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Abstract

This paper presents an analysis of the output variability of agent-based transport models. We simulated a MATSim model of the
city of Hanover multiple times with identical input and evaluated the resulting travel times on different level of aggregation. On a
global level, we observed minor variations of travel times. However, the results show an increased variation when examining the
output on the level of districts or for individual agents. A recommendation for estimating the required number of simulation runs
for a stable output of travel time for the purposed aggregation level is derived from our case study.
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1. Introduction

With the increasing relevance of agent-based simulations, various approaches have been developed, with MATSim
(Horni et al., 2016) emerging as one of the most frequently used open-source simulation frameworks. MATSim is
based on utility maximization. Individual mobility decisions on trip purpose, destination, mode, and time choice are
calculated by econometric discrete choice models to reproduce a fine-grained traffic demand. The ability to simulate
each agent individually enables the consideration of complex linkages across multiple trips. While competing with
all other agents for space-time slots on the transport infrastructure, each agent repeatedly optimizes its daily activity
schedule. Optimization is performed in an iterative cycle with a predefined fraction of agents randomly changing their
plans at each iteration. The framework evaluates the new plan using a scoring function after the subsequent simulation
step (Horni et al., 2016).
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The variability of the agents’ choice in MATSim is based on a series of pseudo-random numbers determined by
a random seed (Paulsen et al., 2018). However, due to the coevolutionary algorithm, the choices are not executed
pseudo-randomly in every run of the simulation (Horni et al., 2011). Thus, the resulting models are non-deterministic.
The uncertainty in the evaluation of different simulation runs is a well-known problem that needs to be considered
when conducting simulation case studies (Rasouli and Timmermans, 2012). Investigating different model parameters
on different levels of aggregation (LOA), we observed substantial variations of different measures. However, there
is a lack of systematic uncertainty analysis of MATSim simulations to facilitate more educated decision-making.
The prerequisites for stable simulation results with a desired reliability have not yet been investigated for different
aggregation levels.

2. Related Work

Quantification of the reliability of decisions based on mathematical models is a prominent topic in the field of
transport modelling. With the emergence of models for increasingly complex problems that are hard to interpret,
researchers have started efforts to generalize definitions of uncertainty and analysis methods. Walker et al. (2003)
presented a theoretical framework for systematic uncertainty analysis in model-based decision support. Therein, un-
certainty is defined as ’any departure from the unachievable ideal of completely deterministic knowledge of the rele-
vant system’. The authors differentiate between three dimensions of uncertainty, which they define as uncertainty of
location, nature, and level.

Multiple studies have examined variations in activity-based micro-simulations, such as the established Albatross
(Arentze and Timmermans, 2004) or Feathers models (Bao et al., 2015). According to Baustert (2021), the most
commonly analyzed uncertainty location in these models is the simulation error. Reasons of this are the relative ease
with which this location can be addressed and the often stochastic nature of these models. Castiglione et al. (2003)
studied the minimum number of runs needed to achieve robust average results. Cools et al. (2011) assessed the impact
of micro-simulation errors on the average daily number of trips per person as well as the average daily distance
traveled per person. Their results show minimal variation, especially for aggregated values.

Agent-based micro-simulations, such as MATSim, are particularly prone to model uncertainties since they often
rely on discrete choice models to perform mode choice and trip assignment. According to Horni et al. (2016) and Horni
et al. (2011), the coevolutionary algorithm of MATSim is the major location for uncertainties in the simulation and
infers different types of uncertainty introduced by time, route, and destination choice modules. Caused by the random
seed, distinct uncertainty is introduced for ever iteration of the simulation. Different random numbers may lead the
optimization algorithm to find other local optima. Moreover, MATSim contains a random variability in how the re-
planning of plans is handled. Horni et al. (2011) demonstrated that the results of simulations can change significantly
between multiple runs. In their work, they studied the impact of varying random seeds with a focus on link loads in
two different MATSim scenarios. They considered that the variation in daily link loads is generally low. However,
considering hourly values, the coefficient of variation increases. In their literature review they also concluded that
average results generated from micro-simulations become stable after ’a relatively small number of simulation runs’
(Horni et al., 2011, p. 8). These findings were probated by Paulsen et al. (2018). Chapter 48 of the MATSim book
(Flötteröd, 2016) also describes the challenges in MATSims output evaluation due to the influence of the choice of
one specific random seed and elaborates the need for further research in this particular area. Thus, we strive to add
additional levels of investigation to this discussion by analyzing the output’s travel time variation of MATSim and
expanding our studies to regard different LOA.

3. Methodology

To investigate the variability of MATSim simulation outputs, we set up a simulation case study for an 10 % model of
the city of Hanover, Germany (Bienzeisler et al., 2020). Using the referenced configuration parameters, we repeatedly
simulated the Hanover input model with 750 iterations. The public transport system was implemented as a network
mode. In addition, commercial traffic was included in the model using the freight extension of MATSim (Zilske et al.,
2012) separated by different branches. We simulated 16 simulation runs with the same input parameters to explore
inconsistencies across the simulation outputs.
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After Paulsen et al. (2018) concentrated their work on the variation of link loads using different random seeds,
we focused on the variation of travel times. Travel time distributions are a model characteristic that can be used for
calibration or validation. Thus, the evaluated dimension of the travel time t per private agent (p) or commercial traffic
vehicle (ct) was defined as the sum of all trip durations per day. We considered the changing travel times tr per run
r in the set of 16 runs R per agent a ∈ all agents A to explore the effects of the uncertainties from the random choice
parts of the MATSim algorithm. We assigned the corresponding home district d ∈ all districts of Hanover D to each
agent ap. Three aggregation levels of the analyzed travel times were introduced as a set of travel times tr ∈ LOA . The
evaluation of travel times was carried out separately for each LOA and each simulation run r ∈ R:

• LOA1: Global average travel time of Hanover: tr with tr for a ∈ A
• LOA2: Average travel time for each district d of Hanover: tr with tr for a ∈ d
• LOA3: Travel time for each agent a of Hanover: tr for all a ∈ A

To quantify the variation of the travel time, we applied the coefficient of variation cv(tr), which is defined as the
standard deviation of the sample divided by the sample mean, on our defined LOA.

4. Analysis of the Variation of Travel Times

To obtain a first understanding of the variation of travel times across the simulation runs, we started our work by
comparing the frequency distributions of all occurring travel times per agent of the private traffic for each simulation
run separately. Travel times were grouped in bins of 1 minute, each with their corresponding frequency per run. For
a better comparison of the resulting 16 travel time distributions, we have combined the histograms in the 3D bar plot
shown in Figure 1. Each bar represents the frequency of occurrence of a travel time group per simulation run.

Fig. 1: Combined Histograms of travel time tr in bins of 1 minute with r ∈ R.

The rough surface depicted in the figure provides a visual indication that the simulation generates different dis-
tributions of travel times. Especially in the range of frequently occurring values, different patterns can be observed.
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However, the diagram also highlights that there are runs with a similar distribution of travel times, where the surface
of the plot is constant and smooth. This can be observed for runs 11 and 12.

To determine the deviation of the simulation runs, we calculated the corresponding Root Mean Square Error
(RMSE) and thus compared all runs to each other (see Figure 2). In most cases, the RMSE varies from 12.73 to
a maximum of 20.20. Notice that there are runs with a RMSE of 0. This indicates an identical distribution of the
travel times for the combination of these specific runs. This observation is consistent with the first visual analysis. The
simulations replicated exactly the same travel times for run 4, 9, 11, 12, 14, and 16.

Fig. 2: RMSE-Analysis of the travel time distribution of all simulation runs R.

Another finding from our data is that the simulation outputs can settle in several discrete states for each agent. The
number of states s per agent a is defined as the number of different travel time values for an agent occurring over all
simulation runs. Figure 3 shows the number of different states sa occurring over all simulation runs as a cumulative
distribution plot.

A large group of private agents, 21.9 % (n = 16.312) has one state, i.e. one constant travel time over all runs. In
these cases, the travel time distribution does not oscillate and the specific state reoccurs in every simulation run. For
commercial vehicles, this applies for 3.4 % (n = 211) of the agents.

Fig. 3: Empirical cumulative distribution with the number of different states sa across all agents grouped by agent type.

As shown, the output for commercial traffic vehicles differs more. In particular couriers, express, and parcel service
(CEP) vehicles do not settle in discrete states, but show individual travel times for each run. However, the sample size
is significantly smaller (np = 74.394, nct = 6.148, nCEP = 98 ). To explore this characteristic of the freight traffic
in MATSim in detail, we plotted the frequency distribution of travel times per simulation run in Figure 4. The more
homogeneous distribution of travel times tr for commercial traffic vehicles compared to CEP vehicles per run is
evident.
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Fig. 4: Distribution of travel time tr for commercial agents differentiated by type with r ∈ R.

To analyze the variability of travel times tr in detail, we introduced the coefficient of variation cv(tr) for different
LOA as a measure of variability and applied it to our data set. Figure 5 illustrates the characteristics that led to a
particularly high cv(tr)LOA3 in our simulation case study.

Fig. 5: Distribution of the variation coefficient cv(tr) in relation to the average travel time combined with the empirical cumulative distribution
function of the variation coefficient cv(tr) with r ∈ R.

The various travel time distributions observed previously are evident in the variation of measured travel time values
across all agents and simulation runs. The scatter plot indicates that higher cv(tr) values usually occur at lower average
travel times. Since the analysis of travel time frequencies shows that most of the agents’ travel time tend to decline
within this range of lower travel times, the observed clustering can be partly explained by the correspondingly larger
sample size. It is apparent that several agent’s travel times varies considerably between the simulation runs. The
maximum values cv(tr) differ significantly between agent types, i.e. cv(tr

p)(max) = 1.212 , cv(tr
ct)(max) = 0.917 and

cv(tr
cep)(max) = 0.230. In total, only nine agents show a value of cv(tr) > 1. A cv(tr) > 0.5 can be observed for 741

agents (0.1 %).
Comparing agent types, the travel times of private agents show up the highest rate of deviation. This trend is also

evident in the cumulative frequency distribution of cv(tr). Analogous to the number of different states per agent, 71.0
% of the agents of the individual traffic (n = 52.820) have a value of cv(tr

p) > 0.1 across all simulation runs. For
CEP-vehicles, it is close to 89.6 % (n = 88). The corresponding results indicate that all of these vehicles change
their travel time in every simulation run. However, this variance is smaller compared to the other agent types and the
resulting travel times are more consistent.
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Table 1: Resulting distribution of the coefficient of variation cv(tr) with r ∈ R.

Level of aggregation Coefficient of variation Standard deviation σcv(tr) Q1cv(tr) Mediancv(tr) Q3cv(tr)

cv(tr) | cv(tr)
LOA1

Total private agents of Hanover 0.0015 - - - - -
Total commercial agents of Hanover 0.0009 - - - - -

LOA2
Private agents per districts - 0.0058 0.0031 0.0037 0.0049 0.0064

LOA3
Individual agents of private traffic - 0.0818 0.1074 0.0028 0.0449 0.1156
Individual agents of commercial traffic - 0.0437 0.0579 0.0092 0.0250 0.0546

After we were able to show that different travel time distributions occur using identical simulation input, we started
investigating the thresholds for stable simulation results. We determined the value of cv(tr) for each agent on LOA3
differentiated by type. CEP vehicles were included in commercial traffic. For a better comparability, we averaged cv(tr)
across all agents. Evaluating LOA2 on district level, we only included private agents because commercial vehicles
usually start at specific companies with their tour and are therefore not so widely distributed over the simulation area.
The travel times of the corresponding agents were averaged per district and the variability of this average value was
examined and a mean value of cv(tr) with tr ∈ d was calculated across all districts. LOA1 is the variation of the
global average travel time across all simulation runs differentiated by individual and commercial agents. The results
are summarized in Table 1. For LOA2 and LOA3 statistical parameters of the distribution of cv(tr) are provided since
a single cv(tr) value was calculated for each district or agent of Hanover.

Our results support our initial assumptions and the findings from the literature review. The global mean of the
average travel times of all private agents from Hanover remains almost constant over all simulations runs cv(tr

p)LOA1 =

0.0015. The variation of the commercial agent travel times are smaller with a cv(tr
ct)LOA1 = 0.0009. Observed variation

at district level increases slightly cv(tr
p)LOA2 = 0.0058 and the analysis of each agent individually results in the highest

observed variation of travel times cv(tr
p)LOA3 = 0.0818. As a comparison of the variation of the aggregated travel times

per district and the corresponding variation of the agents living in this district, we grouped the cv(tr
p)LOA3 values by the

agent’s home district (Figure 6).

Fig. 6: Boxplot of variation of individual travel times Cv(tr) grouped by the agent’s home location with r ∈ R.

Subsequently, we compared the individual agent travel time variability on LOA3 with the variability of the aggre-
gated travel times on LOA2. The mean distribution of travel times for all agents living in the corresponding district
varies between cv(tr

p)LOA1(min) = 0.048 and cv(tr
p)LOA1(max) = 0.114. The corresponding results for cv(tr

p)LOA2 are 0.007
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and 0.005. Although the agents of a district show a variation of their corresponding travel times over all simulation
runs, the aggregate travel time of all residents of the district varies less. The results of our case study show a com-
pensation of the variations of travel times of individual agents on the aggregate dimension of districts. Thus, the more
aggregated evaluation values are stabilizing rather fast at one level. The results imply that a prediction about these
global parameters, especially on LOA1 and LOA2, can be made using an average value of only a few simulation runs.
For practical work with MATSim, it is of interest how many simulation runs are necessary to determine the adequate
value for the corresponding LOA with a desired accuracy.

5. Prediction of Required Number of Simulation Runs

To allow the derivation of generally valid indications from our results, we investigated how many simulations
are necessary to arrive at robust mean values at the three aggregation levels defined. We applied the convergence of
subsequent mean values tn −→ tc to our data set by forming a moving mean value tn with a progressing number of
simulations. As soon as the deviation of the calculated mean value to the convergence mean value tc was less than one
percent, we considered the obtained mean value to be robust. However, the 16 simulation runs we performed were not
sufficient to achieve a robust mean value. Despite this, to predict the number of simulations at which a robust mean
is reached, we used our observed travel time distributions for each agent to generate artificial simulation results. This
process was continuously repeated to replicate the observed travel time distribution. We consider this methodology to
be valid because running a large set of simulations with MATSim to explore the needed number of simulation runs is
not practical due to the comparatively long computation times.

The calculated distributions are summarized in Figure 7. Our first investigations indicate that the travel time values
on LOA1 and LOA2 are already robust after one iteration. Thus, this robustness occurs for aggregated results. For
LOA3,p 31 simulations were in average sufficient to reach a robust mean. At the maximum 36 runs were necessary.
Additionally, the graph shows the development of the mean value convergence for commercial vehicles and, as a
subset of this, for CEP-vehicles. The function of LOA3,ct develops similar to LOA3,p with a wider range of variation,
even though the the robust mean value was in average reached earlier after 20 runs.

Fig. 7: Relative deviation from calculated convergence mean values for different LOA.

6. Conclusion and Future Work

The travel times of a MATSim simulation vary despite constant input parameters. We developed a recommendation
for the needed number of simulation runs according to different aggregation levels. Our aim was to obtain results with
a desired reliability of one percent deviation from the predicted travel time values. Accordingly, the variation of the
travel times decreases as the aggregation level increases, while global aggregated parameters such as the average
travel time remain approximately constant throughout the simulation. By analyzing the converging average, we were
able to show that a single simulation is sufficient for an aggregated evaluation of travel times. These results are in
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line with previous contributions in this research area, since aggregated macroscopic data is often used to validate
MATSim model results (Kagho et al., 2020). However, the analysis of the coefficient of variation also showed varying
travel times of individual agents per simulation run. This can be particularly important when evaluating simulations
focused on specific population groups with comparatively small sample sizes. A possible evaluation case applies for
CEP traffic. These vehicles are part of commercial transport and thus have a small number of vehicles compared to
the private traffic. Our simulations illustrated that the travel times of the freight agents tend to be relatively constant,
although the travel times of the CEP vehicles still varies. Outliers can change the overall result due to the small size of
the sample. For these sample sizes our results lead us to recommend to average at least the results of two simulation
runs to reduce the variability of the evaluated travel times.

MATSim simulation runs are computationally expensive. Due to this, MATSim models are often scaled down. The
variation of the individual agent travel times on LOA3 thus has a higher influence on the aggregated values and leads to
an inherent error. Consequently, our findings support the work of Llorca and Moeckel (2019), who observed different
travel time distributions for smaller scale factors.

The objective of our future work is to provide an overview of the variance of a MATSim model in relation to the
defined level of aggregation to allow more accurate evaluations with MATSim. Travel times vary depending on the
agent types. Thus, it is appropriate to investigate attributes causing a corresponding variability and finally predicting
the expected error for certain groups of agents. In addition, our artificial generation of travel time distributions, respec-
tively simulation runs, must be validated with further simulation runs in order to be able to determine the predicted
values more precisely.
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Zilske, M., Schröer, S., Nagel, K., Liedtke, G., 2012. Adding freight traffic to matsim. VSP Working Paper 12-02 .


