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Abstract 

Machine learning (ML) describes the ability of algorithms to structure and interpret data independently or 
to learn correlations. The use of ML is steadily increasing in companies of all sizes. However, insufficient 
market readiness of many ML solutions inhibits their application, especially in production systems. 
Predictive models apply ML to understand the complex behavior of a system through regression from 
operational data. This enables determining the relationship between factors and target variables. Accurate 
predictions of these models for production systems are essential for their application, as even minor 
variations can significantly affect the process. This accuracy depends on the available data to train the ML 
model. Production data usually shows a high epistemic uncertainty, leading to inaccurate predictions unfit 
for real-world applications. This paper presents ML-driven, data-centric Design of Experiments (DoE) to 
create a process-specific dataset with low epistemic uncertainty. This leads to improved accuracy of the 
predictive models, ultimately making them feasible for production systems. Our approach focuses on 
determining epistemic uncertainty in historical data of a production system to find data points of high value 
to the ML model in the factor space. To identify an efficient set of experiments, we cluster these data points 
weighted by feature importance. We evaluate the model by running these experiments and using the collected 
data for further training of a prediction model. Our approach achieves a significantly higher increase in 
accuracy compared to continuing the training of the prediction model with the same amount of regular 
operating data. 
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1. Introduction

At the latest since the publication of ChatGPT by OpenAI, Machine Learning (ML) has received much 
attention [1]. This type of generative artificial intelligence (AI) is considered a technical revolution with a 
potential impact on a wide variety of industries and society as a whole [2]. In line with this trend, the use of 
AI continues to increase in companies of all sizes, although primarily in large companies with more than 
1000 employees [3]. Barriers to deploying AI in companies include a lack of expertise in the ML area, 
insufficient market maturity of AI solutions, and a lack of data [4]. 

After the IT industry, manufacturing ranks second among the most important application areas for AI in 
Germany [5]. However, compared to the IT industry, manufacturing requires significantly more effort to 
generate data on the operational technology (OT) level and to transfer it to the application level. It becomes 
clear that the algorithms behind ML models might not always be the limiting factor but rather the limited 
data available to train these models. Instead of improving a model on a given dataset, data-centric AI focuses 
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on data quality and reliability [6]. The methodology presented in this paper utilizes this data-centric approach 
and addresses the creation of robust predictive ML models for complex production processes. 

2. Data in production systems and its effect on predictive models

Production systems use actuators to control the process and sensors to generate data. These input data points 
are called factors and consist of disturbance variables and control variables, as shown in Figure 1. 

Figure 1: Types of data in a production system 

Disturbance variables are factors that the operator of a production system cannot adjust. In contrast, control 
variables can be set to predefined values. Control variables are actuators that are often equipped with sensors 
to monitor their current state. All factors influence one or more output data points called responses. In 
production systems, responses are usually one or more measurable product quality characteristics. 
Production systems typically rely on the empirical knowledge of experts and plant personnel who adjust the 
control variables to achieve the desired responses. 

In this work, we specifically address a subset of ML, namely predictive models, which learn the behavior of 
the plant using regression. These models use historical data collected during the operation of the production 
system to determine the relationship between factors and responses. Thus, the trained predictive model can 
quantify the effect of factor changes on responses independently of the process experts' empirical knowledge. 

Since the predictions take place simulatively without affecting the real-world production system, finding the 
factors for the desired responses based on the predictions of a trained model is an optimization problem. 
Given the current disturbance values of the real-world production system, a set of control variables is sought, 
reproducing the desired responses according to the prediction model as accurately as possible. These 
simulatively determined control variables can be set in the actual production system afterward. The goal of 
this optimization is to avoid scrap or to increase efficiency. In production, this method is called predictive 
quality. However, applying these predictive models in production is associated with some challenges.  

Most of the data generated in production systems is available as time series data. Programmable Logic 
Controllers (PLCs) cyclically retrieve individual measured values and provide them with a time stamp. The 
combination of all process factors forms the input space, also called design space or factor space. Figure 2 
shows a simplified 2D factor space. In this simple example, the factors x1 and x2 create the factor space. 
Within the green area there are data points, represented as black dots. These data points are recordings during 
the regular operation of the production system. The distribution of data points within the green area is not 
homogeneous, so there are areas with an accumulation of data points as well as areas with few or no data 
points. 
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Figure 2: 2D factor space with data points illustrated as black dots 

This distribution of data for training predictive models significantly impacts their robustness [7]. Areas with 
many data points lead to accurate predictions due to the prevalence of low uncertainty, like prediction 1 in 
Figure 2. Prediction 2 in Figure 2, on the other hand, lies in an area with few data points nearby, leading to 
higher uncertainty and less accurate predictions. This type of uncertainty arises from various forms of 
insufficient knowledge or incomplete data and is referred to as “epistemic uncertainty” [8]. Therefore, 
providing additional data reduces epistemic uncertainty. Predictions within the green range can also have 
high epistemic uncertainty and thus produce inaccurate predictions. All predictions within the green region 
are also referred to as "in-distribution" predictions [9]. However, this does not mean they are independent 
and identically distributed [10]. Accurate predictions within this range are essential for applying predictive 
models since even slight fluctuations can significantly affect the process. The prediction of desired target 
variables, therefore, only allows minor errors. High epistemic uncertainty leading to high inaccuracy makes 
predictions unusable for production systems. 

Predictions in the red region of the factor space have a very high epistemic uncertainty and produce incorrect 
predictions because of factor compositions that the training data does not cover. All predictions within the 
red region are referred to as "out-of-distribution" (OOD) predictions [9,10]. Valid predictions in the OOD 
region can still be highly relevant in applications where process experts want to identify new operating 
conditions. In this case, the objective is to find factor compositions in the red region that are more efficient 
than previous operating regions "in-distribution" or more consistently achieve the desired product quality. 

Reducing epistemic uncertainty with new data in the factor space is difficult to achieve in an application. 
Instead of only having two factors, as shown in Figure 2, real-world applications often deal with tens or even 
hundreds of factors. This high dimensionality and the often complex interrelationship of the factors limit the 
applicability in production systems. This work focuses on improving “in-distribution” predictions through 
new data points. We present a method that evaluates feature importance and model uncertainty in the factor 
space to create an effective set of experiments. The effect of gathering data during these experiments shows 
a more significant decrease in model error compared to training the model further with regular training data. 

3. State of the art

This chapter presents the state of the art regarding our research. First, we discuss the role of uncertainties, 
feature importance, and their corresponding methods for explainable AI. Subsequently, we point out current 
research in the field of ML-based experimental design. 
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3.1 Understanding ML models 

Explainable AI aims to provide interpretable insights into the decision-making process of AI models to 
understand them better. Explainability is particularly important in production systems since incorrect 
predictions can cause property damage or even cause injuries. There are many tools and methods to evaluate 
the correctness and relevance of a prediction. In this work, however, we focus on two approaches: uncertainty 
and feature importance. Feature importance indicates the influence of individual factors on the responses. In 
the context of feature importance, global model-agnostic methods describe the average behavior of models 
[11]. The most prominent global model-agnostic method is permutation feature importance. By randomly 
shuffling a factor’s value and measuring the model error, permutation importance provides the importance 
of each factor for the responses [12]. Local model-agnostic methods, on the other hand, explain individual 
model predictions [11]. SHapley Additive exPlanations (SHAP) is a method that uses Shapley values, known 
from coalitional game theory, to find the contribution of each factor to the prediction [13].  

According to [14], the shell model of uncertainties divides the uncertainty of AI or ML applications into 
three areas: The innermost layer, "Model Fit," indicates whether the used model can represent the complexity 
of the data. The subsequent layer, "Data Quality," indicates whether the data contains the information and 
correlations related to the target variable. The outermost layer, "Scope Compliance," includes uncertainty 
due to differences between the model and application context. This work concerns the "Data Quality" layer, 
which describes epistemic uncertainty. Bayesian methods are essential in determining the amount of 
uncertainty [15,16]. However, since Bayesian approaches are often more computationally expensive and less 
performant than conventional ML models, [17] demonstrated that dropout in neural networks can be used to 
approximate uncertainty, combining the advantages of conventional ML with Bayesian methods. 

3.2 ML-driven Design of Experiments 

Factorial or screening experimental plans quickly reach their limits when there are many factors and complex 
processes. ML-based Design of Experiments (DoE) attempts to solve this problem and helps to determine 
process interrelationships through targeted experiments. Determining the most efficient experiments is called 
“Optimal Experimental Design” (OED). Approaches in this area use, for example, iterative exploration of 
areas in the factor space with high information content by predicting the variance [18] or introducing 
estimators for the information gain of an experiment [19]. ML-based DoE already finds application in the 
field of materials science [20], chemical reactions [21], or in the selection of fast-charge protocols [22]. 
However, these approaches are limited to discrete factor spaces and do not account for continuous factor 
spaces as they prevail in production systems. 

4. Methodology

This section introduces our ML-driven DoE for predictive models in production systems. Figure 3 shows the 
workflow of the method. 

Figure 3: Workflow for the ML-driven approach to DoE for predictive models in production systems 
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For this method to be applicable, the production system must run and provide the data generated during the 
process. All data points are snapshots of the production system at a certain time and consist of n factors. The 
first step is to train an ML model using historical data from the operation of the production system. The type 
of selected regression model must either provide the uncertainties in its predictions (i.e. Bayesian methods) 
or allow to calculate the uncertainty of its prediction with additional methods (i.e. neural networks with the 
approximation of [17]). These requirements are important at a later stage in the workflow. In some cases, 
this regression model might already produce sufficient predictions. However, the predictions are too 
inaccurate for many use cases in production systems, which is where our method comes into place. In step 
two, we calculate the feature importance of all control variables. Since we are interested in the feature 
importance over all data points, we apply a global model-agnostic method like permutation importance.  

In the third step, we determine the uncertainty of the model over historical data points. Ideally, these data 
points are a test set which the model has not been trained on. Then we pick m data points with the highest 
uncertainty for further investigation in the next step. The amount of data points to choose varies depending 
on the number of experiments and fluctuation in the data. If we plan a high amount of experiments and the 
data fluctuates considerably, an increased number of data points is necessary for step 4. 

Since it is expensive to perform many experiments, we do not want to run separate experiments for m data 
points. Instead, we want to design an efficient set of experiments that generate as much useful information 
for the ML model as possible. This is why we cluster the data points with high uncertainty in step 4. By 
clustering similar data points, we aim to compress the information of m data points into fewer experiments. 
Algorithms like k-means minimize the variance of data points within a cluster. In this case, we want to 
minimize the variance of all control variables since we cannot influence disturbance variables during 
experiments. Additionally, we weight all control variables by their feature importance. This ensures 
efficiency since factors with a high impact on model estimates also have a higher impact during clustering. 
To get a single experiment from each cluster, we calculate the average for the factors in each cluster. The set 
of all averaged clusters acts as an experiment plan for the production system. This plan provides a set of 
experiments that target areas in the factor space where the model is uncertain while focusing on the factors 
that influence the responses the most. 

In step 5, we set the control variables according to the first experiments from the experiment plan and record 
all data during production. After completing all experiments, we use the data from the experiments to further 
train the model in step 6. 

5. Evaluation 

In this chapter, we evaluate our method based on its effect on the error of predictive models in production 
systems. We apply the method at a geothermal power plant (GPP) that produces power by extracting heat 
from hot thermal water. We use 22 sensors in the process. The process operators have written the operational 
data cyclically into a database every 5 minutes for 268 days. These sensor values are the historical data and 
consist of different physical properties like water flow rate, pressure, temperatures, etc. Out of these 22 
values, we use three adjustable factors as the control variables for our method. In addition, one of the values 
that the process operators recorded is the net energy gain of the GPP, which acts as the response of the 
predictive model. After training a basic feed-forward neural network on this data, we evaluate the feature 
importance of all control variables using permutation importance. Table 1 shows the feature importance of 
all control variables. 
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Table 1: Feature Importance of the control variables 

Control variable Feature Importance 

Number of active air condensers 33.6068 
Blade angle of air condenser ventilators 32.9897 
Receiver condensate level 29.4302 

In the next step, we predict the net energy gain based on unseen data. We use the dropout method of [17] to 
estimate the epistemic uncertainty of these predictions. Figure 4 shows the uncertainty of the predictions 
over a period of 30 days. 

Figure 4: Epistemic uncertainty of the model on test data 

Since maintenance work was done on the GPP during this time, we left out some uncertainty data to avoid 
faulty estimates. The red dots mark 20 predictions with the highest epistemic uncertainty. To reduce the total 
number of experiments, we build five clusters from these 20 data points weighted by their feature importance 
and calculate the average of each cluster. The five clusters act as five separate experiments. Therefore, we 
compress the information of twenty data points into only five experiments. We adjust each control variable 
according to an experiment and run the GPP with these settings for 24 hours. We record all 21 factors and 
the corresponding response during the experiments for further training of the feed-forward neural network. 

We use the root-mean-square error (RMSE) between the predictions and the actual net power output to 
evaluate the performance of the model. Table 2 shows the RMSE of three models, which all share the same 
hyperparameters. We train model 1 on just 268 days of historical data. Model 2 utilizes an additional five 
days of regular operational data from the GPP. Model 3 uses the 268 days of historical data and the five days 
of experiments we performed based on our method. This means we trained models 2 and 3 on the same 
amount of data, whereas model 1 uses five fewer days of data.  

Table 2: Evaluation of the models based on their RMSE 

Model RMSE 

Model 1: 268 days of data of regular operation data 12.006 
Model 2: 268 regular + 5 days of regular operation data 11.935 
Model 3: 268 regular + 5 days of experiment data (our method) 10.294 

115



As expected, model 1 with an RMSE of 12.006 performs worse than models 2 and 3 since we provide less 
training data. While model 2 achieves an RMSE drop of ~0.6% to 11.935, the RMSE of model 3 drops to 
10.294, a decrease of ~14.3%. The five days of experimental data provided by our method are more 
beneficial to the model than five days of regular operating data. This shows that a data-driven approach to 
predictive models can help lower the error of predictions and make these models more feasible for production 
systems. 

6. Conclusion and future work 

It is vital to decide which ML model to use and to find its best hyperparameters for any type of application. 
However, instead of focusing on models and algorithms, research in data-driven AI focuses on data quality 
and reliability. In this work, we introduce a method for ML-driven DoE for predictive models in production 
systems to generate high-quality training data yielding lower prediction errors. We achieve this by 
considering the epistemic uncertainty of model predictions and clustering them weighted by feature 
importance. With this, we create data with high value to the model while keeping experimental efforts as 
low as possible. We have shown that our method yields significantly higher-quality data than regular 
operation.  

This work focused on “in-distribution” predictions, meaning we generated data within the range of regular 
operation of the production system. However, in some cases, the optimal point of operation does not lie 
within this area of the factor space. Exploring OOD predictions might produce higher efficiency, better 
product quality, or higher overall production. Therefore, in future work, we want to focus on OOD 
predictions to find new operating conditions in production systems.  
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