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Abstract 

Job shop scheduling problems (JSSPs) have been the subject of intense studies for decades because they are 
often at the core of significant industrial planning challenges and have a high optimization potential. As a 
result, the scientific community has developed clever heuristics to approximate optimal solutions. A 
prominent example is the shifting bottleneck heuristic, which iteratively identifies bottlenecks in the current 
schedule and uses this information to apply targeted optimization steps. In recent years, deep reinforcement 
learning (DRL) has gained increasing attention for solving scheduling problems in job shops and beyond. 
One design decision when applying DRL to JSSPs is the observation, i.e., the descriptive representation of 
the current problem and solution state. Interestingly, DRL solutions do not make use of explicit notions of 
bottlenecks that have been developed in the past when designing the observation. In this paper, we 
investigate ways to leverage a definition of bottlenecks inspired by the shifting bottleneck heuristic for JSSPs 
with DRL to increase the effectiveness and efficiency of model training. To this end, we train two different 
DRL base models with and without bottleneck features. However, our results indicate that previously 
developed bottleneck definitions neither increase training efficiency nor final model performance. 
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1. Introduction

Scheduling problems occur in every sector of the manufacturing industry and often have substantial 
optimization potential. Industrial scheduling problems are classified as combinatorial optimization problems 
[1], which are prohibitively computationally expensive to solve optimally at the scale of real-world 
scenarios. Consequently, they have been studied for many years, especially in the fields of operations 
research (OR) and computer science. The result of these research efforts are numerous priority dispatching 
rules (PDRs) [2] and (meta-)heuristics that are still under very active development [3, 4]. All solution 
methods cover different spectrums in the trade-off between computation time and optimality of the found 
solution. Generally, PDRs are fast and interpretable, but the solutions are often more than 20% worse than 
the optimum [5, 6], whereas (meta-)heuristics obtain more optimal solutions at the cost of more computation 
time. In the last five years the application of deep reinforcement learning (DRL) has gained popularity in the 
scheduling domain [7, 8], driven by the increasing availability of computation and rapidly improving 
learning algorithms. DRL has already shown competitive results for standardized scheduling problems, such 
as the Job Shop Scheduling Problem (JSSP) [6, 9]. Since learning-based solutions like DRL have the inherent 
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ability to adapt to different environments during training, the driving long-term hypothesis of researchers in 
the field is that DRL will lead to better results than manually tailored heuristics, require less manual effort 
for the mathematical description of the production environment and will generalize well to stochasticity in 
production lines [10, 11]. 

Existing DRL-based solutions can be roughly divided into two research directions. One computes 
information-rich, simple features for the agents' observation space, such as remaining processing times of 
jobs, and relies on small and shallow neural network topologies. The second trains much more elaborate 
neural network topologies on raw and high-dimensional problem state representations. However, neither 
research direction makes explicit use of the intuition and work that has been build and done over the course 
of many decades by the operations research (OR) community when designing observation spaces. For 
example, the notion of bottlenecks is very common in the OR literature and builds the foundation of one of 
the most cited heuristics for the JSSP, the shifting bottleneck heuristic (SBH) [12]. Yet, bottleneck features 
are not commonly found within DRL-based solution approaches. Therefore, in this paper, we investigate 
whether there is a benefit to the incorporation of bottleneck features into DRL. Building upon the definition 
of a bottleneck in the SBH for the design of an input feature for DRL agents, we combine established 
knowledge and new, powerful learning algorithms. We hypothesize that the use of the bottleneck feature 
leads to faster training and/or more optimal plan generation by agents, as it provides useful information about 
the problem instance and the current scheduling situation. The main contributions of this paper are: 

− The design of a bottleneck feature inspired by the SBH that can be integrated into DRL-based
solution methods.

− The analysis of the effectiveness of this feature for DRL-based scheduling methods by integrating
the feature into two different existing approaches: a self-designed, comparatively small-scale
DRL-based approach that relies on engineered features, and a state-of-the-art approach with an
end-to-end architecture.

The remainder of this paper is structured as follows: We begin with a brief introduction to the background 
of this study with respect to DRL for the JSSP and definitions of bottlenecks. Next, we discuss related work 
with respect to bottleneck definitions and their integration into DRL-based solution approaches. In section 
3, the methods and experiments are detailed, followed by the results in section 4. Section 5 concludes the 
study and offers perspectives for future work. 

2. Background and Related Work

2.1 Deep Reinforcement Learning and Job Shop Scheduling 

DRL is a machine learning paradigm, in which deep learning models are trained through interaction with an 
environment by sampling experience data and autonomously deriving action sequences which maximize a 
cumulative reward signal across a task [13]. In theory, the DRL paradigm can be applied to any sequential 
decision problem that can be formulated as a Markov decision process (MDP), i.e., in which a given problem 
state is independent of the way in which the problem state was reached. In practice, the success of the 
application of DRL to industrial use-cases depends on a combination of the fit of the used DRL algorithm, 
the neural network topology and other design decisions, such as the actions an agent can take and the reward 
signal, to the underlying problem. In some use cases, such as robotic control [14, 15], warehouse 
management  [16] or load carrier control [17], DRL has already achieved impressive results. Since 
scheduling problems can also be formulated as MDPs, much interest has emerged in recent years to address 
scheduling problems with DRL as well. 

In a JSSP, J jobs must be processed on M  machines, where every job consists of M operations and has to be 
processed once on every machine in a fixed order and with different processing times. Only one job may be 
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processed on any machine at once and, once started, an operation may not be interrupted [1]. JSSP problem 
sizes are often abbreviated as JxM JSSP, meaning that a JSSP with six jobs and six machines is abbreviated 
as 6x6 JSSP. The objective of the combinatorial optimization often is the minimization of the makespan, i.e., 
the timespan between the start of the first operation and the end of the last operation in the schedule. The 
JSSP cannot be solved in polynomial time, making it infeasible to find exact solutions for large problem 
settings in acceptable time.   

Considerable research effort has already been put into addressing the JSSP with DRL. Although first 
breakthroughs date back to 2016 [18], solutions that outperform rule-based dispatching strategies by larger 
margins have only recently been discovered. Therein, DRL is used in one of two ways: firstly, as stand-alone 
solution for constructive scheduling [5, 6, 9, 19], meaning that schedules are constructed such that Gantt 
charts are created from left to right. Secondly, and less frequently, DRL is used to guide improvements on 
already existing solutions [20, 21]. As mentioned before, a crucial part of the algorithm design is the 
definition of a suitable problem representation as input, called observation, for the DRL-agent. Many 
researchers make use of features like the remaining processing times of jobs and machines, or the number 
of remaining operations, which are also used by common priority dispatching rules [5, 19, 22, 23]. The most 
competitive observation designs, however, are raw problem descriptions of the scheduling instance and 
current solution state that leverage neural network topologies that capture the structure of the underlying 
problem through graph networks [6] or recurrent architectures [9]. Surprisingly, we found no work using 
more elaborate features like bottleneck information, which has proven useful in OR problem descriptions 
and advanced heuristics. 

2.2 The Concept of Bottlenecks 

In general terms, bottlenecks in production scenarios are resources or jobs which have a large impact on the 
final scheduling performance. Logically, it is common to identify these resources or jobs and prioritize them 
in one way or another. Therefore, when relying on the notion of bottlenecks, the tasks are to identify 
bottlenecks and to prioritize them effectively [1, 24]. For example, Zhang and Wu identified constraining 
bottleneck machines and jobs through statistical analysis of multiple simulations and applied this information 
to various genetic algorithms [25–27]. Definitions regarding resource utilization, queue lengths, and average 
waiting times are also common [28, 29]. To the best of our knowledge, only one DRL-based solution 
approach actively incorporates a bottleneck identification step. In this work, Thomas et al. propose two 
agents, one to classify resources as bottlenecks and the other to schedule operations [30]. However, the goal 
of their study was to adjust machine capacities, not to schedule on a fixed machine park. One of the most 
widely known effective use of the bottleneck concept is the shifting bottleneck heuristic (SBH) [12]. On an 
abstract level, it iterates over all machines in the problem following three steps: 

1. Identification of the bottleneck machine of this iteration step based on the current problem state.
2. Determining the order of operations on this bottleneck machine.
3. Incorporating this order of operations on the bottleneck machine into the current problem state.

Evidently, the identification of the bottleneck machine is a central step of the SBH. For a detailed description 
of each step and the overall algorithm, we refer to the original publication by Adams at al. [12] and the 
textbook version by Pinedo [1]. Our adaption of the bottleneck identification step as feature for a DRL-agent 
is described in the following section 3.1. 

3. Methods and Experiments

This section firstly provides details of the suggested bottleneck information. Then, the description of the 
self-designed and adapted base models is given, including how these models are augmented with the 
bottleneck information as feature, and how the models are trained. 
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3.1 Bottleneck Information 

The bottleneck information calculation procedure we propose is closely related to the bottleneck 
identification step in the SBH. The abbreviated pseudo-code of the algorithm we discuss in this section is 
presented in Algorithm 1. The bottleneck information is calculated in every step of the DRL-based schedule 
generation and should provide information on the current situation. For simplicity, we refer to all non-
complete solutions (including solutions without any operation scheduled) as partially solved from here on. 

The algorithm starts from a partially solved schedule. In the first step, as in the SBH, we determine the lower-
bound of the makespan, makespanLB, of the current schedule. We do so under the artificial assumption that 
all machines can process all unscheduled operations at the same time but while still adhering to already fixed 
orders of operations in the schedule and to precedence constraints within jobs (see [12]). Next, from 
makespanLB, we can infer pseudo release dates, being the time when operations start in the partial solution, 
as well as pseudo due dates that tell us when each operation would have to be finished to fulfill the lower-
bound makespan.  

After this preliminary calculation, we calculate the bottleneck information for each machine separately. To 
do so, we assume that the sequence of operations on the considered machine is not (partially) fixed. We then 
determine a sequence of operations minimizing the maximum tardiness on that machine, given the previously 
calculated release dates and due dates.  In practice, we solve this one-machine tardiness minimization 
problem with the algorithm developed by Carlier [31]. The solution to the one-machine tardiness 
minimization problem returns the minimal tardiness, tardinessMIN. It can be shown that the sum of the 
makespanLB and the tardinessMIN is a valid lower-bound makespan for the regarded machine [12]. As in the 
SBH, we interpret this makespan as an indication for the bottleneck machine, since a machine with a large 
lower-bound makespan is likely to have a larger influence on the final makespan. Having calculated this 
bottleneck information for every machine, we finally min-max scale across all bottleneck information values 
to the range [0, 1]. How this bottleneck information is inserted into the observation of each DRL base model 
is described in the respective sections 3.2.1 and 3.2.2. 

Algorithm 1: Calculation of the bottleneck information list 

3.2 Base Models and Bottleneck Feature Integration 

In this paper, we experiment with two different DLR models: a self-designed model architecture, that relies 
on engineered features and a small neural network, as well as a large model architecture proposed by Iklassov 
et al. [9], that uses both raw data and features to achieve state-of-the-art results. In both cases, we modify 
the existing base model such that the additional bottleneck feature can be added as input. To ensure that 
differences in the model performances with and without the bottleneck feature can be attributed to the effect 
of the feature, we overwrite the bottleneck feature vector with zeros whenever the bottleneck features are 
not used. This way, the number of model parameters remains the same with and without the additional 
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bottleneck feature. All experiments were conducted on 6x6 and 10x10 JSSPs and repeated with three random 
seeds. 

3.2.1 Self-designed Base Model 

In the self-designed base model, the DRL-agent interacts with its environment by choosing from the next 
operations that can be scheduled per job, thereby iteratively constructing a schedule starting with the first 
operations of jobs. Once scheduled, the resulting starting and ending times of operations remain unchanged. 
The design choices, features and hyperparameters were found in extensive preliminary experiments and 
resulted in a stable learning behavior and competitive makespans compared to the common priority 
dispatching rules most-tasks-remaining, shortest-processing-time-first and randomly generated schedules. 
As DRL algorithm we use Proximal Policy Optimization (PPO) [32] with action masking [33] to avoid 
impossible action suggestions such as scheduling an operation of a finished job. The policy and value 
networks in PPO are feedforward neural networks with two hidden layers of size 256 and Tanh activation 
function. Both networks are separate networks, meaning that they do not share parameters. The used feature 
vector contains concatenated information on the next operations to be scheduled per job. Each one of these 
next operations is described by: 

− its processing time
− the remaining processing time of the corresponding job
− the number of remaining operations of the corresponding job
− the remaining processing time on the required machine
− the number of remaining operations on the required machine
− the earliest starting time for the task given the current planning status

In addition, an MTR-feature is calculated, named after the common most-tasks-remaining dispatching rule. 
It is a vector of the element-wise comparison between the number of remaining operations of all jobs, where 
a 1, -1, and 0 indicate if there are more, less, or equal remaining operations, respectively. The bottleneck 
feature is also used as descriptive feature per next operation by inputting the calculated bottleneck feature of 
the machine processing the next operation. The data flow from problem state to the action and value 
predictions is depicted in Figure 1. 

Figure 1: Data flow in the self-developed base model. Content in dashed box indicates the additions that were made 
in this study. 

The implementation of masked PPO as well as the training and testing datasets and procedures are adapted 
from the schlably framework for DRL base production scheduling experiments [34]. The training instances 
were generated by randomly assigning machines to operations within a job and with operation times 
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determined from integers uniformly distributed in the interval [1, 11]. Training was performed on a fixed set 
of 1,200 training instances. The model was validated on ten separate instances every 30,000 training steps 
and the model that performed best on the validation data during training was finally tested on 40 test 
instances. Training was ended after 4,000,000 time steps for the 6x6 JSSP and 700,000 time steps for 10x10 
JSSPs, as no further improvement was observed through further training in preliminary experiments. All 
used hyperparameters are given in Appendix Table 1.  

3.2.2 Learning-To-Generalize (l2g) Base Model 

Our learning-to-generalize base model that we use in this study is adapted from a recent publication by 
Iklassov et al. [9], which achieves state-of-the-art results for all DRL-based JSSP solutions, where the model 
iteratively constructs a schedule operation by operation, similarly to our approach described above (see 
section 3.2.1). We deploy the best reported performing configuration and hyperparameters but modify the 
algorithm in two ways to fit it to the objective of our experiments: First, we solely train the 6x6 JSSP model 
on 6x6 JSSP training instances and the 10x10 model 10x10 training instances instead of training instances 
of multiple sizes per model. This minimizes the required training time per model, because training on much 
larger instances increases the calculation time significantly, due to the calculation time of the bottleneck 
feature that scales faster than quadratically with increasing problem sizes. We accept here that this may lead 
to a worse overall performance of the models, since our primary interest lies in the comparison between 
models trained with and without the bottleneck feature. The second modification is with respect to the input 
features. The bottleneck features are added as a fourth dynamic feature category next to the information 
about the last processed operations per job, the machine status and remaining processing times, as illustrated 
in Figure 2. To this end, the bottleneck features, like the other dynamic features, are expanded to the 
embedding size 128 through a linear layer, concatenated with the static input embedding and passed through 
a recurrent set2set model [35], before entering the actor and critic networks. 

Figure 2: Data flow in the l2g base model. Content in dashed box is the addition that was made for this study. 

Adhering closely to the original training procedure, all instances consist of operations with processing times 
sampled uniformly from the interval [0, 100]. This has the benefit that the bottleneck features is not only 
tested on multiple base models but varying JSSP settings. For every episode, new training instances are 
randomly created. Evaluations during training are carried out every 100 episodes on ten fixed evaluation 
instances. Finally, the best performing model on the evaluation instances is tested on separate test instances. 
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Training was stopped after 2,800 episodes and 1,100 episodes for the 6x6 and 10x10 JSSPs, respectively, 
because no further improvement was observed after this point in preliminary experiments. 

4. Results

We first analyze the training behavior of the DRL agents to verify the working hypothesis that the bottleneck 
feature is a useful addition to the observation space. To this end, the achieved makespans on the evaluation 
instances are plotted over the number of instances seen during training. Every plot in Figure 3 shows the 
evaluation makespans averaged across three seeds for models trained with the bottleneck feature (blue) and 
without the bottleneck feature (orange) as solid lines. Shaded areas represent the standard deviation across 
the three seeded training runs per model. Generally, the evaluation results drop fast in the beginning and 
then plateau after a few hundred training instances. Critically, we cannot identify significantly faster 
learning, nor significantly lower plateaus, nor other striking differences between any of the two lines per 
plot. Therefore, the bottleneck feature does not seem to qualitatively change the learning behavior, which 
falsifies our working hypothesis. 

Figure 3: Learning curves of evaluation runs, averaged across seeds. a) Self-developed base model on 6x6 JSSP; 
b) L2g base model on 6x6 JSSP; c) Self-developed base model on 10x10 JSSP; d) L2g base model on 10x10 JSSP

The second part of the analysis aims at the evaluation of the performance of the final trained models. The 
averaged results across the three training seeds on the test instances are reported in Table 1. The column 
optimal represents the average makespans of optimal solutions that were calculated using the CP-SAT solver 
of the OR Tools library [36]. The percentual gap to the optimum is reported in the column opt.-gap. The 
other columns show the average makespans achieved through common PDRs: MTR, “most-tasks-
remaining”, always selects the next unscheduled operation that belongs to the job with the most unscheduled 
operations, with ties resolved by the smallest assigned job id. SPT, “shortest-processing-time”, selects the 
next unscheduled operation with the shortest processing time, with ties resolved as before. Random chooses 
the next job of which the next operation will be scheduled by sampling the job id from a uniform random 
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distribution. Comparing the PDR results with the results of the agent, all agents except the ones using the 
self-designed base on the 10x10 JSSP clearly outperform the PDRs. The critical results with respect to our 
working hypothesis are the differences between the model performances with and without the bottleneck 
feature. Here, we find that the resulting makespans are very similar and that those models trained without 
the bottleneck feature even sometimes outperform those trained with the bottleneck feature. The results of 
individual models can be found in Appendix B. 

Table 1: Summary of average test results of the trained models 

base 
model 

JSSP 
size 

bottlenck-
feature agent optimal opt.-gap MTR SPT Random 

self-
designed 

6x6 
yes 69.5 ± 2.1 

59 
17.8 % 

72.1 140.7 98.9 
no 68.7 ± 2 16.4 % 

10x10 
yes 123.7 ± 5.1 

96.9 
27.5 % 

117.2 320.1 165.3 
no 123.9 ± 2.5 27.8 % 

l2g 
based 

6x6 
yes 543.7 ± 1.4 

494.8 
9.9 % 

602.2 1209.6 828.625 
no 542.0 ± 3.5 9.5 % 

10x10 
yes 962.2 ± 3.9 

827.65 
16.3 % 

1094.6 2910.0 1599.3 no 963 ± 2.5 16.4 % 

The experiments were designed to indicate whether the bottleneck feature carries more useful information 
than zeros. Considering the above-presented results, the additional non-zero features seem to introduce no 
noise to the experience data rather than to provide useful information for the learning task. It should also be 
noted that both, the inclusion of the bottleneck feature and that of zeros, had a small detrimental effect on 
the final agents’ performance when compared to models without such extensions. This shows that more 
seemingly meaningful features and parameters do not necessarily improve model performance. On the 
contrary, features with little or no informative value lead to worse results. This has been previously 
mentioned in other studies regarding DRL based scheduling [5, 19], but has never explicitly been shown for 
the JSSP. 

5. Conclusion and Future Work

This paper presented a study on the integration of a novel shifting bottleneck heuristic-inspired feature into 
the observation space of DRL agents solving JSSPs. The training behavior and final performance of two 
different solution approaches, both with and without the new feature, were analyzed and compared. From 
the results, we conclude that the inclusion of the bottleneck feature does not improve the training procedure, 
but rather leads to slightly worse final performances. In the light of these results and the considerably 
prolonged training times resulting from the calculation of the feature in every step of the solution generation, 
it does not seem like a valuable addition to existing approaches. Yet, we believe that there is unexploited 
potential in established algorithms and intuitions developed by the OR community over the course of 
decades, which have received enough attention by DRL based solutions. Some work in this area has already 
shown great success on combinatorial problems [20, 37, 38]. In future work we aim to identify such 
potentials in local search algorithms for scheduling problems and build upon the underlying insights to 
optimize given schedules with DRL. 
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Appendix 

Appendix A: Hyperparameters in Accordance with the Implementation in the schlably Framework [34] 

Appendix Table 1: Hyperparameters in the self-implemented approach 

Parameter Value 
Algorithm PPO-masked 
Clip-Range 0.2 
Batch size 256 
Ent_coef 0 
Gamma 1 
Learning rate 0.02 
N_epochs 5 
Policy_activation Tanh 
Policy_layer [256, 256] 
Value_activation Tanh 
Value_layer [256, 256] 
Rollout_scale 2048 

Appendix B: Detailed Test Results 

Appendix Table 2: Test results of the self-developed base model with and without the bottleneck feature on 6x6 JSSP 
instances 

seeds agent optimal opt. - gap MTR SPT Random 

with 
bottleneck 

feature 

1 72.13 61.03 18 % 75.50 138.20 101.30 
2 69.28 58.93 18 % 71.50 144.05 100.98 
3 67.05 57.05 18 % 69.15 139.98 94.50 

average 69.48 59.00 18 % 72.05 140.74 98.93 
without 

bottleneck 
feature 

1 71.43 61.03 17 % 75.50 138.20 101.30 
2 68.15 58.93 16 % 71.50 144.05 100.98 
3 66.53 57.05 17 % 69.15 139.98 94.50 

average 68.70 59.00 16 % 72.05 140.74 98.93 

Appendix Table 3: Test results of the self-developed base model with and without the bottleneck feature on 10x10 
JSSP instances 

seeds agent optimal opt. - gap MTR SPT Random 

with 
bottleneck 

feature 

1 116.6 95.5 22.1 % 115.5 318.4 159.8 
2 126.1 98.0 28.7 % 118.9 320.2 168.6 
3 128.3 97.3 31.9 % 117.2 321.7 167.6 

average 123.7 96.9 27.5 % 117.2 320.1 165.3 
without 

bottleneck 
feature 

1 120.4 95.5 26.1 % 115.5 318.4 159.8 
2 125 98 27.6 % 118.9 320.2 168.6 
3 126.2 97.3 29.7 % 117.2 321.7 167.6 

average 123.9 27.8 % 117.2 320.1 165.3 
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Appendix Table 4: Test results of the l2g base model with and without the bottleneck feature on 6x6 JSSP instances 

seeds agent optimal opt. - gap MTR SPT Random 

with 
bottleneck 

feature 

1 541.7 494.8 9.5 % 602.2 1209.6 828.6 
2 544.3 494.8 10.0 % 602.2 1209.6 828.6 
3 545.1 494.8 10.2 % 602.2 1209.6 828.6 

average 543.7 494.8 9.9 % 602.2 1209.6 828.6 
without 

bottleneck 
feature 

1 540.0 494.8 9.1 % 602.2 1209.6 828.6 
2 547.0 494.8 10.5 % 602.2 1209.6 828.6 
3 539.2 494.8 9.0 % 602.2 1209.6 828.6 

average 542.0 494.8 9.6 % 602.2 1209.6 828.6 

Appendix Table 5: Test results of the l2g base model with and without the bottleneck feature on 10x10 JSSP 
instances 

seeds agent optimal opt. - gap MTR SPT Random 

with 
bottleneck 

feature 

1 965.5 827.7 16.7 % 1094.6 2910.0 1599.3 
2 956.7 827.7 15.6 % 1094.6 2910.0 1599.3 
3 964.5 827.7 16.5 % 1094.6 2910.0 1599.3 

average 962.2 827.7 16.3 % 1094.6 2910.0 1599.3 
without 

bottleneck 
feature 

1 962.9 827.7 16.3 % 1094.6 2910.0 1599.3 
2 960.0 827.7 16.0 % 1094.6 2910.0 1599.3 
3 966.1 827.7 16.7 % 1094.6 2910.0 1599.3 

average 963.0 827.7 16.4 % 1094.6 2910.0 1599.3 
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