−(2t/L)2
)

I0(β)
if |t| ≤ L

2 ,

0 else .
(D.6)

Here, the parameter β determines the suppression of the sidelobes and we choose β = 26.6 which
is equivalent to an attenuation of 250 dB. Furthermore, the length of the window L determines
the number of coefficients of the interpolation kernel. We set L = (10 + 1)Ts such that the
resulting kernel has length M = 18 + 10 = 28. To compare the performance of the proposed
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method with the standard Lagrange interpolation method, we plot the interpolation error for
ϵ = 0.25 in fig. D.1. We observe that the interpolation error of the proposed method (red line)
generally performs better than the FIR filter amplitude response. However, at low frequencies
we can see the effect of aliasing which is suppressed down to a level of roughly 10−12 by the
windowing. On the other hand, Lagrange interpolation (blue line) requires 42 coefficients to
achieve the microcycle-requirement in the entire LISA band.
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Appendix E

Statistics of the Fourier Transform

Let x(t) be a real zero-mean Gaussian process (for its rigorous definition see, e.g., Rasmussen
and Williams, 2006). We assume it to be band-limited and periodic in time with period T
such that we can represent it with a finite number of Fourier coefficients. The Fourier series
representation is given as

x(t) =
K∑

k=−K
x̃ke

2πik∆ft. (E.1)

Here, ∆f is given by the inverse of T and K determines the number of frequency components
such that K∆f surpasses the band limit. As the Gaussian process is real the Fourier coefficients
x̃k are not independent. It can easily be verified that x̃k = x̃∗k. Therefore, x(t) is uniquely
described by K coefficients (x̃k)

K
k=1 (the k = 0 component vanishes because of the zero-mean

property).

In the next step we seek to express the probability density function of the Fourier coefficients
which are defined as

x̃k =
1

T

∫ T
2

−T
2

x(t)e−2πik∆ft dt. (E.2)

Our first observation is that x̃k must be Gaussian distributed as the Fourier transform is a linear
operation on the Gaussian process x(t). Furthermore, x̃k is circular symmetric (its distribution
is invariant under adding a deterministic complex phase) so we follow that the vector x̃ collecting
all K Fourier coefficients is jointly distributed as

p(x̃) = (πK detΣ)−1e−x̃
†Σ−1x̃. (E.3)

Here, the complex-valued covariance matrix is defined as

Σ = E{x̃x̃†}. (E.4)

It expresses the covariance between different Fourier components. We find that it is approxi-
mately diagonal for large T . Let us demonstrate this by using the definitions given in eqs. (E.2)
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and (E.4).

E{x̃kx̃∗l } =
1

T 2

∫ T
2

−T
2

∫ T
2

−T
2

E{x(t) · x(t′)}︸ ︷︷ ︸
ACF{x}(t−t′)

·e−2πik∆ft · e2πil∆ft′ dtdt′ (E.5)

=
1

T 2

∫ T
2

−T
2

∫ T
2

−T
2

∫
R
PSD{x}(f) · e2πif(t−t′) · e−2πik∆ft · e2πil∆ft′ df dtdt′ (E.6)

=
1

T 2

∫
R
PSD{x}(f)

∫ T
2

−T
2

e2πi(f−k∆f)t dt

∫ T
2

−T
2

e−2πi(f−l∆f)t′ dt′ df (E.7)

=
1

T 2

∫
R
PSD{x}(f) · sinc(Tf − k) · sinc(Tf − l) df (E.8)

In the first line we have identified the ACF of x(t) defined in eq. (1.24) that we replace by the
Fourier transform of the PSD. To develop this further we assume the PSD appears approximately
constant within a frequency interval of the characteristic width of the sinc-function in eq. (E.8)
which is of the order 1

T . Then we can write

E{x̃kx̃∗l } ≃

{
PSD{x}(k∆f)

T if k = l,
0 else.

(E.9)

Here, we have used the fact that the integral over the product of sinc-functions that are displaced
by an integer evaluates to ∫

R
sinc(Tf − k) · sinc(Tf − l) df =

δkl
T

, (E.10)

where δkl is the Kronecker delta. In the limit T →∞ the expression eq. (E.9) becomes exact.
Let us now consider a vector of real zero-mean Gaussian processes z(t) of dimension M

that share the same properties as before. Similarly, we express them in terms of their Fourier
coefficients (z̃k)

K
k=1. Following the derivation above it is easy to verify that in the limit T →

∞ the vector of Fourier coefficients is statistically independent among different frequencies.
Therefore, we follow that z̃k is jointly complex Gaussian and we write for its joint probability
density function

p(z̃k) = (πM detΣk)
−1e−z̃

†
kΣ

1−
k z̃k , (E.11)

where Σk ∈ CM×M is the covariance matrix for the k-th Fourier coefficient of the different
channels with entries

(Σk)i,j =
CSD{zi, zj}(k∆f)

T
. (E.12)
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