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ABSTRACT
We hide grayscale secret images into a grayscale cover image, which is considered to be
a challenging steganography problem. Our goal is to develop a steganography scheme
with enhanced embedding capacity while preserving the visual quality of the stego-
image as well as the extracted secret image, and ensuring that the stego-image is resistant
to steganographic attacks. The novel embedding rule of our scheme helps to hide secret
image sparse coefficients into the oversampled cover image sparse coefficients in a
staggered manner. The stego-image is constructed by using the Alternating Direction
Method of Multipliers (ADMM) to solve the Least Absolute Shrinkage and Selection
Operator (LASSO) formulation of the underlying minimization problem. Finally, the
secret images are extracted from the constructed stego-image using the reverse of our
embedding rule. Using these components together, to achieve the above mentioned
competing goals, forms our most novel contribution. We term our scheme SABMIS
(Sparse Approximation Blind Multi-Image Steganography). We perform extensive
experiments on several standard images. By choosing the size of the length and thewidth
of the secret images to be half of the length and the width of cover image, respectively,
we obtain embedding capacities of 2 bpp (bits per pixel), 4 bpp, 6 bpp, and 8 bpp
while embedding one, two, three, and four secret images, respectively. Our focus is
on hiding multiple secret images. For the case of hiding two and three secret images,
our embedding capacities are higher than all the embedding capacities obtained in the
literature until now (3 times and 6 times than the existing best, respectively). For the
case of hiding four secret images, although our capacity is slightly lower than one work
(about 2/3rd), we do better on the other two goals (quality of stego-image & extracted
secret image as well as resistance to steganographic attacks). For our experiments,
there is very little deterioration in the quality of the stego-images as compared to
their corresponding cover images. Like all other competing works, this is supported
visually as well as over 30 dB of Peak Signal-to-Noise Ratio (PSNR) values. The good
quality of the stego-images is further validated by multiple numerical measures. None
of the existing works perform this exhaustive validation. When using SABMIS, the
quality of the extracted secret images is almost same as that of the corresponding
original secret images. This aspect is also not demonstrated in all competing literature.
SABMIS further improves the security of the inherently steganographic attack resistant
transform based schemes. Thus, it is one of themost secure schemes among the existing
ones. Additionally, we demonstrate that SABMIS executes in few minutes, and show
its application on the real-life problems of securely transmitting medical images over
the internet.
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1Hiding binary data into images is
a different track, which we are not
focusing in this article. For the sake of
completeness, this is summarized in
Appendix, ‘Some steganography schemes
for hiding binary secret data’.

Subjects Cryptography, Multimedia, Optimization Theory and Computation, Security and
Privacy
Keywords Image processing, Steganography, Optimization, Sparse approximation, LASSO,
ADMM

INTRODUCTION
The primary concern during the transmission of digital data over communication media
is that anybody can access this data. Hence, to protect the data from being accessed by
illegitimate users, the sender must employ some security mechanisms. In general, there
are two main approaches used to protect secret data; cryptography (Stallings, 2019) and
steganography (Kordov & Zhelezov, 2021), with our focus on the latter. Steganography is
derived from the Greek words steganos for ‘‘covered’’ or ‘‘secret’’ and graphie for ‘‘writing’’.
In steganography, the secret data is hidden in some unsuspected cover media so that it is
visually imperceptible. Here, both the secret data as well as the cover media may be text or
multimedia. Recently, steganography schemes that use images (binary, grayscale or color)
as secret data as well as cover media have gained a lot of research interest due to their heavy
use in World Wide Web applications. This is the first focus of our work.1 Some real-life
applications of this include securing biometric data, digital signature, personal banking
information, and medical data.

Next, we present some relevant previous studies in this domain. Secret data can be
hidden in images in two ways; spatially or by using a transform. In the spatial domain
based image steganography scheme, secret data is hidden directly into the image by some
modification in the values of the image pixels. These approaches have the drawback that
they are inherently not resistant to steganographic attacks (Artiemjew & Aleksandra, 2020;
Hassaballah et al., 2021). Some of the past works related to this are given in Table 1. The
papers in this table are listed in the increasing order of the number of secret images hidden
in the cover image.

In the transform domain based image steganography scheme, first, the image is
transformed into frequency components, and then the secret data is hidden into these
components. This process makes these approaches intrinsically resistant to steganographic
attacks. Hence, such approaches form our second focus. Some of the past works related to
this are given in Table 2. The papers in this table are listed in the increasing order of the
number of secret images hidden in the cover image as well.

As mentioned above, images are of three kinds; binary, grayscale, and color. A grayscale
image has more information than a binary image. Similarly, a color image has more
information than a grayscale image. Thus, hiding a color secret image is more challenging
than hiding a grayscale secret image, which is more challenging than hiding a binary secret
image. Similarly, applying this concept to the cover image, we see a reverse sequence; see
Table 3. We focus on the middle case here, i.e., when both the secret images and the cover
image are grayscale, which is considered challenging. This forms our third focus.

The difficulty in designing a good steganography scheme for hiding secret images into
a cover image is increasing the embedding capacity of the scheme while preserving the
quality of the resultant stego-image and extracted secret images as well as making the
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Table 1 Spatial domain-based image steganography schemes.

Reference Technique Secret images Cover image

Baluja (2019) A modified version of Least Significant Bits (LSB) with deep
neural networks

2 color color

Gutub & Shaarani (2020) LSB 2 color color
Guttikonda, Cherukuri & Mundukur (2018) LSB 3 binary grayscale and color
Hu (2006) A modified version of LSB 4 grayscale grayscale
Manujala & Danti (2015) A modified version of LSB 4 color color

Table 2 Transform domain-based image steganography schemes.

Reference Technique Secret images Cover image

Sanjutha (2018) Discrete Wavelet Trans-
formation (DWT) with
Particle Swarm Opti-
mization (PSO)

1 grayscale color

Arunkumar et al. (2019a) Redundant Integer
Wavelet Transform
(RIWT) and QR
Factorization

1 grayscale color

Maheswari & Hemanth (2017) Contourlet and Fres-
nelet Transformations
with Genetic Algorithm
(GA) and PSO

1 binary
(specifically, QR code)

grayscale

Arunkumar et al. (2019b) RIWT, Singular Value
Decomposition (SVD)
and Discrete Cosine
Transformation (DCT)

1 grayscale grayscale

Hemalatha et al. (2013) DWT 2 grayscale color
Gutub & Shaarani (2020) DWT and SVD 2 color color

Table 3 Image types and levels of challenge.

Image type More challenging Medium challenging Less challenging

Secret image Color Grayscale Binary
Cover image Binary Grayscale Color

scheme resistant to steganographic attacks. Hence, we need to balance these competing
requirements. Here, not just the number of secret images but the total size of the secret
images is also important. To capture this requirement of number as well as size, a metric
of bits per pixel (bpp) is used.

In this work, we present a novel image steganography scheme wherein up to four images
can be hidden in a single cover image. The size of the length and the width of a secret image
is about half of the length and the width of the cover image, respectively, which results in
a very high bpp capacity. No one has attempted hiding up to four secret images in a cover
image with the transform domain based approach until now, and those who have attempted
hiding one, or two images have also not achieved the level of embedding capacity that we
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do. While enhancing the capacity as discussed above, the quality of our stego-image does
not deteriorate much. Also, we do not need any cover image data to extract secret images
on the receiver side, which is commonly required with other schemes. We do require
some algorithmic settings on the receiver side, however, these can be communicated to the
receiver separately. Thus, this makes our scheme more secure.

Let us consider the example of telediagnosis that refers to remote diagnosis. In this,
medical images are distributed to some doctors for analyses and recommendations. During
distribution, an unauthorized person can access these images and misuse them. To make
this distribution processmore secure, instead of directly sharing images, these can be hidden
in a cover image using our steganography scheme and then the obtained stego-image can
be shared. In this example, multiple secret images need to be shared (we consider sharing a
maximum of four medical images). The existing transform based steganography schemes,
which are inherently resistant to steganographic attacks, do not have such an embedding
capacity. If we try to increase their capacity, then the quality of stego-image or extracted
secret images gets degraded.

The most novel feature of our innovative scheme is that it is a combination of different
components that helps us to achieve the competing goals of increasing embedding
capacity, good quality stego-image as well as extracted secret images, and high resistance
to steganographics attacks. Each of these components is discussed next.

The first component, i.e., hiding of secret images, consists of the parts below.
(i) We perform sub-sampling on a cover image to obtain four sub-images of the cover

image.
(ii) We perform block-wise sparsification of each of these four sub-images using DCT

(Discrete Cosine Transform) and form respective vectors.
(iii) We represent each vector in two groups based upon large and small coefficients, and

then oversample each of the resultant (or generated) sparse vector using a measurement
matrix based linear measurements. The oversampling at this stage leads to a sparse
approximation.

(iv) We repeat the second step above for each of the secret images.
(v) We embed DCT coefficients from the four secret images into ‘‘a set’’ of linear

measurements obtained from the four sub-images of the cover image using our new
embedding rule.

Amongst these parts, (i)–(ii) have been used in Pal, Naik & Agrawal (2019); Liu & Liao
(2008); Pan et al. (2015) while (iii)–(v) are new.

Second, we generate the stego-image from these modified measurements by using
the Alternating Direction Method of Multipliers (ADMM) to solve the Least Absolute
Shrinkage and Selection Operator (LASSO) formulation of the underlying minimization
problem. This method has a fast convergence, is easy to implement, and also is extensively
used in image processing. Here, the optimization problem is an `1-norm minimization
problem, and the constraints comprise an over-determined system of equations (Srinivas &
Naidu, 2015). Use of this component in steganography is first of its kind as well.

Third, we extract the secret images from the stego-image using our proposed extraction
rule, which is the reverse of our embedding rule mentioned above. As mentioned earlier, we
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do not require any information about the cover image while doing this extraction, which
makes the process blind. Since our embedding procedure, as mentioned above, is new,
thus the extraction part is also new. We call our scheme SABMIS (Sparse Approximation
Blind Multi-Image Steganography), it is described in the section ‘Proposed Approach’.

For performance evaluation, in the section ‘Experimental Results’ we perform extensive
experiments on a set of standard images. We first compute the embedding capacity of our
scheme, which turns out to be very good. Next, we check the quality of the stego-images
by comparing them with their corresponding cover images. We use both a visual measure
and a set of numerical measures for this comparison. The numerical measures used are:
Peak Signal-to-Noise Ratio (PSNR) value, Mean Structural Similarity (MSSIM) index,
Normalized Cross-Correlation (NCC) coefficient, entropy, and Normalized Absolute
Error (NAE). The results show very little deterioration in the quality of the stego-images.

Further, we visually demonstrate the high quality of the extracted secret images by
comparing them with the corresponding original secret images. Also, via experiments,
we support our conjecture that our scheme is resistant to steganographic attacks. Next,
we demonstrate efficiency of our scheme by providing timing data. Finally, we present
application of our scheme on real-life data demonstrating its usefulness.

Also, we exhaustively compare SABMIS with competing schemes to demonstrate that it
is among the best. For the sake of better exposition, this comparison is given in Introduction
itself (see subsection below). Finally, in the section ‘Conclusions and Future Work’, we
discuss conclusions and future work.

Comparison with past work
Here, we predominately compare our SABMIS scheme with the existing steganography
schemes for the embedding capacity, the quality of stego-images, and resistance to
steganographic attacks. For the stego-image quality comparison, since most works have
computed PSNR values only, we use only this metric for our analysis. Although we check
the quality of the extracted secret images by comparing them with the corresponding
original secret images (as earlier), this check is not common in the existing works. Hence,
we do not perform this comparison.

In the literature, there exist multiple transform-based steganography schemes that hide
one or two secret images. Hence, in Table 4 we compare our SABMIS scheme using the
above mentioned metrics with such competing schemes. Recall, that like our SABMIS
scheme these schemes are inherently resistant to steganographic attacks as well.

As evident fromTable 4, for the case of hiding one secret image, we compare with the best
work of this category (Arunkumar et al., 2019b). Here, as for us, by using a transform based
approach, a grayscale secret image is hidden into a grayscale cover image. Arunkumar et al.
(2019b) and our scheme both achieve an embedding capacity of 2 bpp. When comparing
the stego-image and the corresponding cover image, Arunkumar et al. (2019b) achieve a
PSNR value of 49.69 dB (when experimenting with eight cover images) while we achieve a
lower PSNR value of 41.64 dB (when experimenting with a higher number of cover images,
i.e., ten). PSNR values over 30 dB are considered good (Gutub & Shaarani, 2020; Zhang et
al., 2013; Liu & Liao, 2008). Although the scheme by Arunkumar et al. (2019b) is superior
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Table 4 Performance comparison of our SABMIS scheme with competing transform-based steganography schemes, which are inherently resis-
tant to steganographic attacks.

No. of
secret
images

Steganography
scheme

Type of
secret
image

Type of
cover images

EC (in bpp) (Avg. PSNR,
No. of cover
images)

Max. PSNR Resistant to
steganographic
attacks?

1 Arunkumar et al. (2019b) Grayscale Grayscale 2 (49.69, 8) 50.15 Yes
SABMIS Grayscale Grayscale 2 (41.64, 10) 46.25 Yes

2 Hemalatha et al. (2013) Grayscale Color 1.33 (44.75, 2) 44.80 Yes
SABMIS Grayscale Grayscale 4 (38.74, 10) 42.60 Yes

than ours for hiding one secret image, it does not scale for the case of hiding multiple secret
images, which we do (please see below).

For the case of hiding two secret images, we again compare with the best work of this
category (Hemalatha et al., 2013). Here, using the transform based approach, two grayscale
secret images are hidden into a color cover image. This setup is easier than our case
where using a transform based approach, we embed two grayscale secret images into a
grayscale cover image (see Table 3).Hemalatha et al. (2013) achieve an embedding capacity
of 1.33 bpp while we achieve a higher embedding capacity of 4 bpp. When comparing the
stego-image and the corresponding cover image, Hemalatha et al. (2013) achieve a PSNR
value of 44.75 dB (when experimenting with only two cover images) while we achieve a
lower PSNR value of 38.74 dB (when experimenting with a higher number of cover images,
i.e., ten). To sum-up, our scheme is better than the one by Hemalatha et al. (2013) because
of the below reasons.

In terms of the quality of the scheme,
a) we target a harder problem than Hemalatha et al. (2013), and
b) we achieve a higher embedding capacity than Hemalatha et al. (2013).

In terms of the validation of the scheme,
a) we experiment with a large number of cover images (ten as compared to two in

Hemalatha et al. (2013)),
b) as discussed earlier, we obtain PSNR values over 30 dB of stego-images, which are

considered acceptable, and
c) we check the quality of stego-image on a greater number of numerical measures (five

as compared to one in Hemalatha et al. (2013)).
When using the transform-based approach, no one has hidden three or four secret

images in a cover image. To demonstrate the broad applicability of our scheme, in Table 5,
we compare our SABMIS scheme using the above discussed metrics with the best spatial
domain-based scheme that hide three and four secret images. Recall that, unlike our
SABMIS scheme, these schemes are not intrinsically resistant to steganographic attacks.
Please note that in the current scenario of transmitting stego-data over the internet, security
is of paramount importance.

As evident from Table 5, for the case of hiding three secret images, we compare with the
best work of this category (Guttikonda, Cherukuri & Mundukur, 2018). Here, three binary
secret images are hidden into a grayscale cover image. As for the above case, this setup is
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Table 5 Performance comparison of our SABMIS scheme with competing spatial domain-based steganography schemes, which are not inher-
ently resistant to steganographic attacks.

No. of
secret
images

Steganography
scheme

Type of
secret
image

Type of
cover
images

EC
(in bpp)

(Avg. PSNR,
No. of cover
images)

Max.
PSNR

Resistant to
steganographic
attacks?

3 Guttikonda, Cherukuri & Mundukur (2018) Binary Grayscale 1 (46.36, 2) 46.38 No
SABMIS Grayscale Grayscale 6 (37.17, 10) 41.06 Yes

4 Hu (2006) Grayscale Grayscale 12 (34.80, 5) 34.82 No
SABMIS Grayscale Grayscale 8 (35.66, 10) 39.74 Yes

easier than our case of hiding three grayscale secret images into a grayscale cover image
(again see Table 3). Guttikonda, Cherukuri & Mundukur (2018) achieve an embedding
capacity of 1 bpp while we achieve a higher embedding capacity of 6 bpp. When comparing
the stego-image and the corresponding cover image, Guttikonda, Cherukuri & Mundukur
(2018) achieve a PSNR value of 46.36 dB (when experimenting with only two cover
images) while we achieve a lower PSNR value of 37.17 dB (when experimenting with a
higher number of cover images, i.e., ten). To sum-up, our scheme is superior than the one
by Guttikonda, Cherukuri & Mundukur (2018) because of the below reasons.

In terms of the quality of the scheme,
a) we target a harder problem than Guttikonda, Cherukuri & Mundukur (2018),
b) we achieve a higher embedding capacity than Guttikonda, Cherukuri & Mundukur

(2018), and
c) we further improve the security of the inherently steganographic attack resistant

transform based schemes.
In terms of the validation of the scheme,

a) we experiment with a large number of cover images (ten as compared to two in
Guttikonda, Cherukuri & Mundukur (2018)),

b) as discussed earlier, we obtain PSNR values over 30 dB of stego-images, which are
considered acceptable,

c) we check the quality of stego-image on a greater number of numerical measures (five
as compared to one in Guttikonda, Cherukuri & Mundukur (2018)),

d) and we demonstrate the good quality of extracted secret images, which Guttikonda,
Cherukuri & Mundukur (2018) do not.
Next, we compare with the best scheme that hides four secret images in a cover image,

i.e., Hu (2006). As for our case, all images (secret and cover) are grayscale. Hu (2006)
achieve an embedding capacity of 12 bpp while we achieve a lower embedding capacity of
8 bpp. When comparing the stego-image and the corresponding cover image, Hu (2006)
achieve a PSNR value of 34.80 dB (when experimenting with five cover images) while we
achieve a higher PSNR value of 35.66 dB (when experimenting with a higher number of
cover images, i.e., ten). To sum-up, our scheme is better than the one byHu (2006) because
of the below reasons.
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In terms of the quality of the scheme,
a) our embedding capacity, although lower than Hu (2006), is on the higher side,
b) we obtain higher PSNR values of stego-images as compared to those in Hu (2006),
c) and we further improve the security of the inherently steganographic attack resistant

transform based schemes.
In terms of the validation of the scheme,

a) we experiment with a large number of cover images (ten as compared to five in Hu,
2006),

b) we check the quality of stego-image on a greater number of numerical measures (five
as compared to one in Hu, 2006),

c) and we demonstrate the good quality of extracted secret images, which (Hu, 2006) do
not.

PROPOSED APPROACH
Our sparse approximation based blind multi-image steganography scheme consists of
the following components: (i) Hiding of secret images leading to the generation of the
stego-data. (ii) Construction of the stego-image. (iii) Extraction of secret images from the
stego-image. These parts are discussed in the respective subsections below.

Hiding secret images
First, we perform sub-sampling of the cover image to obtain four sub-images. This type of
sampling is done because we are hiding up to four secret images. Let CI be the cover image
of size r× r . Then, the four sub-images each of size r

2×
r
2 are obtained as follows (Pan et

al., 2015):

CI 1 (n1,n2)=CI (2n1−1,2n2−1), (1a)

CI 2 (n1,n2)=CI (2n1,2n2−1), (1b)

CI 3 (n1,n2)=CI (2n1−1,2n2), (1c)

CI 4 (n1,n2)=CI (2n1,2n2), (1d)

where CI k , for k ={1,2,3,4}, are the four sub-images; n1,n2= 1,2,..., r2 (in our case, r is
divisible by 2); and CI (·,·) is the pixel value at (·,·). A cover image and the corresponding
four sub-sampled images are shown in Fig. 1.

Originally, these sub-images are not sparse; hence, next, we perform block-wise
sparsification of each of these images. For this, we divide each sub-image into blocks
of size b×b and obtain r2

4×b2 blocks for each sub-image (in our case, b divides r). Now, we
apply discrete cosine transformation to each block. That is,

si=DCT (xi), (2)
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2In the experimental results section, we
show how to experimentally pick these
coefficients.

Figure 1 A cover image and its 4 sub-sampled images (Standard Test Images for Image Prcessing,
2022). Link: https://github.com/mohammadimtiazz/standard-test-images-for-Image-Processing/blob/
master/standard_test_images/boat.png. Copyright: https://github.com/mohammadimtiazz/standard-test-
images-for-Image-Processing/blob/master/LICENSE.

Full-size DOI: 10.7717/peerjcs.1080/fig-1

where i= 1,2,..., r2
4×b2 , xi and si are the ith original and sparse blocks of the same size,

i.e, b×b, respectively, and DCT is the Discrete Cosine Transform. Further, we pick the
final sparse blocks using a zig-zag scanning order as used in our earlier work (Pal, Naik &
Agrawal, 2019), and obtain corresponding sparse vectors each of size b2×1. The zig-zag
scanning order for a block of size 8×8 is shown in Fig. 2. This order helps us to arrange
the DCT coefficients with the set of large coefficients first, followed by the set of small
coefficients, which assists in the preservation of a good quality stego-image.

Next, we represent each vector in two groups based upon large (say #p1) and small (say
#p2) coefficients, i.e., si,u ∈Rp1 and si,v ∈Rp2 , where p1≤ p2. Each of these vectors is sparse
and p1+p2= b2. Further, we oversample each sparse vector using linear measurements as
below.

yi=

[
yi,u
yi,v

]
=

[
si,u
8si,v

]
, (3)

where yi ∈R(p1+p3)×1 is the set of linear measurements, and 8 ∈Rp3×p2 is the column
normalised measurement matrix consisting of normally distributed random numbers with
p3> p2 and p3 ∈N (i.e., the sparse coefficients are oversampled).2 This oversampling helps
us to perform sparse approximation. By employing this approximation (along with our
novel embedding rule discussed towards the end of this subsection), we achieve a higher
embedding capacity. Moreover, our approach gains an extra layer of security because the
linear measurements include measurement-matrix encoded small coefficients of the sparse
vectors obtained after DCT. Since the distribution of coefficients of the generated sparse
vectors is almost the same for all the blocks of an image, we use the same measurement
matrix for all the blocks.

Next, we perform processing of the secret images for hiding them into the cover image.
Let the size of each secret image bem×m. Initially, we perform block-wise DCT of each of
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3In the experimental results section, we
show how to experimentally pick these
coefficients.

Figure 2 Zig-zag scanning order for a block of size 8×8.
Full-size DOI: 10.7717/peerjcs.1080/fig-2

these images and obtain their corresponding DCT coefficients. Here, the size of each block
taken is l× l , and hence, we have m2

l2 blocks for each secret image. In our case, l divides m,

and we ensure that m2

l2 will be less than or equal to r2
4×b2 so that the number of blocks of the

secret image is less than or equal to the number of blocks of a cover sub-image. Thereafter,
we arrange these DCT coefficients as a vector in the earlier discussed zig-zag scanning
order. Let t̂i ∈R

l2×1, for î= 1,2,...,m
2

l2 , be the vector representation of the DCT coefficients
of one secret image. We pick the initial p4 DCT coefficients with relatively larger values
(out of the available l2 coefficients) for hiding,3 where p4 ∈N. Omitting the remaining
coefficients (l2−p4) does not significantly deteriorate the quality of the extracted secret
image.

Here, we show the hiding of only one secret image into one sub-image of the cover
image. However, in our steganography scheme, we can hide a maximum of four secret
images, one in each of the four sub-images of the cover image, which is demonstrated in
the experimental results section. If we want to hide less than four secret images, we can
randomly select the corresponding sub-images from the available four.

Next, using our novel embedding rule (discussed below), we hide the chosen p4 DCT
coefficients of the secret image into a selected set of p1+p3 linear measurements obtained
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Table 6 The detail of hiding secret image coefficients into the linear measurement coefficients of the
cover image.

Secret image coefficient indices
1 2 to c c+1 to p4

Companion linear measurement coefficient indices
p1−2c p1−2c+1 to p1− c−1 p1+ c+1 to p1+p4

Replaced linear measurement coefficient indices
p1 p1− c+1 to p1−1 p1+p4+1 to p1+2×p4− c

from the sub-image of the cover image, leading to the generation of the stego-data (we
ensure that p4 is less than p1+p3).

We hide secret image data into the cover image by taking linear combinations of each
secret image coefficient with a companion linear measurement coefficient of the cover
image. These linear combinations replace certain other linear coefficients of the cover
image to obtain the so called stego-data (subsequently, stego-image). The three groups of
index coefficients are listed in Table 6.

The data in Table 6 is based upon three design choices as below.
a) As can be seen from Table 6, we divide each group of coefficients into three ranges in

a staggered manner to achieve a higher level of security.
b) The specific choice of indices in the second and fourth rows of Table 6 is made so

as to hide secret image coefficients in relatively small valued cover image coefficients
(companion linear measurement coefficients). This results in a relatively improved
quality stego-image.

c) In Table 6, the replaced linear measurement coefficient indices differ just slightly from
the chosen companion coefficient indices (fourth and sixth rows respectively). The
reason for this is that we want our extraction rule (discussed in section ‘Extraction of
the secret images’) to be as less lossy as possible, resulting in less deteriorated extracted
secret images.
The whole process is given in Algorithm 1. Specifically, the indices discussed in Table

6 are given on line 3, lines 4–6, and lines 7–9 of this algorithm, respectively. The block
diagram for this complete data embedding process is given in Fig. 3. A small numerical
example, which further explains this hiding process is given inAppendix, ‘A small numerical
example of our embedding process’.

Construction of the Stego-Image
As mentioned earlier, the next step in our scheme is the construction of the stego-image.
Since we can hide a maximum of four secret images into four sub-images of a single cover
image, we first construct four sub-stego-images and then perform inverse sampling to
obtain a single stego-image. Let si′ be the sparse vector of the ith block of a sub-stego-
image. The sparse vector si′ is the concatenation of s′i,u and s′i,v . Here, the size of s′i,u, s

′

i,v ,
and s′ is the same as that of si,u, si,v , and s, respectively. Then, we have

s′i,u= y ′i,u, (4a)
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4Since the linear system of equations in
(4b) is overdetermined, we solve it in
least squares sense that causes loss of
information.

Figure 3 The embedding process.
Full-size DOI: 10.7717/peerjcs.1080/fig-3

s′i,v = argmin
s′i,v∈Rp2

‖s′i,v‖1 subject to 8s′i,v = y ′i,v , (4b)

where y
′

i is defined inAlgorithm 1, and it is equal to
[
y
′

i,u

y
′

i,v

]
as split in Eq. (3). The second part

Eq. (4b) (i.e., obtaining si,v ′), is an `1-norm minimization problem. Here, we can observe
that in the above optimization problem, the constraints are oversampled. As earlier, this
oversampling helps us to do sparsification, which leads to increased embedding capacity as
well as increased security because the measurement matrix is encoded. For the solution of
theminimization problem Eq. (4b), we use ADMM(Boyd et al., 2010;Gabay, 1976) to solve
the LASSO (Hwang, Kim & Kim, 2016; Nardone, Ciaramella & Staiano, 2019) formulation
of this minimization problem.4 We use this method because it has a fast convergence,
is easy to implement, and also is extensively used in image processing (Boyd et al., 2010;
Hwang, Kim & Kim, 2016).

Next, we convert each vector si′ into a block of size b×b. After that, we apply inverse
discrete cosine transformation (i.e., the two-dimensional Inverse DCT) to each of these
blocks to generate blocks x

′

i of the image. That is,

x
′

i = IDCT
(
s
′

i

)
. (5)

Next, we construct the sub-stego-image of size r
2×

r
2 by arranging all these blocks x

′

i . We
repeat the above steps to construct all four sub-stego-images. At last, we perform inverse
sampling and obtain a single constructed stego-image from these four sub-stego-images.
In the experiments section, we show that the quality of the stego-image is also very good.
The block representation of these steps is given in Fig. 4. A small numerical example,
which further explains this process is given in Appendix, ‘A small numerical example of
our embedding process’.
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Algorithm 1 Embedding Rule
Input:

• yi: Sequence of linear measurements of the cover image with i= 1,2,..., r2
4×b2 .

• t̂i: Sequence of transform coefficients of the secret image with î= 1,2,...,m
2

l2 .

• The choice of our r , b,m, and l is such that m2

l2 is less than or equal to r2
4×b2 .

• p1 and p4 are lengths of certain vectors defined on pages ix and x, respectively.
• α, β, γ , and c are algorithmic constants that are chosen based upon experience.
The choices of these constants are discussed in the experimental results sections.

Output:

• y ′i : The modified version of the linear measurements with i= 1,2,..., r2
4×b2 .

1: Initialize y ′i to yi, where i= 1,2,..., r2
4×b2 .

2: for î= 1 to m2

l2 do

3: // Embedding of the first coefficient.

y ′
î
(p1)= yî(p1−2c)+α× t̂i(1).

4: for j = p1− c+1 to p1−1 do

5: // Embedding of the next c−1 coefficients.

y ′
î
(j)= yî(j− c)+β× t̂i(j−p1+ c+1).

6: end for

7: for k= p1+p4+1 to p1+2×p4− c do

8: // Embedding of the remaining p4− c coefficients.

y ′
î
(k)= yî(k−p4+ c)+γ × t̂i(k−p1−p4+ c).

9: end for
10: end for
11: return y ′i

Extraction of the secret images
In this subsection, we discuss the process of extracting secret images from the stego-image.
Initially, we perform sampling (as done in section ‘Hiding Secret Images’ using Eq. (1a)–Eq.
(1d)) of the stego-image to obtain four sub-stego-images. Since the extraction of all the
secret images is similar, here, we discuss the extraction of only one secret image from one
sub-stego-image. First, we performblock-wise sparsification of the chosen sub-stego-image.
For this, we divide the sub-stego-image into blocks of size b×b. We obtain a total of r2

4×b2

blocks. Further, we sparsify each block (say x ′i ) by computing the corresponding sparse
vector (say s′i). That is,

s′i=DCT (x ′i ). (6)

Next, as earlier, we arrange these sparse blocks in a zig-zag scanning order, obtain the
corresponding sparse vectors each of size b2×1, and then categorize each of them into two
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5This is common in transform-based image
steganography.

Figure 4 Stego-image construction.
Full-size DOI: 10.7717/peerjcs.1080/fig-4

groups s′i,u ∈Rp1 and s′i,v ∈Rp2 . Here, as before, p1 and p2 are the numbers of coefficients
having large values and small values (or zero values), respectively. After that, we oversample
each sparse vector using linear measurements (say y ′i ∈R(p1+p3)×1),

y ′i =

[
y ′i,u
y ′i,v

]
=

[
s′i,u
8s′i,v

]
. (7)

From y ′i , we extract the DCT coefficients of the embedded secret image using Algorithm
2. This extraction rule is the reverse of the embedding rule given in Algorithm 1.

In Algorithm 2, t
′

î
∈Rl2×1, for î= 1,2,...,m

2

l2 , are the vector representations of the DCT
coefficients of the blocks of one extracted secret image. Next, we convert each vector t

′

î
into blocks of size l× l , and then perform a block-wise Inverse DCT (IDCT) (using Eq.
(5)) to obtain the secret image pixels. Finally, we obtain the extracted secret image of size
m×m by arranging all these blocks column wise. As mentioned earlier, this steganography
scheme is a blind multi-image steganography scheme because it does not require any cover
image data at the receiver side for the extraction of secret images.

Here, the process of hiding (and extracting) secret images is not fully lossless,5 resulting
in the degradation of the quality of extracted secret images. This is because we first
oversample the original image using Eq. (3), and then we construct the stego-image by
solving the optimization problem (4b), which leads to a loss of information. However, our
algorithm is designed in such a way that we are able to extract high-quality secret images.
We support this fact with examples in the experiments section (specifically, ‘Secret Image
Quality Assessment’). We term our algorithm Sparse Approximation Blind Multi-Image
Steganography (SABMIS) scheme due to the involved sparse approximation and the blind
multi-image steganography.

The above extraction process is represented via a block diagram in Fig. 5. As discussed
earlier, this extraction is just the reverse of the embedding process.
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Algorithm 2 Extraction Rule
Input:

• y ′′i : Sequence of linear measurements of the stego-image with i= 1,2,..., r2
4×b2 .

• p1, p4, α, β, γ , and c are chosen as in Algorithm 1.

Output:

• t ′
î
: Sequence of transform coefficients of the secret image with î= 1,2,...,m

2

l2 .

1: Initialize t ′
î
to zeros, where î= 1,2,...,m

2

l2 .

2: for î= 1 to m2

l2 do

3: // Extraction of the first coefficient.

t ′ î(1)=
y ′′
î
(p1)−y ′′î (p1−2c)

α
.

4: for j = p1− c+1 to p1−1 do

5: // Extraction of the next c−1 coefficients.

t ′
î
(j−p1+ c+1)=

y ′′
î
(j)−y ′′

î
(j−c)

β
.

6: end for
7: for k= p1+p4+1 to p1+2×p4− c do

8: // Extraction of the remaining p4− c coefficients.

t ′
î
(k−p1−p4+ c)=

y ′′
î
(k)−y ′′

î
(k−p4+c)
γ

.

9: end for
10: end for
11: return t ′

î

Figure 5 The extraction process.
Full-size DOI: 10.7717/peerjcs.1080/fig-5
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Figure 6 Test images used in our experiments (Standard Test Images for Image Prcessing, 2022). (A) Fruits, (B) Peppers, (C) Boat, (D) House,
(E) Lake, (F) Stream, (G) Living room, (H) Tulips, (I) Airplane, and (J) Camera man. Links: (A) https://github.com/mohammadimtiazz/standard-
test-images-for-Image-Processing/blob/master/standard_test_images/fruits.png (B) https://raw.githubusercontent.com/mohammadimtiazz/standard-
test-images-for-Image-Processing/master/standard_test_images/peppers_gray.tif (C) https://github.com/mohammadimtiazz/standard-test-images-
for-Image-Processing/blob/master/standard_test_images/boat.png (D) https://raw.githubusercontent.com/mohammadimtiazz/standard-test-images-
for-Image-Processing/master/standard_test_images/house.tif (E) https://raw.githubusercontent.com/mohammadimtiazz/standard-test-images-for-
Image-Processing/master/standard_test_images/lake.tif (F) https://raw.githubusercontent.com/mohammadimtiazz/standard-test-images-for-Image-
Processing/master/standard_test_images/walkbridge.tif (G) https://raw.githubusercontent.com/mohammadimtiazz/standard-test-images-for-Image-
Processing/master/standard_test_images/livingroom.tif (H) https://github.com/mohammadimtiazz/standard-test-images-for-Image-Processing/blob/
master/standard_test_images/tulips.png (I) https://raw.githubusercontent.com/mohammadimtiazz/standard-test-images-for-Image-Processing/
master/standard_test_images/jetplane.tif (J)https://raw.githubusercontent.com/mohammadimtiazz/standard-test-images-for-Image-Processing/
master/standard_test_images/cameraman.tif. Copyright: https://github.com/mohammadimtiazz/standard-test-images-for-Image-Processing/blob/
master/LICENSE.

Full-size DOI: 10.7717/peerjcs.1080/fig-6

EXPERIMENTAL RESULTS
Experiments are carried out in MATLAB on a machine with an Intel Core i5 processor
@2.50 GHz and 8GB RAM. We use 10 standard test images (those which are frequently
found in the literature) for our experiments. These image are freely available with no
copyright (Standard Test Images for Image Prcessing, 2022).

Here, we take all ten images shown in Fig. 6 as the cover images, and four images; Figs.
6B, 6E, 6F, and 6J as the secret images for our experiments. However, we can use any of
the ten images as the secret images.

Although the images shown in Fig. 6 look to be of the same dimension, they are of varying
sizes. For our experiments, each cover image is converted to 1024×1024 size (i.e., r× r).
We take blocks of size 8×8 for the cover images (i.e., b×b). Recall from section ‘Hiding
Secret Images’ that the size of the DCT sparsified vectors is (p1+p2)×1 with p1+p2= b2

(here, b2= 64). In general, applying DCT on images results in sparse vectors where more
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6The values of these constants do not
affect the convergence of ADMMmuch.
Determining the range of values that work
best here is part of our future work.

than half of the coefficients have values that are either very small or zero (Agrawal & Ahuja,
2021; Pal, Naik & Agrawal, 2019; Pan et al., 2015). This is the case here as well. Hence, in
our experiments, we take p1 = p2 = 32. Recall, the size of the measurement matrix 8 is
p3×p2 with p3> p2. We take p3= 50×p2. Without loss of generality, the element values
of the column-normalized measurement matrix are taken as random numbers with mean
0 and standard deviation 1, which is a common standard.

There are many options for taking the size of the secret images. In one way the size of the
length and the width of the secret image is taken to be the same as the length and the width
of the cover image (Sanjutha, 2018). In another approach, which many papers follow, the
dimensions of the secret image are taken to be substantially smaller than the dimensions
of the cover image. For example, the size of the length and the width of the secret image to
be half of the length and the width of the cover image (Hemalatha et al., 2013; Arunkumar
et al., 2019a; Arunkumar et al., 2019b), respectively. Another option is to use a factor of
one-fourth (Manujala & Danti, 2015). Hence, without any loss of generality, we take the
dimensions of the secret image to be half of the dimensions of the cover image.

Thus, each secret image is converted to 512×512 size (i.e., m×m). We take blocks of size
8×8 for the secret images as well (i.e., l× l). In general, the DCT coefficients can be divided
into three sets (Shastri, Tamrakar & Ahuja, 2018); low frequencies, middle frequencies, and
high frequencies. Low frequencies are associated with the illumination, middle frequencies
are associated with the structure, and high frequencies are associated with the noise or
small variation details. Thus, these high-frequency coefficients are of very little importance
for the to-be embedded secret images. Since the number of high-frequency coefficients is
usually half of the total number of coefficients, we take p4= 32 (using 8×8 divided by 2).

The values of the constants in Algorithm 1 and Algorithm 2 are taken as follows6 (based
upon experience): α= 0.01, β = 0.1, γ = 1, and c = 6. The LASSO constant is taken as
λ= 0.011λmax , where λmax =‖8

T y
′

i,v‖∞ with ‖ ·‖∞ being the `∞-norm (Agrawal et al.,
2021). For ADMM, we set the absolute stopping tolerance as 1×10−4, and the relative
stopping tolerance as 1×10−2. These values are again taken based upon our experience
with a similar algorithm (Agrawal et al., 2021). Eventually, our ADMM always converges
in 5 to 20 iterations.

As mentioned earlier, in the six sections below we experimentally demonstrate the
usefulness of our steganography scheme. In section ‘Embedding Capacity Analysis’, we
show analytically that our SABMIS scheme gives excellent embedding capacities. In section
‘Stego-ImageQuality Assessment’, we show that the quality of the constructed stego-images,
when compared with the corresponding cover images, is high. In section ‘Secret Image
Quality Assessment’, we demonstrate the good quality of the extracted secret images when
compared with the original secret images. In section ‘Security Analysis’, we show that
our SABMIS scheme is resistant to steganographic attacks. In section ‘Timing Data’, we
demonstrate efficiency of SABMIS by providing its timing data. In section ‘Application of
Our Scheme on Real-life Data’, we discuss applicability of our scheme to real-life data, and
hence, demonstrate its practical usefulness.
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7Since in the transform domain-based
steganography schemes, some specific
transform coefficients are hidden into
the cover image (along with the secret
bits), a more appropriate term that can
be used for embedding capacity is ‘‘bits of
information per pixel’’ (bipp). However,
to avoid confusion, we use the term bpp in
this article, which is commonly used.

Embedding capacity analysis
The embedding capacity (or embedding rate) is the number (or length) of secret bits that
can be hidden/ embedded in each pixel of the cover image. It is measured in bits per pixel7

(bpp) and is calculated as follows:

EC in bpp=
Total number of secret bits embedded

Total number of pixels in the cover image
. (8)

As motivated on the previous page, we chose the size of the length and the width of
secret image to be half of the length and the width of cover image, respectively. Since our
cover images are of size 1024×1024, our secret images are taken to be of size 512×512.
For a grayscale image, each pixel size is 8 bits. Hence, when hiding one secret image in a
cover image, we obtain the embedding capacity as below.

EC in bpp=
512×512×8
1024×1024

, (9)

which is equal to 2 bpp. Similarly, while hiding two, three, and four secret images in a cover
image, we obtain the embedding capacities of 4 bpp, 6 bpp, and 8 bpp, respectively.

Stego-image quality assessment
In general, the visual quality of the stego-image degrades as the embedding capacity
increases. Hence, preserving the visual quality becomes increasingly important. There is
no universal criterion to determine the quality of the constructed stego-image. However,
we evaluate it by visual and numerical measures. We use Peak Signal-to-Noise Ratio
(PSNR), Mean Structural Similarity (MSSIM) index, Normalized Cross-Correlation
(NCC) coefficient, entropy, and Normalized Absolute Error (NAE) numerical measures.

When using the visual measures, we construct the stego-images corresponding to the
different cover images used in our experiments and then check their distortion visually. We
also check their corresponding edge map diagrams. Here, we present the visual comparison
only for ‘Stream’ as the cover image with ‘Lake’ secret image and the corresponding
stego-image. We get similar results for the other images as well. The comparison is given
in Fig. 7. The cover image and its corresponding edge map are shown in parts (A) and (B)
of this figure. The stego-image and its corresponding edge map are given in parts (C) and
(D) of the same figure. When we compare each figure with its counterpart, we find that
they are very similar.

Next, when using the numerical measures to assess the quality of the stego-image with
respect to the cover image, we first evaluate the most common measure of PSNR value in
section ‘Peak Signal-to-Noise Ratio (PSNR) Value’. Subsequently, we evaluate the other
more rarely used numerical measures of MSSIM index, NCC coefficient, entropy, and NAE
in section ‘Other Numerical Measures’.

Peak Signal-to-Noise Ratio (PSNR) value
We compute the PSNR values to evaluate the imperceptibility of stego-images (SI) with
respect to the corresponding cover images (CI) as follows (Elzeki et al., 2021):

PSNR(CI ,SI )= 10log10
R2

MSE(CI ,SI )
dB, (10)
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(A)

(B)

(C)

(D)

Figure 7 Visual quality analysis between ‘Stream’ cover image (CI) and its corresponding stego-image
(SI) (with ‘Lake’ secret image embedded in it). (A) Cover image, (B) cover image edge map, (C)
stego-image, and (D) stego-image edge map. Link: https://raw.githubusercontent.com/mohammadimtiazz/
standard-test-images-for-Image-Processing/master/standard_test_images/walkbridge.tif. Copyright:
https://github.com/mohammadimtiazz/standard-test-images-for-Image-Processing/blob/master/LICENSE.

Full-size DOI: 10.7717/peerjcs.1080/fig-7

where R is the maximum intensity of the pixels, which is 255 for grayscale images, dB refers
to decibel, andMSE(CI ,SI ) represents the mean square error between the cover image CI
and the stego-image SI that is calculated as

MSE(CI ,SI )=

∑r1
i=1
∑r2

j=1
(
CI
(
i, j
)
−SI

(
i, j
))2

r1× r2
, (11)

where r1 and r2 represent the row and column numbers of the image (for us either cover
or stego), respectively, and CI (i,j) and SI (i,j) represent the pixel values of the cover image
and the stego-image, respectively.

A higher PSNR value indicates a higher imperceptibility of the stego-image with respect
to the corresponding cover image. In general, a value higher than 30 dB is considered to
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Figure 8 PSNR values of the stego-images when only one secret image is hidden.
Full-size DOI: 10.7717/peerjcs.1080/fig-8
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Figure 9 PSNR values of the stego-images when different numbers of images are hidden.
Full-size DOI: 10.7717/peerjcs.1080/fig-9

be good since human eyes can hardly distinguish the distortion in the image (Gutub &
Shaarani, 2020; Zhang et al., 2013; Liu & Liao, 2008).

The PSNR values of the stego-images corresponding to the ten cover images are given in
Figs. 8 and 9. In Fig. 8, we show the PSNR values of all the stego-images when separately all
the four secret images (mentioned above in Fig. 6) are hidden. In this figure, we obtain the
highest PSNR value (46.25 dB) when the ‘Peppers’ secret image is hidden in the ‘House’
cover image, while the lowest PSNR value (37.66 dB) is obtained when the ‘Stream’ secret
image is hidden in the ‘Stream’ cover image.

In Fig. 9, we show the PSNR values for the four cases of hiding one, two, three, and
four secret images in the ten cover images. As we have four secret images, when hiding one
secret image, we have a choice of hiding any one of them and present the resulting PSNR
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8It is a 11×11 Gaussian matrix, which is
standard in the calculation of MSSIM.

values. However, we separately hide all four images, obtain their PSNR values, and then
present the average results. Similarly, the average PSNR values are presented for the cases
when we hide two and three images. In this figure, we obtain the highest average PSNR
value (45.21 dB) when one secret image is hidden in the ‘House’ cover image, while the
lowest PSNR value (31.78 dB) is obtained when all four secret images are hidden in the
‘Stream’ cover image. Also, we observe that for all test cases, we obtain PSNR values higher
than 30 dB which, as earlier, are considered good.

Other numerical measures
Mean Structural Similarity (MSSIM) Index: This is an image quality assessment metric
used to measure the structural similarity between two images, which is most noticeable to
humans (Habib et al., 2016; Elzeki et al., 2021). MSSIM between the cover image CI and
the stego-image SI is given as

MSSIM (CI ,SI )=
1
M

M∑
j=1

SSIM (cij,sij), (12)

where cij and sij are the pixel values of the cover image and the stego-image, respectively,
at the jth local window8 with M being the number of local windows (Habib et al., 2016;
Wang et al., 2004), and

SSIM (x,y)=
(2µxµy+C1)(2σxy+C2)

(µ2
x+µ

2
y+C1)(σ 2

x +σ
2
y +C2)

, (13)

where for vectors x and y ; µx is the weighted mean of x ; µy is the weighted mean of y ; σx
is the weighted standard deviation of x ; σy is the weighted standard deviation of y ; σxy is
the weighted covariance between x and y ; C1 and C2 are positive constants.

We take M = 1069156, C1 = (0.01×255)2, and C2 = (0.03×255)2 based upon the
recommendations from Habib et al. (2016); Wang et al. (2004). The value of the MSSIM
index lies between 0 and 1, where the value 0 indicates that there is no structural similarity
between the cover image and the corresponding stego-image, and the value 1 indicates that
the images are identical.
Normalized Cross-Correlation (NCC) Coefficient: This metric measures the amount of
correlation between two images (Parah et al., 2016). The NCC coefficient between the
cover image CI and the stego-image SI is given as

NCC(CI ,SI )=

∑r1
i=1
∑r2

j=1CI (i,j)SI (i,j)∑r1
i=1
∑r2

j=1CI 2(i,j)
, (14)

where r1 and r2 represent the row and column numbers of the image (for us either cover
or stego), respectively, and CI (i,j) and SI (i,j) represent the pixel values of the cover image
and the stego-image, respectively. The NCC coefficient value of 0 indicates that the cover
image and the stego-image are not correlated while a value of 1 indicates that the two are
highly correlated.
Entropy: In general, entropy is defined as the measure of average uncertainty of a random
variable. In the context of an image, it is a statistical measure of randomness that can
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be used to characterize the texture of the image (Gonzalez, Woods & Eddins, 2004). For a
grayscale image (either a cover image or a stego-image in our case), entropy is given as

E =−
255∑
i=0

(pilog2pi), (15)

where pi ∈ [0,1] is the fraction of image pixels that have the value i. If the stego-image is
similar to its corresponding cover image, then the two should have similar entropy values
(due to similar textures).
Normalized Absolute Error (NAE): This metric is a distance measure that captures pixel-
wise differences between two images (Arunkumar et al., 2019b). NAE between the cover
image CI and the stego-image SI is given as

NAE(CI ,SI )=

∑r1
i=1
∑r2

j=1
(
|CI

(
i, j
)
−SI

(
i, j
)
|
)∑r1

i=1
∑r2

j=1CI
(
i, j
) , (16)

where r1 and r2 represent the row and the column numbers of the image (for us either
cover or stego), respectively, and CI (i,j) and SI (i,j) represent the pixel values of the cover
image and the stego-image, respectively. NAE has values in the range 0 to 1. A value close
to 0 indicates that the cover image is very close to its corresponding stego-image, and a
value close to 1 indicates that the two are substantially far apart.

In Table 7, we present the values of MSSIM index, NCC coefficient, entropy and NAE
for our SABMIS scheme when hiding all four secret images. We do not present the values
for the cases of embedding less than four secret images as their results will be better than
those given in Table 7. Hence, our reported results are for the worst case. From this table,
we observe that all values of the MSSIM index are nearly equal to 1 (different in the sixth
place of decimal), the values of NCC coefficients are close to 1, and values of NAE are close
to 0. The entropy values of the cover and the stego-images are almost identical. All these
values indicate that the cover images and their corresponding stego-images are almost
identical.

Secret image quality assessment
Since human observers are considered the final arbiter to assess the quality of the extracted
secret images, we compare one such original secret image and its corresponding extracted
secret image. The results of all other combinations are almost the same. In Figs. 10A and
10C, we show the original ‘Lake’ secret image and the extracted ‘Lake’ secret image (from
the ‘Stream’ stego-image). From these figures, we observe that there is little distortion in
the extracted image. Besides this, for these two images, we also present their corresponding
edge map diagrams (in Figs. 10B and 10D, respectively). Again, we observe minimal
variations between the original and the extracted secret images.

Security analysis
The SABMIS scheme is a transform domain based technique which employs an indirect
embedding strategy, i.e., it does not follow the Least Significant Bits (LSB) flipping method,
and hence, it is immune to statistical attacks (Westfeld & Pfitzmann, 2000; Yu et al., 2009).
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Table 7 MSSIM index, NCC coefficient, entropy, and NAE of the stego-images when compared with
the corresponding cover images.

Cover image MSSIM NCC Entropy NAE

Cover image Stego- image

Fruits 1 0.9996 7.488 7.496 0.009
Peppers 1 0.9997 7.573 7.603 0.012
Boat 1 0.9998 7.121 7.151 0.012
House 1 0.9998 5.756 6.630 0.007
Lake 1 0.9997 7.471 7.513 0.013
Stream 1 0.9991 7.702 7.719 0.020
Livingroom 1 0.9996 7.431 7.438 0.014
Tulips 1 0.9994 7.713 7.735 0.011
Jetplane 1 0.9998 6.716 6.795 0.008
Cameraman 1 0.9999 7.055 7.133 0.009
Average 1 0.9996 7.202 7.320 0.011

Moreover, in the SABMIS scheme, the measurement matrix 8, and the embedding/
extraction algorithmic settings are considered as secret-keys, which are shared between the
sender and the legitimate receiver. Even if the eavesdropper intercepting the stego-data
becomes aware that the SABMIS scheme has been used to embed a secret image, he would
not know these secret keys. Hence, we achieve increased security in our proposed system.

To justify this, we extract the secret image in two ways, i.e., by using correct secret-keys
and by using wrong secret-keys. Here, we embed only one secret image in a cover image
although these experiments can be extended to the cases of embedding two, three or
four secret images. Since the measurement matrix, which we use (random matrix having
numbers with mean 0 and standard deviation 1) is one of the most commonly used
measurement matrices and the eavesdropper might be able to guess it, we use this same
measurement matrix while building wrong secret-keys. Here, we use the same dimension
of this matrix as well, i.e., p3×p2. In reality, the guessed matrix size would be different
from the original matrix size, which would make the extraction task of the eavesdropper
more difficult.

The algorithmic settings that we use will be completely unknown to the eavesdropper
as above. These involve using a set of cover image coefficient indices where secret image
coefficients are embedded (p1 and p4) and few constants (α= 0.01, β = 0.1, γ = 1 and
c = 6). While building wrong secret-keys, without changing the indices (i.e., same p1 and
p4), we take the common guess of one for all constants (i.e., α= 1, β = 1, γ = 1 and c = 1).
In reality, the eavesdropper would not be able to correctly guess these indices as well,
resulting in further challenges during extraction.

In Figs. 11A and 11B, we compare the ‘Lake’ secret image when extracted using correct
and wrong secret-keys (from the ‘Stream’ stego-image), respectively. From this figure, we
see that when using correct secret-keys, the visual distortion in the extracted secret image
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(A) (C)

(B) (D)

Figure 10 Visual quality analysis between the ‘Lake’ original secret image and the ‘Lake’ extracted se-
cret image (from the ‘Stream’ stego-image). (A) ‘Lake’ original secret image, (B) Original secret image
edge map, (C) ‘Lake’ extracted secret image, and (D) Extracted secret image edge map. Link: https://raw.
githubusercontent.com/mohammadimtiazz/standard-test-images-for-Image-Processing/master/standard_
test_images/lake.tif. Copyright: https://github.com/mohammadimtiazz/standard-test-images-for-Image-
Processing/blob/master/LICENSE.

Full-size DOI: 10.7717/peerjcs.1080/fig-10

is negligible (as evident by comparing with Fig. 6E), and when using the wrong secret-keys,
the distortion in the extracted secret image is very high (it is almost black).

Further, we numerically demonstrate that the correctly and wrongly extracted secret
images are very different. We compute all the earlier discussed measures, i.e., PSNR,
MSSIM, NCC, Entropy, and NAE values between the correctly and wrongly extracted
secret images (when all four secret images had been separately embedded in the ten cover
images). The average values of all these metrics are given in Table 8. In this table, we observe
that PSNR values are very low (recall over 30 dB are considered good). The MSSIM and
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Figure 11 Visual quality analysis between the ‘Lake’ extracted secret image when using correct and
wrong secret-keys (from the ‘Stream’ stego-image). (A) ‘Lake’ extracted secret image (when using cor-
rect secret-keys), and (B) ‘Lake’ extracted secret image (when using wrong secret-keys). Link: https://raw.
githubusercontent.com/mohammadimtiazz/standard-test-images-for-Image-Processing/master/standard_
test_images/lake.tif. Copyright: https://github.com/mohammadimtiazz/standard-test-images-for-Image-
Processing/blob/master/LICENSE.

Full-size DOI: 10.7717/peerjcs.1080/fig-11

Table 8 Average PSNR, MSSIM, NCC, Entropy, and NAE value between the correctly and wrongly ex-
tracted secret images.

Cover image PSNR MSSIM NCC Entropy NAE

Correctly
extracted
secret image

Wrongly
extracted
secret image

Fruits 6.032 0.0116 0.0037 7.188 1.409 0.9952
Pepper 5.767 0.0061 0.0034 7.604 1.419 0.9955
Boat 5.760 0.0070 0.0030 7.546 1.324 0.9959
House 5.767 0.0036 0.0015 7.533 0.897 0.9979
Lake 5.767 0.0083 0.0044 7.534 1.587 0.9942
Stream 5.835 0.0113 0.0071 7.542 1.974 0.9910
Livingroom 5.775 0.0078 0.0039 7.544 1.521 0.9948
Tulips 5.655 0.0162 0.0038 7.253 1.527 0.9948
Airplane 5.762 0.0074 0.00322 7.533 1.385 0.9956
Cameraman 5.780 0.0054 0.0025 7.531 1.151 0.9966
Average 5.790 0.0085 0.0037 7.481 1.419 0.9952

NCC values are close to 0. The entropy values of correctly and wrongly extracted secret
images are far from each other. Finally, NAE values are close to 1. Hence, two images are
substantially different from each other. Therefore, in the SABMIS scheme, a change in
secret-keys will lead to a shift in the accuracy between the correctly and wrongly extracted
secret images, in turn, making our scheme secure.
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Table 9 Timing data while embedding four secret images into different cover images.

Cover image Run time of different stages of our SABMIS scheme (in Seconds)

Hiding of
secret images

Stego-image
construction

Secret images
extraction

Total
time

Fruits 8.92 74.67 12.78 96.37
Pepper 8.21 73.65 10.34 92.20
Boat 8.01 76.82 8.67 93.50
House 7.98 76.58 13.86 98.42
Lake 7.99 80.07 8.42 96.48
Stream 10.81 69.81 10.24 90.86
Livingroom 8.13 84.15 8.49 100.77
Tulips 8.68 81.34 9.13 99.15
Airplane 8.43 80.16 8.82 97.41
Cameraman 8.16 79.12 8.75 96.03
Average 8.38 77.34 9.83 95.55

Timing data
The time taken by our SABMIS scheme is not of great importance here because all
computations are done offline, whether it is hiding of secret images, stego-image
construction, or the extraction of the secret images. However, for the sake of completeness,
this data, while together hiding the four secret images in the ten cover images, is given in
Table 9.

It is evident that the scheme is completely executed in a few minutes. Further, hiding
and the extraction steps take about the same time (which they should because of similar
steps), which is 10% of the total time. The most expensive step is stego-image construction,
where the optimization problem is solved, which takes 80% of the total time.

Application of our scheme on real-life data
In the two subsections below, we experiment on hiding mammograms and brain images
(in cases where some loss is acceptable) in nondescript cover images. Sending these images
safely across the internet is useful in breast cancer and brain related disease diagnosis,
respectively. For the first case, we do not have reference steganographic data to compare
against, while for the second case, we do have such data.

Hiding mammograms
Here, we hide one through four mammograms (Heath et al., 1998; Heath et al., 2001)
(see two in Figs. 12A and 12C) into all the cover images used in our experiments. These
mammograms are freely available for research purposes. In Table 10, we present the
embedding capacity and PSNR values from these experiments. As evident, we obtain
good embedding capacity and average as well as maximum PSNR values. The other image
comparison metrics turn out to be similar as well.

In Fig. 13, we present the visual comparison for ‘Stream’ as the cover image and the
corresponding stego-image. We see that the cover and its corresponding stego-image are
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(A) (B)

(C) (D)

Figure 12 Visual quality analysis between the ‘Mammogram’ original secret image and the ‘Mammo-
gram’ extracted secret image (from the ‘Stream’ stego-image). (A) ‘Mammogram’ original secret im-
age, (B) ‘Mammogram’ extracted secret image, (C) ‘Mammogram’ original secret image, and (D) ‘Mam-
mogram’ extracted secret image. (A and C) source credits: Digital Database for Screening Mammography
c©University of South Florida.

Full-size DOI: 10.7717/peerjcs.1080/fig-12

very similar. We get analogous results for the other images as well. We also check their edge
maps (as discussed in section ‘Stego-Image Quality Assessment’) and obtain good results.

Next, we assess the quality of the extracted secret mammograms. In Figs. 12A and 12C,
we show two original mammograms, and in Figs. 12B and 12D, we show the two respective
extracted mammograms (from the ‘Stream’ stego-image). From these figures, we observe
that there is very little distortion in the extracted mammograms. We get similar results for
the other two mammograms as well.
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Table 10 Results of applicability of our scheme on real-life data (i.e., mammograms).

No. of
secret
images

Steganography
scheme

Type of
secret image

Type of
cover images

EC (in bpp) (Avg. PSNR,
No. of cover images)

Max. PSNR

1 SABMIS Grayscale Grayscale 2 (44.30, 10) 49.41
2 SABMIS Grayscale Grayscale 4 (35.54, 10) 39.90
3 SABMIS Grayscale Grayscale 6 (34.87, 10) 39.10
4 SABMIS Grayscale Grayscale 8 (34.32, 10) 38.56

(A) (B)

Figure 13 Visual quality analysis between ‘Stream’ cover image (CI) and its corresponding stego-
image (SI) when four mammograms are hidden. (A) Cover Image, and (B) stego-image. Link: https://raw.
githubusercontent.com/mohammadimtiazz/standard-test-images-for-Image-Processing/master/standard_
test_images/walkbridge.tif. Copyright: https://github.com/mohammadimtiazz/standard-test-images-for-
Image-Processing/blob/master/LICENSE.

Full-size DOI: 10.7717/peerjcs.1080/fig-13

Hiding brain images
Arunkumar et al. (2019b) hide a brain image into a cover image. Since the original brain
image as used in Arunkumar et al. (2019b) is not publicly available, we work with an image
that is quite similar to the image used in Arunkumar et al. (2019b), and is available in free
public domain with no copyright (see Fig. 14A) (Rawpixel, 2022; Creative Commons, 2022).
By using SABMIS, we hide one through four copies of this image into all cover images
(presented earlier), and compare with the results of Arunkumar et al. (2019b).

This comparison is given in Table 11. As evident, we are not competitive withArunkumar
et al. (2019b) for the case of hiding one secret image (also discussed in ‘Comparison with
Past Work’). However, Arunkumar et al. (2019b)’s scheme can hide only one secret image
while our scheme can hide multiple secret images. We observe that using SABMIS to hide
four secret images in a cover image, we obtain a good embedding capacity of 8 bpp and
a good average PSNR value of 33.56. The other image comparison metrics turn out to be
similar as well.
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(A) (B)

Figure 14 Visual quality analysis between the ‘Brain’ original secret image (Bra, 2022a; Bra, 2022b)
and the ‘Brain’ extracted secret image (from the ‘Stream’ stego-image). (A) ‘Brain’ original secret im-
age, and (B) ‘Brain’ extracted secret image. Link: https://www.rawpixel.com/image/5939989/free-public-
domain-cc0-photo. Copyright: https://creativecommons.org/publicdomain/zero/1.0/.

Full-size DOI: 10.7717/peerjcs.1080/fig-14

Table 11 Application of our scheme on real-life data (brain image), and its comparison with one scheme.

No. of
secret
images

Steganography
scheme

Type of
secret
image

Type of
cover
images

EC
(in bpp)

(Avg. PSNR,
No. of cover
images)

Max.
PSNR

1 Arunkumar et al. (2019b) Grayscale Grayscale 2 (49.69, 8) 50.15
1 SABMIS Grayscale Grayscale 2 (41.54, 10) 44.58
4 SABMIS Grayscale Grayscale 8 (33.56, 10) 37.74

As mentioned above, Arunkumar et al. (2019b) do not hide more than one secret image,
and hence, we have no reference data to compare against in the rest of our results (quality
of stego-image, quality of secret image, and resistant to steganographic attacks). In Fig. 15,
we present the visual comparison of ‘Stream’ as the cover image and the corresponding
stego-image while hiding four copies of this brain image. As evident, the cover and its
corresponding stego-image are very similar. We get analogous results for the other cover
images as well. We also check their edge maps (as discussed in section ‘Stego-image Quality
Assessment st2’) and obtain good results.

In Fig. 14, we show the original brain secret image and one of the extracted brain images
(from the ‘Stream’ stego-image). From these figures, we observe that when compared with
the original secret image, the quality of the extracted secret image is good. Finally, like
(Arunkumar et al., 2019b), our scheme is inherently resistant to steganographic attacks.
Our design makes our scheme more robust.
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(A) (B)

Figure 15 Visual quality analysis between ‘Stream’ cover image (CI) and its corresponding stego-
image (SI) when four copies of brain medical images are hidden. (A) Cover image, and (B) stego-image.
Link: https://raw.githubusercontent.com/mohammadimtiazz/standard-test-images-for-Image-Processing/
master/standard_test_images/walkbridge.tif. Copyright: https://github.com/mohammadimtiazz/standard-
test-images-for-Image-Processing/blob/master/LICENSE.

Full-size DOI: 10.7717/peerjcs.1080/fig-15

CONCLUSIONS AND FUTURE WORK
In image steganography, the challenges are increasing the embedding capacity of the
scheme, maintaining the quality of the stego-image as well as extracted secret image, and
ensuring that the scheme is resistant to steganographic attacks. We propose SABMIS, a
blind multi-image steganography scheme for securing secret images in cover images to
substantially overcome these challenges. All our images are grayscale, which is a hard
problem.

Our proposed SABMIS consists of many novel features to tackle the above challenges.
This includes a novel embedding rule that embeds the secret image sparse coefficients into
oversampled cover image sparse coefficients in a staggered manner; a transformed LASSO
formulation of the underlying optimization problem to construct the stego-image, which
is eventually solved by ADMM; and finally, the reverse of our unique embedding rule
resulting in an extraction rule.

We perform exhaustive experiments to demonstrate that our scheme overcomes all the
challenges of image steganography as discussed above. We focus on embedding multiple
secret images. The embedding capacity of SABMIS for the case of embedding two and
three secret images is the best in the published literature (three times and six times than the
existing best, respectively). While embedding four secret images, our embedding capacity
is slightly lower than Hu (2006) (about 2

3
rd
) but we do substantially better in overcoming

the other challenges.
The quality of our stego-images (when compared with the corresponding cover images)

and our extracted secret images (when compared with the corresponding original secret
images) are the best among the existing literature (over 30 dB of PSNR values). SABMIS is
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intrinsically as well as designed to be resistant to steganographic attacks (because transform
based and algorithmic settings, respectively), making it one of the most secure schemes
among the existing ones.

Additionally, we show that SABMIS can be applied in a very little amount of time, and
also demonstrate SABMIS’s successful application on the real-life problem of securely
sending medical images over the internet.

Next, we discuss the future work in this context. First is further improving our algorithm.
As mentioned earlier, our SABMIS scheme has multiple novel components. Although in
Appendix, ‘Sensitivity of our scheme with respect to the novel components’, we perform
sensitivity analysis of SABMIS with respect to one such component (oversampling), a
more detailed analysis is part of future work. In future, we plan to find improved values
of parameters α,β,γ , etc. used in the embedding and the extraction aspects of SABMIS.
Further, our scheme may give poor results when embedding more than four secret images
(see Appendix, ‘A possible scenario where our scheme is not the best’). Hence, exploring
this aspect is also part of our future work.

Second is extending our scheme to embed images into videos because the amount of
information that may be hidden in an image is limited. Third is adapting our scheme
for real-life applications. Although in this article, we discuss use of SABMIS for securing
mammograms and brain images while transmitting them over the internet, extensive
experiments for this are part of our future work. Another related application is safely
sharing biometric data of people over the internet. We plan to explore this aspect in future
as well.

APPENDIX. SOME STEGANOGRAPHY SCHEMES FOR HID-
ING BINARY SECRET DATA
As discussed in the introduction, our focus is on hiding images into an image, and the
images can be binary, grayscale, or color. Hiding binary data into images is a separate
problem because the evaluation metrics for hiding images and binary data are completely
different. However, for the sake of completeness, in Table A1, we summarize some existing
works that discuss hiding of binary data into images. These papers are sorted in the
decreasing order of date of publishing.

APPENDIX. A SMALL NUMERICAL EXAMPLE OF OUR
EMBEDDING PROCESS
Our embedding process for a small example (with 2×2 blocks for both the secret and cover
images) is shown in Fig. A1. In the experiments, we show the results of hiding/ embedding
up to four secret images in a cover image. However, for the sake of simplicity, here, we
show the case of hiding one secret image into a cover image.
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Table A1 Some steganography schemes for hiding binary secret data into an image. All cover images
are colored below.

Reference Technique

AlKhodaidi & Gutub (2021) LSB (Least Significant Bits)
Al-Shaarani & Gutub (2021a) LSB and DWT (Discrete Wavelet Transform)
Al-Shaarani & Gutub (2021b) LSB and DWT
Hureib & Gutub (2020) LSB
Gutub & Al-Ghamdi (2020) LSB
Almutairi, Gutub & Al-Ghamdi (2019) LSB
Gutub & Al-Ghamdi (2019) A modified version of LSB
Alanizy et al. (2018) LSB
Gutub & Al-Juaid (2018) LSB
Parvez & Gutub (2011) A modified version of LSB
Gutub (2010) A modified version of LSB

A small block of cover image
Sparse blocks si in vector form

Blocks having 
low value

Linear measurement

Blocks
having 
large value

A small block of secret image

DCT coefficients

[-3.56, 6.21, 7.82,......., 2.50]

[249.99, 6.21, 498.99,......., 2.50]

Companion Linear measurement (size 150 x 1)

Replaced linear measurement (size 150 x 1)
Measurement stream (size 151 x 1)

Measurement matrix 
(size 150 X 3)

Figure A1 A small numerical example of secret image embedding.
Full-size DOI: 10.7717/peerjcs.1080/fig-A1

APPENDIX. A SMALL NUMERICAL EXAMPLE OF OUR
STEGO-IMAGE CONSTRUCTION PROCESS
Our stego-image construction process, from the stego-data obtained from Fig. A1, is shown
in Fig. A2.

APPENDIX. SENSITIVITY OF OUR SCHEME WITH RESPECT
TO THE NOVEL COMPONENTS
Here, we demonstrate that when we omit or restrict a particular component of our
steganography scheme, then how it affects the overall performance. As discussed earlier, the
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9Since we design our embedding rule
in such a way that we always need the
number of linear measurements larger
than the number of sparse coefficients,
we could not completely omit this
oversampling.

10We obtain similar results with other
comparison metrics as well.

Approximate sparse
blocks

Blocks of stego-image

Inverse DCT

Figure A2 A small numerical example of stego-image construction.
Full-size DOI: 10.7717/peerjcs.1080/fig-A2

novel components of SABMIS are: the oversampling of the cover image sparse coefficients
and hiding secret image sparse data into them in a staggered way (our embedding rule);
using ADMM to solve the LASSO formulation of the underlying minimization problem
for stego-image construction; and the extraction of the secret images by the extraction rule
(which is the reverse of the embedding rule).

Without loss of generality, we restrict the oversampling component and show its effects
on the performance.9 As mentioned in the experimental result section (i.e., in section
‘Experimental Results’), the size of the measurement matrix 8 is p3×p2 with p3 > p2.
Earlier, we took p3= 50×p2. Here, we take p3= 2×p2, i.e., we restrict this oversampling.
In Fig. A3, we show the stego-image PSNR values for the case of hiding one, two, three,
and four secret images with this restricted oversampling in SABMIS. Comparing this figure
with Fig. 9 (hiding one to four secret images with original oversampling in SABMIS),
we observe that the PSNR values reduce substantially. Hence, the novel component of
oversampling of our SABMIS scheme greatly affects the overall performance.10

APPENDIX. A POSSIBLE SCENARIO WHERE OUR SCHEME
IS NOT THE BEST
Here, we give a possible scenario where our scheme does not give the best results. We hide
six (instead of four) secret images using our proposed steganography scheme and check all
the evaluation metrics discussed earlier. The secret images chosen are shown in Figs. 6A,
6B, 6D, 6E, 6F, and 6J.

We achieve up to 12 bpp embedding capacity. Visually, both the cover image and the
stego-image are almost identical (see Fig. A4). While looking at the numerical measures,
we achieve an average PSNR value of 34.39 dB, average MSSIM value close to 0.9991,
average NCC value of 0.9981, nearly same entropy of the cover image and the stego-image,
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Figure A3 PSNR values of the stego-images when different numbers of images are hidden in the ten cover images (with restricted oversampling
in SABMIS).

Full-size DOI: 10.7717/peerjcs.1080/fig-A3

(A) (B)

Figure A4 Visual quality analysis between ‘Stream’ cover image (CI) and its corresponding
stego-image (SI), when hiding six secret images. (A) Cover image, and (B) stego-image. Link:
https://raw.githubusercontent.com/mohammadimtiazz/standard-test-images-for-Image-Processing/
master/standard_test_images/walkbridge.tif. Copyright: https://github.com/mohammadimtiazz/standard-
test-images-for-Image-Processing/blob/master/LICENSE.

Full-size DOI: 10.7717/peerjcs.1080/fig-A4

and average NAE value close to 0. All these values further indicate that the stego-image is
very similar to its corresponding cover image. However, the original secret image and the
extracted secret image are very different (see Fig. A5). Hence, we observe that when we try
to hide more than four secret images using our scheme, the quality of the extracted secret
images degrades.
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(A) (B)

Figure A5 Visual quality analysis between the ‘Fruits’ original secret image and the ‘Fruits’ extracted
secret image (from the ‘Stream’ stego-image, when hiding six secret images). (A) ‘Fruits’ original secret
image, and (B) ‘Fruits’ extracted secret image. Link: https://github.com/mohammadimtiazz/standard-test-
images-for-Image- Processing/blob/master/standard_test_images/fruits.png. Copyright: https://github.com/
mohammadimtiazz/standard-test-images-for-Image-Processing/blob/master/LICENSE.

Full-size DOI: 10.7717/peerjcs.1080/fig-A5
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