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Abstract
The global navigation satellite system (GNSS) daily position time series are often described as the sum of stochastic processes
and geophysical signals which allow to study global and local geodynamical effects such as plate tectonics, earthquakes, or
ground water variations. In this work, we propose to extend the Generalized Method of Wavelet Moments (GMWM) to
estimate the parameters of linear models with correlated residuals. This statistical inferential framework is applied to GNSS
daily position time-series data to jointly estimate functional (geophysical) as well as stochastic noise models. Our method
is called GMWMX, with X standing for eXogenous variables: it is semi-parametric, computationally efficient and scalable.
Unlike standard methods such as the widely used maximum likelihood estimator (MLE), our methodology offers statistical
guarantees, such as consistency and asymptotic normality, without relying on strong parametric assumptions. At the Gaussian
model, our results (theoretical and obtained in simulations) show that the estimated parameters are similar to the ones
obtained with the MLE. The computational performances of our approach have important practical implications. Indeed, the
estimation of the parameters of large networks of thousands of GNSS stations (some of them being recorded over several
decades) quickly becomes computationally prohibitive. Compared to standard likelihood-based methods, the GMWMX has a
considerably reduced algorithmic complexity of orderO{log(n)n} for a time series of length n. Thus, the GMWMX appears
to provide a reduction in processing time of a factor of 10–1000 compared to likelihood-based methods depending on the
considered stochastic model, the length of the time series and the amount of missing data. As a consequence, the proposed
method allows the estimation of large-scale problems within minutes on a standard computer. We validate the performances
of our method via Monte Carlo simulations by generating GNSS daily position time series with missing observations and
we consider composite stochastic noise models including processes presenting long-range dependence such as power law or
Matérn processes. The advantages of our method are also illustrated using real time series from GNSS stations located in the
Eastern part of the USA.

Keywords Maximum likelihood estimator · Variance decomposition · Two-step estimation · Long-range dependence ·
Tectonic · Geodynamics

Davide A. Cucci and Lionel Voirol contributed equally and are alpha-
betically ordered.

B Stéphane Guerrier
Stephane.Guerrier@unige.ch

1 Geneva School of Economics and Management, University of
Geneva, Geneva, Switzerland

2 Institute for Meteorology and Climatology, Leibniz
University Hannover, Hannover, Germany

3 Institute Dom Luiz (IDL), University of Beira Interior,
Covilhã, Portugal

1 Introduction

Permanent stations observing signals from the Global Nav-
igation Satellite System (GNSS) have been installed world-
wide. Theymeasure changes in position over time associated
with a number of geophysical phenomena such as post-
glacial rebound (see, e.g., Milne et al. 2001), hydrological
loading (see, e.g., Bevis et al. 2002; Tregoning and Watson
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2009) or crustal deformations (see, e.g.,Williams 2003),with
millimeter-level accuracy. These geophysical signals can be
studied through a careful analysis of daily time series of
GNSS receiver coordinates (Bock and Melgar 2016; Her-
ring et al. 2016; He et al. 2017). Many applications focus on
the estimation of the tectonic rate (Bock et al. 1997; Bock
andMelgar 2016) either as a linear function (Fernandes et al.
2004; Bos et al. 2020), or as a nonlinear trend including off-
sets (Nielsen et al. 2013; Blewitt et al. 2016). To that end, the
daily position time series are described as the sum of a noise
and a geophysical signal. The latter can again be divided into
station displacements due to geophysical phenomena (e.g.,
seasonal variations, tectonic movements, post-seismic relax-
ations of the crust) and other factors (e.g., small amplitude
transient signals due to various disturbances He et al. 2017;
Michel et al. 2021).

Bevis and Brown (2014) are the first to suggest that the
equations used to describe the motion of GNSS stations
should be thought of as functional (or trajectory) models.
This approach has also been applied to various fields such
as gravity time series (Van Camp et al. 2005), mean sea-
level records (Burgette et al. 2013; Montillet et al. 2020),
and bridge oscillations (Omidalizarandi et al. 2020). In this
contribution, we followBevis andBrown (2014) andHe et al.
(2019) and describe the geodetic time series by a functional
and a stochastic noise model. We focus on obtaining the suit-
able parameter estimates together with reasonable associated
uncertainties (Langbein 2008; Teferle et al. 2008; Bos et al.
2010; He et al. 2019; Bevis et al. 2020; He et al. 2021). The
joint estimation of both deterministic and stochastic models
is often based on the maximum likelihood estimator (MLE)
and has been implemented in various software packages such
as CATS (Williams 2008), Est_noise (Langbein 2008) and
Hector (Bos et al. 2008).Othermethods use theMarkov chain
Monte Carlo (Olivares and Teferle 2013) or the expectation-
maximization (EM) algorithm (Kargoll et al. 2020).

Unfortunately, the computational aspects related to the
parameter estimation are often a key challenge when consid-
ering large datasets and/or complex stochastic noise models.
Generally, various matrix operations are needed to compute
the likelihood function which can become rapidly cumber-
some for longer and longer time series. Powerful computing
facilities (e.g., parallel processing, national computing cen-
ters) are required in order to process hundreds of stations,
with some of them recording observations over several
decades, in a reasonable amount of time. To speed up the pro-
cessing time, several approximations of the MLE have been
proposed. Bos et al. (2008, 2013) reduced the computation
time of a factor of 10–100 compared to the standard MLE
method (depending on the length of the real time series) ini-
tially developed by Williams (2008). Tehranchi et al. (2021)
further improved the computational aspect of the method
using restrictedMLE. Despite these computational improve-

ments, the analysis of crustal deformation or geodynamical
activity on a large scale that (i) includes hundreds to thou-
sands of GNSS stations (He et al. 2021), (ii) with some of
them recording more than 25 years of continuous observa-
tions and (iii) when different noise models must be tested,
becomes impractical due to the large amount (e.g., weeks) of
processing time required (He et al. 2019; Bos et al. 2020).

In this contribution, we propose a semi-parametric, com-
putationally efficient and scalable method to estimate the
parameters of linear models with dependent residuals. The
key advancement of this new approach is that it avoids the
use of strong parametric assumptions and drastically reduces
the computational time required to estimate the models com-
monly used to describe GNSS time-series data. Our method
relies on a two-step statistical procedure which considers
a (weighted) least squares approach to estimate the func-
tional part of the model while the stochastic part of the
model is obtained using the Generalized Method of Wavelet
Moments (GMWM) proposed in Guerrier et al. (2013). We
call ourmethod theGeneralizedMethodofWaveletMoments
with eXogenous inputs, or GMWMX. Interestingly, the
Least Squares Variance Component Estimation (LS-VCE)
proposed in Pukelsheim (1976) (aswell as independently dis-
covered and popularized in Geodesy by Teunissen 2004) and
further developed and elaborated by Teunissen and Amiri-
Simkooei (2008) andAmiri-Simkooei (2007) is related to the
proposed approach. Indeed, the LS-VCE is also a moment-
based semi-parametric method with desirable computational
properties.

We test our method against the MLE using the Hector
package developed by Bos et al. (2008) and He et al. (2019),
a standard software to analyze geodetic time series.We focus
especially on the processing time as a function of the length
of the time series and the accuracy of the estimated geo-
physical parameters considering different stochastic noise
models (e.g., a combination of power law and white noise).
Our analysis includes simulated and real GNSS daily posi-
tion coordinate time series. The real data are provided by a
few selected GNSS stations located on the east coast of the
USA. We compare our estimates with (i) Hector’s solutions
and (ii) the velocity estimates provided by the PlateBoundary
Observatory (PBO - UNAVCO) (Herring et al. 2016).

This paper is organized as follows: The next section intro-
duces themathematical notations and a summaryof theMLE.
Section 3 derives the new estimator and discusses the contri-
bution of the GMWMX with a specific application to GNSS
daily position time-series analysis. We then compare the
results of our new estimator to the one obtained with the
Hector software package for simulated and real observations
in Sects. 4.1 and 4.2, respectively.We concludewith a discus-
sion on the use of the GMWMX in environmental geodesy
in Sect. 5.
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2 Problem formulation

2.1 Generalities and notations

Throughout this paper, we employ the following notations.
For a vector a ∈ Rn , we define ai as i-th element of the vec-
tor a, for i = 1, . . . , n. Similarly, for a matrix A ∈ Rn×m ,
we define Ai, j as the (i, j)-th element of the matrix A, for
i = 1, . . . , n and j = 1, . . . ,m, and we denote Ai as the
i-th row of A. Given two matrices A, B ∈ Rn×m , we write
A ∝ B to denote thatA is proportional to B in the sense that
there is a nonzero constant k such thatA = kB. Similarly, we
write A�∝ B to denote that A is not proportional to B. More-
over, we write A > 0 and A � 0 to denote that the matrix
A is positive definite and positive semi-definite, respectively.

Finally, we use the notation
p−→ and

d−→ to denote conver-
gence in probability and in distribution, respectively.

This work aims at developing a statistical inferential
framework for the parameters of linear regression models
with correlated residuals. While the method proposed in this
article is generally applicable to various regression prob-
lems we consider in particular the models used for GNSS
(daily) position time series. More precisely, we assume that
the observations are generated from the following model:

Y = Ax0 + ε, (1)

where Y ∈ Rn denotes the response variable of interest (i.e.,
a vector of GNSS observations), A ∈ Rn×p denotes a fixed
design matrix, x0 ∈ X ⊂ Rp denotes a vector of unknown
constants and ε ∈ Rn a vector of (zero mean) residuals. In
many applications,x0 is of interest as it is related to, for exam-
ple, the local tectonic rate and seismic phenomena (see, e.g.,
Bock andMelgar 2016). A common formulation of the func-
tional component of the model is given by He et al. (2017),
which expresses the i-th component of the vector Ax0 as
follows:

E[Yi ] = Aix0 = a + b (ti − t0)

+
2∑

h=1

[ch sin (2π fhti ) + dh cos (2π fhti )]

+
ng∑

k=1

gkH (ti − tk) , (2)

where a is the initial position at the reference epoch t0, b
is the velocity parameter, ck and dk are the periodic motion
parameters (h = 1 and h = 2 represent the annual and semi-
annual seasonal terms, respectively). The offset terms model
earthquakes, equipment changes or human intervention in
which gk is the magnitude of the change at epochs tk , ng
is the total number of offsets, and H is the Heaviside step

function. Moreover, we assume that εi = Yi − E[Yi ] is a
strictly (intrinsically) stationary process and that

ε ∼ F {0,�(γ 0)
}
, (3)

where F denotes some probability distribution in Rn with
mean 0 and covariance �(γ 0). We assume that �(γ 0) >

0 and that it depends on the unknown parameter vector
γ 0 ∈ � ⊂ Rq . This parameter vector specifies the covari-
ance of the observations and is often referred to as the
stochastic parameters. The formulation of the noise struc-
ture of ε is very general and includes a large class of time
series models such as (the sum of) AutoRegressive Moving-
Average (ARMA) models with additional noise, rounding
errors and/or processes with long-range dependence. For
example, this class of models includes the model consid-
ered in He et al. (2017) by assuming F to be a multivariate
normal distribution and that εt = Zt + Rt + Ut , where Zt

represents a Matérn process (see, e.g., Lilly et al. 2017), Rt

denotes a fractional (Gaussian) noise (see, e.g., Li and Lim
2006) andUt represents a standardGaussianwhite noise pro-
cess. In practice, the estimation of γ 0 is of interest as it could
be informative regarding soil properties, such as moisture
and groundwater depletion (see, e.g., Bevis et al. 2005), as
well as atmospheric properties, which are of importance in
climate change studies (Wöppelmann et al. 2009).

For simplicity, we let θ0 = [
xT0 γ T

0

]T ∈ � = X × � ⊂
Rp+k denote the unknown parameter vector of the model
described in (1). The main goal of this paper is to pro-
pose a computationally efficient inferential framework for θ0
which enjoys desirable statistical properties while avoiding
the specification of the probability distribution F . Through-
out this paper, we consider a general class of probability
distributions F , which can be characterized by a set of mild
regularity conditions specified later in Sect. 3.

2.2 Standard likelihood-based approach

The standard approach for the estimation of the problem
defined in (1) is based on the MLE (see, e.g., Bos et al. 2008)
or closely related estimators such as the restricted MLE (see,
e.g., Tehranchi et al. 2021). In this section, we briefly review
how maximum likelihood estimators can be constructed in
this setting. Under the parametric assumption that the proba-
bility distributionF considered in (3) is amultivariate normal
distribution, the likelihood function for a generic θ ∈ � is
simply given by:

L (θ |Y) = exp

{
− 1

2
(Y − Ax)

T� (γ )−1 (Y − Ax)
} [

(2π)n det {� (γ )}]−1/2
, (4)

123



14 Page 4 of 28 D. A. Cucci et al.

allowing to define the MLE for θ0 as

θ̂ =
[
x̂T γ̂ T

]T = argmax
θ∈�

L (θ |Y) . (5)

Under standard regularity conditions (see, e.g., Newey and
McFadden 1994), this estimator enjoys some desirable sta-
tistical properties such as consistency and asymptotic nor-
mality. In particular, under usual smoothness and mixing
conditions it can be shown that

√
an (̂x − x0)

d−→ N (0,V) ,

where V = lim
n→∞ an

{
AT�(γ 0)

−1A
}−1

, (6)

where {an}n∈N is a diverging sequence of positive num-
bers such that

√
an corresponds to the asymptotic rate of

convergence of x̂. In the case of short-memory processes,
we typically have an = n and x̂ is a

√
n-consistent esti-

mator. However, slower rates of convergence occur with
long-memory processes such as the ones typically consid-
ered to model GNSS (daily) position time series (see, e.g.,
Palma 2007 and the references therein for more details).
Moreover, the result presented in (6) relies on the assump-
tion that n−1ATA converges (possibly in probability in the
case of a random design) to a nonsingular matrixQ ∈ Rp×p.
Thus, the matrix A defined in (1) may have to be re-scaled
appropriately to ensure that there exists a common asymp-
totic rate of convergence

√
an for all the elements of x̂ (see,

e.g., Chapter 16 of Hamilton 1994 and the references therein
for more details). This assumption on the matrix A is made
throughout the paper.

The estimator x̂ is asymptotically efficient since Aitken’s
theorem (ormore precisely its generalization given inHansen
2022) shows that, in general, any unbiased estimator of x
(even in the case where �(γ 0) is known), say x̄, is such that

lim
n→∞ an var (x̄) � an

{
AT�(γ 0)

−1A
}−1

. (7)

Thus, the estimator x̂ is said to be asymptotically efficient
in the sense that its asymptotic variance is the smallest pos-
sible among all unbiased estimators.

An important limitation of the MLE is the computational
burden it often entails. Indeed, solving (5) typically requires
to evaluate the likelihood function in (4) a large number of
times. Each evaluation involves the inversion of the n × n
matrix �(γ 0) in (4), which is computationally expensive
and can become problematic when considering large sam-
ple sizes.

Alternatively, the Kalman filter can be used together
with the EM algorithm to compute θ̂ while avoiding the
matrix operations presented in (4) (see Dempster et al. 1977;

ShumwayandStoffer 1982; Shumwayet al. 2000).While this
approach canprovide a viable solution in somecases, the “M”
step can be very complex, while the “E” step is often com-
putationally cumbersome; therefore, finding the MLE is not
always a simple task. Moreover, this approach becomes par-
ticularly challenging when n is large and/or when the model
describing εi is complex such as a sum of latent random
processes as presented, for example, in Sect. 2.1. The lim-
ited practical applicability of the MLE in this context is, for
example, illustrated in Stebler et al. (2014).

Furthermore, the MLE presented in this section and con-
sidered, for example, in Bos et al. (2020) is based on strong
parametric assumptions (often referred to as the Gauss–
Markov hypothesis) that the noise ε follows a multivariate
Gaussian distribution. These assumptions are often difficult
to verify in practice and often appear unrealistic due to the
presence of large mean deviations in GNSS time series.

3 The GeneralizedMethod of Wavelet
Moments with eXogenous inputs

In this section, we introduce the GMWMX approach which
extends the standard GMWM of Guerrier et al. (2013) in
the context of linear regression with correlated residuals.
This method can be applied, for example, to the estimation
of the parameters of the model described in (1). The pro-
posed approach is computationally efficient and allows to
considerably alleviate the computational limitations of stan-
dard methods such as the MLE. Unlike methods relying on
a fully specified parametric model, we relax some of the
requirements imposed on F . Indeed, we only require that εt
is a strictly (intrinsically) stationary process with finite fourth
moment and covariance matrix �(γ 0). Thus, the GMWMX
is a semi-parametric method in the sense that its statistical
properties are preserved for a general class of probability
distributions F (which can remain unspecified). Compared
to fully parametric methods such as the MLE, our approach
provides statistical guarantees for all zero-mean probabil-
ity distributions (with finite fourth moment) and covariance
matrix�(γ 0). Moreover, the GMWMX is a semi-parametric
approach based on the principle of generalized least squares
(GLS) combined with the GMWM framework. Indeed, our
approach considers initially a coarse approximation of�(γ 0)

as defined in (3), which is used in a GLS approach to obtain
an estimate of x0. From this estimate, we then compute
a GMWM-based estimator of γ 0. Our framework allows
to iterate this process in order to improve statistical effi-
ciency. The procedure is schematically depicted in Fig. 1,
formally defined in Sect. 3.1, and its benefits are summa-
rized in Sect. 3.2.
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Fig. 1 Flowchart representing the GMWMX method described in
Sect. 3.1

3.1 Proposed statistical framework

The GLS is a common method used to estimate the unknown
parameters in a linear regressionmodel with correlated resid-
uals, assuming that the covariance matrix �(γ 0) of ε is
known. In our setting, this requirement is not realistic, but
we let � denote the assumed covariance matrix of ε. The
notation � is used to highlight that γ 0 (and thus �(γ 0)) is
unknown allowing to consider different approximations of
�(γ 0) by �. Based on the assumed covariance �, we obtain
the following GLS estimator:

x̃ (�) = argmin
x∈X

{Y − Ax}T �−1 {Y − Ax}

=
(
AT�−1A

)−1
AT�−1Y. (8)

In the case where we consider the crude approximation� ∝
I, the estimator reduces to the ordinary least squares estimator
and we obtain:

x̃ = x̃ (I) =
(
ATA

)−1
ATY. (9)

This estimator is simple to compute and enjoys well-known
statistical properties (as discussed later in this section).
Indeed, under very mild conditions based on functional
dependence measures as proposed initially by Wu (2005),
we have that x̃ is consistent for x0 and admits the following
limiting distribution (see Theorem 1 of Wu 2007):

√
an (̃x − x0)

d−→ N (
0,V∗) ,

where V∗ = lim
n→∞ an

(
ATA

)−1
AT�(γ 0)A

(
ATA

)−1
.

(10)

However, the estimator is not asymptotically efficient as com-
pared to the MLE x̂, for �(γ 0)�∝ I we have

lim
n→∞ var

{√
an (̃x − x0)

}− var
{√

an (̂x − x0)
}

= V∗ − V > 0. (11)

The derivation of this result is given in Appendix A.1. This
result implies that any linear combination of x̃ has a larger
asymptotic variance with respect to the same linear combi-
nation of x̂. Therefore, x̃ is asymptotically less efficient than
the MLE x̂ in the case of correlated and/or heteroscedastic
residuals (i.e., �(γ 0)�∝ I).

Based on a suitable estimator of x0, such as x̃, we
can compute the (estimated) residuals of model (1) whose
population-level version of ε is defined as:

ε (x) = Y − Ax, (12)

and a natural estimator of ε is simply ε̃ = ε (̃x). This esti-
mator is consistent for ε(x0) since x̃ is consistent for x0 as
implied by (10) and the continuous mapping theorem. More
precisely, we have for all i ∈ {1, . . . , n}

ε̃i = εi (̃x) = Yi − AT
i x̃

p−→ Yi − AT
i x0 = εi (x0) = εi .

The vector of residuals ε̃ allows to construct an estimator
of γ 0 using the GMWM methodology. The latter is an esti-
mation framework that allows to consider a wide range of
models including some complex (latent) models where stan-
dard methods typically fail due to the model complexity
and/or the unrealistic computational burden they entail (see,
e.g., Stebler et al. 2011, 2014). In short, this approach uses
a quantity called wavelet variance (WV) (see, e.g., Percival
and Walden 2000) in the spirit of a generalized method of
moments (GMM) estimator of Hansen (1982). The GMWM
estimator based on an estimator of x0, say x, is defined as
follows:
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γ̃ (x) = argmin
γ∈�

{̂ν (x) − ν(γ )}T 	 {̂ν (x) − ν(γ )} , (13)

where ν(γ ) is the WV vector implied by the model. This
quantity is an explicit function of the parameters for a large
class of models based on the general results of Zhang (2008).
The vector ν̂ (x) denotes the estimated Haar WV computed
on ε (x) and 	 corresponds to an appropriate (possibly esti-
mated) positive-definite weighting matrix (see, e.g., Guerrier
et al. 2013 for more details). Additional details on these
quantities are given in Appendix B. Using the previously
defined quantities, the idea behind theGMWMestimator pre-
sented in (13) is to match ν̂ (x) with ν(γ ) within a classical
minimum distance (CMD) approach. Indeed, CMD estima-
tors exploit the mapping between the theoretical function
ν(γ ) and the empirical “reduced form” quantity ν̂ (x) in
order to estimate a vector of parameters of interest (i.e.,
γ 0). While CMD estimators are (under standard regular-
ity requirements) consistent and asymptotically normal, they
are generally not statistically efficient when compared to
the MLE because they consider a simpler and less infor-
mative objective function than the likelihood function (see,
e.g., McFadden 1989). However, this simplification permits
to substantially reduce the computational complexity of the
optimization problem. In addition, this approach can avoid
the full specification of the distribution of certain elements
of the models allowing to consider a semi-parametric frame-
work. In practice, the optimization problem defined in (13)
can be solved using standard numerical methods such as,
for example, the Broyden–Fletcher–Goldfarb–Shanno algo-
rithm (see, e.g., Bonnans et al. 2006). Moreover, there exist
closed-form expressions for the gradient of ν(γ )with respect
to γ for a large class of models of practical interest, which
allows to avoid numerical approximations of this quan-
tity. The GMWM estimator is consistent and asymptotically
normally distributed under arguably weak conditions (see
Guerrier et al. 2013, 2021 for details). By the continuous
mapping theorem and for any consistent estimator of x0, say
x, we have under technical requirements (see Guerrier et al.
2021 for details) that ν̂ (x) is a consistent estimator of ν(γ 0).
In particular, we propose to consider x̃ as defined in (9) which
satisfies

ν̂ (̃x)
p−→ ν(γ 0), (14)

and, therefore, under the conditions of Guerrier et al. (2013)
we have

γ̃ = γ̃ (̃x)
p−→ γ 0. (15)

Similarly to x̃, the estimator γ̃ is (asymptotically) less effi-
cient than γ̂ as defined in (5). To narrow this gap, it is possible
to consider instead the following procedure which iteratively

recomputes x̃ defined in (8) based on an updated estimator
of �(γ 0). Starting at j = 1 with �(0) = I, we define

x̃( j) =
{
AT
(
�( j−1)

)−1
A
}−1

AT
(
�( j−1)

)−1
Y,

γ̃ ( j) = argmin
γ∈�

{
ν̂
(
x̃( j)
)

− ν(γ )
}T

	
{
ν̂
(
x̃( j)
)

− ν(γ )
}

,

�( j) = �
(
γ̃ ( j)

)
= var

(
Y|γ̃ ( j)

)
. (16)

This iterative procedure is illustrated in Fig. 1. In fact, we
have that x̃( j) is asymptotically efficient for all j � 2 in the
sense that

lim
n→∞ var

{√
an (̂x−x0)

}− var
{√

an
(
x̃( j)−x0

)}
=0. (17)

This result is a consequence of the consistency of γ̃ ( j)

for j � 1, the continuous mapping theorem and Slutsky’s
theorem, provided that the function �(γ ) is continuous in
γ . This is a plausible requirement which is satisfied for the
majority of time series models. The derivation of Eq. (17) is
detailed in Appendix A.2.

The procedure described in (16) is known as the iterated
GMM, when iterated until convergence. The special case of
j = 2 is the so-called two-step GMMwidely used in econo-
metrics (Greene 2003). In this article, our main focus is on
providing a reliable yet computationally efficient estimator
of θ0. For this reason, we opt for the convenient choices of
j ∈ {1, 2} which corresponds to the following estimators:

θ̃ j =
[
x̃( j)T γ̃ ( j)T

]T
. (18)

These particular choices are consistent with the statistical
properties of this estimator, but they are based mainly on
our empirical experience and desire for simplicity and is not
necessarily an optimal choice.

Moreover, our approach can easily accommodate the pres-
ence of missing data. Indeed, the WV estimator ν̂ (x) is a
linear function of the wavelet coefficients, which are linear
combinations of the observations. Thus, in the presence of
missing observations, theWV can be computed on the avail-
ablewavelet coefficients (i.e., the coefficients corresponding
to non-missing observations) without impacting the expecta-
tion of ν̂ (x) due to the linearity properties of the expectation
operator.

The first estimator θ̃1 is particularly computationally effi-
cient, and its computational complexity is only of order
O{log(n)n}, which remains unchanged when considering
situations with or without missing data. Indeed, the com-
putational complexity of the MLE is of order O(n3) in
most implementations. However, it can be reduced toO(n2)
under suitable conditions (see, e.g., Bos et al. 2013 and the
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references therein). The second θ̃2 is slightly more compu-
tationally demanding but is asymptotically efficient for x̃(2).
Hereafter, we denote the estimator defined in Eq. (18) with
one or two iterations as the GMWMX-1 and the GMWMX-
2, respectively. The performances of the proposed estimators
are illustrated and discussed in detail in Sect. 4.1. As previ-
ously mentioned, the iterative procedure described in (16),
with j > 2, could be used to further improve the statistical
properties of θ̃2, but we do not pursue this direction here.

3.2 Contributions

The general statistical framework proposed in the previous
section has several advantages over the standard MLE. First,
our approach is semi-parametric in the sense that the prob-
ability distribution F considered in (3) is left unspecified.
Throughout this paper, we consider a general class for the
probability distribution F , which can be characterized by a
set of mild regularity conditions. These advantageous fea-
tures avoid the common assumption that the residuals ε are
issued from a multivariate normal distribution. Indeed, this
assumption is often unrealistic in practice as the (estimated)
residuals may have asymmetric and leptokurtic distributions.
Consequently, our methodology offers statistical guarantees,
such as consistency or asymptotic normality, without relying
on strong parametric assumptions.

Secondly, the proposed approach is computationally effi-
cient while preserving adequate statistical properties. The
computational cost of our method is comparable to a sin-
gle evaluation of the standard Gaussian likelihood function
with its computational bottleneck corresponding to the inver-
sion of an n × n matrix. Indeed, our two-step estimator
θ̃2 = [

x̃(2)T γ̃ (2)T
]
defined in (18) is consistent for θ0.

Moreover, the estimator x̃(2) for x0 is asymptotically effi-
cient and corresponds to the (asymptotically) best unbiased
estimator in the sense of Hansen (2022). The estimator γ̂

for γ 0 has similar statistical properties to the ones of the
MLE (at the Gaussian model) but possibly comes at the price
of a marginally inflated variance due to the semi-parametric
nature of the procedure. Moreover, a significant advantage of
the proposed method is that its computational cost remains
constant with the proportion of missing data.

Furthermore, our methodology is scalable as it provides
a simple strategy using θ̃1 defined in (18) to marginally
reduce the statistical properties of our estimator in order to
considerably limit the computational burden. Indeed, in situ-
ationswhere large networks ofGNSS stations are considered,
the computational cost can be further reduced to become
comparable to the computation of the standard least squares
estimator. Consequently, large-scale problems can be solved
within a few minutes on a standard computer.

4 Results and discussions

4.1 Simulation studies

In this section,weevaluate theperformances of theGMWMX-
1 and GMWMX-2 estimators defined in (18) as well as the
validity of their associated confidence intervals compared
to the MLE as implemented in the software Hector v1.9 of
Bos et al. (2008) via Monte Carlo simulations. We consider
a simulated scenario based on (2) for the functional model.
As for the stochastic model, we first consider ε to be the
sum of a power law and a Gaussian white noise, which is a
widely accepted model (Zhang et al. 1997; Bos et al. 2008;
Klos et al. 2014). The values of the functional parameters
are fixed as follows: a = 0, b = 5 mm/year, and the annual
periodic motion has an amplitude of 2.5 mm. Moreover, we
consider a model where three offsets are present and known,
i.e., ng = 3. For the stochastic part, we consider σ 2

PL = 10
mm/year and d = 0.4,while the variance of thewhite noise is
σ 2
WN = 15 mm2. We fix the functional and stochastic param-

eters by considering values at the center of the distribution of
the estimated parameters for the Z-axis of the stations con-
sidered in the case study (see Sect. 4.2). All our simulations
are based on B = 103 Monte Carlo replications.

We first compare the performance of the GMWMX-1, the
GMWMX-2 and the MLE by considering different lengths
of GNSS daily position time series, i.e., 2.5, 5, 10, 20 and 40
years. We consider 10% of missing observations for each
simulated signal which corresponds approximately to the
estimated median number of missing data of publicly avail-
able datasets (see Bos et al. 2013 for more details). For the
stochastic model defined above, we denote this simulation
setting as Setting A1. The estimated parameters from the
(geophysical) functional model and for the stochastic one for
different lengths of signal are represented in Fig. 2. It can be
observed how the functional parameters are estimated well
by the three methods, although the GMWMX-1 exhibits a
slightly increased variance for the trend parameter b. Regard-
ing the stochastic parameters, all methods tend to estimate
a higher variance for the power law noise at the expense of
the white noise. However, this bias appears slightly larger for
MLE and the GMWMX-based methods seem to provide a
small gain in accuracy for these parameters, an observation
which echoes with the empirical results of Guerrier et al.
(2013).

In order to assess the performance of the methods more
thoroughly, we consider the ratio of the root-mean-square
error (RMSE) of GMWMX-1 and GMWMX-2 over the
one of the MLE. The GMWMX-2 is expected to have
very similar finite sample performances as the MLE for
the functional parameters due to their asymptotic equiva-
lence presented in (17). The results are presented in Fig. 3
for some of the functional parameters (i.e., b, c1 and d1).
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As expected, the GMWMX-2 appears to have an identical
RMSE compared to theMLE. Indeed, the ratio of the RMSEs
is non-distinguishable from 1 when accounting for the simu-
lation error (obtained by nonparametric bootstrap). However,
these methods provide better results than the GMWMX-1,
but the improvement is relatively small ranging from 0% to
6%. These results are in line with the theoretical properties
of the estimators presented in Sect. 3.1.

Another significant result is related to the validity of
the confidence intervals that can be constructed for the
functional parameters. The estimated uncertainty for each
parameter allows to construct confidence intervals at any
chosen confidence level, i.e., the intervals within which the
true parameter should lie with the given probability. As a
rule of thumb, if σ̃ is the estimated uncertainty for a given
parameter which is asymptotically normally distributed, then
the interval constructed around the estimated value ±1.96σ̃
yields the approximately 95% confidence interval for that
parameter (see Appendix F for details). With Monte Carlo
simulations, the true parameter values are known: this makes
it possible to verify the validity of the constructed confi-
dence intervals, i.e., if they include the true parameter value
with the required probability. The empirical coverage of the
deterministic parameters, defined as the proportion of simu-
lations in which the true value of the parameters is inside the
computed confidence intervals, is shown for the MLE, the
GMWMX-1 and the GMWMX-2 in Fig. 4. We observe that
all methods yield empirical coverages close to the chosen
confidence level of 95%. Therefore, the uncertainty for the
functional parameters is reasonably estimated by all meth-
ods. However, the GMWMX-2 (and to a lesser degree the
GMWMX-1) appears to present empirical coverages that are
closer to the chosen confidence level of 95%. In particular,
the GMWMX-2 provides more accurate confidence intervals
for the trend parameter b for all sample sizes with respect to
both the GMWMX-1 and the MLE in the considered case.
These results may be explained by the smaller bias of the
GMWMX-based methods for the stochastic parameters (as
shown in Fig. 2) compared to the MLE.

An important advantage of the proposed method is its
computational efficiency and significantly shorter running
time compared to the likelihood-based methods. In the left
panel of Fig. 5, we present the running time of the MLE and
GMWMX estimators as a function of the sample size n for
Setting A1. While Hector takes on average 1 s for the small-
est sample size of 2.5 years, corresponding to 912 data points
and up to 18 min for the largest sample size of 40 years, the
GMWMX-1 takes on average less than 5 s for the largest sam-
ple size considered of 40 years. Therefore, the GMWMX-1
is between 20 and 200 times faster than the MLE in the cases
considered in this simulation.Regarding theGMWMX-2, the
increased statistical efficiency (i.e., lower asymptotic vari-
ance) comes at the price of a longer running time because of

the need to compute the inverse of�(γ̃ (1)) once. However, in
this setting, the GMWMX-2 is still between 10 and 40 times
faster than the MLE while providing statistically equivalent
results as shown in Fig. 3.

Next, we investigate the impact of the proportion of miss-
ing observations as well as the stochastic model on the
statistical performance and computation time of the con-
sidered methods. First, we replicate the previous simulation
with a sample size of 20 years but considering a propor-
tion of missing data varying from 0 to 40%. We refer to
this simulation scenario as Setting A2. Then, we replicate
the first two simulations with the same functional model but
considering a stochastic model composed of a white noise
coupled with a Matérn process with parameters: σ 2

WN = 5
mm2, σ 2

MAT = 25 mm/year, λMAT = 0.1 and αMAT = 1.1.
Thus, we consider (i) 10% of missing observations and sam-
ple size varying from 2.5 to 40 years and (ii) a sample size
corresponding to 20 years and a proportion of missing data
varying from 0 to 40% with this new stochastic model. We,
respectively, denote these two additional simulation settings
as Setting B1 and Setting B2. The results for Setting A2
are presented in Appendix C, while results for Settings B1
and B2 are presented, respectively, in Appendices D and
E. Essentially, the conclusions that can be drawn for Set-
tings A2, B1 and B2 in terms of statistical properties of
the considered estimator are similar to our first simulation
with Setting A1. Indeed, it can be observed in Figs. 9, 11
and 13 that the functional parameters are similarly estimated
with the MLE and the GMWMX-2, while the GMWMX-1
has a slightly increased variance. Regarding the stochastic
parameters, all methods are comparable and in some cases a
small gain in accuracy can be observed for GMWMX-based
methods (see, e.g., Figs. 9 and 11). Similarly to our previ-
ous simulation, all methods provide similar performances in
terms of empirical coverage (see Figs. 10, 12 and 14 for more
details). In some instances, GMWMX-2 appears to provide
slightly more accurate confidence intervals compared to both
the GMWMX-1 and the MLE (see, e.g., Fig. 12).

In terms of computational time, it can be observed in the
right panel of Fig. 5 and of Fig. 6 that the computation cost
of the GMWMX estimators appears to be invariant to the
proportion of missing observations, while this is not the case
for the MLE. More precisely, in Setting A2 presented in the
right panel of Fig. 5, we observe that while theMLE takes on
average just above 12 s to estimate a time series of 20 years
without anymissing observations, over 36min are needed on
average when considering a large missing values proportion
of 40%. On the contrary, the GMWMX-1 takes on average
less than 2 s, while the GMWMX-2 takes about 7 s on aver-
age to estimate the parameters of a time series of 20 years,
regardless of the proportion of missing observations. In Set-
ting B1 presented in the left panel of Fig. 6, the MLE takes
up to 55 min on average to estimate a signal of 20 years with
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Fig. 2 Boxplots of the estimated deterministic and stochastic parame-
ters with method GMWMX-1, GMWMX-2 and the MLE for different
sample sizes for the simulation considering a white noise coupled with

a power law process as the stochastic model denoted as Setting A1. The
black line indicates the true value of the estimated parameter
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Fig. 3 Ratio of the estimated RMSE of the GMWMX-1 and GMWM-2 compared to the MLE for the functional parameters b, c1 and d1 as a
function of the sample size for the simulation considering a white noise coupled with a power law process as the stochastic model denoted as
Setting A1

Fig. 4 Empirical coverage of the confidence intervals at level 1− α =
0.95 for the functional parameters b, c1 and d1 for GMWMX-1,
GMWMX-2 and the MLE as a function of the sample size for the
simulation considering a white noise coupled with a power law process

as the stochastic model denoted as Setting A1. The grey area represents
a 95% confidence intervals of the simulation errors based on 103 Monte
Carlo replicates

10% missing observations, while the GMWMX-1 takes less
than 8 s and the GMWMX-2 presents an average computa-
tion time of 24 s to estimate the same signal. In Setting B2
presented in the right panel of Fig. 6, it can be noted that
the MLE takes more than 2.5 hours in the case of 40% of
missing observations, while the GMWMX-1 has an average
computation time of less than 2 s and the GMWMX-2 has an

average computation time of less than 8 s. Hence, depend-
ing on the stochastic model considered and the percentage
of missing observations, the GMWMX-1 is between 10 to
more than 6600 times faster than the MLE.

Based on these empirical results, three takeaways can
be drawn regarding the computational performance of the
GMWMXestimators over theMLE. First, we note that when
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Fig. 5 Mean running time of the
MLE, the GMWMX-1 and the
GMWMX-2 as a function of the
sample size and of the
proportion of missing
observations for the simulation
considering a white noise
coupled with a power law
process as the stochastic model
denoted as Setting A1 and
Setting A2

Fig. 6 Mean running time of the
MLE, the GMWMX-1 and the
GMWMX-2 as a function of the
sample size and of the
percentage of missing
observations for the simulation
considering a white noise
coupled with a Matérn process
as the stochastic model denoted
as Setting B1 and Setting B2

fixing the proportion of missing observations and increasing
the sample size, the computational time of theMLE seems to
increase faster than the ones of the GMWMXmethods. Sec-
ond, when considering a fixed sample size and increasing
the proportion of missing observations, the computational
time of the GMWMX methods appears to be invariant with
respect to the percentage of missing data, while this is not the
case for theMLE. Finally, we observe that the computational
time of the MLE can increase noticeably depending on the
stochastic model considered, while it is not the case for the
GMWMXmethods, hence leading to a notable difference in
execution time in the presence of missing observations in the
signal.

We would like to highlight that, due to the diversity of
the factors involved in the runtime of the evaluation of a
software instruction (i.e., hardware of the installation, pro-
gramming language in which the executed instruction is
implemented, potential parallel implementation of the code,
level of code optimization of the methods compared, etc.), it
is difficult to present a fair and exhaustive comparison of per-
formances when comparing execution times. As Hector and
the GMWMX methods could be implemented for parallel
computation in a different fashion and executed on different
processing units, our results report the computation time for
a single thread execution. The simulations were executed on
the high-performance computing cluster of the University of
Geneva. Moreover, for each realization of a simulation set-

123



14 Page 12 of 28 D. A. Cucci et al.

ting, the different methods compared were run on the same
CPU models (either Intel Xeon Gold 6244, Intel Xeon Gold
6240 or AMD EPYC-7742) to ensure a fair comparison.

Further simulation studies suggest that the GMWMX-2
yields confidence intervals with marginally better empiri-
cal coverage with respect to the MLE or the GMWMX-1
when the residuals ε do not follow a multivariate Gaussian
distribution (e.g., skewed Student’s t-distribution). However,
the inferential advantages of the proposed semi-parametric
method outside of the Gaussian model are beyond the scope
of our study and are left for further research.

4.2 Case study

We apply our method to daily GNSS coordinate time series.
We usemeasurements from33 continuously operatingGNSS
receivers distributed over the east coast of theUSA. The daily
position time-series result from theprocessing releasedby the
Pacific Northwest Geodetic Array at the Central Washington
University (PANGA/CWU, Herring et al. 2016; He et al.
2021) computed within the International Terrestrial Refer-
ence Frame 2014 (Altamimi et al. 2016).

The analysis center PANGA/CWU computes the daily
positions using the precise point positioning method with
the GIPSY software developed by NASA’s Jet Propulsion
Laboratory (JPL). The latter also provides the necessary
satellite ephemerides, clock corrections, andwide-lane phase
bias estimates (Herring et al. 2016). The station positions
were loosely constrained during the initial estimation and
subsequently transformed into the International Terrestrial
Reference Frame (ITRF2014) using only the translation and
rotation (Altamimi et al. 2016), but not scale, components
of the JPL-provided Helmert transformations. Readers inter-
ested in the comprehensive discussion on the choice of the
processing parameters can refer to Herring et al. (2016) and
He et al. (2021).

We use the resulting daily position solution time series
to estimate the tectonic rate and the associated uncertainties
with the GMWMX-1 and the MLE, as implemented in the
Hector software (Bos et al. 2008). For comparison purposes,
we have also included the velocity solutions provided by the
PBO center (Herring et al. 2016). The 33 GNSS stations
have at least 8 years of continuous observations (see Fig. 8).
The same time range is carefully selected for each station
in order to do a genuine comparison between the estimated
tectonic rate with Hector, GMWMX-1 and the PBO solu-
tions. The input data contain outliers. We employ the utility
removeoutliers included in the Hector package since
outlier rejection is beyond the scope of the current work.

For both GMWMX-1 and the MLE, we chose the func-
tional model presented in (2), which includes a seasonal
and half-seasonal component and multiple offsets. The off-
set times (tk) are provided by PBO, while we estimate the

amplitudes (gk). The stochastic model is a sum of a power
law and a white noise, also used to perform the simulations
presented in the previous section.

To quantify the difference between the solutions from
a statistical perspective, Fig. 7 displays the range of rates
and uncertainties, i.e., the ratio between the estimates and
the associated uncertainties. Our solution (GMWMX-1) and
the estimates with Hector (MLE) compare well within error.
In terms of mean value, the ratio difference is 6% (East),
9.7% (North) and 9.5% (Up). For the East component, the
ratio is much higher than the other ones, suggesting that the
uncertainty is small compared to the tectonic rate. Note that
the Up component is known to contain 3 times more noise
than the horizontal coordinates (Montillet et al. 2020). Cor-
respondingly, the uncertainty is large resulting in a small
ratio. Looking at the ratio difference between the estimates
released byPBOandGMWMX-1, the results are 43%(East),
48% (North) and 14% (Up). This large difference is basi-
cally due to the uncertainty associated with the tectonic rate.
Appendix G displays the results for GMWMX-2 which are
very similar to the ones for GMWMX-1. Given that each
GNSS station records observations for the three coordinates
(East, North, Up) and that the mean size of each time series is
approximately 10 years, ranging from 8 to 15 years, the com-
puting time for theGMWMX-1 for thewholeGNSS network
is below 40 s, while in comparison, Hector’s processing time
is approximately 23 min.

Figure 8 displays the various solutions (i.e., GMWMX-1,
Hector and PBO product). Note that we have separated the
arrows on the maps of the crustal uplift for the sake of clarity.
The values are shown in Tables 1, 2 and 3 in Appendix G.
Overall, the solutions agreewith the results published by Per-
osanz (2019) andMétivier et al. (2020). The good agreement
between Hector and GMWMX-1 can be seen visually for the
East, North, and Up components. They validate the results
from the simulated time series and show good agreement
with Hector processing. The PBO solution is in line with the
MLE and GMWMX-1 results for the amplitude of the tec-
tonic rate and the crustal uplift. However, the uncertainties
with this product are generally larger which is due to the dif-
ference between the methods. The GMWMX-1 and Hector
are both jointly estimating a stochastic noise together with
a geophysical model, whereas the PBO solution is based on
a fast statistical approach. The method relies on a Kalman
filter based on a first-order Gauss–Markov noise characteris-
tic without any further analysis on the noise structure of the
data (Floyd and Herring 2020). The difference in the uncer-
tainties is emphasized by the crustal uplift values. This result
explains the ratio difference between the PBO solutions and
the other methods in Fig. 7.
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Fig. 7 Ratios between estimatedNorth-East velocities and crustal uplift divided by their respective estimated standard deviation for theGMWMX-1,
the MLE and the PBO product for 33 GNSS receivers distributed over the East coast of the USA

5 Conclusions

In this contribution, we propose a new method called the
GMWMX to estimate the parameters of linear models with
correlated residuals, which we apply to the analysis of GNSS
daily position time series. The GMWMX allows a compu-
tationally efficient estimation of stochastic and functional
(geophysical) models. Moreover, our approach is semi-
parametric in the sense that the underlying distribution is
left unspecified. Unlike the MLE, the GMWMX remains
consistent and asymptotically normally distributed for all
zero-mean probability distributions satisfying mild regular-
ity conditions. Our approach is scalable in the sense that
two estimators (GMWMX-1 andGMWMX-2) are proposed.
The first estimator GMWMX-1 is particularly computation-
ally efficient and presents a reduction in computational time
ranging from 10 to a few thousand times faster compared
to the MLE depending on the considered stochastic model,
the length of the time series and the amount of missing
observations. However, this estimator comes at the price
of marginally deteriorated statistical properties. The second
estimator GMWMX-2 has an increased processing time than

the GMWMX-1 but remains considerably faster than the
MLEwith a computation time between 4 and over 1500 times
smaller than the MLE depending on the considered stochas-
tic model, the sample size and the percentage of missing
observations. The GMWMX-2 is shown to be asymptoti-
cally efficient (and therefore asymptotically equivalent to the
MLE) for the linear functional parameters. Moreover, this
estimator corresponds to the (asymptotically) best unbiased
estimator in the sense ofHansen (2022). BothGMWM-based
estimators are consistent and asymptotically normally dis-
tributed under arguably weak conditions (see Guerrier et al.
2013, 2021 for details).

Our theoretical findings are validated considering differ-
ent simulated scenarios which consider different stochas-
tic models, different sample sizes, and various propor-
tions of missing observations. Our results indicate that the
GMWMX-1 is 10 to more than 6600 times faster than the
MLE but comes at the price of a marginally inflated RMSE
(around 5% on average) compared to the MLE for the func-
tional parameters. The GMWMX-2 is 4–1500 times faster
than theMLE, but its statistical performance is indistinguish-
able from the MLE for the functional parameters (less than
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Fig. 8 Estimated North-East velocity solutions and crustal uplift for 33 GNSS receivers distributed over the East coast of the USA using i) the
GMWMX-1, ii) Hector software (MLE), iii) the PBO product

0.01% difference in terms of RMSE). Both the GMWMX-1
and the GMWMX-2 lead to comparable results to the MLE
for the estimation of the stochastic parameters.

In order to support the simulation studies, we apply our
algorithm to the analysis of real observations recorded from a
network of 33GNSS stations located in the eastern part of the
USA. These selected stations have registered at least 8 years
of data. Our results indicate that the use of the GMWMX-1
gives comparable results to the MLE with a widely assumed
stochastic model (a white noise summed with a power law
process). Overall, the results are nearly identical (with a dif-
ference of less than 2%) between the MLE and GMWMX-1
when looking at the estimated tectonic rate and crustal uplift

at each station. The clear advantage of the GMWMX-1 is the
processing time which is approximately 40 times lower than
the one of the MLE with a marginal difference in terms of
RMSE. Similar velocity estimates are obtained for the MLE
and the GMWMX as well as for the stochastic parameters,
highlighting the consistency of the two estimators. However,
the associated uncertainties can vary up to 90% compared to
the PBO solution. This large variation can be explained by
the fast statistical approach used for the PBO solution which
is based on an approximated stochastic noise model.

The GMWMX allows to jointly estimate a functional and
a stochastic noise model and produces accurately reliable
uncertainties of the estimated parameters. It is a compu-
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tationally efficient and scalable estimator based on simple
statistical concepts and will be ideal to process large-scale
networks which include thousands of GNSS stations.
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Appendices

AMathematical derivation

A.1 Derivation of Eq. (11)

By comparing (10) with (6), we have
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Thus, we obtain

lim
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for �(γ 0)�∝ I.

A.2 Derivation of Eq. (17)

Fix any j � 2. To compare our estimator to the MLE, we
assume Y ∼ N {Ax0,�(γ 0)}. Thus, we have that x̃( j) con-
ditionally on γ̃ ( j−1) is normally distributed, i.e.,

√
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) ∣∣∣ γ̃ ( j−1) ∼ N
{
0,Hn
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By the continuity of matrix inversion and assuming the
function �(γ ) to be continuous in γ , the function Hn

(
γ
)

is continuous in γ . With the same arguments used to obtain
Eq. (15), we have γ̃ ( j−1) = γ 0+op(1). Then, by the continu-
ousmapping theoremwegetHn

(
γ̃ ( j−1)

) = Hn
(
γ 0
)+op(1).
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Therefore, by the law of total variance and Eq. (A.1), we can
derive that

var
{√

an
(
x̃( j) − x0

)}
=E

[
var
{√

an
(
x̃( j)−x0

)∣∣∣ γ̃ ( j−1)}]

+ var
[
E

{√
an
(
x̃( j)−x0

)∣∣∣ γ̃ ( j−1)
}]

= E

[
var
{√

an
(
x̃( j)−x0

)∣∣∣γ̃ ( j−1)}]

= E

[
Hn
(
γ̃ ( j−1))]

= E
[
Hn
(
γ 0
)+ op(1)

]

= Hn
(
γ 0
)+ o(1),

where the last equality is implied by the standard regular-
ity requirements (see, e.g., Guerrier et al. 2021) such as the
compactness of �. Using the definition given in Eq. (6), we
recall that V = limn→∞ an

{
AT�(γ 0)

−1A
}−1

and thus,

we have Hn
(
γ 0
) = an

{
AT�(γ 0)

−1A
}−1 = V + o(1) and

var
{√

an
(
x̃( j) − x0

)} = V + o(1). From Eq. (6), we have
that limn→∞ var

{√
an (̂x − x0)

} = V and thus,

lim
n→∞ var

{√
an (̂x − x0)

}− var
{√

an
(
x̃( j) − x0

)}
= 0,

corresponding to Eq. (17).

B. Further discussion on the Generalized
Method of Wavelet Moments

As mentioned in Sect. 3.1, the GMWM estimator based on
an estimator of x0, say x, is defined as follows:

γ̃ (x) = argmin
γ∈�

{̂ν (x) − ν(γ )}T 	 {̂ν (x) − ν(γ )} ,

where ν(γ ) is the WV vector implied by the model and ν̂ (x)
is the estimated HaarWV computed on ε (x). To define these
quantities, we let

Wj,t (x) =
L j−1∑

l=0

h j,lε (x)t−l ,

denote the wavelet coefficients associated with the (Haar)
maximal overlap discrete wavelet transform (MODWT)
wavelet decomposition of the time series (see, e.g., Per-
cival and Walden 2000), where (h j,t ) is a known wavelet
filter of length L j at scale τ j = 2 j , for j = 1, . . . , J and
J < log2(n). Based on this quantity, for j = 1, . . . , J the
empirical WV at scale j is defined as

ν2j (x) = var{Wj,t (x)},

which corresponds to the variance of the wavelet coeffi-
cients. The vector ν̂ (x) can then be expressed as ν(x) =
[ν2j (x)] j=1,...,J . Several estimators have been proposed for
the WV, we consider here the MODWT WV estimator pro-
posed in Percival (1995), which enjoys desirable statistical
properties. This estimator is simply defined as

ν̂2j (x) = 1

Mj

Mj∑

t=1

W 2
j,t (x) , (B.2)

where Mj is the length of the wavelet coefficient process
(Wj,t ) at scale τ j . We define ν̂ (x) = [̂ν2j (x)] j=1,...,J . A
detailed introduction of the WV can be found in Percival
andWalden (2000) and the references therein. Moreover, the
theoretical properties of this estimator were further studied in
for example Serroukh et al. (2000) and Guerrier et al. (2021)
in which the conditions for its asymptotic properties are pro-
vided under different frameworks (such as those considered
in this contribution).

In order to make the link between the WV and an
assumed stationary (or intrinsically stationary) parametric
model explicit, we have the following relation between the
WV and the spectral density function (SDF):

ν2j (γ ) =
∫ 1/2

−1/2
|Hj ( f )|2S( f )d f , (B.3)

with S( f ) denoting the theoretical SDF and Hj ( f ) being the
Fourier transform of the wavelet filters (h j,t ). In practice,
computing (B.3) is often difficult but the results of Zhang
(2008) (see Eq. (11), which is here adapted to theWV instead
of the Allan variance) provide the following result:

ν2j (γ ) = 2

τ 2j

⎡

⎢⎣
τ j

2

{
1 − κ

(
γ ,

τ j

2

)}

+
τ j
2 −1∑

i=1

i
{
2κ
(
γ ,

τ j

2
− i
)

− κ (γ , i) − κ
(
γ , τ j − i

)}
⎤

⎥⎦ ,

(B.4)

where τ j = 2 j and κ(γ , h) denotes the autocovariance func-
tion ofY, thus, for h ∈ Nwe have κ(γ , h) = cov(Y1,Yh) =
�(γ )1,h . Therefore, Eq. (B.4) provides a simple approach to
compute the theoretical WV of nearly any (intrinsically) sta-
tionary parametric stochastic process. Indeed, the theoretical
WV is a linear combination of the autocovariance function
κ(γ , h), which composes the elements of �(γ ). In some
sense, the vector ν(γ ) of dimension J < log2(n) summa-
rizes the main characteristics of the matrix �(γ ) that can
have up to n distinct elements (see, e.g., Percival andWalden
2000, Chapter 8, for more information)
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Under suitable (mild) conditions (see Serroukh et al. 2000,
see also Guerrier et al. 2021), we have

√
Mj
(
ν̂ j − ν j

) d→N (0, σ 2
j ).

Based on this result and using the asymptotic properties of
the sum of squares of correlated random variables with zero
mean and common variance, it can also be shown that

ην̂ j

ν j

.∼ χ2
η ,

where
.∼ denotes “approximately follows” and η is known as

the “equivalent degrees of freedom” (seePercival andWalden
2000, Chapter 8). A possible and reasonable approximation
of the latter is given by η ≈ η̂ = max

(
1, Mj/2 j

)
. Thus, an

approximate 100 × (1 − 2α)% confidence interval for ν j is
given by

[
η̂ν̂ j

Qη̂(1 − α)
,

η̂ν̂ j

Qη̂(α)

]
,

where Qη(α) is the 100 × α% percentage point of the χ2
η

distribution. In this paper, the matrix 	̂ is computed using
this approximation method and a reasonable choice for this
quantity appears to be given by

	̂i, j =
⎧
⎨

⎩

(
η̂ν̂ j

Qη̂(1−α)
− η̂ν̂ j

Qη̂(α)

)−2
if i = j,

0 if i �= j,
(B.5)

for i, j = 1, . . . , J . This choice is motivated by the
fact that 	̂ j, j is readily available, completely nonparametric,
and approximately inversely proportional to the variance of
ν̂ j (when the covariances among scales are ignored). This
particular choice is also based on our empirical experience
and desire for simplicity and is by no means optimal. Data-
adaptive choices (e.g., based on resampling methods such as
parametric bootstrap) have been considered in Guerrier et al.
(2013, 2021), but we do not pursue this direction here.

C. Additional simulation study: Setting A2

In this section, we present the results of an additional simu-
lation study which considers Setting A2 (Figs. 9, 10).
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Fig. 9 Boxplots of the estimated deterministic and stochastic parame-
ters with method GMWMX-1 and the MLE for different percentages
of missing observations for the simulation considering a white noise

coupled with a power law process as the stochastic model denoted as
Setting A2. The black line indicates the true value of the estimated
parameter
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Fig. 10 Empirical coverage of the confidence intervals at level 1−α =
0.95 for the functional parameters b, c1 and d1 for GMWMX-1,
GMWMX-2 and the MLE as a function of the percentage of missing
observations for the simulation considering a white noise coupled with

a power law process as the stochastic model denoted as Setting A2. The
gray area represents a 95% confidence interval of the simulation errors
based on 103 Monte Carlo replicates

D. Additional simulation study: Setting B1

In this section, we present the results of an additional simu-
lation study which considers Setting B1 (Figs. 11, 12).
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Fig. 11 Boxplots of the estimated deterministic and stochastic param-
eters with method GMWMX-1, GMWMX-2 and the MLE for different
sample sizes for the simulation considering a white noise coupled with

a Matérn process as the stochastic model denoted as Setting B1. The
black line indicates the true value of the estimated parameter
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Fig. 12 Empirical coverage of the confidence intervals at level 1−α =
0.95 for the functional parameters b, c1 and d1 for GMWMX-1,
GMWMX-2 and the MLE as a function of sample size for the sim-
ulation considering a white noise coupled with a Matérn process as the

stochastic model denoted as Setting B1. The gray area represents a 95%
confidence interval of the simulation errors based on 103 Monte Carlo
replicates

E. Additional simulation study: Setting B2

In this section, we present the results of an additional simu-
lation study which considers Setting B2 (Figs. 13, 14).
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Fig. 13 Boxplots of the estimated deterministic and stochastic param-
eters with method GMWMX-1, GMWMX-2 and the MLE for different
percentages of missing observations for the simulation considering a

white noise coupled with a Matérn process as the stochastic model
denoted as Setting B2. The black line indicates the true value of the
estimated parameter
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Fig. 14 Empirical coverage of the confidence intervals at level 1−α =
0.95 for the functional parameters b, c1 and d1 for GMWMX-1,
GMWMX-2 and the MLE as a function of the percentage of miss-
ing observations for the simulation considering a white noise coupled

with a Matérn process as the stochastic model denoted as Setting B2.
The gray area represents a 95% confidence interval of the simulation
errors based on 103 Monte Carlo replicates

F. Confidence intervals with the GMWMX

We define the confidence interval used in Sect. 4.2. A 1 − α

confidence interval for a parameter θ denoted Cn = ( f1, f2)
is the interval with random endpoints f1 and f2 where f1 =
f1 (X1, . . . , Xn) and f2 = f2 (X1, . . . , Xn) are functions of
the data such that

Pr [ f1(X1, . . . , Xn) � θ � f2(X1, . . . , Xn)] = 1 − α.

(F.1)

We call 1−α the nominal coverage of the confidence interval.
An interesting property of the proposed estimators θ̃1 and

θ̃2, which results from their consistency aswell as the asymp-
totic distribution of x̃(1) and x̃(2), is that valid confidence
intervals can be constructed for x0. For i = {1, . . . , p}, we
let

σ̃ 2
i, j =

⎧
⎪⎨

⎪⎩

[(
ATA

)−1AT�
(
γ̃ (1)

)
A
(
ATA

)−1
]

i,i
if j = 1,

[{
AT
[
�
(
γ̃ (2)

)]−1
A
}−1
]

i,i
if j = 2.

(F.2)

Using results of the asymptotic normality of x̃(1) and x̃(2)

and Lemma 2.11 in Van der Vaart (2000), it can be shown
that for j ∈ {1, 2} as well as for all α ∈ (0, 0.5) and for all

i ∈ {1, . . . , p} we have

lim
n→∞ Pr

[
(x0)i ∈

{(
x̃( j))

i ± z1−α/2σ̃i, j

}]
= 1 − α,

where z1−α/2 denotes the 1 − α/2 quantile of the standard
normal distribution. This standard result demonstrates the
asymptotic validity of confidence intervals constructed with
the proposed approach.

G. Additional information

See Fig. 15 and Tables 1, 2, 3.
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Table 1 Estimated North
velocities for the 33 stations
considered in the case study
using the GMWMX-1,
GMWMX-2, the MLE as
implemented in Hector and PBO
velocity estimates

GMWMX-1 GMWMX-2 MLE (Hector) PBO
b̂ σ̂b b̂ σ̂b b̂ σ̂b b̂ σ̂b

North (mm/y)

ANP5 4.12 0.08 4.12 0.09 4.06 0.10 4.11 0.10

ANP6 4.17 0.06 4.16 0.06 4.14 0.05 4.13 0.10

ASUB 2.91 0.04 2.95 0.04 2.88 0.12 2.43 0.20

BACO 4.01 0.06 4.04 0.06 4.00 0.05 4.09 0.10

BLA1 3.07 0.04 3.07 0.04 3.09 0.06 3.12 0.11

COLA 4.38 0.11 4.57 0.11 4.35 0.12 4.14 0.22

DNRC 4.51 0.03 4.51 0.03 4.50 0.04 3.87 0.23

DOBS 3.20 0.09 3.23 0.08 3.27 0.08 3.32 0.14

DRV5 5.32 0.07 5.38 0.07 5.41 0.08 5.42 0.12

DRV6 4.20 0.02 4.21 0.02 4.22 0.04 4.20 0.09

GAST 2.86 0.07 2.87 0.07 2.89 0.08 2.85 0.10

HIPT 3.23 0.07 3.24 0.07 3.22 0.07 3.29 0.10

HNPT 4.35 0.08 4.36 0.09 4.36 0.09 4.12 0.14

KNS5 3.11 0.14 3.14 0.14 3.05 0.13 3.29 0.13

KNS6 3.23 0.16 3.37 0.16 3.30 0.15 3.42 0.19

KYTL 2.33 0.06 2.32 0.06 2.33 0.05 2.12 0.16

NBR5 3.59 0.05 3.62 0.05 3.64 0.07 3.69 0.13

NBR6 3.90 0.03 3.90 0.03 3.90 0.05 3.95 0.08

NCCH 3.71 0.07 3.77 0.07 3.73 0.06 3.71 0.11

NCJA 3.60 0.05 3.57 0.05 3.60 0.04 3.55 0.09

NCSW 2.41 0.04 2.40 0.04 2.42 0.07 2.19 0.12

NCWH 3.50 0.07 3.48 0.07 3.48 0.06 3.50 0.11

NJTW 4.45 0.04 4.39 0.04 4.41 0.04 4.42 0.08

OHLI 2.30 0.04 2.30 0.04 2.27 0.05 2.16 0.12

PAFU 2.88 0.06 2.90 0.06 2.88 0.05 2.84 0.10

SCGP 2.74 0.06 2.75 0.06 2.76 0.07 2.79 0.11

SCWT 2.26 0.02 2.29 0.02 2.29 0.07 2.56 0.13

UVFM 3.47 0.05 3.57 0.05 3.52 0.05 3.47 0.09

WVBU 3.38 0.07 3.48 0.07 3.45 0.08 3.50 0.11

WVHU 2.25 0.03 2.24 0.03 2.23 0.05 2.34 0.15

WVRA 1.81 0.06 1.79 0.06 1.82 0.07 1.83 0.07

YORK 4.24 0.04 4.22 0.04 4.22 0.03 4.20 0.08

ZDC1 3.68 0.06 3.65 0.06 3.62 0.06 3.34 0.15

The estimated velocity for each method is denoted by μ̂ and σ̂b denotes its estimated uncertainty (standard
error)
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Table 2 Estimated East
velocities for the 33 stations
considered in the case study
using the GMWMX-1,
GMWMX-2, the MLE
implemented in Hector and PBO
velocity estimates

GMWMX-1 GMWMX-2 MLE (Hector) PBO
b̂ σ̂b b̂ σ̂b b̂ σ̂b b̂ σ̂b

East (mm/y)

ANP5 −14.50 0.06 −14.53 0.07 −14.50 0.10 −14.50 0.10

ANP6 −14.83 0.03 −14.83 0.03 −14.84 0.09 −14.84 0.09

ASUB −14.14 0.04 −14.12 0.04 −13.84 0.16 −13.84 0.16

BACO −14.70 0.03 −14.70 0.03 −14.43 0.12 −14.43 0.12

BLA1 −14.33 0.05 −14.33 0.05 −14.34 0.10 −14.34 0.10

COLA −13.48 0.11 −13.61 0.11 −13.16 0.12 −13.16 0.12

DNRC −14.56 0.21 −14.57 0.21 −14.87 0.17 −14.87 0.17

DOBS −13.92 0.09 −13.93 0.09 −13.91 0.10 −13.91 0.10

DRV5 −13.58 0.06 −13.54 0.06 −13.47 0.13 −13.47 0.13

DRV6 −14.27 0.06 −14.29 0.06 −14.23 0.09 −14.23 0.09

GAST −13.56 0.10 −13.54 0.10 −14.11 0.11 −14.11 0.11

HIPT −13.83 0.07 −13.84 0.07 −13.90 0.10 −13.90 0.10

HNPT −14.52 0.12 −14.73 0.12 −14.48 0.11 −14.48 0.11

KNS5 −12.84 0.14 −12.76 0.15 −12.65 0.19 −12.65 0.19

KNS6 −13.44 0.23 −13.33 0.23 −13.04 0.27 −13.04 0.27

KYTL −14.32 0.07 −14.34 0.07 −14.21 0.11 −14.21 0.11

NBR5 −13.07 0.03 −13.10 0.03 −13.11 0.13 −13.11 0.13

NBR6 −13.53 0.06 −13.53 0.06 −13.49 0.07 −13.49 0.07

NCCH −13.44 0.05 −13.46 0.05 −13.34 0.10 −13.34 0.10

NCJA −12.87 0.04 −12.85 0.04 −12.80 0.10 −12.80 0.10

NCSW −13.75 0.04 −13.77 0.04 −13.66 0.11 −13.66 0.11

NCWH −13.03 0.07 −13.02 0.07 −12.97 0.10 −12.97 0.10

NJTW −14.93 0.04 −14.93 0.04 −14.80 0.08 −14.80 0.08

OHLI −15.00 0.02 −15.00 0.02 −14.95 0.10 −14.95 0.10

PAFU −14.90 0.04 −14.87 0.04 −14.90 0.09 −14.90 0.09

SCGP −13.76 0.06 −13.77 0.06 −13.85 0.12 −13.85 0.12

SCWT −13.26 0.08 −13.26 0.08 −13.48 0.17 −13.48 0.17

UVFM −14.36 0.01 −14.38 0.01 −14.35 0.09 −14.35 0.09

WVBU −14.75 0.02 −14.74 0.02 −14.23 0.11 −14.23 0.11

WVHU −14.67 0.09 −14.71 0.09 −14.40 0.14 −14.40 0.14

WVRA −14.54 0.06 −14.58 0.06 −14.33 0.06 −14.33 0.06

YORK −14.52 0.05 −14.51 0.05 −14.51 0.07 −14.51 0.07

ZDC1 −15.11 0.01 −15.11 0.01 −15.12 0.08 −15.12 0.08

The estimated velocity for each method is denoted by μ̂ and σ̂b denotes its estimated uncertainty (standard
error)
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Table 3 Estimated crustal uplift
for the 33 stations considered in
the case study using the
GMWMX-1, GMWMX-2, the
MLE implemented in Hector
and PBO velocity estimates

GMWMX-1 GMWMX-2 MLE (Hector) PBO
b̂ σ̂b b̂ σ̂b b̂ σ̂b b̂ σ̂b

Up (mm/y)

ANP5 −3.24 0.22 −3.20 0.22 −3.25 0.24 −3.22 0.32

ANP6 −2.67 0.23 −2.70 0.23 −2.60 0.26 −2.75 0.25

ASUB −0.78 0.20 −0.72 0.20 −0.68 0.28 −2.42 1.58

BACO −1.44 0.32 −1.47 0.32 −1.47 0.33 −1.66 0.24

BLA1 −1.56 0.34 −1.54 0.34 −1.39 0.35 −1.54 0.30

COLA −2.05 0.15 −2.00 0.15 −2.07 0.24 −3.99 0.66

DNRC −2.85 0.19 −2.82 0.19 −2.89 0.22 −2.55 0.49

DOBS −1.06 0.28 −0.88 0.28 −0.93 0.30 −0.99 0.46

DRV5 −2.69 0.18 −2.84 0.18 −2.80 0.20 −2.61 0.26

DRV6 −3.25 0.16 −3.32 0.16 −3.32 0.17 −3.36 0.26

GAST −0.88 0.22 −0.62 0.22 −0.73 0.25 −0.77 0.41

HIPT −0.99 0.27 −0.96 0.27 −0.87 0.30 −1.87 0.31

HNPT −2.65 0.23 −2.75 0.23 −2.61 0.25 −2.64 0.19

KNS5 −3.54 0.18 −3.57 0.18 −3.57 0.20 −3.72 0.40

KNS6 −2.59 0.16 −2.80 0.16 −2.70 0.20 −2.61 0.41

KYTL −1.55 0.25 −1.49 0.25 −1.50 0.28 −3.12 1.35

NBR5 −1.81 0.13 −1.84 0.13 −1.84 0.15 −2.02 0.31

NBR6 −1.80 0.13 −1.77 0.13 −1.79 0.16 −1.93 0.18

NCCH −1.80 0.17 −1.72 0.17 −1.72 0.18 −2.08 0.37

NCJA −1.02 0.24 −0.84 0.24 −0.96 0.25 −1.16 0.29

NCSW 0.02 0.21 −0.01 0.21 0.05 0.26 −0.13 0.40

NCWH −2.08 0.20 −1.81 0.20 −1.97 0.26 −2.47 0.39

NJTW −2.50 0.18 −2.44 0.18 −2.46 0.19 −2.35 0.25

OHLI −2.46 0.26 −2.35 0.26 −2.51 0.27 −3.33 0.96

PAFU −1.78 0.27 −1.88 0.27 −1.79 0.32 −2.99 0.46

SCGP −2.57 0.19 −2.66 0.19 −2.51 0.26 −2.95 0.44

SCWT −1.12 0.16 −1.17 0.16 −1.21 0.22 −2.20 0.51

UVFM −1.29 0.26 −1.10 0.26 −1.31 0.27 −1.54 0.24

WVBU −1.92 0.23 −1.72 0.23 −1.86 0.27 −1.59 0.29

WVHU −1.71 0.34 −1.35 0.34 −1.57 0.34 −3.04 1.20

WVRA −1.66 0.29 −1.40 0.29 −1.55 0.28 −1.99 0.19

YORK −1.61 0.22 −1.59 0.22 −1.57 0.21 −1.53 0.19

ZDC1 −1.55 0.25 −1.67 0.25 −1.64 0.23 −1.70 0.21

The estimated velocity for each method is denoted by μ̂ and σ̂b denotes its estimated uncertainty (standard
error)
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Fig. 15 Ratios between estimated North-East velocities and crustal
uplift divided by their respective estimated standard deviation for the
GMWMX-2 and the GMWMX-1 for 33 GNSS receivers distributed
over the east coast of the USA
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