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Abstract: The automated process chain of an unmanned production system is a distinct challenge
in the technical state of the art. In particular, accurate and fast raw-part recognition is a current
problem in small-batch production. This publication proposes a method for automatic optical
raw-part detection to generate a digital blank shadow, which is applied for adapted CAD/CAM
(computer-aided design/computer-aided manufacturing) planning. Thereby, a laser-triangulation
sensor is integrated into the machine tool. For an automatic raw-part detection and a workpiece origin
definition, a dedicated algorithm for creating a digital blank shadow is introduced. The algorithm
generates adaptive scan paths, merges laser lines and machine axis data, filters interference signals,
and identifies part edges and surfaces according to a point cloud. Furthermore, a dedicated software
system is introduced to investigate the created approach. This method is integrated into a CAD/CAM
system, with customized software libraries for communication with the CNC (computer numerical
control) machine. The results of this study show that the applied method can identify the positions,
dimensions, and shapes of different raw parts autonomously, with deviations less than 1 mm, in
2.5 min. Moreover, the measurement and process data can be transferred without errors to different
hardware and software systems. It was found that the proposed approach can be applied for rough
raw-part detection, and in combination with a touch probe for accurate detection.

Keywords: autonomous machine tool; process planning; digital twin; object recognition

1. Introduction

Because of globalization and product individualization, the demand for product
variability and highly dynamic product lifecycles will grow in future years [1]. Currently,
machining small batches is characterized by many manual tasks, which result in long
processing times, shape deviations, and high costs. To realize the aim of autonomous
machining, the process planning of manufacturing processes, such as milling or drilling,
has to become more flexible, versatile, and robust in order to adapt the initial process to the
process changes [1].

A typical process chain for milling processes is shown in Figure 1, and can be se-
quenced in the following order [1–4]: After the computer-aided design (CAD) of the
workpiece, process planning is conducted on computer-aided manufacturing (CAM) soft-
ware to generate a numerical control (NC) code for the manufacturing process. Next, the
machine tool is set up, meaning that the raw part is clamped, and the manual workpiece
detection is applied using a probe. Then the machining process is executed. After machin-
ing, a quality inspection can be conducted to measure the shape and surface quality of the
finished workpiece.
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inspection because of its high accuracy [9]. However, the probing process cannot be fully 
automated because of the collision risk and the variety of workpiece properties [8], e.g., 
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for scanning and for the digitalization of defect-forging tools. Similar to this approach, 
Denkena et al. describe an approach for an automatic re-contouring of repair-welded tool 
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According to Schmitt [4] and Zhu [3], one of the challenges for developing an au-
tonomous machine tool is flexible automatic blank detection. The exact location, the
orientation of the blank, and its dimensions are required for the machining process [4]. Af-
ter clamping a blank in the machine tool, workpiece detection is required for collision-free
and accurate machining. In order to overcome this challenge, a new method for automated
shape acquisition is necessary [3]. A digital shadow can be applied for autonomous raw-
part detection to adapt the CAD/CAM planning to the real geometries [3,5]. In this case,
the CAD file of the raw part represents the digital shadow. Therefore, the digital shadow
can be seen as a preliminary stage of the digital twin [6].

2. State of the Art

According to Kritzinger et al., the following distinction between the digital twin and
digital shadow is made [7]: A digital twin is a digital representation of a physical object.
The data flows between the physical and the digital object are fully integrated into both
directions. As a result, a change in the state of the physical object directly leads to an
automatic change in the state of the digital object, and vice versa. By contrast, the digital
shadow only represents an automated one-way data flow between the state of an existing
physical object and a digital object. As a result, a change in the state of the physical object
leads to a change of state in the digital object, but not vice versa.

Currently, process planning is primarily based on the expected raw-part geometry.
The real shape of the raw part is not taken into account [3]. Hence, shape deviations can
lead to process deviations during machining. Digital twins are usually not applied in
practice [2]. As a result, the planning of manufacturing processes is a time-consuming
and manual task, which requires the personal experience of the operator [3]. Therefore,
a digital shadow is required for the generation of a digital twin [6]. An essential step in
generating the digital shadow of a raw part is workpiece detection [3]. This can be achieved
by contact and noncontact measuring devices [8]. A touch probe is an example of a contact
measuring method that is commonly used for workpiece detection and inspection because
of its high accuracy [9]. However, the probing process cannot be fully automated because
of the collision risk and the variety of workpiece properties [8], e.g., different locations or
shapes [10]. Furthermore, probing is a time-consuming process that can take up to several
hours for complex parts, such as sculptured or blade surfaces, because the reference points
are difficult to identify and the planning of collision-free paths is time-consuming [10,11].
Another issue is that the measurement quality is dependent on the manual selection of the
measuring points and the paths of the measuring process [10].

An alternative for the contact measuring device is noncontact optical sensors. These
sensors are fast and accurate. Several approaches use optical sensors based on structured
light, conoscopic holography, photogrammetry, or laser triangulation [12]. In the follow-
ing sections, some of these implemented strategies will be further discussed. Son et al.
introduce an implementation of a laser scanning system to measure freeform surfaces [13].
A CNC laser scanner is embedded in a semiautomatic measuring process chain. This
process chain consists of scan planning, scanning, and the alignment of the measured data
to the predefined CAD model. Another integration of a laser triangulation sensor in a
process chain is presented by Schmitt et al. [14]. In this application, a laser scanner is used
for scanning and for the digitalization of defect-forging tools. Similar to this approach,
Denkena et al. describe an approach for an automatic re-contouring of repair-welded
tool shapes using a laser line scanner for the optical acquisition of the actual workpiece
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geometry [15]. The sensor is coupled with machine axis data for the registration of the
point cloud during 5-axis scanning. Rajaraman et al. present a robot equipped with a laser
distance sensor for the automatic digitalization of weld seams [16]. The resulting point
cloud is used for registration with the iterative closest point algorithm and for automatic
object detection, which is based on two-dimensional template matching. These various ex-
amples show that laser scanning systems for raw-part detection can acquire high-precision
data while accomplishing a short measuring time [12,17]. Furthermore, the appearance of
reflections and other interferences in the measuring data can be a challenging task [13,17].
Automated object detection through the use of laser scan data is especially challenging.
Current approaches utilize the time-consuming matching of the nominal user-defined CAD
geometry with the measuring data [13,16].

An alternative for object detection is photogrammetry, which has been implemented
in various semiautomatic approaches [4,18,19]. By using a camera system and photogram-
metry methods, many different shapes can be measured with a high speed. However, the
accuracy is low compared to other technologies [20,21]. Besides these two measuring princi-
ples, structured light methods are used to acquire digital workpiece representations [22,23].
Structured light systems tend to have high accuracy, fast scanning speeds, and wide mea-
suring ranges [24]. However, the use of structured light antireflection coating is needed to
reduce mismeasurements and the necessity for filtering in the 3D reconstruction [23,24]. Fur-
thermore, because of insufficient accessibility, undercuts cannot be scanned properly [24].
Moreover, chromatic confocal sensors are used for the acquisition of a digital workpiece
representation in micromanufacturing [25,26]. Chromatic confocal sensors can achieve high
accuracy but tend toward long measuring times in comparison to other sensors because of
their low measuring range and the discrete point-by-point inspection [25–28].

The currently existing and proposed approaches are mostly semiautomatic configu-
rations for workpiece detection. The main challenges to these approaches are automated
sensor path planning and fast, robust, and automated object recognition. Moreover, the
current approaches are mostly unable to automatically generate a digital shadow of the
detected workpiece. Therefore, the real workpiece geometry is not considered in the
CAD/CAM chain. Therefore, the processes cannot be adapted to real geometry.

3. Approach

This work aims to investigate a fully automatic method for blank detection, which
could be integrated into an overall developed CAD/CAM chain for an autonomous milling
process. This CAD/CAM chain and its single sequences are illustrated in Figure 2 and will
be further discussed.

In the first step of the fully automatic process chain, a blank is clamped in a machine
tool. After the workpiece CAD definition, automatic blank detection is initiated. Then,
sensor path planning is executed, and this generates the NC code for the sensor paths
automatically. This is an iterative process that consists of the following steps: sensor path
planning, the measuring process, and data processing. Each step is described in the follow-
ing sections. First, initial automatic sensor path planning is generated, which segments
the workspace into measuring planes on different heights. Next, the automatic measuring
process for the first measuring plane is executed. Afterward, as part of the data processing,
object detection is applied to search for an object in the current measuring plane. If no object
is found, sensor path planning for a further measuring area is conducted. If a raw part is
detected by the automated object detection, a fine recognition with a touch probe could
optionally be applied to achieve higher accuracy results. Prepositions for the touch probe
measuring are created by means of automated object detection in order to avoid collisions
and to enable small measuring paths close to the workpiece. After the blank detection, a
corresponding digital blank shadow is automatically designed. On the basis of the digital
blank shadow, the whole milling process for the defined workpiece could be planned
automatically. In the current research, a digital blank shadow is applied for the adapted
process planning of a simple cavity milling process. An automatic cutting face recognition,
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which is based on normal vector, position, and shape geometry, is implemented. In the
current application, predefined process parameters and tools are used. This method focuses
on raw-part detection, and even more complex process planning, further automation, and
robustness against process interferences are not considered. Afterward, the NC code for
all of the defined operations could be postprocessed and transferred to the CNC machine.
Finally, the milling process could be conducted to machine the desired workpiece.
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With autonomous process planning, the time and complexity for the milling process
could be reduced by omitting time-consuming manual planning processes. Furthermore,
this chain allows for adaptions of the milling process to different workpiece geometries,
or to various blank types and dimensions. In the following sections, the process steps are
explained in greater detail, with a focus on raw-part detection.

3.1. Sensor Path Planning

In this approach, a laser triangulation sensor is used for the noncontact blank detection
because of its high precision and short measuring time compared to other sensors [12].
The presented method can be easily adapted to other sensors. The application of a laser
distance sensor for raw-part detection leads to challenges, especially for the inspection of
complex shapes. One challenge is the limited two-dimensional measuring range of the
sensor. This range, which is about 10–100 mm long, depends on the sensor model, the
sensor manufacturer, and the requirements of sensor accuracy. For this reason, multiple
measurement planes for the inspection are required. For the necessary movement of the
sensor, it can be mounted on a movable component of the CNC milling machine. In the
proposed application, the sensor is fixed to the spindle. The sensor is linked to the machine
axis data, so that the movement of the spindle corresponds with the movement of the
laser scanner and the acquired measuring points. To scan the whole workspace with the
limited measuring depth and field of the sensor, several measurement planes and in-plane
paths are created, as illustrated in Figure 3. The first step in the algorithm divides the
workspace volume into several planes in the z direction in order to overcome the challenge
of a limited measuring depth. Starting from an initial height (“start position measuring
process”), which is defined by the workspace limits, the sensor is moved as long as there
is no detected shape (“end position measuring process”). The distance of these planes
is equal to the measuring range of the sensor. In this way, the whole workspace can be
mapped. Each plane is too large to be measured with a single scan. Therefore, the axis
with the sensor is moved from the xy starting position to the xy end position of this plane.
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In Figure 4, the principle of a potential path planning strategy is shown. To reduce the
measuring time, the sensor is moved along a zigzag path in each plane where the scanning
lines overlap in order to prevent gaps in the resulting point cloud.
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After generating an NC code for the sensor path with CAD/CAM software, the code
is automatically transferred to the machine tool. One approach is to automatically create
the NC code using a template in C#, which is referenced to the machine coordinates. This
NC-code template contains variables. The individual zigzag paths are generated by a loop.
The specific start and end positions of the zigzag path are determined by the minimum
and maximum positioning limits in the x and y directions of the machine tool. During
processing, the variables in the NC-code template are replaced by the positioning limits,
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xmin, xmax, ymin, ymax, and the z-height. The distance between the paths of the zigzag path is
specified by the line width of the sensor. Another option is to create the NC code using
CAD/CAM software, such as Siemens NX. In this case, the machining area is represented
by a scalable rectangular area. Furthermore, the sensor is defined as a simplified tool with
a holder. By means of the defined holder, the sensor offset between the sensor center point
and the tool center point (TCP) can be defined. For the definition of the zigzag measuring
path, a simplified face milling operation in zigzag mode is defined. The positioning limits
of the machine tool are defined by the size of the scalable rectangular area. The workpiece
origin defined in the CAD/CAM software is displaced translationally to the position of the
machine origin. As a result, the NC code generated by the machine-specific postprocessor
is referenced to the machine coordinates. The sensor path planning in Siemens NX is
automated by the software library, NXOpen, in C#. Afterwards, the transferred NC code is
executed to move the sensor during the measuring process (see Section 3.2).

3.2. Measuring Process

The measuring process is illustrated in Figure 5. From the predefined global starting
position, the sensor is moved to the local starting position of the first generated xy plane.
After reaching the starting position, the scan process starts, and measuring data is recorded.
The sensor is moved to the end position of the plane, as described in Section 3.1. At
this position, the recorded measuring data is exported, and data processing is conducted.
During this processing, the resulting plane data is analyzed to recognize a raw part in the
investigated xy plane. If no blank is detected, and if the lowest predefined z level before a
collision is not reached, the NC code for the next measuring process is created by the sensor
path planning and is started on the machine tool. This iterative process continues until a
blank is detected, or until the minimum z level is reached.
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3.3. Data Processing

The resulting data of the sensor, which is linked to the machine axis data, consists
of three-dimensional coordinates of the surface, as illustrated in Figure 6. The entity of
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these points is called the “point cloud”, and it contains information about the desired
measuring object shape and mismeasurements. These mismeasurements are mainly caused
by the metallic surfaces of the workpiece clamping, the machine table, or other surfaces
of the blank. For data processing and automatic object detection, these points can lead
to incorrect shapes and dimensions. Therefore, these components have to be removed
by filters (z-interval decomposition, image conversion). Afterward, the bounding-box
algorithm is applied for object detection. If an object is detected, interesting points, such
as center or corner points, will be determined. To derive the machine coordinates of the
interesting points, a coordinate transformation is applied. In addition, a digital blank
shadow is generated for the CAM planning. In the following sections, the individual
steps are described in detail. First, the z-interval decomposition will be discussed (see
Section 3.3.1).
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3.3.1. Z-Interval Decomposition

To determine simple component shapes, such as cuboids or cylinders, no information
about the three-dimensional point cloud is necessary. Instead, it is sufficient to examine only
the round or rectangular surfaces of these components. Using this approach, it is possible
to transform an existing three-dimensional point cloud and use it as a two-dimensional
dataset. This results in a shorter computational time and reduces the complexity of the
process. Therefore, in the first step of the measurement data evaluation, the point cloud
is decomposed into a defined number of z intervals, as shown in Figure 7. With the
decomposition into z intervals, the xy plane with the most measuring points is determined
for each measuring process, which is called the most popular interval. To find the most
popular interval, the point cloud is segmented into a distinct number of levels in the z
direction (see z0–z5). To reduce the computing time, the search starts with large intervals
and ends in small intervals. As shown in the figure, most points of the point cloud scatter
in the intervals of z2 and z3. For blank shapes that are expected to be planar in the z planes,
the z values of those points that are in this interval are set to the average value of all the
points in this interval. Thus, a complex 3D problem is simplified into a 2D problem. The
points outside the interval are removed since these coordinates are insignificant. As all
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points now have the same z value, only the x and y values of the remaining point cloud are
considered in the next step (see Section 3.3.2).

J. Manuf. Mater. Process. 2022, 5, x FOR PEER REVIEW 8 of 16 
 

 

points outside the interval are removed since these coordinates are insignificant. As all 
points now have the same z value, only the x and y values of the remaining point cloud 
are considered in the next step (see Section 3.3.2). 

 
Figure 7. The principle of the z-interval decomposition of a point cloud. 

3.3.2. Image Converting 
The remaining xy plane of Section 3.3.1 is transformed into an image, as seen in Fig-

ure 8. On the left side, an example for a filtered point cloud after the z-interval decompo-
sition is shown. The blue dots or pixels represent the measurement points in the coordi-
nate grid, while the black pixels describe empty gaps. These artificial black points are pro-
duced to ensure a fixed distance (step size, Δs) for all points. This step size is adapted to 
the point distance of the laser scanner. Thus, a rectangular matrix or image can be gener-
ated, as seen in Figure 8b. The pixel intensities (colors) of an image are integers and cannot 
be decomposed into decimal pixels. Thus, the image size must be adapted to the point 
distance of the point cloud. In this research, the step size, Δs = 50 µm, is used, which is 
defined by the point distance of the laser scanner. Therefore, 20 pixels in an image repre-
sent 1 mm. This generated image is used for the next step: the bounding-box algorithm 
(see Section 3.3.3). 

 
Figure 8. (a,b) Image conversion of a point cloud. 

3.3.3. Bounding-Box Algorithm 

Figure 7. The principle of the z-interval decomposition of a point cloud.

3.3.2. Image Converting

The remaining xy plane of Section 3.3.1 is transformed into an image, as seen in
Figure 8. On the left side, an example for a filtered point cloud after the z-interval decompo-
sition is shown. The blue dots or pixels represent the measurement points in the coordinate
grid, while the black pixels describe empty gaps. These artificial black points are produced
to ensure a fixed distance (step size, ∆s) for all points. This step size is adapted to the
point distance of the laser scanner. Thus, a rectangular matrix or image can be generated,
as seen in Figure 8b. The pixel intensities (colors) of an image are integers and cannot
be decomposed into decimal pixels. Thus, the image size must be adapted to the point
distance of the point cloud. In this research, the step size, ∆s = 50 µm, is used, which is
defined by the point distance of the laser scanner. Therefore, 20 pixels in an image represent
1 mm. This generated image is used for the next step: the bounding-box algorithm (see
Section 3.3.3).
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3.3.3. Bounding-Box Algorithm

After image converting, a bounding-box algorithm, as explained in [29], is applied to
the generated image to detect primitive shapes, such as rectangles or circles. As shown in
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Figure 9, there might still be pixel regions that hinder raw-part detection (“interferences”)
in Figure 9b.
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In this case, pixel regions mean connected blue pixels enclosed by black pixels or the
edge of a picture. However, some of the pixel regions can be neglected for the bounding-
box algorithm, e.g., pixel regions that do not have a defined minimum height or width.
These regions are removed at the beginning of the algorithm. An image can be interpreted
as a matrix, in which black pixels are represented by “0”, and blue pixels by “1”, as
shown in Figure 9a. Thus, the edge points of every pixel region are calculated by a filter
operator. Next, the centroid of the pixel region is estimated. Afterward, the major and
minor axes of the object are determined. In the following, the upper and lower furthest
points for the major axis, and the corresponding points for the minor axis, are determined.
Besides rectangular shapes, other simple shapes, such as circles, can be calculated by the
computation of geometric features, such as the circularity, moments, and various texture
parameters [29].

If no surface elements of a blank (primitive shapes) are detected, the next measuring
process and plane detection are performed on a lower height. If the detection was successful,
possible significant points, such as the corner points of a rectangle, are calculated. In the
following section, the real machine coordinates of the detected points are calculated.

3.3.4. Coordinate Transformation

The classified pixels have to be transformed into machine coordinates (“coordinate
transformation” in Figure 6) to determine the exact datum point and the dimensions of the
measured workpiece. The origin of an image is at the pixel location, x = 0 and y = 0. By
contrast, the starting point of measurement in the machine room is usually not the machine
zero point and is, therefore, translated. As seen in Figure 10, the measuring process starts at
the position, xmin. This value is important for calculating the machine coordinates (x,y) by
using the image coordinates (px,py), and must be considered as an offset. The procedure is
applied to the y value (here ymin). In addition, the pixel resolution, ∆s, must be considered
for the coordinate transformation. As mentioned in Section 3.3.2, this value depends on the
step size of the laser scanner. Consequently, the coordinates of Point P1 (shown in grey in
Figure 10) can be converted to the real coordinates as follows:

xP1 = xmin + pxD1·∆s (1)
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yP1 = ymin + pyD1·∆s (2)
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The coordinate transformation is applied to the characteristic points (corners, vertices,
centers, etc.) of a detected geometry object since these points are relevant for further
processing. For example, from the knowledge of the corner points of a cuboid blank, the
datum point, WCS, and its xy dimensions can be derived.

The height of the raw part can be estimated by using the average z coordinate of the
detected surface. As shown in Figure 11a, the distance between the contact surface of the
workpiece clamp and the average z value of the surface can be calculated. Therefore, the
contact surfaces of the workpiece clamping are measured once only before the measuring
process. Furthermore, the blank height can be measured by rotating the machine table of
the machine tool (Figure 11b).
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After estimating the dimensions and the coordinates of the workpiece origin, a digital
blank shadow is automatically generated for the CAD/CAM planning of the milling
process (see Figure 2).

4. Implementation and Experimental Validation

To investigate the feasibility and practicability of the developed approach, an imple-
mentation of this method, initial use cases, and experimental results will be shown in the
following sections.

4.1. Experimental Setup

For the experimental investigations, a DMG MORI HSC55 Linear machine tool was
used (see Figure 12). This CNC machine was equipped with a Heidenhain iTNC530 control.
For the laser scanning process, Keyence LJ-V7080 laser triangulation was used. The sensor
was fixed to the top of the spindle by an individual holder system. Optionally, the sensor
can also be placed on the spindle box in this configuration. To obtain three-dimensional
point clouds as measuring data, several software libraries were implemented in the software
tool, i.e., the Keyence DLL for the extraction of the laser scanning data, the TwinCat ADS
library of Beckhoff, and the RemoTools SDK of Heidenhain for the machine axis data. To
implement the bounding-box algorithm, several C# libraries of Accord were used (Accord,
Accord.Math, and Accord.Imaging) [30].
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4.2. Experimental Design

To test the time and accuracy performances for the proposed approach, the following
investigations were made: As raw-part objects, cuboids and cylinders were chosen. These
objects have different dimensions with which to investigate the robustness of the introduced
attachment. The selected cuboids, shown in Table 1, were touched by a touch probe. Cuboid
1 is made of steel, and Cuboid 2 is made of aluminum.
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Table 1. Dimensions of the used cuboids (measured with touch probe).

Cuboid x [mm] y [mm] z [mm]

Cuboid 1 80.2708 80.2675 80.0825
Cuboid 2 80.5360 80.7189 70.4514

Table 2 illustrates the dimensions of the used cylinders, which were also measured by
a touch probe. Both cylinders are made of aluminum.

Table 2. Dimensions of the used cylinders (measured with touch probe).

Cylinder Radius [mm] z [mm]

Cylinder 1 30.1152 110.4389
Cylinder 2 30.0560 93.4390

For the measuring process, the introduced laser scanner was used, and the raw
parts were clamped in the machine tool. First, the sensor path planning for the laser
scanner was conducted automatically, depending on the machine axis limitations. Next,
the automatically generated NC paths of the sensor path planning were transferred and
started on the CNC machine by the RemoTools SDK. Afterward, the measuring process was
initiated, as well as the finalization of the automatic data processing checks if a workpiece
was detected. If an object was recognized, the dimensions and the datum point were
determined by the bounding-box algorithm. Furthermore, a digital blank shadow of the
detected blank was automatically designed by the software library, NXOpen. This CAD
file can be used for autonomous CAM-planning in NXOpen to realize the adapted milling
process. If no object was recognized, a further measuring process was initiated.

The automatic bounding-box object detection is presented in Figure 13, where the
point clouds of the measuring process are converted into images.
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The rectangular shape of the cuboid surface and the circular shape of the cylinder
were correctly captured by the red bounding box. Following the detection, the x and y
dimensions and the locations of the bounding boxes were automatically determined. For
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the height of the detected objects, the average z value of the detected object points was
calculated. In Table 3, the deviations of the detected dimensions after the scanning process,
compared to the dimensions that were measured by the touch probe, are listed:

Table 3. Deviations of the cuboid measurements between touch probe and laser object detection with
laser scanner.

Cuboid x [mm] y [mm] z [mm]

Cuboid 1 +0.3208 +0.2675 +0.2114
Cuboid 2 +0.6860 −0.2811 +0.0228

The table shows that the deviations of the y and z dimensions are less than x, and that
the maximum deviation in the x direction is 0.6860 mm. While the x and z coordinates solely
depend on the used laser scanner, the y deviation is influenced by the measuring speed in
the scan direction (feed rate). This value is limited by the coupling of the machining axis
data because the automatic reading of the machine axis data is slower than the automatic
export of the laser scan data. Therefore, a fixed scan line distance of 1 mm was applied
to reduce the size of the resulting point cloud and to minimize the computing time. A
smaller scan line distance could result in higher accuracy, but a longer computing time.
For the cuboids and cylinders, the measuring time was about 2.5 min, using a feed rate of
1000 mm/min. In Table 4, the results of the deviations of the cylinders can be seen.

Table 4. Deviations of the cylinder measurements between touch probe and laser object detection
with laser scanner.

Cylinder Radius [mm] z [mm]

Cylinder 1 −0.7847 −0.1983
Cylinder 2 −0.7815 −0.2631

The results show that the deviations of the radius and the z value are less than 1 mm.
The deviations could be the result of different influences. For example, the used samples
are raw parts that do not have exactly flat edges and surfaces. Furthermore, deviations
could be caused by nonfiltered reflections or the measuring speed because the radius also
depends on the feed. Using the acquired shape information of the blanks, a digital model
was automatically generated by the software library, NXOpen.

In addition to the identification of the dimensions, the workpiece origin could auto-
matically be extracted by the object detection. The results of the deviations are illustrated
in Table 5.

Table 5. Workpiece zero-point deviations of all samples between touch probe and laser object
detection with laser scanner.

Cuboid x [mm] y [mm] z [mm]

Cuboid 1 −0.2733 +0.3866 −0.2195
Cuboid 2 −0.3582 −0.2241 −0.0309

Cylinder 1 −0.4200 +0.4511 −0.0158
Cylinder 2 −0.1498 +0.4077 +0.0490

Similar to the acquired dimensions, the deviations of the detected workpiece reference
points are less than 1 mm. These deviations could have different influences: First, it should
be taken into account that the used samples are raw parts that do not have exactly flat
edges and surfaces. Furthermore, the measuring speed, calibration errors, and reflections
could lead to inaccuracies. Moreover, the accuracy of the algorithm for object detection
could be optimized.
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The workpiece reference points were automatically transferred to the preset table
of the machine tool by a Heidenhain RemoTools implementation in C#. In this work,
the workpiece reference points were used for a simple automatic cavity milling process.
Standardized tools and process parameters were applied. Automated cutting face recog-
nition of the raw part, which is based on normal vector, position, and shape geometry,
was implemented for the adapted planning. To avoid collisions or shape errors during
machining, a small safety distance for the workpiece zero point was considered.

5. Conclusions

In this paper, an approach for the autonomous workpiece detection of standardized
blank shapes is proposed. Single steps, sensor path planning, a measuring process, and
object detection are introduced. This method is suitable for a laser triangulation sensor,
but it can also be adapted for other optical sensors. To show the flexibility and robustness
of the proposed approach, the implementation of a machine tool was applied. For the
experimental investigations, several raw parts, such as cuboids or cylinders, were used. By
using bounding-box object detection, it is shown that the deviations of the fully automatic
object detection are <1 mm for a feed rate of 1000 mm/min. Although the deviations of
conventional blank detection with touch probes are more accurate, the achieved results are
suitable for a rough blank detection. If there are higher requirements, a combination of the
introduced approach and a touch probe can be considered. For a feed rate of 1000 mm/min,
the time for the measuring process and object detection is about 2.5 min, which was about
50% faster than a manual touch probe measurement.

The experimental investigations illustrate the robustness of the proposed approach for
the autonomous workpiece detection of standardized blank shapes. Different dimensions
and locations could automatically be determined. In addition, the measuring time and
effort can be reduced for accuracy requirements less than 1 mm, such as for rough detection.
The automatic generation of a digital blank shadow makes it possible to automate the
subsequent steps of process planning to make it even more adaptable. The presented
approach is a solution for the rough detection of blanks with simple geometries, such
as cylinders or cuboids, with accuracy requirements less than 1 mm. The detection of
more diverse geometries is much more complex. Accuracy, time, the reliability of a high
measurement quality, and the avoidance of collisions are criteria that should be considered
in further research. In the current research, an extension of the proposed measuring strategy
was investigated. This approach is applicable for rough detection. The rough detection was
used to supply the probe measurement with small measuring distances, without the risk of
collision. Currently, manual prepositioning is required for measurement with a touch probe.
Even if manual measurement by a touch probe is faster than the described measurement
strategy in certain applications, the degree of automation is not given for a touch probe
measurement. This also applies when the ideal geometry is assumed and a fine detection,
which is based on this assumption, is used. In certain cases, collision-free measurement
with a touch probe cannot be guaranteed for these assumptions because the real location
of the workpiece can deviate from the assumption. Therefore, the measuring directions
of the touch probe cannot be enabled correctly. In this respect, the presented approach
represents a technical solution for the automatic and collision-free blank recognition of
simple shape geometries.

Further investigations will focus on the optimization of the measuring settings and the
object detection to increase the accuracy. An evaluation as to how complex shapes, besides
cuboids or cylinders, can be detected by applying further image processing algorithms, such
as Hough transforms, template matching, or flexible shape extraction (snakes) will be per-
formed. While the current detection is focused on surface detection, further investigations
on edge and burr detection will be conducted in the following steps of the research project,
“AdaPES”, in order to automate a deburring process. In this process, the edge detection
will use the digital shadow of the raw part to apply an iterative closest point algorithm. In
addition, the presented approach could be extended by a self-optimizing process parameter
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and tool selection on the basis of an extensive experimental dataset. These are key issues for
further research. Furthermore, an automatic milling strategy operator becomes necessary
to create and select the optimal milling strategies for workpiece machining. To extend the
current digital blank shadow into a digital twin in further research, further digitalization of
the physical properties is necessary, such as the material properties of the measured blank.
Therefore, the proposed method of autonomous workpiece detection could be an essential
contribution to approaches for autonomous milling machines.
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