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ABSTRACT:

Learning from imbalanced class distributions generally leads to a classifier that is not able to distinguish classes with few training
examples from the other classes. In the context of cultural heritage, addressing this problem becomes important when existing digital
online collections consisting of images depicting artifacts and assigned semantic annotations shall be completed automatically;
images with known annotations can be used to train a classifier that predicts missing information, where training data is often
highly imbalanced. In the present paper, combining a classification loss with an auxiliary clustering loss is proposed to improve the
classification performance particularly for underrepresented classes, where additionally different sampling strategies are applied.
The proposed auxiliary loss aims to cluster feature vectors with respect to the semantic annotations as well as to visual properties of
the images to be classified and thus, is supposed to help the classifier in distinguishing individual classes. We conduct an ablation
study on a dataset consisting of images depicting silk fabrics coming along with annotations for different silk-related classification
tasks. Experimental results show improvements of up to 10.5% in average F1-score and up to 20.8% in the F1-score averaged over

the underrepresented classes in some classification tasks.

1. INTRODUCTION

The EU H2020 project SILKNOW (https://silknow.eu/)
was dedicated to the preservation and better understanding of
the European silk heritage. In this context, a database of
silk artifacts based on publicly available online collections has
been generated, where for each record (each artifact), meta-
information, e.g. information related to the time or place of
production, is available in a standardized way. However, this
information is not always readily available in the original col-
lections. For such records, the relevant properties of silk fabrics
(e.g. the manufacturing technique or the material) are to be pre-
dicted automatically from images of the artifacts. In (Dorozyn-
ski et al., 2019), this task was addressed by training a convolu-
tional neural network (CNN; (LeCun et al., 1989; Krizhevsky
et al., 2012)) that takes the image of a fabric as input and pre-
dicts the corresponding class labels. The CNN was trained us-
ing labelled training images, i.e. images for which the true la-
bels are known in advance for the relevant properties. Whereas
reasonable overall accuracies could be achieved, we could also
observe that the class-specific F1 scores varied considerably,
mainly depending on the number of available training samples
per class. We attribute these problems to a strong class imbal-
ance of the training data, resulting in a classifier that performs
very well for dominant classes having many samples, while de-
livering worse results for the underrepresented classes, i.e. the
classes having few training samples. For integrating image-
based predictions in the silk database, it is of special interest
to apply a classifier that is able to distinguish the classes of all
silk properties well such that added value is delivered for the
user of the silk database through the predictions.

It is a well-known problem that training using data with im-
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balanced class distributions results in a classifier that tends to
predict classes that were well represented in training data rather
well, whereas classes with only few examples in training data
often cannot be distinguished from other classes (Krawczyk,
2016; Johnson and Khoshgoftaar, 2019; Sridhar and Kalaivani,
2021). Early approaches addressing class imbalance problems
proposed to artificially balance the class distributions by over-
sampling of classes with few examples, e.g. (Chawla et al.,
2002), or by undersampling of classes with many examples,
e.g. (Mani and Zhang, 2003). Whereas sampling methods
are also investigated for learning classifiers based on CNNs,
e.g. (Pouyanfar et al., 2018), learning image features by CNNs
opens up new possibilities for dealing with imbalanced training
data. Using margin constraints in the loss function concern-
ing differences between the feature vectors to be learned, fea-
tures of examples belonging to the same class can be forced to
be close together in feature space and features related to dif-
ferent classes can be forced to be further away, e.g. (Huang
et al., 2016; Hameed et al., 2021). Thus, the feature vectors
are clustered such that each cluster in feature space belongs
to one class of the classification problem. Nevertheless, these
approaches come along with further training hyper-parameters,
i.e. the distance margins in (Huang et al., 2016) or the angular
margins in (Hameed et al., 2021). Additionally, the clustering
exclusively relies on semantic aspects, because the clustering
criterion is exclusively based on the class labels of the images
that are represented by the features.

To the best of our knowledge, addressing the problem of class
imbalances in the context of cultural heritage datasets has not
been investigated. Like preceding work, we will address class
imbalance problems by a clustering of feature vectors produced
by a CNN, but in the context of silk heritage. In contrast to
existing work, the features are not only clustered with respect to
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semantic information, but also with respect to visual properties
of the input images. Thus, our scientific contributions are the
following:

e We propose a new auxiliary clustering loss for handling
class imbalances in a multi-class classification scenario.

e In this context, clustering is performed with respect to
visual and semantic properties of the images to be clas-
sified.

e Furthermore, the clustering loss supports both inter-class
separability and intra-class connectivity without the need
for additional training hyper parameters.

e Finally, comprehensive experiments are conducted to in-
vestigate the impact of the components of the auxiliary
loss on the classification performance for different silk-
related classification tasks, each with a different number
of classes and a different degree of class imbalance.

2. RELATED WORK

Learning from imbalanced training data is a well known prob-
lem in the domains of Photogrammetry and Computer Vis-
ion (Johnson and Khoshgoftaar, 2019; Sridhar and Kalaivani,
2021). In the context of learning using data with imbalanced
class distributions, the resulting classifiers tend to show a weak
performance in correctly predicting examples from classes with
few training data, which is a challenge both in binary and multi-
class classification (Krawczyk, 2016). Different strategies have
been applied to deal with this problem, where the corresponding
methods can be categorized as data-level methods, algorithmic-
level methods and hybrid methods (Krawczyk, 2016; Johnson
and Khoshgoftaar, 2019). Data-level methods aim to com-
pensate imbalances in the training data by oversampling of
classes with few examples, e.g. (Chawla et al., 2002), by under-
sampling classes with many examples, e.g. (Mani and Zhang,
2003), or by performance-driven dynamic sampling in each
training step, e.g. (Pouyanfar et al., 2018). Algorithmic-level
methods such as (Ling and Sheng, 2008; Lin et al., 2017) adapt
the training objectives such that classes with few training ex-
amples have a higher impact on the classifier’s parameters, and
hybrid methods, e.g. (Dong et al., 2018), combine aspects of
both data-level methods and algorithmic-level methods. In con-
trast to approaches aiming to increase the impact of examples
belonging to underrepresented classes on determining the clas-
sifier’s parameters during training or to carefully select repres-
entative training examples, we focus on an adequate separation
of the classes in feature space, which we believe to be helpful
for distinguishing all classes.

According to Krawczyk (2016), class imbalance may be irrel-
evant if there are sufficient representations for both, frequent as
well as less frequent classes. Using CNNs (LeCun et al., 1989;
Krizhevsky et al., 2012), representations of images to be used
for classification can be learned effectively. Thus, one way of
achieving such a sufficient representation is to guide the CNN to
learn that the feature vectors belonging to the same class should
form a distinct cluster in feature space and that clusters corres-
ponding to different classes should be different from each other.
Thus, combining classification and clustering in training could
help to mitigate the problems related to class imbalance of the
training data. Existing work that combines image classifica-
tion and clustering in feature space exploits k-means clustering

to obtain pseudo-labels for learning a classifier, e.g. (Caron et
al., 2018; Yang et al., 2021; Ma et al., 2021). There is further
work that exploits clustering as auxiliary training constraint for
learning a classifier. The basic principle is to combine a clas-
sification loss with an auxiliary metric learning loss. Wen et
al. (2016) aim to support intra-class connectivity by forcing all
feature vectors related to one class to be close to the corres-
ponding center of the feature vectors using an auxiliary center
loss. Qi and Su (2017) expand the center loss by an additional
term such that it also requires inter-class separability. Instead
of forcing the distances in feature space to be small for features
belonging to the same class and large for features belonging
to different classes, respectively (Wen et al., 2016; Qi and Su,
2017), there are also margin-based loss variants that introduce
within-class and between-class margins to explicitly force the
produced clusters to reflect inter-class separability and intra-
class connectivity. Whereas distance-based margin constraints
are proposed in (Huang et al., 2016; Liu et al., 2017; Yang et
al., 2020) , the approaches in (Choi et al., 2020; Hameed et al.,
2021) rely on angular margins. However, margin-based losses
require at least one further hyper-parameter defining the appro-
priate cluster size; it would be desirable not having to tune such
a parameter.

Even though all work mentioned so far addressed class im-
balance problems, none of them focuses on handling imbal-
anced distributions in the context of cultural heritage applica-
tions. Training image-based classifier to predict semantic in-
formation of historically relevant artifacts on the basis of im-
ages of the same is a growing field of research. Training a
classifier to predict painting properties such as the artist, the
genre or the style was investigated in several works, e.g. (Bless-
ing and Wen, 2010; Tan et al., 2016; Sur and Blaine, 2017).
Whereas Blessing and Wen (2010) learn a support vector ma-
chine for the prediction of a painting’s artist, a CNN-based clas-
sifier for predicting the artist is trained in (Tan et al., 2016; Sur
and Blaine, 2017); Tan et al. (2016) also deals with the predic-
tion of the style and the genre of a painting. Instead of train-
ing one classifier per relevant classification task, multiple tasks
can be jointly solved in the frame of multi-task learning (MTL)
to improve generalization of the resulting classifier (Caruana,
1993). Even though all classification losses are equally import-
ant in MTL, it can also be seen as learning each classification
task with auxiliary classification losses, which has also been
applied in the domain of cultural heritage-related image classi-
fication, e.g. (Strezoski and Worring, 2017; Bianco et al., 2019;
Garcia et al., 2020). No approaches were found that investig-
ate training a classifier with auxiliary losses aiming to predict
historically relevant information on the basis of images. In par-
ticular, to the best of our knowledge, there is no paper that in-
vestigates class imbalance problems in this context.

Accordingly, this is the first work in the context of cultural her-
itage that tries to tackle class imbalance problems by exploiting
an auxiliary clustering loss. Even though training a classifier
while forcing feature vectors to form class-related clusters was
investigated in other contexts, e.g. (Liu et al., 2017; Choi et al.,
2020), we do not require additional hyper-parameter tuning for
cluster definitions. The approaches in (Wen et al., 2016; Qi and
Su, 2017) also do not introduce additional hyper-parameters in
the auxiliary clustering loss, but in contrast to those works as
well as the works investigating margin-based approaches, the
features in our work are not only clustered based on the avail-
able class information but also based on the visual properties of
the related input images. Nevertheless, the proposed clustering
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loss forces the distances of the feature vectors to reflect intra-
class connectivity and inter-class separability. The most similar
work to the present one is our earlier work in (Dorozynski and
Rottensteiner, 2022) dealing with descriptor learning for image
retrieval exploiting an auxiliary classification loss. Even though
the loss formulation is similar, the focus of the present work is
image classification, while descriptor learning is applied to sup-
port a good clustering of the feature vectors.

3. METHODOLOGY

In this paper, we propose a training strategy for a CNN-based
image classifier that combines classification and feature space
clustering. During training, the classification loss is jointly min-
imized with an auxiliary clustering loss. The goal of the clus-
tering loss is to support classification by producing an appro-
priate image representation. For clustering, we exploit simil-
arity losses proposed in the context of descriptor learning in
(Dorozynski and Rottensteiner, 2022) aiming to support intra-
class compactness as well as inter-class separability. We as-
sume that feature vectors that form clusters in feature space so
that each cluster belongs to a different class will help a clas-
sifier to distinguish the classes to be learned and, thus, also to
correctly predict the labels of samples belonging to underrep-
resented classes. Even though we train our classifier with aux-
iliary losses, no additional input data is needed; the proposed
training strategy requires images with assigned class labels for
the classification task to be learned both for the classification
loss and the auxiliary clustering losses. Section 3.1 will contain
a description of the network architecture and section 3.2 gives
details about the training strategy.

3.1 Network architecture

The proposed classifier takes an RGB image = as an input and
delivers normalized class scores yx(x) for all K classes to be
distinguished in a classification task as depicted in figure 1.
First of all, the image = is mapped to a 2048-dimensional fea-
ture vector frn (z) by means of a ResNet152 backbone (He et
al., 2016) with parameters wry, followed by a ReLU activa-
tion (rectified linear unit (Nair and Hinton, 2010)), a dropout
layer (Srivastava et al., 2014) with a 30% dropout rate, and
a sub-network task fc consisting of NL fully connected lay-
ers with NN, ..., NN™L nodes, resulting in the feature vec-
tor fifc(x). The parameters of this sub-network are denoted by
W re. Afterwards, the vector f;r.(z) is presented to both a clas-
sification head as well as to a clustering head, where the cluster-
ing head is only active during training. The classification head
starts with a ReLU activation applied to f;s.(x) and maps the
feature vectors to normalized class scores y,(z),k = 1,..., K
by means of a softmax layer with parameters ws,,. The clus-
tering head takes the vector fif.(z) and normalizes it to unit
length, resulting in a vector fouq ().

3.2 Network training

Training of a CNN is realized by iteratively updating the net-
work weights such that a loss function is minimized. For learn-
ing a classifier with an auxiliary clustering loss, the CNN in
Figure 1 can be trained by minimizing the loss function

L (X, W) = )\C . l:c (X, W) + Aaum . ['aurl: (X, W'U) (1)

for an image set x, where w, = [Why, W,?}C]T denotes the
set of weights affecting the clustering head of the network and
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Figure 1. CNN architecture. An input image « is presented to a
ResNet152 (He et al., 2016), resulting in a feature vector
frn (z), which is then mapped to a task-specific representation
fire(x) by a sub-network rask fc. fiyc(x) is presented both to a
classification head and to a clustering head. The classification
head takes f;f.(x) as input for a ReLU activation and maps the
output to normalized class scores yx(x) of every class k using a
softmax layer. The clustering head consists of a normalization of
ftre(z) to unit length, resulting in a feature vector fquq(x). The
broken line indicates that the clustering head is only active in
training.

w = [wl, w2 ]7 is a vector containing all network weights.
The total loss £(x,w) is a weighted sum of the classifica-
tion loss Lc(x, w) and the proposed auxiliary clustering loss
Lauz (X, Wy ), with the parameters Ac, Aquz € [0, 1] controlling
the influence of the individual loss terms. The classification loss
is chosen to be the standard softmax cross entropy loss (Bishop,
2006) aiming to assign high normalized class scores to the true
classes.

The auxiliary clustering 10ss Lque (X, Wy ) is supposed to adapt
the network weights w,, such that the feature vectors of images
belonging to the same class are forced to be close together in
feature space, leading to intra-class connectivity, whereas fea-
ture vectors of images belonging to different classes are forced
to be far away in feature space, leading to inter-class separabil-
ity. We assume that images belonging to the same class are both
semantically and visually similar in some respect, whereas im-
ages belonging to different classes tend to be dissimilar with
respect to their semantic and visual properties. Thus, determ-
ining the network weights such that the Euclidean distance of
feature vectors reflects the degree of similarity of the respective
images is supposed to deliver the desired clustering. For that
purpose, the clustering loss

Lauz (X7 W’u) = Osem * Lsem (t, W’u) +05co : Lco (p7 W’U) ) (2)

consisting of a semantic similarity loss Lsem (t, W) taking
triplets of images t as input and a colour similarity loss
Leo (p,Wy) taking image pairs p as input is proposed. The
two parameters Qsem, Qo € [0, 1] in equation 2 control the in-
fluence of the two similarity losses. Both similarity losses were
proposed in (Dorozynski and Rottensteiner, 2022), where the
term Lsem is designed to consider semantic similarity and the
term L., considers colour similarity.

According to Dorozynski and Rottensteiner (2022), images
having similar semantic properties, i.e. similar class labels,
are considered to be semantically similar, and images with dis-
similar semantic properties are considered to be dissimilar. As
we train a separate classifier for all variables, we use a special
case of the semantic similarity loss in (Dorozynski and Rotten-
steiner, 2022), defining that loss only on the basis of M = 1
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semantic variable. Furthermore, in contrast to the original ap-
proach, all images used to train a classifier come along with a
class label for the task to be learned. Thus, the semantic simil-
arity loss can be simplified, leading to

N, . .
Csem(t7 Wv) = Nit . nle max (M:};ﬁn + AL;’WU _ Ai,;,7w1)70)
n !

M pn = dip = din > 0. 3)

The semantic similarity loss Lsem (t, Wy ) is calculated for all
N triplets t in the image set x, where a triplet consists of an
anchor sample x;, a positive sample x, belonging to the same
class as z; and a negative sample x, belonging to a different
class than the pair (x;,zp). The loss forces the Euclidean dis-
tance A}, between the feature vectors fouz (:), faus(Tn)
of (z;,x,) to be larger than the distance AZ;WU between the
feature vectors fous (i), faus (Tp) of (x5, zp) by at least a mar-
gin MZ";R The margin in equation 3, where d; , = 1 in case
(zi, x,) belong to the same class and §; , = 0 in all other cases,
requires z, to be more similar to z; than x,, indeed. The in-
equality requiring the margin to be larger than zero is used as
a constraint to select valid triplets. Accordingly, the semantic
similarity loss is only calculated for triplets fulfilling this mar-
gin constraint, i.e. for the N; valid triplets x;, z,, z,, € x ful-
filling the inequality constraint in equation 3.

Similarly, the colour similarity loss considers visual aspects of
the images and forces the distances between pairs of feature
vectors to correspond to the similarity of the colour distribu-
tions in HSV colour space of the respective images. The simil-
arity of the colour distributions is expressed by the correlation
coefficient p (z;,z,) € [—1;1] (Dorozynski and Rottensteiner,
2022), where p (x;,2,) = 1 indicates 100% colour similarity
of z;, z, and lower values of p (z;, z,) indicate a lower degree
of colour similarity. The colour similarity loss

Neo

1 Nco Nco
‘Cco(pvw”-’) = N, : Z mazr (0’ |A7L,Z,wu - Mi,o |)
co Neo=1
Mg = (1= plaie, 25)) @

takes all N, pairs p of images z;,%,, ¢ # o in the image
set x and forces the corresponding pairs of feature vectors
Jauz (i), faus (7o) to have a Euclidean distance A7z, of ex-
actly M;'c°. In equation 4, M’¢° is a colour margin that is
small for highly correlated colour distributions, leading to small
distances Aj'c, , whereas a low degree of colour correlation
results in a large margin, leading to large distances Aﬁ;‘jwv.
Thus, by assuming images of the same class to be semantic-
ally and visually similar, integrating the colour similarity loss
as well as the semantic similarity loss into network training is
supposed to lead to feature clusters that reflect intra-class con-

nectivity and inter-class separability.
3.3 Minibatch Generation

Different kinds of mini-batches for training, i.e. of the im-
age sets x mentioned above, are compared; randomly drawn
mini-batches and class-balanced mini-batches. In the first case,
all samples consisting of an image and an assigned class label
are randomly drawn from the training dataset, leading to mini-
batches with a class distribution similar to the one of the entire
dataset. In the latter case, a class label is uniformly drawn first,
and then an image is drawn randomly from all training images
belonging to the selected class. Thus, the class distribution is

approximately uniform in class-balanced mini-batches. In both
cases, drawing is performed without replacement to obtain a
larger variability of samples in every batch, especially for un-
derrepresented classes.

As a consequence of drawing without replacement, there is a
constraint for the mini-batch size Nys/p. It has to be selec-
ted such that the least frequent class c¢min in the training data
will contribute to the loss calculation approximately as often as
more frequent classes. Having in total N,,;, examples of ¢pin
in the training data and K classes to be distinguished, the batch
size is restricted to

Ny < Npin - K. )

A larger batch size would result in an imbalanced mini-
batch even in the case of the class-balanced sampling strategy,
because in imbalanced datasets, NV,,;» can be smaller than
Nrp/ K for amini-batch size that does not fulfill the constraint
in equation 5.

4. DATASETS

In the context of the EU H2020 project SILKNOW, a know-
ledge graph consisting of silk records was built and published
(Schleider et al., 2021). Each record describes a silk object by
means of semantic annotations and potentially one or more im-
ages depicting the silk artifact, where only plain fabrics are con-
sidered in the present work. Annotations are available for dif-
ferent semantic variables, namely material, time, technique and
place. These annotations are interpreted as class labels and the
number of classes varies between the semantic variables. This
is also true for the number of images with a class label for a
specific semantic variable. The class structures and the class
distributions of the whole dataset are presented in Table 1. The
table shows that all of the class distributions are very imbal-
anced. The number of classes K varies between three for the
variable material and 29 for place.

The empirical class distributions of the individual variables vary
with respect to the imbalance ratio (IR) and the imbalance
degree, both of them describing class imbalance (Ortigosa-
Hernandez et al., 2017). The imbalance-ratio

IR = MG (6)
min;(;

describes the ratio of the relative frequency (; of examples
in the dataset of the most frequent class ¢ and the relative
frequency of examples of the most underrepresented class j.
Whereas the imbalance-ratio is a suitable measure for describ-
ing the imbalance of class distributions for binary classifica-
tion problems, it does not reflect all characteristics of class
distributions for multi-class classification problems as it con-
siders only the frequencies of exactly two classes, i.e. the most
frequent and the least frequent ones. In contrast, the imbal-
ance degree also considers the frequencies of other classes in
the distribution. We introduce a measure denoted as balance
deviation (BD) that relies on the imbalance degree proposed
in (Ortigosa-Hernandez et al., 2017):

~da(¢, )

In equation 7, da(-) is a distance function describing the sim-
ilarity of two class distributions. We use the total variation
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Variable Class NS Class NS

material animal fibre 27,252
metal thread 4,208
vegetal fibre 3,891

technique  embroidery 6,861 tabby 185
velvet 3,051 printed 99
damask 2,768  twill 67
other technique 2,526 cannele 65
resist dyeing 355

place GB 7,998 RU 228
FR 7,379 M 191
ES 4,708 CH 146
1T 4,700 EG 117
IN 2,353 AZ 115
CN 1,399 MO 84
IR 1,294 AT 81
P 1,097 PT 73
BE 648 MA 63
TR 593 BD 60
DE 592 CA 52
GR 479 AU 46
NL 455 MM 46
UsS 357 UZ 42
PK 352

timespan 19" c. 9,975 16" c. 1,829
18" c. 8423 15" c. 685
20" c. 4,012 13 c. 43
17" c. 3,378

Table 1. Statistics of the distribution of samples for the
SILKNOW dataset. Variable: name of the variable considered;
Class: classes differentiated for each variables; NS: number of

samples for a class.

distance (Gibbs and Su, 2002) as similarity function as recom-
mended in (Ortigosa-Herndndez et al., 2017), being half of the
sum of absolute differences of the two distributions’ frequen-
cies. The numerator in equation 7 measures the similarity of
the empirical class distribution ¢ of a given dataset and the cor-
responding balanced class distribution e := {+, ..., =} with
K classes. The denominator in equation 7 serves as normaliza-
tion and expresses the similarity of ¢ and a distribution 7 that is
obtained by eliminating m minority classes, the latter defined to
be the classes ¢ with (. < % Thus, 7 only has K — m classes
with ¢ > Ofork € {m+1,..., K}, and ZkK:m+l G = 1,
for the the minority classes the frequency is set to zero in 7,
ie. ¢ = 0fori € {1,...,m}. Thus, BD is a value in the
range of [0, 1] expressing the deviation of ¢ from a balanced
class distribution. Table 2 contains the statistics about the class
distributions of the four variables considered in this paper.

material  technique  place time
IR (eq. 6) 7.00 105.55 19043  231.98
K 3 9 29 7
m 2 5 22 5
m/K 0.67 0.56 0.76 0.71
BD (eq. 7) 0.66 0.91 0.78 0.51

Table 2. Statistics describing the imbalance of the class
distributions in Table 1.

5. EXPERIMENTS

The method for training a classifier with an auxiliary clustering
loss presented in section 3 is evaluated on the dataset presented

in section 4. Section 5.1 gives details on the general experi-
mental setup and the applied evaluation strategy. Section 5.2
presents the results and a discussion of the proposed method.

5.1 Experimental Setup and Evaluation Strategy

In order to train the network in Figure 1, the network weights
wrnN are initialized using pre-trained weights obtained on the
ILSVRC-2012-CLS dataset (Russakovsky et al., 2015) and the
network weights w;s. and Wy, are randomly initialized us-
ing variance scaling (He et al., 2015). During training, the loss
function in equation 1 is minimized using mini-batch stochastic
gradient descent with adaptive moments (Kingma and Ba,
2014) with the standard parameters (81 = 0.9, S2 = 0.999 and
¢ = 1-10"%). For that purpose, 60% of the data presented in
section 4 is used for training and 20% is each used for validation
and testing, where all of the images are resized to the input size
of the network, i.e. RGB images with 224 x 224 pixels. The
network weights are updated based on the training loss, where
a batch size of 180 is used, and the validation loss is used for
early stopping; training is proceeded until the validation loss
is saturated. The hyper parameters are selected based on the
F1 scores on the validation set, where preliminary experiments
showed that a network with NV L = 2 fully connected layers with
[NN', NN?] = [1024, 32] nodes is optimal. Further prelim-
inary experiments confirmed a learning rate of 1 - 1072 to be
optimal.

An overview over all experiments is given in Table 3. Each of
the experiments is conducted three times to get a realistic im-
pression of the results despite the random components in train-
ing. The experiments in Table 3 are conducted separately for all
of the classification tasks, i.e. separate classifiers are trained for
the variables material, timespan, technique and place. The goal
of the experiments is to get an impression of the impact of the
individual loss terms on the network’s performance to predict
the correct class label. A batch size of 180 is selected for all ex-
periments based on the least frequent class in terms of relative
frequency among all classification tasks, i.e. class 13" century
of variable timespan, and the constraint in equation 5.

Experiment mini-batch  A¢ Aguz  Qsem  Qeo
C* (baseline) rand 1 0 0.0 0.0

balanced 1 0 0.0 0.0
C* + sem rand 1 1 1.0 0.0
C* +co rand 1 1 0.0 1.0
C* + co + sem rand 1 1 0.5 0.5
C + sem balanced 1 1 1.0 0.0
C+co balanced 1 1 0.0 1.0
C + co + sem balanced 1 1 0.5 0.5

Table 3. Overview of the experiments conducted for every
classification task. Experiment: name of the respective
experiment. sampling: indicates the applied mini-batch

sampling strategy described in section 3.3. A¢, Aquz and asem,
Qo refer to the parameters of the loss functions in equations 1
and 2, respectively.

All experiments are evaluated with respect to the overall ac-
curacy (OA) and the FI-scores achieved on the test set. The
OA is the number of the correct predictions in relation to the
total number of evaluation examples and thus indicates the per-
centage of correct predictions. As the OA does not differen-
tiate between individual classes, it can be biased towards the
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performance of classes with many examples and does not prop-
erly reflect the performance of a classifier in case of imbalanced
class distributions. Thus, we also consider the class-wise F1-
scores, i.e. the harmonic means of precision and recall, where
the precision indicates the percentage of predictions of a class
that actually belong to that class and recall indicates the per-
centage of samples per class in the reference that were correctly
assigned to that class by the CNN. The average F1-score of
a classification task denotes the mean of all class-specific F1-
scores for a variable.

5.2 Results and Discussion

The average quality metrics of all the experiments listed in
Table 3 and the corresponding standard deviations are presen-
ted in Table 4. The average F1-scores of the m minority classes
per variable (cf. section 4) are shown in Table 5. We start with
a discussion of some general observations based on the average
quality metrics per experiment (section 5.2.1). This is followed
by an analysis of the classification performance of the minority
classes (section 5.2.2). Finally, the main findings are summar-
ized in section 5.2.3.

5.2.1 Analysis of the average results per variable: Table
4 shows that the overall accuracies and the average F1-scores
highly depend on the classification task, i.e. on the variable
to be predicted. Material obtains both the highest OAs and the
highest F1-scores and place has the lowest values for both qual-
ity metrics. Whereas fechnique has a higher OA compared to
time, higher Fl-scores can be obtained for time. Considering
the class distributions of the four semantic variables (see Table
2), there seems to be dependency of the OA on the number of
minority classes: the smaller the number m of underrepresented
classes, the higher the OA. Furthermore, the magnitude of the
OA seems to depend on I R: the higher the I R, the lower the
OA. The only exception to the latter observation is place, which
achieves the lowest OA even though its IR is not the highest.
This may be due to the high number K of classes to be differen-
tiated for place. The number of classes K in a classification task
also seems to affect the average F1-scores; material with three
classes has the highest mean F1-scores (< 48%), followed by
time with seven classes and scores of up to about 43% and tech-
nique with nine classes and F1-scores < 42% and finally, place
with 29 classes and F1-scores of up to about 21%. Similarly,
the magnitude of the largest F1-scores per variable is larger for
variables with a smaller number m of underrepresented classes.

Analysing the impact of mini-batch generation on the quality
measures in Table 4, the overall accuracies are lower for clas-
sifiers trained using mini-batches generated by class-balanced
sampling (C) compared to classifiers trained using mini-batches
generated by completely random sampling (C*). The largest de-
crease in OA of 15.4% can be observed for place, followed by
material with 14.9% and time; for the others, the decrease is
3.0% or smaller. The negative impact of the balanced drawing
strategy on the OA can be explained by the stronger focus on
less frequent classes during training. Consequently, the domin-
ant classes (i.e. the classes having the highest frequencies) have
a reduced impact on the determination of the CNN weights, so
that they will be more frequently mis-classified. As they have a
high impact on the determination of OA, this quality metric will
be decreased. Indeed, the magnitude of this decrease seems to
depend on the percentage of underrepresented classes in a clas-
sification task, m/K (see Table 2); the higher m /K, the larger
the difference in OA between the experiments C* and C. The

variable time is an exception to this general observation, per-
haps because its class distribution is the most balanced one, as
indicated by the fact that it has the lowest value of BD.

In contrast to its impact on the OAs, the balanced sampling
strategy for generating the mini-batches leads to higher average
F1-scores in general, with the exception of time, where there is
hardly any difference. For material, technique and place, the
improvement in the F1 score seems to increase with decreasing
values of IR and a decreasing number m of minority classes.
A possible reason for the different behaviour of the average F1-
scores of time could be its comparatively balanced class distri-
bution, indicated by a low value of BD.

Analysing the impact of the auxiliary losses on the quality met-
rics in Table 4, one can see that the clustering loss focusing on
semantic similarity (C* + sem) slightly improves the OAs of
technique and time. All variants of the auxiliary loss lead to
a decrease in OA of up to about 1% (for material and place),
which is much less compared to the decrease in OA of up to
15% caused by the class-balanced sampling strategy for gern-
erating mini-batches. In contrast to the decreases in OA, the
F1-scores of all variables are at least slightly improved by at
least one variant of the clustering loss. Whereas material bene-
fits both from learning semantic similarity and colour similarity
(C* + co + sem), technique only benefits from learning colour
similarity (C* + co). This may be the case because material
and fechnique are more closely related to visual similarity of
fabrics than the other variables. Place and time benefit most
from learning semantic similarity (C* + sem), probably because
they are more abstract properties; similar colours can probably
be found in various places and in different epochs. We assume
that especially the underrepresented classes benefit from learn-
ing with an auxiliary clustering loss, leading to the improved
average F1-scores.

5.2.2 Analysis of the results averaged over the underrep-
resented classes per variable: A closer look at the perform-
ance for the minority classes on the basis of the average F1-
scores achieved for these classes, shown in Table 5, basically
confirms this assumption. The magnitude of the improvement
for the three variables material, place and technique increases
with the imbalance of the respective class distribution according
to BD. This is true for the improvements caused by balancing
the mini-batches (comparison of C* and C), for the improve-
ments caused by using the auxiliary clustering loss (compar-
ison of C* and C* + aux, where aux can represent any of the
losses sem, co, or sem + co) and for the improvement of the
combined approach (comparison of C* and C + aux). Again,
the variable time represents an exception, having both the most
balanced class distribution, i.e. the lowest value of BD, while
at the same time having the largest I R, because it has a single
class that is very underrepresented (13'" c.). Furthermore, it
can be observed that the magnitude of the improvements in the
F1-scores of the minority classes of up to about 21% is lar-
ger than the improvements in the average F1-scores in Table
4, which are up to 10.5%. This is a strong indication that, as
expected, the training modifications primarily support the clas-
sifier in correctly predicting underrepresented classes.

5.2.3 Summary: Our results show that the proposed bal-
anced mini-batch generation strategy and the clustering loss im-
prove the classification performance so that the classes are bet-
ter distinguished by the trained classifier. The class-balanced
training strategy results in larger improvements of up to almost
10% in the average F1 score, while the auxiliary clustering
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Overall accuracies [%]

average F1-scores [%]

|

Experiment | material technique place time | material technique place time
C* (baseline) | 76.5+0.25 75.6+050 49.7+0.72 60.6+0.39 | 37.6+0.37 398+183 17.6+083 41.8+1.75

61.6+086 733+189 343+£242 576+£090 | 473+0.17 41.6+092 188 +0.58 41.4+0.29
C* + sem 76.2+048 758+051 49.0+£0.72 614+035|392+279 3934+1.09 182+1.22 428+0.76
C* +co 755+£060 754+037 49.14+028 608+099 | 422+£146 40.0+0.68 189+036 424+1.16
C*+co+sem | 756 £026 754+0.18 485+0.55 614+137 | 423£0.75 3894139 18.6+1.10 42.1+0.95
C + sem 63.1£199 7444085 3754+159 582+1.11 |478+143 4124079 209+086 42.8+0.45
C+co 645+035 735+£0.63 3804151 575+1.03 | 481+£0.69 4154+0.73 203+0.70 41.1+£0.86
C+co+sem | 643+£197 7414+0.64 3771076 583+£0.02 | 480+£0.88 41.0+0.04 20.1+054 423+0.28

Table 4. Overall accuracies [%] and average F1-scores [%] of the experiments. The quality metrics averaged over three runs are
presented as well as the corresponding standard deviations. The best average quality metric per variable is highlighted in bold font.

Experiment material  technique place  time
C* (baseline) 13.1 14.6 83 322
C 33.8 19.0 132 328
C* + sem 15.6 13.7 9.1 334
C" +co 20.3 15.1 10.1  33.1
C*" +co + sem 20.5 13.3 9.8 324
C +sem 33.9 17.5 150 344
C+co 33.8 18.5 14.1 322
C +co + sem 335 17.4 139  33.7

Table 5. Average F1-scores [%] over the m minority classes per
variable, achieved in three runs.

loss leads to improvements of up to about 5% in that metric.
Combining sampling and clustering, the F1-scores can be im-
proved by up to 10.5% on average, where the major improve-
ments can be achieved for underrepresented classes; an ana-
lysis of the classification performance of the minority classes
shows improvements of up to about 21%. In most of the ana-
lysed cases, the improvements in the F1-scores can be attrib-
uted to the degree of similarity of the training class distribution
to a uniform class distribution, indicated by B D; the exception
from this finding (time) seems to be related to a high value
of IR. However, the better differentiation of the underrepres-
ented classes comes at the cost of a decrease in the perform-
ance for the dominant classes and, consequently, a decrease in
OA. In case the requirement of the application is to improve
the F1 scores without decreasing the OAs, it is recommended
to consider the clustering loss during training using randomly
sampled mini-batches. In case the focus of the application is
on achieving high Fl-scores, especially for underrepresented
classes, the proposed clustering loss should be applied together
with the proposed class-balanced sampling strategy.

6. CONCLUSION AND OUTLOOK

We have presented a training approach for a CNN-based image
classifier that combines a classification loss with an auxiliary
clustering loss. The clustering loss was supposed to support
the classifier to better distinguish the classes that are underrep-
resented in the training dataset from the others. Furthermore,
different strategies for creating mini-batches for training were
investigated. The approach was evaluated on four different silk-
related classification tasks, where the class distributions of the
four tasks varied with regard to the total number of classes,
the number of classes with few training examples as well as
the degree of the class imbalance. The conducted experiments
showed that the proposed training modifications improved the
performance of the classifier on all four tasks in terms of the

average Fl-score. Especially underrepresented classes bene-
fit from both, the balanced sampling strategy and the auxiliary
clustering loss. In contrast, the OAs were considerably reduced
by applying balanced sampling, whereas training under consid-
eration of the auxiliary loss had hardly any impact on the OAs.
Thus, the use of the balanced sampling strategy is only recom-
mended for applications in which a high F1 score for all classes
is required while the OA considered to be less relevant.

Future work could focus on other datasets or on further clas-
sification approaches. It would be interesting to analyse the
behaviour of the presented approach on datasets and tasks that
are not related to silk fabrics. Such datasets could contain im-
ages depicting other types of artifacts in the domain of cultural
heritage, images depicting modern fabrics or clothes or images
depicting objects from a completely different domain. Such an
analysis would enable a broader analysis of the relation between
the classification accuracy and the characteristics of the class
distribution. From a methodological point of view, further tech-
niques for addressing the class imbalance problem could be in-
tegrated in the approach. This could for example be the utiliza-
tion of additional synthetic training samples resulting from data
augmentation. It is assumed that the SMOTE approach (Chawla
et al., 2002) or one of its variants, e.g. (Han et al., 2005; Ma-
ciejewski and Stefanowski, 2011), is suitable to mitigate the
effects of class imbalance, because they primarily aim to gen-
erate synthetic samples for underrepresented classes. Alternat-
ively, introducing an additional augmentation-based similarity
loss could help to learn more representative features for images
of underrepresented classes. Examples are the self-similarity
loss of Dorozynski and Rottensteiner (2022) or the represent-
ation learning loss in (Chen and He, 2021). It would be es-
pecially interesting to observe the classifier’s behaviour if such
an augmentation-based similarity loss were primarily applied to
samples of underrepresented classes. Finally, the proposed ap-
proach should be compared to other existing approaches dealing
with class imbalance.
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