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A B S T R A C T   

In this paper, a 3D finite element modelling approach is presented to assess the effects of manufacturing defects 
within composite structures. The mesoscale modelling approach derives the stress-strain response of a composite 
structure from a representative structural element. A set of tensile and bending loads is used to compute its ABD- 
Matrix. The boundary conditions of the model are described in detail as is the extraction of the strain and 
curvature response. The derived stiffness from the presented modelling approach is compared to the classical 
lamination theory and the models’ shortcomings are discussed. Finally, the influence of a gap, an overlap and 
two different-sized fuzzballs on the macroscopic mechanical properties of a composite structure are evaluated 
using the presented multiscale modelling approach, thereby providing stiffness matrices influenced by the de
fects for the use in global models of composite parts.   

1. Introduction 

Automated fibre placement (AFP) is an established production pro
cess to manufacture complex carbon fibre-reinforced polymer (CFRP) 
composite parts on an industrial scale. The complex nature of the AFP 
process though allows for the occurrence of process-induced defects, 
such as gaps, overlaps, tow-twists or fuzzballs [1]. Ideally, 
process-induced defects need to be addressed during layup, as a retro
active correction after curing is costly and, in cases with high re
quirements for structural integrity such as in the aviation industry, 
oftentimes not possible. This can result in production downtimes of up to 
50% [2]. 

Therefore, research in online monitoring of the AFP layup process is 
being conducted [3–5]. Promising monitoring methods include laser 
scanning of the layup surface [4] and thermographic monitoring of the 
tows during layup [6–9]. Yet there still is a lack of understanding on how 
the defects influence the mechanical properties of a CFRP structure. 

Research in assessing the effects of AFP process-induced defects 
mainly focuses on the effects of positioning defects such as gaps and 
overlaps, as these types of defects are oftentimes inevitable, such as in 
the layup of double curved surface-parts or when laying variable stiff
ness laminates [10–13]. It is generally found that single defects have 

negligible impact on the elastic behaviour of a composite structure, 
whereas a reduction in tolerable strength might occur in dependency of 
structure size, defect size and defect positioning within the laminate. 
The accumulation of defects show a higher influence on the stiffness 
properties of composites [14]. 

The influence of twisted tows, gaps and overlaps on coupon and 
open-hole specimens under tension and compression loading were 
experimentally investigated by Croft et al. [15]. Seon et al. [16] inves
tigate the influence of resin-filled voids on the strength and formulates a 
fatigue prognosis. While the investigated voids also result in comparable 
deflections within the fibre layers, foreign objects such as fuzzballs 
(Fig. 1) are not as easily characterised due to their irregular shape, fibre 
direction and fibre volume fraction. Thus, to this day, fuzzballs are only 
described regarding their formation and general effects [1]. This proves 
especially problematic when cured composite parts with internal fuzz
balls need to be assessed for their structural integrity, as the mechanical 
effects of fuzzballs are not well described. 

Numerical assessments investigating the impact of AFP process- 
induced defects have been conducted following different modelling 
strategies. As the in-plane and out-of-plane fibre waviness of the layers 
surrounding the defect has the most significant impact on the elastic 
response of a composite structure, the fibre waviness is often used as a 
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modelling parameter for evaluating the effects of defects [10,14,17]. 
Another approach is to apply multiscale modelling techniques, thus 
assessing a defect in a mesoscale simulation within macroscale part 
analysis [18]. 

This paper presents a novel 3D finite element representative struc
tural element (RSE) approach to numerically assess the impact of 
manufacturing-induced defects on the characteristic stiffness parame
ters of a thin-walled composite structure. Spanning several layers, the 
proposed detailed RSE especially allows for the detailed investigation of 
fuzzballs, which is currently missing in similar numerical modelling 
setups. The presented numerical approach deduces the stiffness pa
rameters of a laminate region influenced by a defect and derives its 
adjusted ABD matrix in order to make the results usable in a multiscale 
simulation scheme. The presented simulation approach allows for high 
flexibility in modelling geometrically complex defects by being able to 
incorporate high-resolution geometric data from real-world measure
ments such as computer tomography or online detection techniques. As 
the setup of the boundary conditions follows the same presumptions of 
standard plate theories used for describing the elastic response of 
composite laminates, the model is suitable to be deployed in a multiscale 
simulation setup. 

2. Representative structural element formulation 

The representative structural element (RSE) presented in this paper 
is based on the unit-cell model developed by Hannig [19–21], which was 
developed to characterise the elastic bending behaviour of a morphing 
skin structure. In-house preliminary studies found that by extending the 
unit-cell model, it can describe the mechanical influence of production 
defects on thin-walled CFRP structures. The 3-dimensional cuboid RSE 
model represents a cut-out of a cured, planar CFRP structure with a 
shell-like deformable response. The size of the RSE model depends on 
the size of the heterogeneities to be investigated. The production defects 
typically are too large to accurately model the elastic structural response 
on a microstructural, i.e. lamina scale, yet they are too small to 
reasonably be modelled on a macroscopical structural scale. Hence the 
model is characterised by its mesoscale, utilising averaged material 
properties on the lamina level and outputting characteristic shell stiff
ness parameters for macroscopic structure simulations. The simulation 
scale is thus defined by the characteristic lengths of the manufacturing 
defect. 

While Hannig mainly studied the influence of evenly distributed 
cracks which allow for periodic boundary conditions, the approach 
described in this paper concentrates on modelling singular, non-periodic 
and partly non-symmetric manufacturing defects within the laminate. 
The term “unit-cell”, as was used by Hannig for his model, is thus 
misleading in the intended use case for this study and therefore replaced 
by the term “Representative Structural Element” (RSE). 

The RSE is framed by eight corner nodes ① – ⑧, with an overall 
length Lx and an overall width Ly as shown in Fig. 2. The laminate 
thickness t as expected for a defect-free laminate defines the height of 

the frame. The framing corner nodes are independent of the model 
mesh. By defining constraints as described in Section 2.1, translational 
fixation of the corner nodes to the geometry of the RSE is ensured. Note 
that protrusion of the frame in the z-direction by the modelled geometry 
is allowed, while protrusion of the cutting faces x0, x1, y0 and y1 is not. 

The corner nodes also act as load introduction points for the model. 
To reach numerical stability, the forces acting on the corner nodes ① – 
⑧ must be equal and opposite, so that the total forces and moments 
acting on the RSE sum up to zero. Otherwise, the solution is ambivalent, 
as the model is not clamped in space by any boundary condition. 
Although global force and moment balance in theory should provide 
numerical stability, the model is further supported by weak ground 
springs in all translational directions at each corner node to counteract 
numerical instability. The spring stiffness kn

j of each spring is arbitrarily 
set to 10− 5N/mm to ensure negligible influence on the elastic- 
mechanical response of the RSE. 

The structural response of the RSE is comparable to that of a con
ventional, anisotropic shell element and can be used as such in macro
scopic structure simulations. The material characteristics of such a 
composite shell element are typically calculated via classical lamination 
theory [22,23]. To be able to compare the structural response of the RSE 
to the classical lamination theory, the reference surface of the RSE model 
is positioned at a height of t/2 relative to the frame. The defect position 
in the thickness direction thus also influences the structural response of 
the RSE and is reflected in the stress-strain relation of the substituting 
shell element. 

2.1. Boundary conditions 

In contradiction to the approach described by Hannig in [20], the 
RSE presented in this paper does not solely include periodic boundary 
conditions. This stems mainly from the necessity for the RSE to run 
simulations of non-recurring production defects such as fuzzballs or 
tow-twists. In such cases, periodic boundary conditions might infer 
artificial stresses at the cutting faces of the RSE. This edge effect can be 
mitigated by increasing the RSE model size. However, this is not 
favourable from a researcher’s point of view, as in doing so, the 
measurable effects of defects on the RSE structure decrease as well. 
Therefore, non-periodic boundary conditions potentially give a better 
understanding of the mechanical influence of defects on composite 
structures. 

Nonetheless, periodicity can be assumed in some cases, for example 
when recurring defects such as gaps and overlaps are unavoidable due to 
limitations of the layup process. Also, by comparing the output of the 
RSE with non-periodic boundary conditions to the same RSE with pe
riodic boundary conditions, the assumptions behind the given boundary 
conditions can be verified. For this reason, the presented RSE model 
defines two boundary condition sets: one with assumed periodicity and 

Fig. 1. Carbon fibre fuzzball on an uncured CFRP laminate during layup.  

Fig. 2. Representative structural element (RSE) model frame and param
eter definition. 
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one without. 
Every node i of the model fulfils Eq. (1), in which the deformed co

ordinates x = (xx,xy,xz)T are put in relation to the initial coordinates X =
(Xx,Xy,Xz)T and the displacements u = (ux,uy,uz)T of a node i [20]. 

xi = Xi + ui (1) 

Normalised reference coordinates (ϑ, η, ξ)T relative to the governing 
frame can be defined for each node i according to Eq. (2). Note that ξ 
might protrude the interval [0, 1] within the region of a defect. 

ϑi =
Xx,i − Xx,(1)

Lx

ηi =
Xy,i − Xy,(1)

Ly
ϑ, η ∈ [0, 1]

ξi =
Xz,i − Xz,(1)

t

(2)  

2.1.1. Periodic boundary conditions 
When assuming periodicity, every node i on the face x0, excluding 

the nodes on the vertical edges, is constrained in its movement to its 
respective opposing node on face x1 and to all corner nodes ① - ⑧ in 
every translational movement according to Eq. (3). 

ux1
i = ux0

i + (1 − ξi)⋅(1 − ηi)⋅
(
u(2) − u(1)

)
+ (1 − ξi)⋅ηi⋅

(
u(3) − u(4)

)

+ ξi⋅(1 − ηi)⋅
(
u(6) − u(5)

)
+ ξi⋅ηi⋅

(
u(7) − u(8)

)
(3) 

Likewise, every pair of opposing nodes on faces y0 and y1 are con
strained in every translational movement according to Eq. (4), again 
excluding the nodes on the vertical edges. 

uy1
i = uy0

i + (1 − ξi)⋅(1 − ϑi)⋅
(
u(4) − u(1)

)
+ (1 − ξi)⋅ϑi⋅

(
u(3) − u(2)

)

+ ξi⋅(1 − ϑi)⋅
(
u(8) − u(5)

)
+ ξi⋅ϑi⋅

(
u(7) − u(6)

)
(4) 

The nodes on the vertical edges 15, 26, 37 and 48 are constrained to 
their diagonally opposing edge node and to the corner nodes spanning 
the edges in every translational movement as shown in Eq. (5) and (6). 

ui37 = ui15 + (1 − ξi)⋅
(
u(3) − u(1)

)
+ ξi⋅

(
u(7) − u(5)

)
(5)  

ui26 = ui48 + (1 − ξi)⋅
(
u(2) − u(4)

)
+ ξi⋅

(
u(6) − u(8)

)
(6)  

2.1.2. Non-periodic boundary conditions 
When no periodicity is assumed, the nodes on each cutting face 

excluding the vertical edge nodes are constrained to the four corner 
nodes framing the respective face in x- and y-movement. Note that the 
displacement dependency of opposing nodes no longer is present. 
Movement in the z-direction is not constrained, as this would prohibit 
out-of-plane bending response of the model at the cutting faces. The 
exemplary constraints for each node on face x0 is given in Eq. (7). All 
other faces are constrained accordingly to their framing corner nodes. 

ux0
i = +(1 − ξi)⋅(1 − ηi)⋅u(1) + (1 − ξi)⋅ηi⋅u(4) + ξi⋅(1 − ηi)⋅u(5) + ξi⋅ηi⋅u(8)

(7) 

The nodes on the vertical edges are constrained in x- and y-move
ment to the corner nodes spanning the edges, as is exemplarily shown for 
edge 15 in Eq. (8). Constraints for z-movement may be given at this point 
without hindering bending modes, but this might lead to local stress 
peaks in the thickness direction at the edges due to non-linear transverse 
strain and is therefore not implemented. 

ui15 = +(1 − ξi)⋅u(1) + ξi⋅u(5) (8)  

2.2. Load cases 

Six unique load cases are predetermined, corresponding to the six 
stress states of the stress-strain relation, as shown in Fig. 3 [20]. The 
macroscopic forces F are imposed on the framing corner nodes of the 
RSE, thus equally distributing the forces alongside the faces through the 
boundary conditions. The magnitude of the forces acting on the corner 
nodes is computed from the shear and moment fluxes n and m according 
to Table 1. The subscript index in conjunction with Fig. 3 denotes the 

Fig. 3. Load cases applied to the RSE.  

Table 1 
Forces applied in the predetermined load cases.  

case load 

1 Fx =
1
4

⋅nx⋅Ly 

2 Fy =
1
4

⋅ny⋅Lx 

3 Fx =
1
4

⋅nxy⋅Lx and Fy =
1
4

⋅nxy⋅Ly 

4 Fb
x =

1
2

⋅mx⋅
Ly

t 
5 Fb

y =
1
2

⋅my⋅
Lx

t 
6 Fb

x =
1
2

⋅mxy⋅
Lx

t 
and Fb

y =
1
2

⋅mxy⋅
Ly

t  
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direction the force is acting upon each corner node. 

2.3. Acquisition of structural response 

To derive the stress-strain relation, the global strain and curvature 
response of the RSE has to be determined. The strain and curvature 
response of the RSE model can be extracted using solely the displace
ment of the corner nodes ① – ⑧, as described by Hannig [19]. 

The in-plane strain response of the RSE can be calculated directly by 
exploiting the macroscopic kinematic relations εx = ∂ux/∂x and εy = ∂uy/ 
∂y for the strain in x- and y-direction and γxy = ∂ux/∂y + ∂uy/∂x for the 
strain in x- and y-direction and γxy = ∂ux/∂y + ∂uy/∂x for the shear strain. 
Thus, the strain response of the RSE directly derives from the averaged 
corner displacement, as is shown in Eq. (9) to (11). Note that a bending 
response of the RSE does not influence the calculation of the in-plane 
strain. 

ϵx =
1
4
⋅
(

u(2)
x − u(1)

x

Lx
+

u(3)
x − u(4)

x

Lx
+

u(6)
x − u(5)

x

Lx
+

u(7)
x − u(8)

x

Lx

)

(9)  

ϵy =
1
4

⋅

(
u(3)

y − u(2)
y

Ly
+

u(4)
y − u(1)

y

Ly
+

u(7)
y − u(6)

y

Ly
+

u(8)
y − u(5)

y

Ly

)

(10)  

γxy =
1
4

⋅
(

u(3)
x − u(2)

x

Ly
+

u(4)
x − u(1)

x

Ly
+

u(7)
x − u(6)

x

Ly
+

u(8)
x − u(5)

x

Ly

)

+
1
4

⋅

(
u(2)

y − u(1)
y

Lx
+

u(3)
y − u(4)

y

Lx
+

u(6)
y − u(5)

y

Lx
+

u(7)
y − u(8)

y

Lx

)

(11) 

Due to the exploitation of the macroscopic kinematic relations, the 
derivation of the in-plane strain response is only applicable to small 
strains and displacements within the simulations, as will be discussed in 
Section 3.1. 

The curvature response of the RSE is estimated via the angles of the 
vertical edges. Given a macroscopic shell structure, the infinitesimal 
curvatures κx and κy at each point in the structure can be described by 
Eq. (12) and (13). 

κx =
∂2uz
∂x2 =

∂φx
∂x (12)  

κy =
∂2uz
∂y2 =

∂φy
∂y (13) 

The angular change of the vertical edges respective to the x- or y-axis 
can be derived by exploiting the scalar product of the directional vectors 
of the vertical edges and the base vectors ex = (1, 0, 0)T and ey = (0, 1, 
0)T. The angular change Δφx and Δφy for the edge 15 is exemplarily 
given in Eq. (14). The angular changes of the other three vertical edges 
are calculated accordingly. 

Δφx15 =
π
2
− acos

(
ex⋅
(
x(5) − x(1)

)

x(5) − x(1)

)

Δφy15 =
π
2
− acos

(
ey⋅
(
x(5) − x(1)

)

x(5) − x(1)

) (14) 

By inserting Eq. (14) in the macroscopic curvature definitions from 
Eq. (12) and (13), and by further calculating the mean of the two 
opposite vertical edge pairs, the curvature of the RSE can be obtained 
solely by the displacement of the corner nodes in Eq. (15) and (16). 

κx =
1
2

⋅
(

Δφx26 − Δφx15

Lx
+

Δφx37 − Δφx48

Lx

)

(15)  

κy =
1
2
⋅
(Δφy37 − Δφy26

Ly
+

Δφy48 − Δφy15

Ly

)

(16) 

Following the same underlying principle, the macroscopic twisting 

curvature of the RSE can be expressed as shown in Eq. (17). 

κxy =
∂2uz
∂x∂y =

∂φxy
∂(Δx, Δy, 0)T

−
∂φxy

∂(Δx, − Δy, 0)T
(17) 

The angular change Δφof the vertical edges now must reflect the 
diagonal twisting κxy of the vertical edges and thus be calculated in 
relation to a diagonal base vector as defined in Eq. (18). Special care 
must be taken with sign conventions to keep positive curvature defini
tions consistent. 

The infinitesimal reference lengths Lxy for calculating the twisting 
curvature κxy in Eq. (17) can be easily calculated to Lxy = 0,5⋅(

̅̅̅
2

√
Lx +

̅̅̅
2

√
Ly). This however introduces one important constraint to the RSE 

model, as the resulting formula for calculating the twisting curvature of 
the RSE shown in Eq. (19) only holds for quadratic RSE models (i.e. Lx =

Ly). 

Δφxy
15 =

π
2
− acos

((
ex + ey

)
⋅
(
x(5) − x(1)

)

̅̅̅
2

√
⋅ ‖ x(5) − x(1) ‖

)

Δφxy
26

=
π
2
− acos

((
ex − ey

)
⋅
(
x(6) − x(2)

)

̅̅̅
2

√
⋅ ‖ x(6) − x(2) ‖

)

Δφxy
37

=
π
2
− acos

((
ex + ey

)
⋅
(
x(7) − x(3)

)

̅̅̅
2

√
⋅ ‖ x(7) − x(3) ‖

)

Δφxy
48

=
π
2
− acos

((
ex − ey

)
⋅
(
x(8) − x(4)

)

̅̅̅
2

√
⋅ ‖ x(8) − x(4) ‖

)

(18)  

κxy =
Δφxy37 − Δφxy15

1
2

( ̅̅̅
2

√
Lx +

̅̅̅
2

√
Ly
) −

Δφxy26 − Δφxy48

1
2

( ̅̅̅
2

√
Lx +

̅̅̅
2

√
Ly
) (19) 

A more thorough explanation of the above equations can be found in 
[19]. 

2.4. Stiffness representation 

A standard representation of the mechanical properties of a com
posite structure is given by the classical lamination theory, within which 
the macroscopic constitutive relation is given in Eq. (20). The underly
ing assumptions for the classical lamination theory are similar to the 
Kirchhoff-Love plate theory. Herein, a thin-walled plate structure is 
represented by its mid-surface, allowing for both in-plane deformation 
and out-of-plane bending [22–25]. 
[

n
m

]

=

[
A B
B D

]

⋅
[
ϵ
κ

]

(20) 

The force and moment fluxes acting on the mid-surface are denoted 
in n = (nx,ny,nxy)T and m = (mx,my,mxy)T, whereas ε = (εx,εy,γxy)T and κ 
= (κx,κy,κxy)T denote the strains and curvatures acting on the reference 
plane. The stiffness matrix is a 6 × 6 matrix which links the force and 
moment fluxes to the strains and curvatures of thin-walled composites 
similar to Hooke’s law and is generally referred to as ABD matrix due to 
its submatrices A, B and D [22,23]. Herein, Aij denotes the in-plane 
behaviour, Dij denotes the out-of-plane behaviour and Bij denotes the 
coupling characteristics of a composite shell. 

The six load cases defined in Section 2.2 are set such that for each 
load case only one term in n and m is non-zero. When inverting the 
constitutive relation in Eq. (20) as shown in Eq. (21), each row of the 
inverted ABD matrix can then be solved uniquely by the corresponding 
structural response of the RSE. 
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ϵx

ϵy

ϵxy

− −

κx

κy

κxy

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A11
′ A12

′ A16
′

A21
′ A22

′ A26
′

A61
′ A62

′ A66
′

|

|

|

B11
′ B12

′ B16
′

B21
′ B22

′ B26
′

B61
′ B62

′ B66
′

− − − − − − − − | − − − − − − − −

B11
′ B12

′ B16
′

B21
′ B22

′ B26
′

B61
′ B62

′ B66
′

|

|

|

D11
′ D12

′ D16
′

D21
′ D22

′ D26
′

D61
′ D62

′ D66
′

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋅

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

nx

ny

nxy

− −

mx

my

mxy

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(21) 

By inverting the inverse ABD matrix, the representative stiffness 
properties of the RSE model are finally obtained. It should be noted that 
the ABD matrix derived from the RSE model allows for non-symmetry of 
its constituents, as every ABD term is calculated independently. Thus, 
the non-symmetric mechanical response of the RSE is also reflected in 
the derived ABD matrix. 

3. Application and discussion 

3.1. RSE model validation 

The consistency of the RSE model was validated against the classical 
laminate theory in a numerical comparison. The laminate layup was 
arbitrarily chosen to be [0◦, 30◦, 60◦, 45◦] for all simulations with a ply 
thickness tply = 175μm, resulting in a total laminate thickness t = 0.7mm. 
The non-symmetric laminate configuration allows for a fully occupied 
ABD matrix with all non-zero terms. The reference ABD matrix derived 
via classical lamination theory is shown in Eq. (22). Note that all entries 
are far greater than zero, allowing for a relative comparison of the ABD 
derived by the RSE model to the classical lamination theory. 

ABDCLT =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

58994.7 18184.0 18764.6

31521.4 18764.6

19948.4

− 6490.8 1683.0 1317.1

1683.0 3124.8 2288.8

1317.1 2288.8 1683.0

sym.

2927.8 644.3 612.2

964.6 612.2

716.4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

MPa

(22) 

The quadratic, reduced 3D continuum elements (C3D20R) were 
assigned “engineering constants” material properties within Abaqus 
2020. The mechanical properties of the unidirectional lamina used in 
the validation study were taken from the World Wide Failure Exercise III 
and are listed in Table 2 [26]. 

The structural response ABDRSE derived from the RSE is compared to 
the classical lamination theory ABDCLTshown in Eq. (22). The relative 
difference ΔABD is calculated according to Eq. (23), which allows for a 
comparison of the RSE to the classical lamination theory on a percentage 
basis. Positive entries hereby indicate a stiffer response of the RSE 
compared to the classical lamination theory. 

ΔABDij =

(
ABDRSE

ij − ABDCLT
ij

)

ABDCLT
ij

(23) 

The validation model size is set to Lx = Ly = 5mm. As was mentioned 
in Section 2.3, the twisting response of the RSE only holds for quadratic 

RSE models. The mesh size is set to hold two elements per ply in the 
thickness direction, with the in-plane to out-of-plane aspect ratio set to 
2. 

The load collective of the validation study was chosen for each load 
case such as that normal strains do not exceed 0.25% and shear strains 
do not exceed 0.5% within the RSE model elements, thereby complying 
with the presumption of small deformations. 

Fig. 4 (left) shows the relative deviations between the ABDRSE matrix 
terms of the validation model and the ABDCLT from the classical lami
nation theory. With a mean deviation of 0.122%, the extensional stiff
ness matrix A shows good consistency to the classical lamination theory, 
as does the D matrix with a mean deviation of − 0.085%. 

The greatest deviations can be found in the coupling matrices B with 
deviations of up to − 1.903%. More notably it was found that the upper 
right B matrix of the ABDRSE matrix is not symmetrical to the bottom left 
B matrix. This shows a clear discrepancy to the classical lamination 
theory, where such behaviour is not possible due to the underlying 
assumption of linear elasticity. From the author’s perspective, the non- 
symmetry of the B matrices is to be explained by the difficulty of 
accurately modelling the bending behaviour of quadrilateral elements 
within finite element simulations [27]. This becomes apparent when 
examining the deviation of the inverse ABD matrices from both RSE and 
classical lamination theory ΔABD− 1 (Fig. 4, right). It can be clearly seen 
that the strain and curvatures in the bending load cases Mx, My and Mxy 
deviate from the expected values from the classical lamination theory, 
whereas the load cases with tensile forces Nx, Ny and Nxy show almost no 
deviation. The material properties used in this study further amplify this 
error due to their high anisotropy (Table 2). The latter also explains the 
overall higher deviations of the RSE to the classical lamination theory 
compared to the findings in [19,20]. 

The validation study found no significant difference when comparing 
the simulation outcome of the two boundary condition sets. The greatest 
deviation between any of the ΔABD terms of the RSE response with 
periodic boundary conditions compared to the RSE response with non- 
periodic boundary conditions was measured to be smaller than 
3.26e− 5%, thus proving the applicability of the non-periodic boundary 
condition set for defect-free laminates. It should be noted, however, that 
a notably higher deviation between the two boundary condition sets is to 
be expected for RSE models containing a non-symmetric defect. 

Finer meshing showed no significant influence on the RSE outcome. 
However, this might only hold for simulations of defect-free laminates. 
When analysing production defects, non-linear force progressions are to 
be expected within the laminate, which should be addressed by suffi
ciently decreasing mesh sizes in affected areas. 

3.2. Numerical assessment of defects 

In the following sections, the structural influence of three different 
AFP-specific production-induced defects is examined with the RSE 
model described above. Namely, simplified models of gaps, overlaps and 
fuzzballs are analysed for a cured composite structure. An overview of 
various AFP-specific production-induced defects is given in [1]. 

Different modelling approaches were used for the definition of the 
geometry and material characteristics of the examined defects. These are 
explained in detail in their respective sections. The layers above and 
below the defects are simplified to not vary in their thickness. As the aim 
is to simulate curing cycles with soft tooling, i.e. with a vacuum bagging 
during autoclave curing, this is a valid assumption [10]. This must also 
be taken into account when comparing the resulting mechanical prop
erties to findings where hard tooling was used during the autoclave 
cycle, as defects with out-of-plane geometric deviations then affect all 
neighbouring layers both in their local geometry and their inherent local 
fibre volume fraction distribution [12,28]. 

Layers placed on top of defects are influenced by the defect through 
imposed out-of-plane fibre waviness [29]. This is reflected in the RSE 
model by adjusting the local material coordinate system of each 

Table 2 
Mechanical properties for the unidirectional lamina IM7 as prescribed in WWFE 
III.  

E1 165 GPa  ν21 0.34  G12 5.6 GPa 
E2 9 GPa  ν31 0.34  G13 5.6 GPa 
E3 9 GPa  ν32 0.5  G23 2.8 GPa  
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element, such as that the material coordinate system is aligned to the 
fibre direction vector as derived for the geometrical centre of each 
element. With a sufficiently fine mesh in areas affected by the defect, the 
out-of-plane fibre waviness is thus physically reflected in the RSE model. 

All simulations containing defects are based on the following un
derlying sizing of the RSE. The RSE size is fixed to 40 mm x 40 mm with 
an orthotropic, alternating layup consisting of 9 layers starting in the x- 
direction with a ply thickness of t = 175μm. Defects are placed in layer 5. 
Fuzzballs are placed on top of layer 5. The material parameters used are 
the same as before, given in Table 2. Non-periodic boundary conditions 
were applied, and the load flux was consistently set to 1N/mm for each 
load case. 

Meshing is done with a discretization of 100μm in planar directions 
and of 87.5μm in the thickness direction of the RSE. In-plane meshing is 
held constant only within the rectangular bounding box of the defect 
and an additional 10% beyond. Outside this refined defect area, the 
mesh size exponentially increases with a factor of 1.25 per element, thus 
allowing for a bigger RSE with reasonable solving time. The mesh in 
thickness direction adapts to deviating local thicknesses with a loga
rithmic mesh size distribution towards the ply centre while maintaining 
a thickness of 87.5μm for the biggest element where possible. The cor
responding ABD matrix for a defect-free layup calculated via classical 
lamination theory is shown in Eq. (24). Mechanical response of defects is 
presented in relative terms to ABDCLT, following the same procedure as 
in Eq. (23). The maximum deviation of the RSE response for the defect- 
free layup was no greater than 0.001%, attributing to the orthotropic 
layup, which does not yield any coupling characteristics. 

ABDCLT =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

151631.1 4850.1 0

4850.1 124157.9 0

0 0 8820.0

0

0

36954.1 1002.6 0

1002.6 20056.6 0

0 0 1823.3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

MPa

(24)  

3.2.1. Gaps 
The definition of the gap geometry is inspired by [28]. A gap is 

modelled by four distinct descriptive parameters: The overall gap width 

wgap, the gap thickness at its centre tgap, the width wgap,min at which the 
gap thickness tgap is held constant, and the width wgap,resin at which the 
gap is filled with pure resin. The gap geometry is presumed to be sym
metric to the gap centre. Fig. 5 shows the defining parameters in the 
cross-sectional view of a laminate. 

The thickness of the gaps in the transition areas is given in Eq. (25) as 
a function of the control variable s orthogonal to the gap centre vector. 
Note that a gap thickness of tgap = 0μm is allowed, resulting in a contact 
of the top and bottom plies adjacent to the gap. 

tgap(s) =
(
tply − tgap

)
⋅

(

3⋅
(

2⋅
⃒
⃒s − wgap, min

/
2
⃒
⃒

wgap − wgap, min

)2

− 2⋅
(

2⋅
⃒
⃒s − wgap, min

/
2
⃒
⃒

wgap − wgap, min

)3
)

+ tgap
(25) 

The smooth transition avoids sharp direction changes of the fibre 
direction vectors of adjacent layers, thus better reflecting the out-of- 
plane fibre waviness in those layers. In contrast to [28], the layers sur
rounding the defect are not altered, as a soft tooling is considered in the 
assumed use case. 

The defining parameters for gaps and overlaps can be directly ob
tained through micrographs of such defects. There exist analytical for
mulas in the literature for predicting the defining defect parameters, 
either as a function of the overall gap width wgap [28] or as a function of 
the initial gap width wgap,init during layup [10]. Latter correlations are 
deemed especially useful, as they allow for an analysis of the influence of 
detected defects online during layup. Belnoue et al. [30] even presented 

Fig. 4. Deviation of the validation RSE compared to the classical lamination theory, shown for the ABD matrix (left) and the inverse ABD matrix (right) in%.  

Fig. 5. Geometric definition of gaps.  
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a sophisticated modelling technique for predicting the material flow 
during compaction, which holds the potential to not only predict the 
defect geometry, but also to predict the distribution of the local fibre 
volume fraction. 

In the following, an example case of a gap is shown and discussed. 
The defining defect parameters are obtained from the analysis of a 
micrograph of a test specimen manufactured with an in-house auto
mated fibre placement machine [31]. The defect was inserted in ply 5 by 
adjusting the layup code so that the corresponding tows were misplaced 
by half a tow-width at the defect position. 

Fig. 6 shows the micrograph of the evaluated gap. The thickness 
values of the individual plies were extracted from the micrographs by 
manually tracing the ply borders with spline curves (Fig. 7). Note that 
the top surface of ply 9 is not as smooth as the borders beneath due to the 
soft tooling used in the autoclave. The mean ply thickness for all plies, 
excluding ply 5 featuring the gap, is calculated to be tmean = 175.1μm 
with a standard deviation of tstd = 11.9μm. In order to maintain 
comparability to the reference stiffness, as given in Eq. (24), the ply 
thickness in the simulation was consistently set to tiply = 175 μm. 

The extracted gap width wgap was defined as the length where ply 5 
protrudes the standard deviation band tmean ± tstd, resulting in wgap =

6.01mm. The centre gap width wgap,min was defined following tply5 <

10μm, which results in wgap,min = 2.29μm. The gap thickness is set to tgap 
= 0μm. As described above, the gap is further simplified to be symmetric 
to its centre. Lastly, the resin-rich area is manually measured to a width 
of wgap,resin = 4.20μm. 

The stiffness degradation effect of the gap on the composite structure 
is shown in Fig. 8. The gap clearly shows a reduction in the in-plane 
stiffness of the RSE, with a pronounced stiffness reduction of 2.12% in 
the travel direction of the gap and a reduction of 1.40% transversal to 
the gap. The structural response transversal to an in-plane load is 
reduced by 2.30%, whereas the shear stiffness is also reduced by 1.28%. 

The gap does introduce coupling of in-plane stress fluxes to the 
bending response of the structure. The magnitude of the coupling stiff
ness is deemed to be non-negligible with the highest entry in the B 
matrix reaching − 1805.1N, thus influencing the buckling behaviour of 
composite structures with embedded gaps. 

The highest relative degradations compared to the defect-free lami
nate response can be observed in the flexural rigidity of the RSE. 

Transversal to the gap, the stiffness reduction exceeds 5.16%. This can 
be traced back to the reduction of the inertia tensors of the plies above 
the gap, as they follow the defect geometry and thus shift towards the 
referencing plane. Note that in this study, no experimental tests were 
conducted to validate the simulation results. 

3.2.2. Overlaps 
Overlaps are defined identically to gaps by replacing the indices gap 

with overlap in Eq. (25). The overlap geometry is defined through toverlap 
> tply, resulting in a protruding geometry. Furthermore, no pure resin 
zones are defined for overlaps. 

The micrograph of an example overlap is shown in Fig. 9 and the 
respective ply thicknesses are shown in Fig. 10. The mean ply thickness 
of the example overlap is measured to be tmean = 173.3μm with a stan
dard deviation of tstd = 12.2μm. Again, the ply thickness in the RSE is set 
to tiply = 175 μm for comparability. 

Following the same strategy as for the gap, the overlap geometry is 
measured to woverlap = 7.96mm. The maximum thickness is measured to 
be toverlap = 383.4μm. Note that the observed overlap thickness toverlap is 
higher than the expected overlap thickness, which would be 2 ⋅ tply =

346.6μm. The centre width of the overlap is simplified to be toverlap,min =

0μm, as the thickness course of ply 5 does not indicate a flat plateau in 
the centre of the overlap. As for the gap, the overlap in the RSE is 
simplified to be symmetric to its centre. 

In contrast to the gap, the overlap shows an increase in stiffness for 
all loading cases except for one notable exception, namely for the 
loading transversal to the overlap (Fig. 11). The increase in stiffness 
longitudinal to the gap of 2.27% is expected, as the additional fibre 
material in the overlap stiffens the structure. Transversally, however, 
the material surplus mainly causes an out-of-plane fibre waviness of the 
layers above, thus weakening the overall structural response and leading 
to a stiffness reduction of 0.54%. 

Again, as was the case for the gap, the overlap shows some coupling 
characteristics between in-plane stresses and bending response. The 
positive values should not be regarded as being comparably better to the 
response of the gap, as they only determine the direction of the bending 
response of the composite structure. 

The highest increase in bending response can be observed in the D 
matrix, where the response for twisting is hindered up to 4.52% by the 
overlap. As for the in-plane stiffness, the bending rigidity is increased 
more in direction of the overlap as opposed to the transversal direction. 
Again, no experimental tests were conducted to validate the simulation 
results. 

3.2.3. Fuzzballs 
The presented RSE model especially excels at calculating the me

chanical behaviour of composite structures with complex, three- 
dimensional geometrical defects. An example of such defects are fuzz
balls (Fig. 1), which naturally occur in the AFP head through friction and 
abrasion of the tows with the routing parts of the AFP end-effector. This 
abrasion leads to an accumulation of fibres, resin or both, depending on 
the AFP machine. If the fuzzball is large enough, it may fall onto the 
composite layup and form a foreign object defect, if not manually 

Fig. 6. Micrograph of a sample gap.  

Fig. 7. Thickness of individual plies in the sample with a gap.  
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removed before laying the next composite layer [1]. 
The geometric characterisation of fuzzballs is not as straightforward 

as for the other defects, as descriptive parameters are too general to 
accurately describe the defect. Therefore, to acquire the geometry of 
cured fuzzballs within a laminate, a flat CFRP laminate consisting of 9 
plies was produced with an in-house automated fibre placement ma
chine [31]. Fuzzballs in various sizes, provided by an industrial serial 
production, were intentionally placed on top of layer 5 of the test 
laminate. The test laminate was cured in an autoclave following the cure 
cycle recommended for the HexPly® 8552 AS4 material [32] used. 
Lastly, test specimens containing the fuzzballs were cut out of the cured 
laminate and examined by computer tomography (CT). The CT scans 
featured a resolution of 12μm/voxel. 

The data obtained by CT were segmented in the software ORS 

Dragonfly [33], labelling each voxel with either background, laminate, 
fuzzball or pores. Segmentation had to be done manually for the fuzzballs 
and the laminate, as the contrast between the fuzzball and the sur
rounding layers did not allow for reliable characterisation by automated 
means, i.e. deep learning methods. After segmenting the CT data, a 
volume thickness map for each fuzzball is created, specifying the height 
of the fuzzball at the corresponding in-plane position by counting the 
voxels labelled with either fuzzball or pores at that position and then 
multiplying it with the voxel resolution. 

Air pockets within the fuzzball are also considered for implementa
tion in the simulation model. To obtain a practicable volume thickness 
map of the porous region, a convex hull is generated around identified 
pores. 

The RSE modelling of two selected fuzzballs, which differ in their 
size, shall be shown in this paper. The volume thickness maps and 
overall dimensions for the fuzzballs are given in Fig. 12 and Fig. 13. 

The fuzzball is represented in the RSE by a separate layer in the 
layup. The z-values of the cornering nodes of each fuzzball element are 
taken from the volume thickness map described above. Extrapolation 
allows estimating the fuzzball thickness at positions in-between the 
finite values of the volume thickness map so that meshing can be done 
independently from a given volume thickness map. Note that non- 
hexahedral elements such as pyramids (C3D5) and prisms (C3D6) are 
used at the sloping borders of the fuzzball mesh where needed (Fig. 14). 

Elements representing the cured fuzzball material are given esti
mated isotropic material characteristics with Efuzz = 9GPa and νfuzz =

0.35, thus simplifying fuzzball material characteristics to pure resin 
material. It should be noted that although micrographs of cured fuzz
balls are characterised by their resin surplus, they do also contain fibres 

Fig. 8. Relative (left) and absolute (right) impact of the gap on the stiffness of the RSE.  

Fig. 9. Micrograph of a sample overlap.  

Fig. 10. Thickness of individual plies in the sample with an overlap.  
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without clear orientation. This should have an impact on the material 
behaviour of the fuzzball material. However, the mechanical charac
teristics of cured fuzzballs cannot be obtained through mechanical 
testing. As the effect of out-of-plane fibre waviness is expected to have a 
far greater impact on the overall mechanical response of the RSE, the 
simplified elastic behaviour of the fuzzball material is thus deemed 
sufficient. 

Areas characterised by the occurrence of pores are nested within the 
fuzzball layer and are given isotropic material characteristics with Epores 
= 3GPa and νpores = 0.35. Following the same presumption as before, the 
layers surrounding the fuzzballs are simplified to not vary in their 
thickness. 

The simulation outcome of the small fuzzball is depicted in Fig. 15. 
When evaluating the diagonal entries of the extensional stiffness pa
rameters in the A matrix, it can be shown that the small fuzzball has a 
very small impact on the most critical composite characteristics, i.e. the 
stiffness is reduced by less than 0.1% when in-plane loads are applied in 
either layer direction. The shear stiffness even shows an increase of 

0.051%. The transverse stiffness shows a reduction of 0.58% relative to 
the defect-free layup. 

The entries in the coupling matrices B, which are zero in the defect- 
free layup, are now all non-zero, meaning that an in-plane stress state 
will also induce an ever so slight bending response of the structure 
containing the defect (and vice versa). Interestingly, although the defect 
is non-symmetric, the ABD matrix maintains its symmetry along the 
diagonal. 

The entries of the D matrix, defining the bending response of the 
structure to moment fluxes, show the highest deviations from the defect- 
free layup. The bending stiffness is increased alongside the diagonal, 
which can be explained by higher inertia tensors of the top plies, 
resulting from the out-of-plane displacement induced by the defect. This 
is a notable observation, as the fuzzball might therefore increase the 
buckling stability of the structure in case of compression loading, as was 
partially observed in [34]. However, the reduction in the transverse 
bending response might also counteract the postulated increase in 
buckling stability. 

The larger fuzzball, which has a more significant impact on the out- 
of-plane fibre waviness of the top plies, shows a similar, yet stronger 

Fig. 11. Relative (left) and absolute (right) impact of the overlap on the stiffness of the RSE.  

Fig. 12. CT height profile of a small fuzzball with visible pores.  

Fig. 13. CT height profile of a large fuzzball with visible pores.  
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structural response of the RSE compared to the small fuzzball. The 
extensional stress responses of the RSE, which resemble the most rele
vant engineering parameters of a composite, now show a reduction of 
0.543% in the x-direction and a reduction of 0.636% in the y-direction 
(Fig. 16). Once again, an increase in bending stiffness can be observed. It 
should be noted, however, that the overall bending stiffness of the 
laminate might be decreased, as the out-of-plane fibre waviness caused 
by the fuzzball negatively influences stress distribution along the fibres. 
Also, the fuzzball might act as a crack initiation point, thus increasing 
the risk of delaminations. Strength analyses for the defects are not 

conducted in this paper, though the presented RSE approach provides 
the ability to incorporate sophisticated failure modelling approaches for 
laminates, such as implementing cohesive elements for delamination 
analysis [35] or the Puck failure criterion [36]. 

When comparing the mechanical influence of the small fuzzball to 
the large fuzzball, it should be noted that the RSE model size has not 
changed. The ratio of the characteristic defect size to the RSE model size 
has a non-negligible influence on the response of the RSE and must 
therefore be considered. This poses a difficulty when assessing 
geometrically complex defects such as fuzzballs, as a characteristic 

Fig. 14. Cut-out view of the RSE containing the small fuzzball (white) with its porous area (red).  

Fig. 15. Relative (left) and absolute (right) influence of the small fuzzball on the stiffness of the RSE.  
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defect size is not easily defined. The inferred stiffness degradations of 
elements used in macroscale simulations must therefore take the RSE 
size into account. 

4. Conclusion 

The physical mesoscale modelling approach presented in this paper 
provides a promising foundation for the analysis of the mechanical 
impact of AFP-specific manufacturing-induced defects in CFRP struc
tures. The RSE model provides a numerical tool to build an extensive 
database of the mechanical influence of parameterised, structurally 
complex defects within composites. Such databases are invaluable for 
the decision-making of which defects need removal during AFP layup. 
The possibility to accurately assess the effects of fuzzballs is a novelty in 
this research area. The presented RSE approach allows for a general 
evaluation of material segments, comparable to a typical representative 
volume element. Additionally, the increased size of the modelling vol
ume also allows for an investigation of a variety of other AFP-induced 
defects in high detail, such as gaps, overlaps, tow-twists or other 
foreign objects. The quality of the results is highly dependant on the 
assumptions and simplifications of the detailed model. When using the 
presented RSE approach for researching the effects of defects, the main 
difficulty is the determination of a suitable sizing of the RSE in com
parison to the defect itself, as this ratio has a significant influence on the 
actual values of the computed stiffnesses of the RSE. This is especially 
true for defects leading to a relative displacement between the com
posite layers, which is not accounted for in the presented approach due 
to the requested comparability of the RSE outcome to the classical 
lamination theory. If the results are to be incorporated into a higher- 
level multiscale model, the authors expect that choosing the actual 
size of the element containing the defect as the size of the RSE will lead 
to good results. 

To further improve the RSE approach, the simulation results need to 
be compared to experimental tests in follow-up research. Compression 
tests have been carried out by the authors in [34], as the RSE response of 
fuzzballs indicates a positive impact on the buckling behaviour of the 
composite structure. The RSE approach should be extended with 
modelling techniques to accurately evaluate the failure modes of the 
composite constituents. Following the multiscale approach, the use of 
microscale simulations might be feasible for obtaining averaged mate
rial characteristics, such as for the fuzzball material. 

An additional improvement would be the determination of the 
strength and the non-linear behaviour before failure of the RSE to derive 
a general stress-strain curve comparable to a typical material charac
terisation. This would require the possibility to group (geometrically) 
similar defects that also exhibit a similar strength and failure behaviour, 
to be usable in a general application. 

Lastly, the RSE approach presented in this paper allows for an in-situ 
assessment of AFP-induced defects by forwarding process monitoring 
data to simulations. However, the geometry of a defect changes during 
curing, thus necessitating further research into the influence of auto
clave curing on defect deformation. From a practical perspective, it 
might prove difficult to capture the geometry of defects in the necessary 
detail during industrial layup. Although non-destructive testing 
methods for detecting defects in composite parts post curing exist, these 
generally do not provide the geometric detail needed for the presented 
RSE approach. 
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[6] B. Denkena, C. Schmidt, K. Völtzer, T. Hocke, Thermographic online monitoring 
system for automated fiber placement processes, Compos. Part B: Eng. 97 (2016) 
239–243, https://doi.org/10.1016/j.compositesb.2016.04.076. 

[7] B. Denkena, C. Schmidt, M. Timmermann, A. Friedel, An optical-flow-based 
monitoring method for measuring translational motion in infrared-thermographic 
images of AFP processes, Prod. Eng. Res. Devel (2021), https://doi.org/10.1007/ 
s11740-021-01084-w. 
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