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Abstract 

With the growing demand for therapeutic proteins such as antibodies or vaccines, 

manufactures are in need to deliver products at high quality and constant productivity. For the 

biotechnological production of these products, mammalian cells are predominantly used. The 

productivity of producer cells is, amongst others, dependent on the number of integrated 

transgene copies per cell, and thus elevating stable gene transfer efficiencies to ensure 

sustained expression of the gene of interest is paramount. In this study the Sleeping Beauty 

transposon two-component vector system, consisting of a transposon donor plasmid and a 

transposase expression plasmid, was used to generate stable cell pools. However, using 

sensitive genomic PCR and reverse transcriptase PCR (RT-PCR), the transposase gene 

integration and expression was demonstrated for a time period of 48 days post transfection. 

To provide an alternative to the employment of plasmid-based transposase expression 

circumventing potential re-mobilization events of the already stably transposed transgenes, 

the transposase gene was transcribed in vitro into mRNA. After co-transfection of transposase 

transcripts at different ratios to the donor vector efficient transposition was obtained. This 

study demonstrated that this technical approach mediated high copy numbers and expression 

levels of transgenes in recombinant cells without the risk of undesired extended transposase 

expression.  

Besides transposons, retroviral vectors are frequently used to introduce foreign genetic 

material into mammalian cells aiming for the establishment of producer cells. Such viral 

vectors are commonly pseudotyped with VSV-G achieving high vector copy numbers in 

mammalian cells. However, this requires handling under BSL-2 conditions. To circumvent 

this, viral vectors were equipped with the ecotropic envelope protein PVC211mc, a molecular 

clone of Friend murine leukemia virus (MLV), enabling transduction of CHO cells and murine 

hematopoietic stem cells but allowing experiments in BSL- 1 laboratories. The aim of this work 

was to optimize gene transfer efficiencies by generating PVC211-derived envelope protein 

(Env) variants lacking the R-peptide and thus rendering the Env proteins fusogenic. All 

generated variants failed to efficiently pseudotype MLV vectors but two variants successfully 

pseudotyped HIV-1 particles. The HIV-1 vectors pseudotyped with the envelope variant eMLV-

GaLVΔR mediated superior infectivity as compared to wild-type Env. HIV(eMLV-GaLVΔR) 

should prove useful as a tool for the establishment of productive producer cells. 

Keywords: Sleeping Beauty transposon, mRNA, retroviral vector, PVC211, pseudotype 

vector 
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Kurzfassung 

Angesichts der wachsenden Nachfrage nach therapeutischen Proteinen wie Antikörpern oder 

Impfstoffen müssen die Hersteller Produkte mit hoher Qualität und konstanter Produktivität 

liefern. Für die biotechnologische Herstellung dieser Produkte werden überwiegend 

Säugetierzellen verwendet. Die Produktivität der Produktionszellen hängt unter anderem von 

der Anzahl der integrierten Transgen-Kopien pro Zelle ab. Daher ist es von größter Bedeutung, 

die Effizienz des stabilen Gentransfers zu erhöhen, um eine dauerhafte Expression des 

gewünschten Gens zu gewährleisten. In dieser Studie wurde das Sleeping Beauty Transposon 

Zweikomponenten-Vektorsystem, bestehend aus einem Transposon-Donor-Plasmid und 

einem Transposase-Expressions-Plasmid, zur Erzeugung stabiler Zellpools verwendet. Mittels 

sensitiver genomischer PCR und reverser Transkriptase-PCR (RT-PCR) wurde die Integration 

und Expression des Transposase Gens über einen Zeitraum von 48 Tagen nach Transfektion 

nachgewiesen. Als Alternative zur plasmidbasierten Transposase Expression, bei der eine 

mögliche Remobilisierung der bereits stabil transponierten Transgene umgangen wird, wurde 

das Transposase Gen in vitro in mRNA umgeschrieben. Nach Ko-Transfektion von 

Transposase Transkripten in unterschiedlichen Verhältnissen zum Donorvektor wurde eine 

effiziente Transposition erreicht. Diese Studie zeigte, dass dieser technische Ansatz hohe 

Kopienzahlen und Expressionsniveaus von Transgenen in rekombinanten Zellen vermittelt, 

ohne das Risiko einer unerwünschten, andauernden Transposase Expression. 

Neben Transposons werden häufig retrovirale Vektoren verwendet, um fremdes genetisches 

Material in Säugetierzellen einzuschleusen, mit dem Ziel der Etablierung von Produktions-

zellen. Solche viralen Vektoren werden in der Regel mit VSV-G pseudotypisiert, um hohe 

Vektorkopienzahlen in Säugetierzellen zu erreichen. Dies erfordert jedoch ein Arbeiten unter S2 

Bedingungen. Um dies zu umgehen, wurden virale Vektoren mit dem ecotropen Hüllprotein 

PVC211, einem molekularen Klon des Friend murinen Leukämievirus (MLV) ausgestattet, was 

die Transduktion von CHO-Zellen und hämatopoetischen Stammzellen der Maus ermöglicht, 

aber auch Experimente in S1 Laboren erlaubt. Ziel dieser Arbeit war es, die Effizienz des 

Gentransfers zu optimieren, indem von PVC211 abgeleitete Varianten des Hüllproteins Env 

erzeugt wurden, denen das R-Peptid fehlt und die somit auch ohne Reifung bereits fusogen sind. 

Keine der erzeugten Varianten gelang es MLV-Vektoren effizient zu pseudotypisieren jedoch 

pseudotypisierten zwei Varianten erfolgreich HIV-1-Partikel. Besonders die HIV-1-Vektoren, die 

mit der Hüllvariante eMLV-GaLVΔR pseudotypisiert wurden, zeigten eine sehr viel höhere 

Infektiosität als Wildtyp-Env. HIV(eMLV-GaLVΔR) Vektorpartikel dürften sich als ein 

nützliches Werkzeug für die Etablierung produktiver Produktionszellen erweisen.  

Schlüsselbegriffe: Sleeping Beauty Transposon, mRNA, retroviraler Vektor, PVC211, 

pseudotyp-Vektoren 
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1 Introduction 

Biopharmaceuticals are drugs produced in biological systems. The vast majority of the 

approved biopharmaceuticals are produced in mammalian cells as these products require 

appropriate post-translational modifications (PTMs) [1]. To accommodate the demand for 

high quality products at elevated quantity, the mammalian cell line used for production has to 

exhibit high productivity. Productivity is characterized by the rate of protein expression per 

cell within a defined time frame. The productivity of a recombinant mammalian cell line 

depends on a number of parameters. Aside from optimizing cell cultivation conditions such as 

composition of the growth media and the cultural environment, a high vector copy number 

(VCN) of the gene of interest (GOI) encoding for the therapeutic protein integrated in the host 

cell genome is indispensable for high and sustained productivity [2]. Besides other strategies, 

two systems are able to facilitate this – transposon vectors and retrovirus-derived vectors. Both 

efficiently mediate stable integration of the GOI at high VCN into genomic DNA of mammalian 

cells, and thus are powerful tools for the establishment of protein producer cells [3, 4].  

1.1 Transposon vectors 

One method to transfer foreign nucleic acids into mammalian cells at elevated VCN for 

biotechnological approaches is the employment of DNA transposon vectors. The most 

prominent DNA transposons are piggyBac (PB) isolated from the cabbage looper moth and 

Sleeping Beauty (SB) reconstructed from three fish species, namely white cloud minnow, 

atlantic salmon and rainbow trout. The first reconstructed SB transposon vectors exhibited low 

activity [5]. Recombination of generated transposase gene mutants led to a hyperactive 

transposase enzyme called SB100x referring to the factor of improvement as compared to the 

first reconstructed enzyme [6, 7]. DNA Transposons are composed of a transposase gene 

flanked by inverted terminal repeats (ITRs). After expression of the transposase gene, the 

enzyme recognizes short sequences in the ITRs and cuts out the transposable element for 

subsequent re-integration into a new gene locus. This event is called transposition. 

Transposons differ in the target sequence they re-locate the transposable element. PiggyBac 

preferably integrates into the four-nucleotide TTAA while Sleeping Beauty favors the 

dinucleotide TA as target sequence [8, 5]. These relatively short sequences allow for a close-to-

random integration in the genome [9, 10]. SB exhibits only a slight bias towards transcription 

units and their flanking regions [11, 12]. However, PB transposon vectors are predominantly 

enriched in highly expressed genes with an integration preference for transcriptional start sites 

(TSSs), DNase I hypersensitive sites, DNA-binding sites and transcription factors, and thus 

bear resemblance to the murine leukemia virus (MLV)-mediated insertion profile. An 

explanation for this is the physical interaction of PB transposases with the bromodomain and 
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extraterminal (BET) proteins also tethering to MLV integrase [13, 14], and thus poses a risk to 

applications in vivo. 

1.2 Two-component vector system 

Based on the natural transposon structure, two-component vector systems were developed for 

optimized gene transfer. The transposon vector, also called donor vector, encompasses the GOI 

and is flanked by the ITRs (Figure 1).  

 
Figure 1: Organization of a wild-type DNA transposon and a two-component transposon 
vector system.  a) The wild-type DNA transposon consists of the transposase gene and is flanked by 
the inverted terminal repeats (ITRs). (b) The two-component vector system comprises the donor vector 
carrying the gene of interest surrounded by the ITRs and the helper vector coding for the transposase 
enzyme. Illustration was created with Biorender.com 

The transposase gene is located on a separate plasmid facilitating the titration of donor vector 

and transposase plasmid for efficient transposition since higher amounts of the transposase 

enzyme leads to decreased transposition events, a phenomenon called overproduction 

inhibition (OPI) [15]. Transposition occurs in a variety of cell types and the integrated genetic 

sequences remain stable [16]. Transposon vectors mediate gene transfer at high efficiencies 

and multiple copy numbers. This is in contrast to classic stable plasmid transfection mostly 

resulting in significantly lower copy numbers [17].  
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Figure 2: Schematic illustration of the transposition mechanism.  Upon co-transfection of the 
helper vector encoding the transposase and the donor vector containing the gene of interest framed by 
the ITRs, the transposase gene is expressed, binds to specific sequences in the ITRs, cuts out the gene of 
interest harboring from the plasmid backbone and integrates it into the genomic DNA of the target cell. 
Illustration was created with Biorender.com 

If plasmids are used for transfection, the bacteria-derived sequences in the plasmid backbone 

are transferred into the host cell genome and can potentially lead to gene silencing of the GOI. 

Utilizing transposon vectors for the establishment of stable producer cell lines instead, 

circumvents the mentioned drawback as they only integrate the transposable element within 

the ITRs, and thus minimizes the risk of gene silencing [18]. However, transposon vector 

systems have one disadvantage as the vector expressing the transposase enzyme is plasmid-

based and could stably integrate into the genomic DNA of the host cell. The undesired 

integration can lead to sustained expression of the transposase gene and ongoing transposition 

events of already integrated GOI leading to instability of the cell line, and thus potential loss of 

productivity [19]. One solution to this problem is to introduce the transposase as transcripts 

or as protein into the target cell [20, 21]. Due to the size and complexity of proteins, the 

cumbersome production, purification and delivery into the cell, replacing plasmid-based 

transposase with transposase protein is concomitant with high costs and time expenditure. 

Therefore, mRNA-based transposase expression can be a useful alternative for transposition 

experiments as the mRNA synthesis can be performed in vitro in small reaction tubes and 

transfection is conducted utilizing cationic lipid based transfection reagents such as 

polyethylenimine (PEI) as shown by Bire and colleagues in 2013 for piggyBac-derived vectors 

[22]. A detailed introduction and discussion of the advantages of transposon vector systems 

for the establishment of stable producer cell lines in relation to retroviral gene transduction is 

provided in the review article included in this thesis [23]. 
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1.3 Retroviral vectors for gene transfer  

Retroviral vectors are utilized to transfer nucleic acids into mammalian cells for gene 

therapeutic purposes but can also be instrumental for the establishment of protein producer 

cell lines [24–28, 4]. Derived from γ-retroviruses such as MLV, these replication-incompetent 

vectors stably integrate their genetic cargo into the target cell genome upon transduction, and 

thus enable sustained expression of the gene of interest. Retroviral transfer vector mRNAs are 

structured similarly to the mRNAs of their parental viruses except coding for a gene of interest 

instead of viral genes necessary for replication. In the retroviral genome the 5´ long terminal 

repeat (LTR) entails a promotor/enhancer and drives transcription. The 3´LTR is responsible 

for transcription termination and polyadenylation of the transcripts. The gag gene encodes for 

the viral core proteins matrix, capsid and nucleocapsid and the pol gene codes for the viral 

enzymes, namely protease, reverse transcriptase and integrase. The env gene encodes for the 

envelope proteins (Env) mediating attachment to target cell receptors for viral entry [29]. To 

avoid the formation of replication-competent retroviruses (RCRs) during MLV vector particle 

production, the envelope gene env and the structural genes gag and pol are embedded in 

separate plasmids lacking the packaging signal Psi (ψ) [30] as illustrated in Figure 3. The 

transfer vector plasmid carrying the GOI exclusively entails the ψ and the LTRs.  

 
Figure 3: Schematic illustration of the γ-retroviral genome and the retroviral vector 
components. The simple retroviral genome consists of the gag gene encoding the core proteins such 
as matrix, capsid and nucleocapsid, the pol gene coding for the viral enzymes reverse transcriptase, 
protease and integrase and the envelope gene env facilitating the expression of the Env proteins 
mediating receptor recognition and cell entry via membrane fusion. To ensure safety and to avoid 
packaging of viral structural genes, the viral components are inserted into separate expression 
constructs. The transfer vector contains the packaging signal Psi (ψ) mediating the packaging of the gene 
of interest (goi) mRNA flanked by the LTRs while the packaging vector provides the genes for the 
expression of Gag and Pol. The envelope vector codes for the Env proteins. Illustration was created with 
Biorender.com 
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To produce retroviral vector particles, the three aforementioned plasmids can be transiently 

or stably co-transfected into suitable cell lines such as human embryonic kidney 293 (HEK293) 

cells and its related cell lines, human fibro-sarcoma HT-1080 cells or Chinese hamster ovary 

(CHO) cells, and thus generating transient or stable packaging cell lines [31–34]. The produced 

retroviral particles are released into the supernatant of the producer cell line and can be 

directly applied to transduce susceptible target cells. Depending on the stability of the utilized 

viral vector and envelope proteins, vector particles can be harvested and concentrated 

employing ultrafiltration or ultracentrifugation to maximize vector particle density for 

subsequent titration experiments without the loss of infectivity [35–37]. For the production of 

glucagon-like peptide-1 Fc fusion protein (GLP-1-Fc), a drug for the treatment of type 2 

diabetes, MLV vectors pseudotyped with the envelope protein of vesicular stomatitis virus 

(VSV-G) were utilized to transduce suspension CHO- S cells yielding a productivity of 3.15 g/L 

[27]. The commercial production of Pritumumab, a human immunoglobulin G (IgG) 

monoclonal antibody for the treatment of patients with glioma, is conducted in CHO cells 

transduced with the GPEx® system composed of MLV vectors pseudotyped with VSV- G 

produced in HEK293 cells [38]. 

1.4 Lentiviral vectors for gene transfer 

Lentiviral vectors (LVs) are most frequently derived from human immunodeficiency virus 1 

(HIV-1) and belong to the Retroviridae family. The parental lentiviruses exhibit, in contrast to 

the simple γ- retroviruses, a complex mRNA splice pattern having multiple splice donors and 

acceptors facilitating the expression of six additional gene products. In addition to the genes 

gag, pol and env, the lentiviral genome entails the regulatory genes tat and rev and the 

accessory genes nef, vif, vpr and vpu necessary for viral replication and enhanced infectivity. 

The Tat protein binds to the transactivation response (TAR) element encoded by the HIV-1 

LTRs to elongate transcription [39, 40]. The Rev protein interacts with the Rev response 

element (RRE), a cis-acting RNA localized in the env gene and is responsible for the nuclear 

export of HIV-1 transcripts into the cytoplasm [41, 42]. Vif, Vpr, Vpu and Nef enhance 

pathogenicity in vivo. In particular, Nef regulates CD4 receptor presentation on infected cells 

to prevent HIV-1-mediated superinfection in order to inhibit depletion by the immune system 

[43]. Vif binds and eliminates APOBEC3G, a cytosine deaminase responsible for inhibiting 

reverse transcription [44]. Vpu increases particle release antagonizing tetherin, which inhibits 

virion release from infected cells [45]. Vpr plays a crucial role in mediating nuclear import of 

the pre-integration complex (PIC) [46].  

As illustrated in Figure 4, the first-generation lentiviral vectors were based analogous to 

γ- retroviral vectors on three plasmids: the packaging plasmid harboring the majority of the 

HIV-1 genome except for the packaging signal ψ and the LTRs that were replaced by a 
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promotor and poly (A) signal, a transfer vector entailing the GOI, the ψ signal, the RRE and an 

envelope expression plasmid. As the natural tropism of HIV-1 is limited to CD4-expressing 

cells, the envelope plasmid encodes for the envelope proteins of other viruses such as vesicular 

stomatitis virus (VSV) allowing for the transduction of a broad range of cell types. In the 

development process of second-generation lentiviral vectors, it was aimed to improve safety by 

deleting the coding sequences of the accessory genes vpu, vpr, nef and vif from the packaging 

plasmid as they are not essential for vector production [47]. Further improvements towards 

safety of lentiviral vectors led to the development of a third-generation vector system enabling 

a Tat-independent transcription by deleting the U3 region from the 3´LTR in the transfer 

vector. During reverse transcription of these so called self-inactivating (SIN) vectors, the 

deletion in the 3´LTR is transferred to the 5´LTR and results in transcriptional inactivation in 

the target cell genome, and thus reduces the risk of formation of RCRs and the transcriptional 

activation of aberrantly located genes [48]. The U3 region in the 5´LTR was replaced with a 

constitutive promotor derived from Rous sarcoma virus (RSV) enabling transcription of viral 

RNA [49]. The packaging construct finally only encodes for Gag/Pol and the regulatory gene 

rev is provided in trans on a separate plasmid. 

Lentiviral vector particles are commonly produced upon transient transfection since the 

production is hampered by the cytotoxicity of the HIV-1 protease and the VSV-G envelope 

proteins [50, 51]. For stable production, inducible packaging systems were developed including 

promotors only activated during the production period to prevent premature cell death. The 

most prominent inducible expression systems are Tet-On and Tet-Off systems allowing for 

controlled gene expression in the presence of tetracycline (Tc) [52, 53]. The utilization of such 

systems involves an additional purification step removing the Tc and consequently alternative 

methods were developed to circumvent this. Constitutive packaging systems with non-

cytotoxic envelope proteins were established such as the STAR packaging cell line. This cell 

line is based on second-generation HIV-1 vectors equipped with amphotropic MLV 4070A 

envelope proteins harboring a truncated cytoplasmic tail (C-tail) derived from gibbon ape 

leukemia virus (GaLV) reaching titers of 1 x 107 TU/mL [54]. In 2018, Tomás and his 

colleagues established the LentiPro26 packaging cell line using a mutated HIV-1 protease 

revealing lower activity but enabling stable and constitutive production of lentiviral vector 

particles achieving titers of 1 x 106 TU/mL [55]. 
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Figure 4: Schematic illustration of the HIV-1 genome and the developed lentiviral vector 
generations. Genomic RNA is flanked by long terminal repeats (LTRs) necessary for transcription 
initiation and termination. The gag gene encodes for the core proteins forming the viral core. The pol 
gene codes for the viral enzymes protease, reverse transcriptase and integrase necessary for viral 
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replication. Env encodes the envelope protein mediating attachment to the target cell facilitating viral 
entry. Vif, vpr, vpu, and nef code for the accessory proteins. Tat and rev encode for the regulatory 
proteins. The first-generation lentiviral vector system contained a packaging plasmid harboring the 
major part of the HIV-1 genome. The env gene was excluded and embedded into a separate envelope 
vector. The transfer vector encompassed the gene of interest (goi) and was driven by an internal 
promotor derived from a heterologous virus. The packaging signal Psi (ψ) exclusively included in the 
transfer vector, ensured encapsulation of the transfer mRNA and the Rev response element (RRE) 
mediated nuclear export of viral transcripts. In the second-generation of LVs the accessory genes were 
removed except for the tat and rev gene. In the third-generation of LVs transcription occurred 
independently from Tat and the rev gene was transferred to a separate expression plasmid. For safety 
improvement, the U3 region in the 3′ LTR was deleted in order to generate a self-inactivating (SIN) 
transfer vector. A constitutive promotor from other viruses was fused to the 5´LTR to ensure 
transcription of viral RNA. Illustration was adapted from Rintz et al., 2022 [56] and was created with 
Biorender.com 

1.5 Optimization of retroviral vectors 

Over the last decades, γ-retroviral and lentiviral vectors were optimized obtaining elevated 

titers to enhance transduction efficiencies. The expression levels of the viral packaging, 

transfer and envelope genes in the packaging cells are important for improved retroviral 

particle production. Strong promotors derived from heterologous viruses such as 

cytomegalovirus (CMV) or simian virus 40 (SV 40) were commonly used to ensure higher 

expression levels of the viral genes and the transfer gene [57]. To further enhance expression 

levels, a woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) can be 

inserted downstream of the GOI [58]. WPRE enhances transcript termination resulting in 

elevated mRNA levels presumably by supporting mRNA processing but the exact mechanism 

remains unknown [59, 60].  Depending on the origin of the viral vector components used for 

particle production, codon optimization of the viral genetic sequences can improve protein 

expression in the producer cells by changing synonymous codons preferably used by the 

translation machinery of the desired host cell for protein expression [61, 62].  

Besides enhancements on protein expression levels, envelope protein engineering is a 

promising strategy to elevate titers as the Env proteins mediate gene transfer upon binding to 

the cognate target receptor and is thus crucial for efficient transduction. Retroviral envelope 

proteins interact with specific host cell receptors to initiate cell entry, which limits the range to 

susceptible target cells. To avoid restriction to specific cell types, retroviral vectors were 

generated using envelopes from heterologous viruses. This so-called pseudotyping enables 

modifying vector tropisms for specific applications. Retroviral particles naturally occur with 

different tropisms. The ecotropic γ-retrovirus MLV (MLVeco) Env proteins bind to the murine 

cationic amino acid transporter-1 (mCAT-1), a receptor exclusively expressed on murine and 

rat cells, while amphotropic MLV (MLVampho) particles recruits the sodium-dependent Pi 

transporter-2 (PiT-2) in mouse cells and the human homologous receptor for entering human 

cells, including hematopoietic stem cells (HSCs), and were thus favorably used in gene therapy 
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[63, 64]. To further enhance transduction efficiencies and to broaden the tropism, retroviral 

vectors are commonly pseudotyped with VSV-G recruiting the low-density lipoprotein (LDL) 

receptor ubiquitously presented on various cell types of different donor organisms [65, 66]. 

Experimental work utilizing such VSV-G pseudotype vectors has to be conducted under 

biosafety level 2 but they are frequently used to efficiently transfer GOIs into CHO cells, the 

gold standard cell line for industrial protein production [67–69]. The ecotropic envelope of 

PVC211mc, a molecular clone of Friend MLV, is an exception as it mediates gene transfer into 

CHO cells recruiting the hamster homologue of mCAT-1 [70]. It was also recently shown that 

retroviral vectors pseudotyped with PVC211 Env facilitate gene transfer into murine HSCs 

allowing for utilization in preclinical mouse models for gene therapy research [71]. One 

limitation of MLV-mediated gene transduction is its restriction to dividing target cells as the 

PIC enters the cell during mitosis when the nuclear envelope is fragmented and host 

chromosomes are accessible for binding the PIC to the chromosomes [72, 73].  

In contrast, viral vectors derived from the HIV-1 enable gene transfer independent of the host 

cell cycle. The viral capsid containing the genetic cargo enters the nucleus through the nuclear 

pore complex (NPC) by interacting with the proteins Nup62 and Nup358 [74, 75]. This allows 

for efficient transduction of cells with low mitotic activity [76]. HIV-1-derived vectors can also 

be pseudotyped with numerous heterologous envelope proteins to broaden or limit their 

tropism to specific target cell types as their natural tropism using HIV-1 Env is restricted to 

CD4 receptor-expressing cells [77]. HIV-1-based vectors are commonly pseudotyped with 

VSV- G enabling transduction of a variety of cell types such as stem cells. However, the VSV-G 

protein is cytotoxic in higher concentrations, and thus sustained expression in stable packaging 

cells is not feasible [78, 79]. To circumvent this limitation, HIV-1 vectors were equipped with 

envelope proteins from the Retroviridae family. Envelope proteins of MLVampho and MLVeco 

were shown to be successfully incorporated into HIV-1 particles [80, 81]. Pseudotyping with 

the Env proteins of GaLV, recruiting the PiT-1 receptor on human cells, revealed no infectivity 

in contrast to MLV Env pseudotyped lentiviral vectors. This is due to the differences in amino 

acid sequences of the C-tail harboring the recognition site for cleavage by the viral protease 

necessary to render the Env proteins fusogenic. To circumvent this, envelope glycoproteins 

were modified by exchanging C-tails from different retroviruses or introducing truncations in 

the cytoplasmic region [82, 83]. 

1.6 Modifications of envelope proteins 

Retroviral envelope proteins are composed of a surface unit (SU) binding to a cognate host cell 

receptor and a transmembrane protein (TM) enabling fusion between the viral and host cell 

membrane to facilitate viral entry (Figure 5). In MLV and GaLV Env proteins fusogenicity is 

activated by proteolytic cleavage of a short peptide in the C-tail of the TM, the so called R-
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peptide. Cleavage of the R-peptide is mediated by the viral protease and occurs after the release 

of the virus particle from the infected cell during maturation.  

 
Figure 5: Structure of the retroviral envelope glycoprotein. The envelope proteins are 
incorporated as trimers into the viral membrane and consist of a surface unit (SU) connected to the 
transmembrane protein (TM) by a disulfide bond. The cytoplasmic tail (C-tail) of TM entails a short 
peptide sequence called R-peptide which is cleaved off by the viral protease then mediating fusion with 
the cell membrane after binding to the cognate receptor. Illustration was created with Biorender.com 

After proteolytic cleavage, conformational changes in the envelope proteins occur and facilitate 

membrane fusion upon receptor binding, and thus viral entry [84, 85]. Deletion of the R-

peptide by inserting a stop codon in the env gene coding sequence and following expression of 

ΔR Env in target receptor-positive cells results in cell-cell-fusion and formation of clusters of 

multinucleated cells called syncytia [86, 87]. Several studies investigated if R-peptide-deleted 

retroviral envelope protein variants decorating MLV or HIV-1 vector particles would enhance 

gene transfer assuming that the enhanced fusion activity correlates with elevated vector titers. 

The deletion of the R-peptide of MLVampho Env resulted in reduced titers when decorated on 

MLV and in slightly reduced titers when pseudotyping HIV-1 [88, 89]. It was assumed that R-

peptide deletion alters surface unit conformation and has a negative effect on MLV particle 

formation [89, 88]. GaLV envelope proteins were shown to only mediate infectivity lacking the 

R-peptide when pseudotyped on HIV-1 particles in contrast to MLV particles efficiently 

incorporating full length GaLV envelope proteins [83, 90]. To circumvent the inability to form 

infectious HIV-1 vector particles, the GaLV-derived transmembrane or cytoplasmic domains 

were exchanged with those of MLVampho obtaining titers comparable to wild-type MLVampho 

envelope pseudotype HIV-1-derived particles [83]. Based on these findings, further chimeric 

GaLV/MLVampho envelope variants were constructed and assessed for their ability to mediate 

elevated gene transfer efficiencies [89, 62]. Tomás and his colleagues fused the 

transmembrane region of MLVampho 407A to the GaLV surface unit and compared titers 

achieved with the same chimeric envelope variant suffering from R-peptide deletion. Both 
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chimeric envelope variants efficiently pseudotyped HIV-1 particles but titers were increased 

using the R-peptide-lacking envelope variant hypothesizing inefficient R-peptide cleavage by 

the HIV-1-protease and thus reduced infectivity [89].  

Another study investigated if MLV and HIV- 1 vectors pseudotyped with a chimeric Env variant 

composed of the avian spleen necrosis virus (SNV) N-terminal sequence fused to the GaLV C-

tail facilitates the transduction of SNV-susceptible D17 cells. In addition, envelope variants 

harboring R-peptide deletions and an amino acid exchange corresponding to the MLV R-

peptide cleavage site were generated. All chimeric Env protein variants formed infectious MLV 

pseudotype particles. As expected, the chimeric variant encompassing the full length GaLV C-

tail coding region failed to mediate infectivity when decorated on HIV-1 particles. However, 

deletion of the R-peptide and a single amino acid exchange restored formation of infectious 

HIV-1 pseudotype vectors [91]. These findings showed that envelope engineering is a 

promising strategy to overcome envelope incorporation limitations and to elevate gene transfer 

efficiencies. 
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2 Research aims 

The aim of this thesis was to develop and optimize transposon vectors and retroviral vectors 

enabling efficient gene transfer, and thus the rapid establishment of high-yield producer cells. 

The vectors should mediate stable integration of genes of interest at high vector copy numbers 

and the resulting recombinant cells should exhibit constant productivity. The transposon 

vector system used in this thesis was derived from the Sleeping Beauty transposon and consists 

of two components entailing a donor vector coding for the gene of interest and a transposase 

expression vector. However, the plasmid-based transposase vector could stably integrate into 

the target cell genome and cause sustained expression of the transposase gene leading to 

genetically unstable producer cell pool and thus potential loss of productivity. To investigate 

this, stable recombinant cell pools were examined for transposase gene integration and 

expression. To provide an alternative for transposase-encoding plasmids, the transposase was 

transcribed in vitro into mRNA and co-transfected with the donor vector DNA for subsequent 

examination of vector copy numbers and expression levels of the GOI. The results of this study 

were published in Molecular Biotechnology [92]. 

Retroviral vectors are commonly pseudotyped with VSV-G to mediate efficient gene transfer. 

However, sustained expression of the glycoprotein is cytotoxic for the vector producing cells 

limiting its use to transient and inducible packaging cells.  In addition, experiments with these 

pantropic vectors have to be conducted under BSL-2. Thus, it was intended to develop viral 

vectors facilitating efficient gene transfer under BSL-1 conditions. Retroviral vectors equipped 

with the ecotropic envelope PVC211mc, a molecular clone of Friend MLV, fulfill this 

requirement and enable transduction into CHO cells, the gold standard cell line for protein 

production. To further elevate gene transfer efficiencies, the ecotropic envelopes were 

genetically modified by introducing R-peptide deletions and further modifications of the C-tail 

of PVC211 Env proteins subsequently used to pseudotype MLV and HIV-1 vectors. It was 

assumed that the enhanced fusogenicity induced by R-peptide deletion could elevate gene 

transfer efficiencies. Consequently, Env protein variants were assessed for their fusogenicity, 

incorporation into γ-retroviral and lentiviral vector particles and their potential to elevate 

pseudotype vector titers as compared to wild-type PVC211 Env using mCAT-1 receptor-

negative packaging cells not allowing for receptor interference and syncytia formation. The 

findings of this study were published in Virology [93].  
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4 Summary and Outlook 

One part of this thesis was to develop transposon vectors for the fast establishment of 

mammalian producer cells characterized by elevated copy numbers and sustained 

productivity. Previous studies have already shown that the Sleeping Beauty two-component 

vector system mediated efficient gene transfer and stable integration of the GOI [9]. However, 

the plasmid-based transposase vector could undesirably integrate into the target genome 

resulting in the potential re-mobilization and depletion of the already stably integrated gene of 

interest. This study further supported this assumption as SB100x genes in the genomic DNA 

and its transcripts were readily detected in HEK293 cells 48 days post co-transfection of the 

plasmid transposase construct and the respective donor vector. To circumvent this, the 

transposase gene was transcribed in vitro into mRNA for subsequent transposition 

experiments analyzing the expression levels of the GOI and vector copy numbers 16 days post 

transfection. Presented data demonstrated that the achieved vector copy numbers using 

SB100x-mRNA for transposition experiments was lower compared to plasmid-based SB100x-

mediated transposition. This was also mirrored in decreased GOI expression levels analyzed 

employing FACS analysis. However, when cells were examined 16 days post transfection for 

transposase expression using RT-PCR, SB100x transcripts were exclusively detected in cell 

pools transfected with plasmid-based transposase. This study demonstrated that the 

utilization of SB100x-mRNA is a reasonable alternative to plasmid-based SB100x transposase 

avoiding undesired integration and subsequent expression of the transposase gene.  

A potential explanation for lower VCN using SB100x-mRNA for transposition is the short half-

life of mRNA molecules compared to plasmids resulting in a shortened time frame for 

transposase gene expression, and thus less transposition events. To compensate for this, serial 

transfections of SB100x-mRNA could be performed two and three days post initial co-

transfection assuming sufficient epichromosomal amounts of the donor vector for following 

transposition events enhancing VCN and therefore cellular productivity. Another possible way 

to elevate VCN in target cells is a simultaneous transfection of three donor vector plasmids 

coding for the same transgene but harboring different selection markers. Upon applying 

stringent triple selection pressure, an enrichment of high VCN in cells can be achieved. This 

concept of triple co-transfection and co-selection was previously successfully applied in the 

establishment of stable high titer retroviral vector packaging cell pools [31, 71]. A further 

approach to obtain elevated VCN could be performing a serial transfection of SB- and PB-

derived vectors as their transposases favor different target sequences and should not re-

mobilize already integrated transfer genes.  

Future applications of developed SB vectors could include the establishment of monoclonal 

antibody-producing cell lines which has already been demonstrated using PB vectors yielding 
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high antibody titers of up to 7.6 g/L [94, 95]. SB vectors may also be instrumental for the 

generation of cell pools producing human blood coagulation factor VIII (hFVIII). The hFVIII-

producing human-derived expi293F cell pool, generated employing PB vectors, prove to be 

highly productive (9.0 U/106 cells/24 h) without the need for screening and generation of cell 

clones [96]. It is likely to assume that SB vectors might even exceed productivities as SB-

mediated gene transfer obtained higher VCN compared to PB vectors [17].  

The second part of this thesis aimed at the optimization of gene transfer utilizing retroviral 

vectors derived from MLV and HIV-1. Such vectors facilitate stable integration of their genetic 

cargo at high copy numbers enabling the establishment of highly productive producer cells. 

Retroviral vectors are mostly pseudotyped with VSV-G mediating efficient gene transfer but 

requiring working under biosafety level 2. To circumvent this, vectors utilized in this thesis 

were equipped with ecotropic envelope proteins allowing experiments under biosafety level 1 

conditions. Envelope variants originating from Friend MLV PVC-211mc lacking the R-peptide 

and C-tails derived from MLV and GaLV were generated anticipating that their fusogenicity 

elevates gene transfer efficiency. Titration experiments showed that all generated envelope 

variants failed to efficiently pseudotype MLV particles. In contrast, two of four generated 

envelope variants successfully pseudotyped HIV-1 vector particles. Gene transfer was most 

enhanced by exchanging the C-tail of ecotropic MLV envelope proteins with the C-tail of GaLV 

Env lacking the R-peptide. This chimeric envelope variant named eMLV-GaLV∆R exceeded 

titers mediated by the wild-type Env PVC211 about threefold, and will thus prove valuable for 

preclinical gene therapeutic applications and the establishment of protein producer cells.  

The generated Env protein variant eMLV-GaLV∆R is – in contrast to VSV-G – not cytotoxic in 

human cells, and thus stable HIV-1-derived vector packaging cells could be established. To 

generate a stably HIV(eMLV-GaLVΔR)-producing cell pool, SB transposon-derived vectors 

could be used for the stable integration of all viral expression cassettes at high copy numbers 

into the genomes of host cells upon transposition. This approach was already shown to be 

beneficial for the establishment of stable ecotropic MLV-derived packaging cells 

outperforming vector particle-producing cells generated by conventional stable transfection 

using plasmids [31]. With a stable, continuously HIV(eMLV-GaLVΔR)-producing vector 

packaging cell, a constant particle harvest could be performed. A stable LV packaging cell line 

is preferable as consistent vector quality is achieved, which is a key factor in the industrial 

production of viral vectors. In contrast, current lenti-and retroviral vector particle production, 

building on the transient transfection of cognate viral vector constructs into HEK293 derivate 

host cells, suffers from considerable batch-to-batch variations with altering vector titers [97].  

The research group around Humbert et al. developed a stable packaging cell line producing 

LVs pseudotyped with the Env proteins of cocal virus generating constant titers of about 
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1.0 x 106 TU/mL over a cultivation time of four month [98]. In another study, a stable LV 

packaging cell line was constructed using the non-toxic Env proteins derived from feline 

endogenous retrovirus RD114 enabling transduction of human cells. HIV(RD114) vector 

particle titers produced by this packaging cell line were relatively stable for over five months 

[99]. HIV(eMLV-GaLVΔR) vector particles harvested from future stable packaging cells could 

be used for repeated transductions of CHO or recombinant CHO-mCAT-1 suspension cells to 

establish high-yield protein producer cells. The approach to utilize lentiviral vector-mediated 

gene transduction into CHO cells was proven to be instrumental for the production of 

hemagglutinin H5 of avian influenza virus achieving an average production rate of 5.1 µg/mL 

[69]. In another example, also performing repeated transduction of CHO cells with LVs, 

production of hFVIII yielded productivities of 2.5 mg/L exceeding previously reported 

productivities [100]. Transduction can be performed at high multiplicities of infection (MOI) 

aiming for transgene enrichment in target cells, and thus elevating productivity as 

demonstrated for the production of erythropoietin (EPO) in CHO cells yielding 206 µg/mL 

[101]. However, the aforementioned studies were conducted in BSL-2 laboratories. The 

HIV(eMLV-GaLVΔR) vector particles developed in this thesis should facilitate producer cell 

line establishment conducted in a BSL- 1 environment, and thus further simplify the utilization 

of lentiviral vector-mediated gene transduction in the future establishment of highly efficient 

protein producer cell lines.   
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Figure 6: Fluorescence microscopic image of eMLV-ΔR Env and GFP-expressing HT-1080 
cells forming syncytia with mCAT-1-positive cells. This picture was part of publication Nr. 2 
included in this thesis [93] and was chosen as cover art for Virology Vol. 577, December 2022 (ISSN 
0042-6822)  


	Abstract
	Kurzfassung
	Publications included in this cumulative thesis
	List of Figures
	Abbreviations
	1 Introduction
	1.1 Transposon vectors
	1.2 Two-component vector system
	1.3 Retroviral vectors for gene transfer
	1.4 Lentiviral vectors for gene transfer
	1.5 Optimization of retroviral vectors
	1.6 Modifications of envelope proteins

	2 Research aims
	3 Publications
	3.1 Publication 1
	3.2 Publication 2
	3.3 Publication 3

	4 Summary and Outlook
	5 References
	Acknowledgement
	Curriculum vitae
	List of publications
	Appendix

