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ABSTRACT: 
 
The time series of normalized difference vegetation index (NDVI) and interferometric coherence extracted from optical and 
Synthetic Aperture Radar (SAR) images, respectively, have strong responses to sudden landslide failures in vegetated regions, which 
is expressed by a sudden increase or decrease in the values of NDVI and coherence. Compared with optical sensors, SAR sensors are 
not affected by cloud and daylight conditions and can detect the occurrence time of failure in near real-time. The purpose of this  
paper is to automatically determine the time of failure occurrence using time series coherence values. We propose, based on some 
existing anomaly detection algorithms, a deep neural network-based anomaly detection strategy that combines supervised and 
unsupervised learning without a priori knowledge about failure time. Our experiment using July 21, 2020 Shaziba landslide in China 
shows that in comparison to widely used unsupervised methodology, the use of our algorithm leads to a more accurate detection of 
the timing of the landslide failure. 
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1. INTRODUCTION 

Along with rising global temperatures, extreme weather events  
such as intensifying cyclones, hurricanes, and heavy rains are 
on the rise on a global scale, as well as the frequency of 
landslide occurrence in many parts of the world. Landslides can 
mobilize large amounts of material and cause significant 
damage to local populations, infrastructure, and buildings (Cao 
et al.,  2018; Motagh et al., 2013; Petley, 2012; Schlögel et al.,  
2015; Wasowski and Bovenga, 2014; Xia et al., 2022). Timely 
generation of information on the temporal and spatial 
distribution of landslides will help in risk preparedness and 
emergency response management.  
 
Precise detection of landslide occurrence time is a big challenge 
for landslide evolution research. Optical and synthetic aperture 
radar (SAR) satellite data are increasingly used to support 
landslide occurrence detection due to their multi-spectral and 
textural characteristics, multi-temporal revisit rates, and large 
area coverage (Behling et al., 2016).  Landslide-prone areas are 
usually exposed to rainfall and thus, are often covered by clouds, 
which limits the use of optical images. Due to the cloud 
penetration capability of SAR sensors, more precise temporal 
characterization of landslide occurrence on a regional scale is  
possible using SAR satellite data. The Copernicus Sentinel-1 
satellite mission consists of two satellites enabling a revisit 
cycle of 6 days while covering most of the world’s landmass. 
These data form the basis for a more accurate detection of the 
timing of the landslide failure. Following the failure in 
vegetated areas, the coherence time series in the landslide 
regions suddenly increases and keeps high values for a certain 
period of time. Therefore, we can use the abrupt change in 
coherence time series, in response to the occurrence of failure, 
to obtain the time of failure.  
 

For the detection of anomalies in the coherence time series, the 
currently popular unsupervised time series anomaly detection 
algorithms can be used. These include: clustering-based models, 
probabilistic-based models, LOESS (locally estimated 
scatterplot smoothing) models, prediction-based models, 
statistical models, and algorithms based on machine learning 
and deep learning (Goldstein and Uchida, 2016; Munir et al.,  
2019; Teng, 2010). K-means (Münz et al., 2007), Isolate Forest 
(Liu et al., 2008), Auto regressive Integrated Moving Average 
model (ARIMA) (Zhang, 2003), Seasonal and Trend 
decomposition using Loess (STL) (Robert B Cleveland et al.,  
1990), Autoencoders (Sakurada and Yairi, 2014), and Breakout 
detection (James et al., 2016)  are among the popular 
approaches for these types of anomaly algorithms.  In this study, 
we propose an anomaly detection strategy that combines  
unsupervised learning-based Breakout detection with supervised 
learning-based deep learning LSTM to automatically detect the 
time of failure occurrence using SAR coherence time series. 

 

2. METHOD 

In this section, firstly, selected time series anomaly detection 
methods are briefly introduced. K-means, Isolate Forest, 
ARIMA, STL, Autoencoders, and Breakout detection anomaly 
detection methods are chosen to be applied for the July 21, 2020 
Shaziba landslide occurrence time detection. Then, we will 
discuss the advantages and shortcomings of different methods  
in anomaly detection. Finally, we propose our deep neural 
network-based time series anomaly detection strategy for 
detecting landslide occurrence time.  
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2.1 Time series anomaly detection methods 

Time series anomaly detection methods are mainly classified as  
supervised, semi-supervised, and unsupervised detection. This  
study requires the detection of accident occurrence time without 
a priori knowledge, so we only focus on widely used 
unsupervised approaches as detailed below. 
 
2.1.1 K-means: K-means is a typical clustering-based 
anomaly detection method (Münz et al., 2007). The principle of 
K-means is not complicated. First, several initial clustering 
center points are randomly set.  Then each data point is assigned 
to the nearest cluster center point. After the assignment is  
completed, the average of the distances from the points in each 
class to the center point of that class is recalculated. If the 
cluster center has changed compared to the previous cluster 
center, each data point is reassigned to its nearest cluster center 
again. The iterations are continued until the cluster center does  
not change or the maximum number of iterations is reached. 
 
2.1.2 STL: STL is a classical method for LOESS-based 
seasonal trend decomposition that was proposed by (Robert B 
Cleveland et al., 1990). LOESS first fits polynomials to each 
subset of the data to obtain a weighted regression curve, 
respectively, and then joins the centers of these regression 
curves together to form a complete regression curve (Cleveland 
and Devlin, 1988). SLT is able to separate the time series trend 
into three components: seasonal component, trend-cycle 
component, and remainder component. If there are outliers in 
the time series data, they will be reflected in the residual. 
 
2.1.3 Isolated Forest: The Isolated Forest is an anomaly 
detection method based on a probability model (Liu et al., 2008). 
For applying an isolated forest to a time series, the data set is  
recursively and randomly partitioned until all sample points are 
isolated. Normal data distribution with high density is required 
to be segmented many times to be isolated, but those anomalous  
data points with very low density can be isolated easily. With 
this random segmentation strategy, the anomalies usually have 
short paths. The short path indicates a few numbers of segments.  
 
2.1.4 ARIMA: ARIMA (Auto regressive Integrated Moving 
Average model) is a classical prediction-based approach 
(Moayedi and Masnadi-Shirazi, 2008; Zhang, 2003) that has  
been widely used for time series forecasting and anomaly 
detection. In ARMA, the first part of the time series is set as 
historical data to train the model, and the historical data is then 
used to predict future data. The anomaly points are obtained by 
comparing the difference between the true value and the 
predicted value. 
 
2.1.5 Breakout detection: The Breakout detection is one of 
the advanced statistical unsupervised anomaly detection 
algorithms (James et al., 2016). The basic principle of the 
Breakout detection model is to use energy statistics to detect the 
divergence of averages, referred to as E-Divisive with Medians  
(EDM). 
 

2.1.6 Autoencoder:  Autoencoder algorithm is an 
unsupervised anomaly detection method based on deep learning 
(Sakurada and Yairi, 2014). Autoencoder is  essentially a 
dimensionality reduction method based on neural networks for 
high-dimensional inputs with low-dimensional outputs. It 
contains two parts, which are encoder and decoder. The encoder 
is used to learn a low-dimensional representation of the input 
data, while the decoder reproduces the input data in the original 
dimension using the low-dimensional representation generated 
by the encoder, also called reconstruction. After Autoencoder is  
trained with a large amount of normal data, it can reproduce the 
input data well when fed with data "similar" to the data which 
were used for training. However, if the input data contain 
outliers, the trained Autoencoder model is unable to reproduce 
the input data correctly. 
 
2.2 Time series anomaly detection strategy combining 
Breakout detection and LSTM 

The coherence time series, affected by the surface vegetation 
shows seasonality, with smaller coherence values in the season 
of dense vegetation and larger values in the season of sparse 
vegetation. Vegetation growth is closely related to annual 
rainfall, but the rainy seasons are not perfectly the same from 
year to year. Therefore, although the time series of coherence 
data roughly show seasonality, the coherence values are not 
exactly similar in the same months of each year. This is a 
challenging task for Breakout detection, K-means, and STL 
anomaly detection methods as the inconsistent seasonality will 
interfere with the anomaly detection, and eventually lead to 
errors in the anomaly detection results. Although anomaly 
detection methods based on prediction model, probabilistic 
model, and deep learning are unsupervised techniques, they 
require a set percentage of hypothetical anomaly to the total 
data. However, if the actual training samples have a high 
percentage of anomalous samples, which violate the basic 
assumption of anomaly detection, the true false alarm rate 
achieved during anomaly detection may be much greater than 
expected. Therefore, for anomaly detection in time series of 
coherence, we cannot set a perfect percentage of anomalies. If 
only Sentinel-1 data are used, the outliers can be even as high as  
50% when the landslide occurs earlier than 2017. The 
imprecision of the initial outlier percentage setting makes the 
detection of outliers seriously deviate from the true outliers. 
Moreover, not enough training data maybe available. For the 
landslide occurrence time detection using Sentinel-1 data the 
earliest available data starts only in 2014. For example, for the 
Shaziba landslide in this study, only about 170 images were 
available until July 2021. Unsupervised techniques based on 
deep learning are particularly difficult when the training data 
are small (Srivastava et al., 2014). 
 
To address the above challenges, we propose a new strategy that 
combines the unsupervised learning method with the supervised 
learning method based on deep learning to achieve a more 
accurate automatic detection of landslide occurrence time 
without a priori knowledge. We use an advanced deep learning 
LSTM model, which can predict the time series in the future 
from its historical time series in the past, and then determine 
whether the future sequence is anomalous based on the 
prediction error (Ergen, 2020; Hochreiter and Schmidhuber, 
1997; Malhotra et al., 2016). The LSTM model has three main 
phases: forgetting phase, selective memory phase, and output 
phase. The forgetting stage is mainly to selectively forget the 
input passed in from the previous node. In simple terms, it 
means that the unimportant information is forgotten and the 
important information is remembered. The selective phase 
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indicates that there is a choice to remember the important input 
information. The output phase determines which part of 
important information will be taken as the output. The LSTM 
neural network architecture is shown in Figure 1. 
 

 
Figure 1. Neural network architecture based on LSTM layers. 

 

To apply LSTM, firstly, historical data are needed to be labelled 
as training and validation set. The model is then trained using 
the training data. Finally, the trained LSTM model can predict 
the future data. However, without any prior knowledge about 
the failure time, we cannot label the time series data properly. 
To address this problem, we use the Breakout detection to assist 
in labelling the training data. Breakout detection has advantages  
in seasonal time series anomaly detection to highlight a level 
shift in time series. The level shift refers to the increase or 
decrease of the value between minimum period, which is set as 
1 year for our study. By applying the Breakout detection on 
coherence time series, we can detect the year in which the input 
has outliers. The coherence data before the occurrence of 
anomalies are then labelled as normal data, which we use as  
input to the LSTM model for training. The trained LSTM model 
is then used to predict the subsequent coherence data. When the 
difference between the true coherence values and the predicted 
ones is greater than a certain threshold, an abnormality occurs.  
 

3. RESULTS AND DISCUSSIONS 

 
Figure 2. Land surface before and after landslide failure on 

Google Maps. 

 

In this paper, we made an experiment using July 21, 2020 
Shaziba landslide in China and compared the performance of 
our proposed strategy for failure detection time with widely 
used unsupervised algorithms. The Shaziba landslide blocked 
the Qingjiang River at the foot of the slope forming a weir that 
threatened nearby villages and the city of Enshi downstream 
(Fig. 2). More information about this landslide can be found in 

the following references (Shen et al., 2021; Song et al., 2021; 
Xue et al., 2022).  
 
3.1 landslide occurrence time from optical and SAR data 

Only 41 cloud-free Sentinel-2 multi-temporal data were 
available for the landslide area from January 1, 2016, to 
February 28, 2021. Figure 2 shows the time-series of NDVI 
(blue line) covering the landslide zone. After the event, the 
NDVI time series remains at its minimum level. This contrasts  
with other minima occurring before the landslide failure in the 
NDVI time series, where each minimum is followed by a 
sudden increase afterwards. This change in temporal behavior 
can be used to detect the timing of the landslide failure. Using 
our prior knowledge of the exact timing of the landslide failure, 
we found that the NDVI values closest to the failure before and 
after the event were on May 30, 2020, and August 4, 2020, 
respectively.  In this case, we are in a fortunate situation that a 
cloud-free data take was available not long after the event. This  
may not be the case for the other regions. Therefore, based on 
the analysis of the NDVI values we can determine the time 
period of the landslide failure between May 30, 2020, and 
August 4, 2020. 

 
Figure 3. Time-series NDVI decomposition parameters using 
Sentinel-2 (blue line) and coherence using Sentinel-1 (red line) 
for Shaziba landslide failure. The green dotted line represents 

the exact time of the landslide failure. 

 
Figure 3 also shows the time series of the SAR coherence 
values (red line) covering the landslide zone between May 1, 
2016 and July 31, 2021. The data show a clear seasonality with 
the period between May to September each year exhibiting low 
values due to seasonal vegetation development. On August 4, 
2020 the coherence suddenly increased sharply by 64 Percent; 
from 0.25 on July 23, 2020 to about 0.7 on August 4. The 
coherence remained high after July 23, 2020, fluctuating in the 
range of around 0.7. This increase in coherence can be 
explained by the removal of the vegetation cover during the 
landslide failure leading to a texturally stable bare surface of the 
landslide body. Compared to the NDVI time-series, using 
coherence time-series we can identify the time of the Shaziba 
landslide failure more reliably as the period between July 11, 
2020 and July 23, 2020, a reduction of 52 days in the failure 
detection time. 
 
However, in case the ground surface is characterized by high 
coherence before the landslide failure, or the vegetation regrows 
rapidly after the failure, it will be more challenging to use 
coherence time-series to detect the timing of the failure. This  
necessitates development of a data-driven deep learning method 
for automatically detecting the failure time. 
 
3.2 Automatic detection of failure time 
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Figure 4. STL seasonal component. 

 
Figure 5. STL trend component. 

 
Figure 6. STL residual component. 

 
Figure 7. Anomaly detection results based on the STL method. 

Red dots represent anomalies. Blue dots represent normal. 

 

Figure 4-6 shows the decomposition of the time series signal 
into seasonal component, trend component, and residual 
component, respectively, using STL method. Figure 7 shows the 
anomalies detected based on this approach. The SLT detects  
anomalies based on residuals. With a threshold confidence 
interval of 95%, we used the mean of the deviation of the 
residuals as the threshold to determine anomalies in the time 
series. As seen in Fig. 7, with the exception of July 11, 2020, 
which is closest to the real failure time, other anomalies  
detected on June 17, 2020 to July 21, 2022 are obviously not 
correct.  As STL is suitable for seasonal time series, it can detect 
almost all anomalies in seasonal time series. However, the 
earliest time detected is June 17, 2020, which is even one month 
earlier than the true occurrence of the Shaziba failure on July 21, 
2020. 

 
Figure 8. Anomaly detection result based on the K-means 
method. Red dots represent anomalies. Blue dots represent 

normal. 

 

Figure 8 shows the anomalies detected based on the K-means  
method. As seen in Fig. 8, the result fails to correctly detect the 
real failure time. K-means anomaly detection is based on 
clustering normal data instead of clustering anomalous data.  In 
addition to its statistical properties, time series data also have 
time-dependent trend and seasonality. As the K-means method 
does not take into account these components and only treats  
coherence time series as common data sets without any 
seasonality and trends, it leads to false detection of the failure 
time. 

 
Figure 9. Anomaly detection result based on the Isolate Forest 

method. Red dots represent anomalies. Blue dots represent 
normal. 

 

Figure 9 shows the anomaly detection result based on the 
Isolate Forest method. The results show anomalies on January 4, 
2017, January 18, 2019, July 11, 2020, March 20, 2021, April 1, 
2021, and April 25, 2021. Therefore, the failure occurrence time 
cannot be detected correctly. Isolated Forest is an anomaly 
detection method based on decision trees. The strategy of 
Isolated Forest is to identify anomalies instead of analyzing 
normal data points. The method determines whether a data point 
is anomalous by predicting the probability that it may be 
anomalous for each data point.  But it needs to assume the 
proportion of abnormal values in advance, which may not be 
fulfilled in the coherence time series. When the percentage of 
outliers differs from the assumption within a reasonable range, 
the abnormal data can be detected perfectly. However, when the 
contamination of outliers is much higher than the assumed value, 
there will be a large number of false alarms and missed 
judgments. In this study, the anomalous coherence accounts for 
roughly 27% of the contamination level. This is the reason why 
the detection is not accurate enough. 
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Figure 10. Anomaly detection result based on the ARIMA 

forecasting method. Red dots represent anomalies. Blue dots 
represent normal. 

 
Figure 10 shows the anomaly detection result based on the 
ARIMA method. It detects potential failures on July 11, 2020, 
August 16, 2020, August 28, 2020, and September 10, 2020. 
The first detected anomaly is 10 days earlier than the true time, 
while the others after the event. As described in the method, the 
ARIMA model works based on the prediction strategy that 
predicts future point data from the historical data. Anomalies  
are identified if the difference between the predicted data and 
the real data is greater than the difference threshold. However, 
the proportion of historical data needs to be set in advance. We 
used the default value of 0.8 in this study. This is the same 
challenge as for the isolated forest model. Therefore, historical 
data scale setting error is the reason for false positives in 
ARIMA anomaly detection. 

 
Figure 11. Anomaly detection result based on the Breakout 
detection method. Red dots represent anomalies. Blue dots 

represent normal. 
 

Figure 11 shows the time detection result based on the Breakout 
detection method. The results suggest that the failure occurred 
in the landslide area one month earlier on June 17, 2020. The 
Breakout detection method can detect sudden jumps in a time 
series, or gradual increases/decreases from one steady state to 
another. The method has a periodicity constraint parameter 
(min_size) that is particularly friendly to periodic and seasonal 
time series. This parameter indicates the minimum period of the 
time series. Once a Breakout is detected in a given period, 
another Breakout cannot be detected in this period. The 
min_size was set to 31 in this study, as we selected 31 time-
series Sentinel-1 images per year for the analysis of the Shaziba 
landslide.  

 

 
Figure 12. Anomaly detection result based on the Autoencoders 

method. Red dots represent anomalies.  Blue dots represent 
normal. 

 
Figure 12 shows the anomaly detection result using the 
Autoencoders method. The algorithm identifies the failure time 
on June, 2021, which is  not in agreement with the reality. 
Although Autoencoder algorithm is an advanced deep learning 
method, the method has led to the worst result compared to 
other methods. The main reason could be due to lack of enough 
training data and incorrect labelling of them, which increase the 
chance for false alarms. 

 
Figure 13. Anomaly detection result based on the strategy of 
combined Breakout detection LSTM model. The blue dots 
represent the real coherence. The yellow dots represent the 
predicted coherence. The red dot represents the anomaly. 

 

Although the Breakout detection method cannot accurately 
detect real outliers related to failure time, it can be used to 
assess if each minimum period sustains any outliers. Therefore, 
the anomaly detection result using Breakout detection method 
as shown in Figure 11 can be used as pre-analysis step to 
determine that the failure occurred in 2020 and not in 2016-
2019 and 2021. Therefore, we labelled the time series of 
between coherence 2016 and 2019 as normal data and used 
them as the training data for the LSTM model. Then, the trained 
LSTM model and the time series coherence of 2019 are used to 
predict the time series coherence of 2020 and 2021. As shown 
in Figure 13, the blue curve represents the real coherence time 
series and the yellow curve represents the predicted coherence 
time series. From the result, we observe that the predicted 
coherence time series and the real coherence time series match 
each other very well before the failure, but the correlation 
between the two decreases dramatically after the failure. We use 
the mean of the standard deviation and the difference between 
the predicted and true values as the anomaly detection threshold. 
Anomalies are indicated when the standard deviation and 
difference values are greater than the threshold value. This  
strategy identifies the failure time on 23 July, 2021, an 
estimation that is more accurate than other methods. Therefore, 
we can automatically and accurately detect the time of failure 
occurrence from the coherence time series by combining 
unsupervised learning of Breakout detection and supervised 
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learning of LSTM prediction models without a priori 
knowledge of whether a landslide failure has occurred. 

 

4. CONCLUSION 

In this paper, we apply a deep learning strategy to SAR 
coherence time series for automatically detecting the time of 
landslide occurrence. Our strategy is a combination of Breakout 
detection algorithm for labelling data, and LSTM model for 
predicting data. Experimental results using coherence time-
series derived from Sentinel-1 satellite for the July 21, 2020 
Shaziba landslide show that compared to commonly-used 
unsupervised anomaly detection methods, the use of our 
strategy leads to a more accurate estimation of the landslide 
failure time. In the future, we will include more case studies  
into our experiments to better evaluate the advantages and 
shortcomings of our methods for landslide failure detection time 
for different types of landslides and various geographic 
locations. 
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