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ABSTRACT
The recent advent and evolution of deep learning models and pre-
trained embedding techniques have created a breakthrough in su-
pervised learning. Typically, we expect that adding more labeled
data improves the predictive performance of supervised models. On
the other hand, collecting more labeled data is not an easy task due
to several difficulties, such as manual labor costs, data privacy, and
computational constraint. Hence, a comprehensive study on the re-
lation between training set size and the classification performance
of different methods could be essentially useful in the selection of
a learning model for a specific task. However, the literature lacks
such a thorough and systematic study. In this paper, we concentrate
on this relationship in the context of short, noisy texts from Twitter.
We design a systematic mechanism to comprehensively observe
the performance improvement of supervised learning models with
the increase of data sizes on three well-known Twitter tasks: senti-
ment analysis, informativeness detection, and information relevance.
Besides, we study how significantly better the recent deep learning
models are compared to traditional machine learning approaches in
the case of various data sizes. Our extensive experiments show (a)
recent pre-trained models have overcome big data requirements, (b)
a good choice of text representation has more impact than adding
more data, and (c) adding more data is not always beneficial in
supervised learning.
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1 INTRODUCTION
Social networks have become an essential part of the daily activi-
ties of people around the world. Among these networks, Twitter
is emerging as one of the most popular platforms with over 330
million active users1. The platform allows users to express their
own opinions in the form of short messages, known as “tweets”, on
various topics ranging from business and politics to casual conver-
sation. Recently, its functionalities are extended to not only textual
contents but also other types of media such as locations, videos, or
even live streams. Such valuable and massive content has attracted
the attention of research community. They leverage Twitter data
to fulfill many tasks about real-world events, e.g., detecting and
summarizing disasters/breaking news events [19, 30, 34], reporting
incidents [5], or exploring user opinions [9]. Among these tasks,
we focus on three well-known classification problems: sentiment
analysis, informativeness detection, and information relevance classi-
fication. Respectively, sentiment analysis aims to predict whether a
particular tweet contains a positive or negative opinion. Informa-
tiveness detection methods are employed to detect whether a tweet
provides the informative content about a particular event. Besides,
information relevance identifies whether a tweet is relevant to an
occurring event or not.

Machine Learning methods have been successfully applied to
these Twitter classification problems. For example, Naz et al. em-
ploy Support Vector Machine (SVM) to classify users’ sentiment
polarity on Twitter data [26]. Recently, after showing their success
in various classification tasks, neural networks have gradually re-
placed traditional supervised techniques, such as SVM and logistic
regression, as an effective method for Twitter classification. More-
over, pre-trained embedding methods gain more attention due to
their ease of use and effectiveness. Despite such a rise in the use of
neural networks, several crucial questions remain uninvestigated:

• First, the performance of the state-of-the-art methods on
the Twitter classification problems, specifically the three
aforementioned ones, with variable dataset size has not been
explored. Such an investigation is especially interesting for
the popular pre-trained embedding methods. Understanding

1https://about.twitter.com/
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such connections helps build efficient machine learning sys-
tems in extreme cases, for instance, real-time applications
or limited computational resources.

• Second, most pre-trained embedding methods are trained
on well-written text, so their effectiveness on short-text and
noisy Twitter datasets are still questionable. For instance,
BERT [8] is trained on the articles of Wikipedia, and each
article contains more than 1,500 words on average, while a
Twitter post is limited to 140 characters. BERTweet [27] is
the variant of the BERT model pre-trained on the Twitter
data, but its performance on the classification tasks is still
not thoroughly investigated.

• Third, existing works do not suggest concrete thresholds of
data size to obtain good results or select suitable machine
learning approaches for a specific Twitter classification task.
Generally, supervised learning approaches require extensive
training data to obtain good performances, yet it is usually
challenging to secure large-scale labeled data for Twitter
tasks. For instance, Twitter events evolve quickly; many
incidents or disasters only occur in a short period, hence,
accurately filtering event-related tweets is challenging [19].
The platform also imposes limits on the number of tweets
downloaded per day. Besides, producing labeled data for su-
pervised tasks is usually very expensive due to the high labor
cost and time-consuming. Therefore, a threshold suggestion
for the amount of data required to obtain the desired result
is absolutely constructive.

In this paper, we study the performance of various machine learn-
ing algorithms, including both traditional methods and recent deep
neural network models, across various dataset sizes and classifica-
tion tasks. Theoretically, deep neural network models require big
datasets to perform well. We examine whether the most recent deep
learning techniques overcome that limitation and outperform tradi-
tional methods on limited data. Also, we observe how significantly
different machine learning models improve their performance after
adding more data. Thus, we conduct our experiments on multiple
Twitter classification tasks with datasets of various sizes to compare
the performance of those approaches and measure the impact of
dataset size. Then, we propose functions to extrapolate the perfor-
mance of machine learning models at a given dataset size. Our main
contributions in this paper are as follows:

• We evaluate different machine learning models and text
representation methods on three well-known Twitter clas-
sification tasks with various dataset sizes. Different from
the previous known that deep learning requires big dataset
to obtain good performance, the recent pre-trained models
form the state-of-the-art even on small datasets.

• We examine the impact of dataset size on the performance of
machine learning models and suggest the thresholds of data
size for eachmodel to obtain good classification performance.
Our experiment suggests that thousands of data instances
might be good enough to reach the optimal performance of
a classification model.

• We illustrate the relationship between dataset size and mod-
els’ performance by extrapolation functions. This experi-
ment provides a guideline for the data needed to achieve the
desired result.

2 RELATEDWORKS
In this section, we briefly review several previous works closely
related to ours. These works could be ordered into three principal
groups: classification problems on Twitter, the impact of dataset size
on models’ performance, and performance extrapolation.

2.1 Classification Problems on Twitter
Following Twitter’s success, various studies applied several natural
language processing and machine learning methods on this social
network’s datasets in recent years. The most prominent topics
include sentiment analysis [36, 37], informativeness detection [1,
33], and information relevance classification [2, 6]. These works
implement and compare the performance of numerous machine
learning approaches; however, the efficiency of the state-of-the-art
models, such as embedding-based approaches [8, 25], have not been
comprehensively observed. Moreover, the previous studies mainly
focus on improving the classification models’ results on the full
datasets, but studies about the impact of the training data size on
the models’ performance have not been clearly elaborated.

2.2 Impact of Dataset Size on Models’
Performance

The performance of supervised learning models highly depends on
the dataset size. In general, the more data for training, the higher
performance of classification we can achieve. Due to the strong
theoretical correlation, several studies have emerged to investigate
the impact of the dataset size on classification performance. Shawe-
Taylor et al. [35] studied the constitution of small datasets. The
authors proposed a Probably Approximately Correct (PAC) mea-
surement to identify the sample size needed to guarantee accurate
learning. Some recent studies investigated the extent to which the
size of datasets impacts the classification performance [3, 24], yet
focus on different domains such as object detection, information
retrieval, or medial domain. Prusa et al. [32] proposed an empirical
study about the effect of dataset size on training sentiment classi-
fiers using Twitter data. Nevertheless, the authors only consider
traditional machine learning models. Unlike the previous works, we
investigate the impact of dataset size on the performance of various
classifiers, ranging from traditional methods to the most recent
deep learning techniques on the short-text datasets using Twit-
ter. We observe on multiple classification tasks such as sentiment
analysis, relevance detection, and informativeness detection.

2.3 Performance Extrapolation
Many prior works proposed learning curves to measure data size
needed for a model family to reach a particular accuracy.

Frey and Fisher, in their early work [12], measured the expected
data size by a decision tree to obtain the desired accuracy through
some simple learning curve models such as linear, logarithmic, ex-
ponential, and power-law functions. Gu et al. [16] in a follow-up
work improved the prediction performance of different machine
learning models via six parametric extrapolating algorithms. In
Machine Translation, Kolachina et al. [22] also presented six extrap-
olated learning curves to examine and predict how their statistical
model performed when adding more data.
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Cho et al. [7] presented a survey study on determining the opti-
mum number of training medical images to obtain high classifica-
tion accuracy with low variance. Accordingly, a learning curve [11]
was studied to extrapolate the required size for training data by a
systematic increase of sampling points to estimate the statistical
mean accurately. Besides, Hestness et al. [18] on an empirical study
validated that the power-law models improve the state-of-the-art
ML and NLP models considerably, including complex deep learning
methods. The authors also pointed out that the model size scales
with the data size in a sublinear regime, and these scaling relation-
ships have significant implications for deep learning progress. Also,
Johnson et al. [20] proposed a feasible extrapolation methodology
to estimate how well the system performs on a comprehensive
dataset from a small pilot dataset with various extrapolations. This
approach is applied to identify the biased power-law model with
binomial weights for classification tasks, which makes it a stable
baseline extrapolation model.

Inspired by those studies, we extrapolate the prediction per-
formance of different models given dataset sizes in the sentiment
classification problem. The extrapolation methods help observe the
performance increase in a huge dataset and accurately model the
relationship between data size and classifiers’ performance.

3 METHODOLOGY
In this section, we introduce the details of our in-depth study. We
aim to identify which model works better on a limited dataset
and the level of classifier improvement after receiving more data.
Besides, we observe the effectiveness of the recent deep neural
networks compared to the traditional machine learning methods
with respect to the changes in the data size. A previous study [32]
found out an upper bound on the performance of a typical machine
learning model for the sentiment classification task. We follow
up the work and further identify the minimum data size required
for machine learning models to obtain an acceptable result and
whether adding more data is always beneficial for recent deep
learning models. The upper bound performance is specified and
verified for the case of huge data size by extrapolation curves. In
the following sections, we first collect datasets for our classification
experiments, and then we introduce base learners and experiment
settings. Next, we illustrate the relationship between dataset size
and models’ performance by learning curves.

3.1 Datasets
We use three popular Twitter datasets in our experiments, each
corresponding to one of the three classification problems of our
focus. The details of these datasets are as follows:

• COVID-19 [28]: It is relevant to the informativeness detection
task and contains roughly 10,000 tweets about the pandemic
Covid-19 with two labels: informative or uninformative.

• CrisisLexT6 [31]: This dataset is dedicated to the infor-
mation relevance detection task and contains about 60,000
English tweets of six crisis events in 2012 and 2013. Roughly
10,000 tweets are labeled by the experts for each event, ac-
cording to relevance as on-topic or off-topic.

• Sentiment140 [14]: The dataset is a sample of the sentiment
analysis task. It consists of 1,600,000 tweets with two labels
“positive” and “negative”.

Datasets #Tweets

COVID-19 #Informative #Uninformative
3,775 4,225

CrisisLexT6 #on-topic #off-topic
2012 Sandy Hurricane 6,138 3,870
2013 Alberta Floods 5,189 4,842

2013 Boston Bombings 5,648 4,364
2013 Oklahoma Tornado 4,827 5,165
2013 Queensland Floods 5,414 4,619

2013 West Texas Explosion 5,246 4,760

Sentiment140 #positive #negative
800,000 800,000

Table 1: Data Summary

The number of labeled tweets in each class of the datasets is
shown in Table 1. The datasets are of various sizes with diverse
degrees of class imbalance. To observe the changes in the models’
performance with respect to dataset sizes, we construct sub-datasets
of various sizes. Specifically, for the COVID-19 dataset and each
of the CrisisLexT6 datasets, we construct sub-datasets of seven
different sizes: 100, 500, 1000, 2000, 4000, 8000. At each step, we
double the dataset size compared to the previous step, with an ex-
ception between the case of 100 and 500 examples. The observation
on the extreme datasets of 100 or 500 examples helps us evaluate
whether recent neural network models are able to overcome re-
quirements of big data and outperform typical machine learning
models. Similarly, we construct sub-datasets of 100, 500 examples
for the Sentiment140 dataset. Besides, larger sub-datasets are also
added, in which each subsequent sub-dataset triples the number of
data instances, such as 1000, 3000, 9000, 27000, 81000 and 243000
examples. In total, we have sub-datasets of eight different data sizes
for the Sentiment140 dataset.

3.2 Classification Models
We evaluate six machine learning models with diverse text repre-
sentation methods on the classification tasks of various data sizes.
We aim to cover both traditional machine learning models and the
most recent deep learning models, both traditional text representa-
tion and state-of-the-art embedding representation methods. The
list of these models is as follows:

• BERT Classifier (BERT-Cls) [8]: The state-of-the-art embed-
ding technique, which pre-trains deep bidirectional repre-
sentations from the unlabeled text. We implement a BERT
model with a sequence classification head on top2.

• BERTweet Classifier (BERTweet) [27]: BERTweet is a vari-
ant of BERT which is designed to generate pre-trained em-
beddings for Twitter texts. Similar to the BERT classifier,
we apply BERTweet with a sequence classification head on
top3 to generate predictions on our datasets.

• Long-Short Term Memory [15] (B-LSTM): We employ a bidi-
rectional LSTM layer followed by a fully connected layer
with a Sigmoid function for classification. The input texts
are represented by the pre-trained BERTweet embeddings.

• Convolutional Neural Network with a pre-trained word em-
beddings (W-CNN) [29]: A CNN-based classification model,

2https://huggingface.co/transformers/model_doc/bert.html#overview
3https://huggingface.co/transformers/model_doc/auto.html#
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which was proposed for the relevance classification of crisis
events on Twitter.

• Support Vector Machines (SVM) [17]: A well-known tradi-
tional machine learning model, yet a robust classification
baseline method. We use the available implementation by
Scikit-Learn4 for our training process.

• Naïve Bayes (NB) [23]: A simple, robust probabilistic classi-
fier, based on the Bayes’ theorem.We consider this model due
to its fast computation on big datasets. Besides, the model is
also widely used as a baseline in many supervised learning
tasks. We employ the provided version by Scikit-Learn5.

Among the aforementioned models, SVM and NB are traditional
machine learning methods, while W-CNN, B-LSTM, BERT-Cls and
BERTweet are recent neural networks, which are widely adopted
in many Twitter classification tasks.

3.3 Experiment Settings
We first pre-process the data: tweets are converted to lower case,
and URLs and mentions are removed. Then, we remove stop-words,
punctuation, and finally, extract TF-IDF of uni-grams as input fea-
ture vectors for traditional models such as SVM or NB. For the BERT-
based models, each input tweet is tokenized and represented in the
form of < [CLS] token1 token2 · · · tokenN >, where tokeni de-
notes the ith token of the tweet, i ∈ [1,N ], and [CLS] is a unique
token added at the beginning of each tweet, and it is used as an
aggregate embedding representation of the input tweet.

We avoid any possible bias when selecting sub-datasets or evalu-
ating models by performing several runs of 5-fold cross-validation
on sub-datasets. Specifically, we sample four different sub-datasets
for a given data size to avoid bias on how the data is chosen. Then,
we perform 5-fold cross-validation on each sub-dataset, in which
four folds are used as training data, and the remaining serves as the
test data. The four runs of five folds cross-validations are repeated
for all the data sizes. We use the default hyper-parameters of the
Scikit-Learn library for SVM and NB, and the settings in the origi-
nal paper [29] for W-CNN. The BERT-based models are trained for
10-epochs with the Adam optimizer, the warm-up strategy [21], an
initial learning rate of 2e-5, and a batch size of 64.

3.4 Extrapolation methods
We observe the relationship between training data size and models’
performance on huge data sizes by conducting the extrapolation
task. The Sentiment140 dataset fully meets our goals since its size
(1.6 M Tweets) is sufficient to produce reasonable results for evalu-
ations. We investigate a large set of parametric curve models from
the literature by Domhan et al. [10]. Particularly, we consider vari-
ous parametric families such as linear, logarithmic, exponential, and
power-law functions to extrapolate performance from smaller to
larger datasets. Table 2 shows eleven different extrapolation models
and their parametric formulas. These extrapolated learning curves
tend to use maximum likelihood fits of each parametric model by
itself, and the parameters are learned by utilizing the least square
regression methods.

4https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
5http://scikit-learn.org/stable/modules/naive_bayes.html

Model name Formula
vapor pressure exp(a + b

x + c log(x ))
pow4 c − (ax + b)−α
pow3 c − ax−α

exp4 c − e−axα +b

exp3 c − e−ax+b

Janoschek α − (α − β )e−kxδ
logistic power a

1+( x
eb

)c

ilog2 c − a
logx

logistic curve a
1+e−k (x−b)

Hill3 ymaxxη
kη+xη

logx linear a log(x ) + b
Table 2: Formulas of extrapolating learning curve models.
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Figure 1: Performance of different models on COVID-19.

We fit the regression by models’ performance at training data
of sizes up to 243,000 examples. The actual classification results
and the predicted value returned by the learning curve are then
compared to evaluate the extrapolation task. For each classification
model, we choose the best extrapolated learning curve presented
in Table 2 to predict the results at a large dataset size. In this way,
we reduce the computation time and resources of extensive experi-
ments.

3.5 Evaluation Metrics
• Classification evaluation: Since our explored datasets are
not always balanced (Table 1), we use both F1-score and
AUC metrics to evaluate results. This ensures to generate a
fair and comprehensive evaluation in all experiments.

• Extrapolation evaluation: We use Root Mean Square Er-
ror (RMSE) to evalutate the extrapolation functions for each

classifier: RMSE(y, ŷ) =
√∑n

i=1(yi−ŷi )2
n , where ŷi is the pre-

dicted value of data point i for a specific classifier at a given
test data size n, and yi is the corresponding label.

4 EXPERIMENT RESULTS
This section shows the performance of the classifiers with respect
to the dataset sizes on the three classification problems, and then
illustrates the relationship between dataset size and models’ per-
formance via extrapolation learning curves.

4.1 Classification Results
Informativeness Classification task acquires the following findings:
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Figure 2: Critical difference diagram showing the pairwise statistical difference comparison of the classifiers on the COVID-19
dataset. A thick horizontal line groups a set of classifiers that are not significantly different (p-value>0.05).
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Figure 3: Performance of different models on the CrisisLexT6 datasets of various sizes.

Model
Dataset size

100 500 1000 2000
F1-score st. dev

BERT-Cls 0.09 0.03 0.02 0.01
BERTweet 0.14 0.03 0.02 0.01
B-LSTM 0.11 0.03 0.02 0.01
W-CNN 0.17 0.05 0.03 0.02
NB 0.10 0.04 0.04 0.02
SVM 0.19 0.04 0.03 0.02

Table 3: F1-score standard deviation on COVID-19.

• Figure 1 depicts the mean AUC and F1-score of each model
over different cross-validation runs on the COVID-19 dataset.
Generally, the performance of all classifiers improves with
data size. However, the impact of adding more data dimin-
ishes significantly as data size increases. For example, the
performance of SVM, W-CNN, and BERTweet models in-
creases by 43.7%, 15.1%, and 19.2%, respectively, when the
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Figure 4: Performance of different models on the Senti-
ment140 dataset for various data sizes.
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data size increases from 100 to 500 instances, while adding
500 more instances improves the performance of the three
models by less than 5%. The pattern holds for the other mod-
els and the case of larger data size.

• Apart from SVM, all the classifiers achieve decent results
(i.e., F1-score is higher than 60%) on an extremely small
dataset of 100 examples. However, as shown in Table 3, all
the classifiers require a data size of at least 1000 instances
(or 2000 for NB) to obtain a stable prediction performance
(i.e., the standard deviation across cross-validation runs is
less than 3%).

• All the models incline to have an upper bound performance,
and the recent pre-trainedmodels require less data than tradi-
tional methods to achieve the upper bound. The three BERT
embedding-based models indicate only a slight improvement
after 1000 examples and tend to reach their relative upper
bound performance when the data size is 4000. After that,
addingmore data is not clearly beneficial to thesemodels (i.e.,
the prediction improves by less than 1% with doubling the
data size). Meanwhile, W-CNN and other traditional mod-
els keep improving the performance after 4000 examples.
However, the improvement is also less than 1.5%.

• The recent pre-trained BERT models generally perform bet-
ter than the other methods for all data sizes. Interestingly,
BERTweet and B-LSTM, which were trained on a small
dataset of 100 examples, are comparative to the traditional
models such as NB or SVM trained on the 8,000 data. Be-
sides, an B-LSTM with pre-trained BERTweet embeddings
performs notably better than a W-CNN with pre-trained
word embeddings. This suggests that the input embedding
representation has a significant impact on the model per-
formance. The use of pre-trained embedding on the Twitter
dataset helps BERTweet and B-LSTM achieve better perfor-
mance than BERT-Cls in small datasets.

• Figure 2 illustrates the pairwise post-hoc analysis [4] with
the Friedman test [13] to compare the six classifiers on two
dataset sizes of 1000 (when the classifiers achieve stable re-
sults) and 4000 (when some models reach their relative upper
bound performance). The purpose of the test is to check if
the performance gap between two methods is statistically
significant or not. The best ranks stand on the right side of
the axis; hence, the three BERT-based models significantly
outperform the others. Moreover, we clearly see that the two
models, B-LSTM and BERTweet, which benefit from the
Twitter-based pre-trained embeddings, are the best models.
Note that similar findings are also observed in the other two
tasks i.e. Information Relevance Classification and Sentiment
Classification so we omit these experiments in the following
parts due to space constraint.

Information Relevance Classification task results on the six events
of the CrisisLexT6 dataset are illustrated in Figure 3:

• The behavior of the AUC and F1-score plots on the Crisis-
TexT6 dataset is relatively on par with the COVID19 dataset,
except for the extremely small dataset of 100 examples, where
in some events like 2013 Oklahoma Tornado or 2013 West
Texas Explosion, BERTweet and B-LSTM achieve a better
result compared to their performance on larger data sizes.
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Figure 5: Extrapolation models on the AUC and F1-Score re-
sults. Lines are least-squares fits of the best learning curves
for each classification model based on Table 4. The dots il-
lustrate the actual errors. The stars are actual errors when
training models on 243,000 examples.

That is due to the pre-trained embeddings on the Twitter
data, though the results between different runs are not stable.

• All classifiers start to achieve stable performance (i.e., stan-
dard deviation across different runs is smaller than 3%) with
1000 examples. This is consistent with our observation in
the COVID19 dataset.

• Generally, the information relevance detection problem on
the CrisisLexT6 datasets can be solved with high accuracy
by all the classifiers. Like the informativeness classification
problem, B-LSTM and BERTweet are the best models in
almost all cases of dataset sizes.

• In most of the cases, adding more data after 4000 examples
is not helpful for the BERT-based models (i.e., BERTweet,
BERT-Cls or B-LSTM).

Sentiment Classification task was carried out on the Sentiment140
dataset. Figure 4 illustrates the performance of our classifiers, and
the findings are as follows:

• The performance of all models generally improves with the
increase of dataset size. All the classifiers start to achieve
more stable results with small deviation (less than 3%) over
different runs at 1000 examples.

• Again, B-LSTM and BERTweet have the best results across
different dataset sizes. The performance of BERT-based mod-
els improves quickly and tends to converge to an upper
bound result faster thanW-CNN or other traditional models.
For example, at 3000 examples, BERT-based models achieve
the relative upper bound performance, and the improvement
with tripling the data size from 3000 to 9000 is less than 1%.
In Figure 4, the three BERT-basedmodels only showminor or
unnoticeable changes in the improvement after 3,000 exam-
ples. Meanwhile, NB and SVM andW-CNN notably improve
the performance after 3,000 examples, yet also get minor or
almost no AUC improvement after 27,000 examples.

4.2 Extrapolation Results
We further enhance our observations on the upper bound perfor-
mance by different extrapolation methods and identify whether
classifiers change significantly on massive datasets. We consider
extrapolating tasks to compute and evaluate how classification
models’ performance changes when varying data size. We train
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Classification Extrapolation RMSE based-on RMSE based-on
Model Model AVG. AUC AVG. F1-Score

BERT-Cls

hill3 0.01119 0.01108
exp3 0.01841 0.01886
exp4 0.01031 0.00948
ilog2 0.03428 0.04248

Janoschek 0.01087 0.01034
logistic power 0.01119 0.01108
logistic curve 0.01919 0.02002
logx linear 0.05551 0.06845

pow3 0.01027 0.00947
pow4 0.00731 0.00566
vap 0.00937 0.00896

BERTweet

hill3 0.00784 0.0131
exp3 0.01308 0.01554
exp4 0.04104 0.02958
ilog2 0.03451 0.08197

Janoschek 0.00778 0.01267
logistic power 0.00784 0.01310
logistic curve 0.01342 0.01571
logx linear 0.05310 0.11432

pow3 0.04494 0.01194
pow4 0.00465 0.00570
vap 0.00721 0.02431

B-LSTM

hill3 0.00234 0.00622
exp3 0.00538 0.01165
exp4 0.00230 0.02976
ilog2 0.02380 0.03013

Janoschek 0.00275 0.00611
logistic power 0.00234 0.00622
logistic curve 0.00569 0.01215
logx linear 0.03702 0.04767

pow3 0.00241 0.00568
pow4 0.00232 0.00410
vap 0.00249 0.00528

W-CNN

hill3 0.00312 0.00388
exp3 0.01122 0.01471
exp4 0.00329 0.00223
ilog2 0.01483 0.02115

Janoschek 0.00329 0.00298
logistic power 0.00312 0.00388
logistic curve 0.01209 0.01609
logx linear 0.03672 0.04391

pow3 0.00399 0.00219
pow4 0.00262 0.00092
vap 0.00875 0.00305

NB

hill3 0.00970 0.00752
exp3 0.00945 0.00921
exp4 0.00441 0.00472
ilog2 0.01110 0.01132

Janoschek 0.00441 0.00472
logistic power 0.00970 0.00752
logistic curve 0.01039 0.00957
logx linear 0.02562 0.01152

pow3 0.01055 0.00783
pow4 0.00348 0.00335
vap 0.01585 0.01047

SVM

hill3 0.01229 0.01454
exp3 0.02493 0.00944
exp4 0.00806 0.00576
ilog2 0.05380 0.01636

Janoschek 0.00889 0.00576
logistic power 0.01229 0.01454
logistic curve 0.02895 0.01056
logx linear 0.09424 0.02371

pow3 0.00796 0.01543
pow4 0.00701 0.00493
vap 0.00860 0.02046

Table 4: Extrapolation models and RMSE evaluations based
on average AUC and F1-Score. The better models have
smaller RMSE. We highlight the best result of each method.

Classification Data Size
Model 3K 9K 27K 81K 243K 729K 2187K

Actual AUC Extrapolated AUC
BERT-Cls 0.877 0.880 0.888 0.898 0.903 0.906 0.909
BERTweet 0.915 0.918 0.925 0.929 0.932 0.934 0.935
B-LSTM 0.920 0.918 0.920 0.924 0.922 0.922 0.922
W-CNN 0.802 0.815 0.827 0.835 0.836 0.837 0.838
NB 0.794 0.814 0.832 0.827 0.830 0.830 0.831
SVM 0.790 0.826 0.848 0.833 0.844 0.846 0.847

Classification Data Size
Model 3K 9K 27K 81K 243K 729K 2187K

Actual F1-Score Extrapolated F1-Score
BERT-Cls 0.810 0.814 0.824 0.837 0.842 0.846 0.849
BERTweet 0.846 0.848 0.858 0.865 0.871 0.877 0.881
B-LSTM 0.853 0.853 0.860 0.866 0.867 0.869 0.870
W-CNN 0.720 0.737 0.745 0.755 0.759 0.761 0.763
NB 0.697 0.715 0.732 0.741 0.745 0.748 0.749
SVM 0.721 0.750 0.773 0.764 0.768 0.768 0.768

Table 5: The performance increment of the classifiers based
on the actual and extrapolated AUC and F1-Score.

eleven extrapolating learning curve models as shown in Table 2 and
examine root mean square errors (RMSE) with seven points of data
size from 100 to 81000. Table 4 shows RMSE of the extrapolating
learning curve functions for different models. Interestingly, the
power-law function with four parameters (i.e. pow4) produces the
best outcomes on almost all the classification models, except the
AUC results for the B-LSTM model.

Based on the results in Table 4, we select the best extrapolation
method for each classifier in our later evaluations. We illustrate
the errors in Figure 5 and the extrapolated values of the average
AUC and F1-Score on the larger data size in Table 5. These selected
learning curves could efficiently model the relationship between
performance and data size of the presented machine learning mod-
els with relatively low RMSE, especially W-CNN, NB, and B-LSTM.
Accordingly, Figure 5 illustrates how the extrapolation functions
generalize classification errors on both AUC and F1-Score. Table 5
confirms minor changes of BERT-based models when the data size
is more than 3000. Specifically, by tripling the data from 3000 to
9000 examples, B-LSTM, BERTweet and BERT-Cls improve F1-
score by 0%, 0.2%, and 0.4%, respectively. When running on the data
size of 3000 and more than 2 million examples, the performance
difference of these classifiers is also not significant. Meanwhile,
other methods only start to observe minor or no improvement in
the performance at the data size of 27000 with NB and SVM models
or 81000 withW-CNN model.

4.3 Discussion
To sum up our extensive experiments, we observe:

• Deep learning models with pre-trained BERTweet have
become the state-of-the-art techniques in solving various
Twitter classification tasks. The methods overcome the re-
quirement of a large dataset and perform well even on very
small data of 100 or 500 examples.

• In general, to obtain stable results, we suggest collecting a
dataset of more than 1000 examples.

• All the classifiers have a relative upper bound performance.
The BERT-basedmodels converge to the relative upper bound
results generally faster than other models. For example, with
4000 examples for the informativeness detection or the the
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relevance classification tasks, or 3000 examples for sentiment
classification task. Hence, we do not need millions of labeled
data to train a good classifier.

• The pre-trained embedding has more significant impact on
model performance than adding more data. A good pre-
trained model can help models obtain good results at a tiny
dataset of 100 examples. Besides, With less than 1000 in-
stances, a pre-trained model can obtain a competitive result
to a traditional machine learning model on a dataset of thou-
sands examples.

• Our extrapolation methods can effectively model the rela-
tionship between dataset size and models’ performance. The
methods canwell predict the data needed for amodel to reach
its relative upper bound performance. Our experiments again
ensure that thousands of examples might be adequate for
a model to reach its relatively optimal performance rather
than millions.

5 CONCLUSION
We studied the impact of dataset size on the performance of different
machine learning models concerning three Twitter classification
problems. Our experiments present a concrete view of how various
machine learning approaches behave with the increment of data.
We show that the recent BERT embedding-based models form the
best classifiers and work well even on small datasets. Moreover,
depending on the tasks, an upper bound performance exists for
all classification methods, which can be achieved on datasets of
thousands or tens of thousands of instances. We illustrate the depen-
dency curve of the classification models’ performance on dataset
size. The extrapolation curves estimate the data size needed for
machine learning models to achieve the desired score. Our findings
are also in agreement with the previous studies [3, 7, 32].
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