
Gorodetski et al. 
European Radiology Experimental            (2022) 6:44  
https://doi.org/10.1186/s41747-022-00296-8

ORIGINAL ARTICLE

Inferring FDG‑PET‑positivity of lymph 
node metastases in proven lung cancer 
from contrast‑enhanced CT using radiomics 
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Abstract 

Background:  We evaluated the role of radiomics applied to contrast-enhanced computed tomography (CT) in the 
detection of lymph node (LN) metastases in patients with known lung cancer compared to 18F-fluorodeoxyglucose 
positron emission tomography (PET)/CT as a reference.

Methods:  This retrospective analysis included 381 patients with 1,799 lymph nodes (450 malignant, 1,349 negative). 
The data set was divided into a training and validation set. A radiomics analysis with 4 filters and 6 algorithms result-
ing in 24 different radiomics signatures and a bootstrap algorithm (Bagging) with 30 bootstrap iterations was per-
formed. A decision curve analysis was applied to generate a net benefit to compare the radiomics signature to two 
expert radiologists as one-by-one and as a prescreening tool in combination with the respective radiologist and only 
the radiologists.

Results:  All 24 modeling methods showed good and reliable discrimination for malignant/benign LNs (area under 
the curve 0.75−0.87). The decision curve analysis showed a net benefit for the least absolute shrinkage and selection 
operator (LASSO) classifier for the entire probability range and outperformed the expert radiologists except for the 
high probability range. Using the radiomics signature as a prescreening tool for the radiologists did not improve net 
benefit.

Conclusions:  Radiomics showed good discrimination power irrespective of the modeling technique in detect-
ing LN metastases in patients with known lung cancer. The LASSO classifier was a suitable diagnostic tool and even 
outperformed the expert radiologists, except for high probabilities. Radiomics failed to improve clinical benefit as a 
prescreening tool.
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Key points

•	 Radiomics applied to contrast-enhanced computed 
tomography is feasible in detecting lymph node 
metastases in patients with proven lung cancer.
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•	 The least absolute shrinkage and selection opera-
tor (LASSO) classifier is suitable as a diagnostic tool 
applied to radiomics in this setting.

•	 Radiomics failed to improve clinical benefit as a pre-
screening tool.

Background
Lung cancer is the most common cause of cancer-related 
death in the world with an incidence of 2.2 million and 
cancer-related death of 1.9 million people in 2017 [1]. The 
vast majority have non-small cell lung cancer (NSCLC), 
specifically, adenocarcinoma [2, 3] and are diagnosed 
either with advanced local or metastatic disease with a 
limited 5-year survival rate of 8−18% and above 50% in 
the case of localised disease [4–6].

Precise tumour staging is not only important for out-
come classification, but it is crucial for choosing the best 
therapeutic regime between resection, radiotherapy, 
chemotherapy, and/or immunotherapy for the respec-
tive patient [7–9]. Therefore, multiple non-invasive stag-
ing modalities such as computed tomography (CT) and/
or positron emission tomography (PET) as well as inva-
sive staging modalities such as mediastinoscopy and/or 
endobronchial ultrasound transbronchial needle aspira-
tion are used for classifying tumour extension. In addi-
tion, tumour biomarkers such as genomic analysis (e.g., 
epidermal growth factor receptor mutation, anaplastic 
lymphoma kinase gene fusion) or protein expression (e.g., 
programed cell death ligand 1) play an important role for 
tailoring treatment for an individual patient [10–12].

Even though PET/CT is a cost-effective imaging 
modality in the primary staging of NSCLC [13] PET/CT 
and invasive staging modalities are still rather expensive. 
Therefore, restaging is often only performed via CT, espe-
cially in regions where PET/CTs are not broadly available, 
and there is a considerable need for alternative non-inva-
sive diagnostic tools for precise personalised medicine. In 
order to fill this diagnostic gap, radiomics, an approach 
translating biological tissue characterisation into quan-
titative image analyses, has been developed. With the 
assistance of radiomics medical diagnosis are transferred 
from subjective qualitative assessment into more reliable 
and generalised objective quantitative assessment [14–
18]. The results in disease detection, diagnosis, evalua-
tion of prognosis and prediction of treatment response 
are encouraging and sometimes even overcome predic-
tion of routine clinical detection tools [16, 18–22].

Currently, there is great interest in using radiomics for 
improving clinical decisions in lung cancer [16]. Most 
radiomics studies on lung cancer have been focused on 
the primary tumour, e.g., for differentiating between 
benign and malignant lung lesions [23, 24] or between 

primary and secondary tumours [25], survival prediction 
[26–28], treatment response [29, 30], or predicting lymph 
node (LN) metastases on the morphology of the primary 
tumour [7]. There have been some radiomics analysis on 
LN metastases for other tumour entities such as gastric 
cancer [31], head and neck cancer [32], or bladder cancer 
[16]. However, to the best knowledge of the authors, only 
some minor metric analysis with a comparison of CT-
based density measured in Hounsfield units, short and 
long axis diameter and three-dimensional volumetry [33] 
has been performed in lung cancer.

Therefore, our study sought to evaluate the potential 
diagnostic role of radiomics in the detection of LN metas-
tases in patients with lung cancer with contrast-enhanced 
(CE) CT. [18F]Fluorodeoxyglucose (FDG)-PET served as 
a reference. Primary endpoint was defined as predicting 
LN metastases, secondary endpoint to assess the clini-
cal benefit of radiomics with a decision curve analysis in 
comparison to expert radiologists, and tertiary endpoint 
to assess the potential of radiomics as a prescreening 
tool for expert radiologists, whether it improves clinical 
decision from the radiologists if radiomics preselects the 
lymph nodes.

Methods
Study cohort
This retrospective single-institution study was conducted 
in compliance with the Health Insurance Portability and 
Accountability Act and approved by the institutional 
review board. Between December 2011 and May 2018, a 
total of 733 patients with histologically proven primary 
lung cancer–adenocarcinoma (n = 440, 60%) or squa-
mous-cell carcinoma (n = 293, 40%) received FDG-PET/
CT within 100 days after date of diagnosis. Only patients 
with adequate (i.e., contrast enhanced, good imaging 
quality) CE-CT performed as part of FDG-PET/CT were 
included in the final cohort. Out of these 381 patients, 
228 patients (60%) had adenocarcinoma and 153 patients 
(40%) had squamous-cell carcinoma. A total of 1,799 LNs 
(450 PET-positive, 1,349 PET-negative) was included in 
the analysis (Table 1).

Imaging technique
FDG-PET/CT imaging was performed with a dedicated 
PET/CT scanner (Gemini TF 16; Philips, Amsterdam, 
The Netherlands) with time-of-flight capability (Philips 
Astonish TF technology). Patients had to fast for ≥ 6 h 
prior to the injection of [18F]FDG, and a blood glucose 
level ≤ 190 mg/dL was ensured. A mean of 310.17 MBq 
[18F]FDG ± 51.06 MBq (± standard deviation) was 
injected intravenously. The PET scan was performed 
after an uptake time of 91.72 ± 28.03 min (mean ± 
standard deviation). PET data was acquired from base 
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of skull to the proximal femora in three-dimensional 
acquisition mode (emission, 90 to 180 s per bed posi-
tion; bed overlap 53.3%). Attenuation correction and 
anatomical mapping were either based on unenhanced 
low-dose CT (automated tube current modulation; 
maximum tube current-time product 50 mAs; tube 
voltage 120 kVp; gantry rotation time 0.5 s) or contrast-
enhanced diagnostic CT (automated tube current mod-
ulation; maximum tube current-time product 200 mAs; 
tube voltage 120 kVp; delay after contrast agent injec-
tion 80 s; bolus injection rate 3 mL/s).

PET raw data were reconstructed using iterative 
reconstruction (ordered subset expectation maximisa-
tion) with time-of-flight analysis (BLOB-OS-TF; itera-
tions 3; subsets 33; filter ‘smooth’; matrix 144 × 144; 
voxel size 4.0 × 4.0 × 4.0 mm3). CT raw data were 
reconstructed with a soft tissue convolution kernel and 

a slice thickness of 5 mm for attenuation correction 
or 3 mm for visual assessment and radiomics analysis, 
respectively.

Imaging data evaluation
The Medical Imaging Interaction Toolkit (MITK v. 
2016.11, DKFZ, Heidelberg, Germany) (34) was used to 
randomly select and to semiautomatically segment LNs 
from CE-CT. Only mediastinal and hilar lymph nodes 
were included. Two experienced radiologists in the field 
of hybrid imaging (with more than 5 years of experience, 
respectively) classified these LNs as either malignant 
(PET-positive) or benign (PET-negative) according to 
the maximum standardised uptake value (SUVmax) cor-
rected for total body mass on FDG-PET (Supplementary 
Figure S1). Readers used the threshold SUVmax > 2.5 to 
classify LNs, which is the most common threshold used 
for LNs in NSCLC [9]. In an initial step, LNs with SUV-
max < 2 were uniformly considered PET-negative, and 
LNs with SUVmax > 3 were considered PET-positive. 
In a second step, all remaining lymph nodes with SUV-
max between 2 and 3 were thoroughly investigated for 
potential errors in SUVmax calculation due to misalign-
ment between PET and CT or due to interference of 
activity from adjacent tissue (e.g., oesophagus or vessel 
walls). If such interference could be excluded, the LN was 
rated as positive or negative based on SUVmax > 2.5. If 
the SUVmax was potentially erroneous, the reader clas-
sified the lymph node based on visual assessment of the 
PET images. During visual assessment, LNs were usu-
ally considered positive if uptake was above mediastinal 
background, especially if the mediastinal pattern of FDG-
avid LNs was asymmetrical and in the drainage channel 
of the primary tumour localisation. This additional step 
was introduced to minimise the number of potentially 
misclassified LNs. For the test cohort, the selected lymph 
nodes were evaluated based on the CE-CT by two expert 
radiologists in the field of diagnostic oncology (with more 
than 5 years of experience, respectively) using the size (> 
10 mm in short axis according to RECIST v1.1) [34] and/
or the configuration (texture, border, and shape) [35] and 
classified as benign, likely benign, likely malignant, or 
malignant. This reading step was performed blinded to 
the PET-results and to avoid recall bias performed > 3 
months after the initial read.

Statistical analysis
The data set was divided into a training (384, 25%, PET-
positive and 1,165, 75%, PET-negative LNs) and an inter-
nal validation test set (66, 26%, PET-positive and 184, 
74%, PET-negative LNs) and balanced in order to pre-
vent both overfitting and underfitting. For comparison 
reason the features according to the Image Biomarker 

Table 1  Demographics

NSCLC Non-small cell lung cancer, PET Positron emission tomography

Parameter Number (%)

Total population 381 (100.0)

Sex Male 238 (53.1)

Female 143 (46.9)

Age < 60 years 102 (26.8)

≥ 60 years 279 (73.2)

NSCLC Adenocarcinoma 228 (60.0)

Squamous-cell carcinoma 153 (40.0)

Stage IA 75 (19.8)

IB 47 (12.4)

IIA 27 (7.1)

IIB 27 (7.1)

IIIA 70 (18.5)

IIIB 39 (10.3)

IIIC 2 (0.5)

IVA 79 (20.8)

IVB 13 (3.4)

Lymph node analysis 1,799 (100%)

Lymph nodes PET-positive 450 (43.0)

PET-negative 1,349 (18.2)

Thoracic lymph node station 1 98 (5.4)

2 250 (13.9)

3 177 (9.8)

4 761 (42.3)

5 207 (11.5)

6 142 (7.9)

7 110 (6.1)

8 10 (0.6)

9 0 (0.0)

10 44 (2.4)



Page 4 of 15Gorodetski et al. European Radiology Experimental            (2022) 6:44 

Standardization Initiative, IBSI [36, 37] were extracted 
using the filters feature selection method (FSM), Wil-
coxon, area under the curve (AUC), mutual information, 
and maximum relevance minimum redundancy by PyRa-
diomics [38]. The extracted features were standardised, 
reduced to 20 features and tested for stability for each 
filter separately. Training was performed with the train-
ing set using six algorithms: linear discriminant analysis 
(LDA); logistic regression; partial least squares (PLS), 
support vector machine [SVM], neuronal network (mul-
tilayer perceptron); and recursive partition. Each filter 
resulted into 24 different modeling methods for quanti-
tative analysis. For internal validation, all 24 modelling 
methods were tested in the internal validation test set 
and compared to the clinical assessment of both expert 
radiologists. Additionally, it was examined whether radi-
omics improved the performance of the radiologist in the 
uncertain group (likely benign and likely malignant). To 
encounter for potential bias through randomly balancing, 
the training and test sets were aggregated using a boot-
strap algorithm (bagging) with 30 bootstrap iterations 
(Fig. 1).

In order to evaluate the clinical impact of radiom-
ics we performed an in-depth analysis using PLS as a 

classifier that has shown to be reliable with good accu-
racy and AUC in the balanced and bootstrap iteration 
method (Table 2, Fig. 2, Fig. 3a) and the least absolute 
shrinkage and selection operator (LASSO; Supple-
mentary Figure S2) logistic regression algorithm that 
has shown good results in similar studies with other 
tumour entities [7, 16].

For both classifiers we performed the corresponding 
feature selection and training method and generated a 
radiomics signature. For discrimination, a receiver opera-
tor characteristics curve was plotted and an AUC identi-
fied for the respective training and internal validation set. 
We performed a calibration analysis, calculated the Brier 
score [14] and performed a confusion matrix and metric 
analysis. To assess the clinical benefit, a decision curve 
analysis was plotted for the respective classifier, for the 
classifier as a prescreening tool in combination with the 
respective radiologist and only the radiologists (Fig. 2).

All statistical analyses were conducted in R 3.6.1 (R 
Core Team, 2019) on a x86_64-apple-darwin15.6.0 sys-
tem under macOS Catalina 10.15.4 using the add-on 
packages knitr, readxl, tidyverse, mRMRe, caret, MASS, 
rpart, rpart.plot, pROC, kableExtra, pls, glmnet, rms, 
pROC, pathwork, and DescTools.

Fig. 1  Flowchart: balancing, feature selection, bagging. AUC​ Area under the curve, FSM Feature selection method, LDA Linear discriminant analysis, 
MI Mutual information, MLP Multilayer perceptron (neuronal network), MRMI Maximum relevance minimum redundancy, PET Positron emission 
tomography, PLS Partial least squares, Rpart Recursive partition, SVM Support vector machine
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Results
After balancing, feature selection, training in the train-
ing set and internal validation in the test set, reason-
able prediction of malignant (PET-positive) LNs could 
be established irrespective of the 24 different mod-
eling methods compared to the clinical assessment 
of the two expert radiologists with an accuracy of 
0.75−0.81 and 0.80−0.80, a sensitivity of 0.68−0.79 and 
0.48−0.50, a specificity of 0.74−0.86 and 0.92−0.96, 
respectively (Fig.  3b, Supplementary Table S1). Com-
paring radiomics to the clinical assessment of the 
two expert radiologists in the uncertain group (likely 
benign, likely malignant), radiomics has achieved sig-
nificantly higher sensitivity but significantly lower 
specificity (Supplementary Figure S3, Supplementary 
Figure S4). Radiomics has not improved the clinical 
assessment of the two expert radiologists in the uncer-
tain group (likely benign, likely malignant) with an 
accuracy of 0.77−0.83 and 0.78−0.82, a sensitivity of 
0.68−0.73 and 0.65−0.71, and a specificity of 0.79−0.83 
and 0.82−0.89, respectively (Supplementary Figure S3, 
Supplementary Table S2).

After bagging with 30 times of bootstrap iterations for 
different combinations of feature selection methods and 
classifiers resulting in 24 different modeling methods, a 
good and reliable discrimination between malignant and 
benign LNs was obtained, with an AUC of 0.75-0.87, a 
sensitivity of 0.71−0.77, a specificity of 0.73−0.80, a posi-
tive predictive value of 0.54−0.58, and a negative pre-
dictive value of 0.88−0.90. The smallest 95% confidence 
interval (CI) for AUC have been observed for the classi-
fiers LDA and PLS (Table 2, Fig. 3a).

In the in-depth analysis using LASSO and PLS for fea-
ture selection and training, good discrimination in the 
training (AUC 0.89, 95% CI 0.87−0.90 and 0.87, 95% CI 
0.85−0.89, respectively) and validation set (AUC 0.87, 
95% CI 0.82−0.92 and 0.86, 95% CI 0.80−0.91, respec-
tively) has been achieved (Fig. 4). For LASSO calibration 
has been acceptable in the training set and having some 
deviation in the validation set. In contrast, PLS had 
some systematic deviation in the calibration plot and 
has not been using the entire probability range (Fig. 5). 
Similarly, the Brier score has been better for LASSO 
than for PLS in both the training (0.11 and 0.16) and 

Table 2  Performance comparison of radiomics after bagging with 30 times of bootstrap iterations

Data are given as median and 95% confidence interval. AUC​ Area under curve at receiver operating characteristics analysis, FSM Feature selection method, LDA 
Linear discriminant analysis, MI Mutual information, MLP Multilayer perceptron (neuronal network), MRMI Maximum relevance minimum redundancy, NPV Negative 
predictive value, PLS Partial least squares, PPV Positive predictive value, Rpart Recursive partition, SVM Support vector machine

Classifier FSM Accuracy Sensitivity Specificity PPV NPV AUC​

LDA AUC​ 0.79 (0.77−0.81) 0.74 (0.71−0.77) 0.8 (0.78−0.84) 0.57 (0.55−0.62) 0.9 (0.89−0.91) 0.86 (0.85−0.87)

LDA MI 0.79 (0.77−0.8) 0.73 (0.7−0.76) 0.8 (0.79−0.83) 0.58 (0.55−0.61) 0.89 (0.88−0.9) 0.86 (0.85−0.87)

LDA MRMI 0.78 (0.76−0.8) 0.72 (0.7−0.77) 0.8 (0.75−0.83) 0.56 (0.53−0.6) 0.89 (0.88−0.9) 0.86 (0.85−0.87)

LDA Wilcoxon 0.79 (0.76−0.81) 0.76 (0.72−0.79) 0.79 (0.76−0.82) 0.57 (0.53−0.61) 0.9 (0.89−0.91) 0.86 (0.86−0.87)

Logistic regression AUC​ 0.78 (0.76−0.8) 0.73 (0.69−0.76) 0.8 (0.78−0.82) 0.57 (0.54−0.59) 0.89 (0.88−0.9) 0.87 (0.85−0.87)

Logistic regression MI 0.78 (0.71−0.81) 0.73 (0.63−0.81) 0.8 (0.69−0.87) 0.57 (0.48−0.66) 0.89 (0.86−0.92) 0.87 (0.74−0.88)

Logistic regression MRMI 0.78 (0.74−0.8) 0.73 (0.7−0.79) 0.79 (0.75−0.82) 0.56 (0.51−0.6) 0.89 (0.88−0.91) 0.86 (0.83−0.87)

Logistic regression Wilcoxon 0.78 (0.77−0.81) 0.74 (0.71−0.77) 0.79 (0.78−0.83) 0.57 (0.54−0.61) 0.89 (0.89−0.91) 0.86 (0.85−0.87)

MLP AUC​ 0.78 (0.73−0.81) 0.73 (0.69−0.83) 0.79 (0.71−0.85) 0.56 (0.49−0.63) 0.89 (0.88−0.92) 0.86 (0.85−0.87)

MLP MI 0.78 (0.73−0.82) 0.71 (0.68−0.82) 0.81 (0.73−0.86) 0.57 (0.5−0.64) 0.89 (0.87−0.92) 0.86 (0.85−0.87)

MLP MRMI 0.78 (0.74−0.82) 0.73 (0.68−0.8) 0.8 (0.73−0.84) 0.57 (0.51−0.64) 0.89 (0.87−0.91) 0.86 (0.84−0.87)

MLP Wilcoxon 0.78 (0.71−0.8) 0.74 (0.68−0.8) 0.79 (0.68−0.84) 0.56 (0.47−0.61) 0.89 (0.88−0.91) 0.86 (0.82−0.88)

PLS AUC​ 0.78 (0.75−0.8) 0.71 (0.7−0.76) 0.8 (0.75−0.83) 0.57 (0.52−0.6) 0.89 (0.88−0.9) 0.86 (0.85−0.87)

PLS MI 0.79 (0.76−0.81) 0.71 (0.7−0.75) 0.81 (0.77−0.84) 0.57 (0.54−0.62) 0.89 (0.88−0.9) 0.86 (0.85−0.87)

PLS MRMI 0.78 (0.75−0.8) 0.73 (0.71−0.79) 0.8 (0.75−0.83) 0.57 (0.52−0.61) 0.89 (0.88−0.91) 0.87 (0.86−0.87)

PLS Wilcoxon 0.78 (0.74−0.79) 0.73 (0.71−0.77) 0.78 (0.75−0.82) 0.55 (0.51−0.59) 0.89 (0.88−0.91) 0.86 (0.86−0.87)

Rpart AUC​ 0.74 (0.7−0.83) 0.77 (0.63−0.81) 0.73 (0.66−0.9) 0.51 (0.46−0.7) 0.9 (0.87−0.92) 0.75 (0.75−0.83)

Rpart MI 0.77 (0.71−0.83) 0.73 (0.62−0.83) 0.78 (0.67−0.9) 0.55 (0.48−0.68) 0.89 (0.87−0.92) 0.76 (0.74−0.82)

Rpart MRMI 0.76 (0.72−0.82) 0.73 (0.62−0.8) 0.78 (0.7−0.9) 0.54 (0.48−0.68) 0.89 (0.87−0.91) 0.76 (0.74−0.81)

Rpart Wilcoxon 0.78 (0.69−0.81) 0.73 (0.68−0.8) 0.79 (0.66−0.83) 0.56 (0.44−0.62) 0.89 (0.88−0.92) 0.79 (0.75−0.84)

SVM AUC​ 0.78 (0.76−0.8) 0.71 (0.68−0.75) 0.8 (0.78−0.84) 0.56 (0.53−0.6) 0.88 (0.88−0.9) 0.87 (0.86−0.87)

SVM MI 0.78 (0.76−0.8) 0.71 (0.68−0.74) 0.81 (0.77−0.84) 0.57 (0.53−0.61) 0.89 (0.88−0.89) 0.86 (0.86−0.87)

SVM MRMI 0.78 (0.75−0.8) 0.71 (0.7−0.78) 0.8 (0.76−0.83) 0.56 (0.52−0.6) 0.89 (0.88−0.91) 0.86 (0.85−0.88)

SVM Wilcoxon 0.78 (0.76−0.79) 0.71 (0.69−0.75) 0.8 (0.77−0.82) 0.57 (0.53−0.59) 0.89 (0.88−0.9) 0.86 (0.86−0.87)
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validation set (0.12 and 0.16), respectively. After gener-
ating the best threshold for the predicted probabilities 
for LASSO and PLS, the confusion matrix and metric 
analysis have shown only a slightly higher accuracy (0.80 
and 0.81) than the no information rate (0.736, p = 0.011 
and 0.736, p = 0.005) in the validation set, respectively.

Using radiomics as a prescreening tool has reduced the 
discrimination with an AUC of 0.68−0.78 and 0.66-0.76 
for the different combinations of the radiologists with 
lasso and pls (Fig. 6), respectively, and have not improved 
net benefit in the decision curve analysis (Fig.  7). Irre-
spective of the strategy to classify all LNs as either malig-
nant or benign, the decision curve analysis clearly have 
shown a net benefit for LASSO in contrast to PLS or the 
radiologists for the entire probability range. Except for 
high probabilities, LASSO have shown a clear net benefit 
compared to the radiologists (Fig. 7).

Discussion
Our study showed good results for radiomics applied 
to CE-CT in predicting LN metastases in patients with 
histopathologically proven lung cancer irrespective of 
the modeling method using traditional statistical met-
rics. A clear clinical benefit could only be asserted for 
LASSO in comparison to expert radiologists. Radiom-
ics failed to make a clear benefit as a prescreening tool 
in this clinical scenario.

The discrimination power to differentiate benign 
(PET-negative) LNs and LN metastases (PET-positive) 
irrespective of the combination of classifier and fea-
ture selection method (e.g., PLS with AUC 0.86, 95% 
CI 0.85−0.87 or LDA with Wilcoxon AUC 0.86, 95% CI 
0.86−0.87) within our study is in line with other pub-
lished studies with other tumour entities, and the nar-
row 95% CI in the internal validation set reflects a more 

Fig. 2  Flowchart: in-depth analysis, clinical utility, and decision curve analysis. LASSO Least absolute shrinkage and selection operator, PET Positron 
emission tomography, PLS Partial least squares

(See figure on next page.)
Fig. 3  Performance of radiomics after bagging with 30 times of bootstrap iterations (a), in comparison to expert radiologists (b). AUC​ Area under 
the curve, FSM Feature selection method, LDA Linear discriminant analysis, Logistic Logistic regression, MI Mutual information, MLP Multilayer 
perceptron (neuronal network), MRMI Maximum relevance minimum redundancy, NPV Negative predictive value, PLS Partial least squares, PPV 
Positive predictive value, Rpart Recursive partition, SVM Support vector machine
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Fig. 3  (See legend on previous page.)
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robust assessment compared to studies in patients with 
gastric cancer (AUC 0.82, 95% CI 0.72−0.92) [31] or 
bladder cancer (AUC 0.85, 95% CI 0.72−0.99) [16].

Radiomics has already shown promising results with 
reasonable or good accuracy or discrimination for differ-
ent steps in the complex universe of diagnostic work-up 

[23], outcome prediction [39] or therapy monitoring [4] 
in patients with lung cancer. It can reliably predict the 
development of lung cancer in a screening CT within 1 
year with an accuracy of 80.1% (AUC 0.83) and within 2 
years with an accuracy of 78.7% (AUC 0.72) [23]. Radi-
omics is even able to incorporate (semi-)automatically 

Fig. 4  Discrimination analysis for the in-depth radiomics analysis. Receiver operating characteristics analysis after LASSO (a) and after PLS (b). LASSO 
Least absolute shrinkage and selection operator, PLS Partial least squares
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Fig. 5  Calibration analysis for the in-depth radiomics analysis. Calibration plot after LASSO (a), box plot differentiating benign and malign lymph 
nodes after LASSO (b), calibration plot after PLS (c), and box plot differentiating benign and malign lymph nodes after PLS (d). LASSO Least absolute 
shrinkage and selection operator, PLS Partial least squares
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different resources such as clinical information and CT 
[16] or different modalities such as CT and PET and 
leads to a significant better discrimination of malignant 
and benign lung lesions comparing PET/CT (AUC 0.89, 
sensitivity 0.81, specificity 0.82) to CT (AUC 0.82, sen-
sitivity 0.74, specificity 0.74; p = 0.018) [40]. However, 

though no significant difference in the performance 
between the PET radiomics signature (AUC 0.87) and 
the PET/CT (AUC 0.89) radiomics nomogram could be 
observed and the proof of the synergic clinical benefit 
is still pending, the performance solely of CT radiomics 
(AUC 0.82) is reasonable and might be an economical 

Fig. 6  Discrimination analysis for the in-depth radiomics analysis using the radiomics signature as a prescreening tool for each of the two 
radiologists and the combination of both radiologists. Receiver operating characteristics analysis after LASSO (a) and after PLS (b). LASSO Least 
absolute shrinkage and selection operator, PLS Partial least squares
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and timesaving alternative in the future [40]. Similarly, 
the clinical benefit of an individualised nomogram result-
ing from the combination of clinical information and the 
CT-based radiomics signature is still under discussion. 

Some improvement from the radiomics signature to the 
combined nomogram has been suggested, although not 
significant, in predicting LN metastases in bladder can-
cer (AUC 0.85 and 0.90) [16] or predicting LN metastases 

Fig. 7  Assessment of the clinical benefit of radiomics as a prescreening tool for each of the two radiologists and the combination of both using a 
decision curve analysis. Decision curve analysis after LASSO (a) and after PLS (b). The grey line represents the strategy to classify all lymph nodes as 
malignant, the black line represents the strategy to classify all lymph nodes as benign. LASSO least absolute shrinkage and selection operator, PLS 
partial least squares
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from the primary lesion in lung cancer (AUC 0.80, sensi-
tivity 0.72, specificity 0.86 and AUC 0.86, sensitivity 0.92, 
specificity 0.82) [7] for the CE-CT-based radiomics sig-
nature and the radiomics nomogram incorporating the 
clinical information in the validation cohort, respectively.

In the current study, the accuracy of predicting LN 
metastases did not change if combining the radiomics 
signature and the clinical assessment of the two expert 
radiologists in equivocal LN (Supplementary Figure S3). 
More specifically, combined accuracy did not benefit 
from the significantly better sensitivity of the radiom-
ics signature or the significantly better specificity of the 
expert radiologists (Supplementary Figure S3, and Figure 
S4). Nevertheless, the present study clearly shows that 
after bagging and the usage of different combination of 
classifiers and FSMs except for recursive partition, a good 
discrimination (AUC 0.86−0.87), and reasonable accu-
racy (0.78−0.79), sensitivity (0.71−0.74), and specificity 
(0.79−0.81) can be reached.

In contrast to other studies [3] in which radiomics 
(AUC 0.80, 95% CI 0.65−0.94; accuracy 0.71, sensitivity 
0.74, and specificity 0.68) outperformed two expert radi-
ologists (AUC 0.61 and 0.60) in differentiating benign 
and malignant lung lesions, the current study showed 
similar performance of radiomics and radiologists in 
the diagnosis of malignant and benign LNs using tradi-
tional statistical metrics such as AUC for discrimination, 
accuracy, sensitivity, and specificity. However, as these 
measurements are only theoretical, and the clinical ben-
efit is affected by the calibration no direct information 
about the clinical value is given [41]. Therefore, direct 
inter-study comparison without a calibration analysis is 
difficult [41–43]. In the present study, the additional cali-
bration plot, the Brier score and especially the confusion 
matrix depict this problem. Using LASSO as a classifier, 
a good discrimination (AUC 0.89 and 0.87 in the train-
ing and validation set, respectively) has been obtained, 
but the confusion matrix and statistical analysis in the 
validation set revealed only a slightly higher accuracy, 
even though significant, of 0.80 than the no informa-
tion rate of 0.736 (p = 0.011), thus, clearly diminishing 
the benefit. The decision curve analysis in our in-depth 
analysis encounters this problem by incorporating the 
clinical consequences, the discrimination and calibration. 
It resulted into a net benefit (clinical benefit) comparing 
the respective analysis to the strategy to classify all LNs 
as either malignant or all as benign (Fig. 7) [41–43].

The classifier LASSO clearly showed a clinical ben-
efit for all probabilities of PET-positive LNs and does 
no harm. Thus, this radiomics method is suitable as a 
diagnostic tool. It even outperforms the expert radiolo-
gist except for the high probability LN metastases. In 
contrast, PLS did not only perform worse than LASSO 

but even harms in the very low and high probability 
range as opposed to the estimation of the traditional 
statistical metrics as generally used by most radiomics 
analysis (AUC 0.87 and 0.86 in the training and valida-
tion set, respectively). Thus, within this study, using a 
decision curve analysis and generating a clinical ben-
efit, PLS resulted not to be suitable as a diagnostic tool. 
Despite the net benefit of LASSO and the higher sensitiv-
ity throughout all radiomics signatures in contrast to the 
radiologists, the classifier LASSO failed to improve net 
benefit as a prescreening tool and even showed to harm 
under this constellation in the high probability range.

In a nutshell, the results of the present study contribute 
into another novel cornerstone in the diagnostic work-up 
for lung cancer with leaving the subjective interpretation 
and going one step further to objective and repeatable 
quantitative imaging using radiomics. The clear net ben-
efit in the decision curve analysis of the classifier LASSO 
as a radiomics signature in differentiating between malig-
nant and benign LNs might be not only crucial for clas-
sifying as stage N0, N1, or N2 at diagnosis in the future, 
but is also important for example to pave the way for a 
tumour biopsy for genomic analysis or detecting de novo 
LN metastases during follow-up.

There are some limitations to our study. First, we used 
the clinical standard FDG-PET/CT as a reference for 
classifying LNs as malignant and benign. According to 
the Cochrane meta-analysis [9], FDG-PET/CT is a very 
good screening tool with a summary sensitivity and 
specificity of 81.3% (95% CI 70.2−88.9%) and 79.4% (95% 
CI 70%−86.5%), respectively. However, it is still under 
the threshold of 95% comparing to the histopathologi-
cal analysis. Second, average PET uptake time was above 
the recommended standard of 60 min. This might have 
resulted in increased LN SUVmax compared to an earlier 
imaging time point due to the irreversible nature of cellu-
lar FDG uptake. Comparability with other centers would 
therefore benefit from uniform uptake times. To encoun-
ter these methodological limitations, we included a huge 
number of analysed LNs (n = 1,799). Third, we have 
included only patients with histologically proven primary 
lung cancer, specifically adenocarcinoma or squamous-
cell carcinoma, therefore, the results cannot be general-
ised on all primary lung cancer types. However, firstly the 
vast majority had NSCLC, specifically, adenocarcinoma 
[2, 3] and secondly, this is a preliminary study. There-
fore, our promising results should encourage for further 
radiomics and machine learning analysis in future stud-
ies including other primary lung cancer types such as 
small cell lung cancer. Fourth, our analysis was based on 
a retrospective cohort. Therefore, selection bias and con-
founders cannot be fully excluded. To overcome them, we 
performed balancing and a multi-modeling methodology 



Page 13 of 15Gorodetski et al. European Radiology Experimental            (2022) 6:44 	

implementation with 30 times of bootstraps iterations 
and aggregation with 24 different combinations of clas-
sifiers and FSM. To encounter for further miscalibration 
and to assess the clinical benefit, we performed a deci-
sion curve analysis that incorporates both discrimination 
and calibration and is less sensitive to miscalibration. 
Depending on the model scenery, miscalibration reduces 
the net benefit (clinical utility); therefore, in a larger and 
better calibrated cohort, the clinical benefit of LASSO as 
a radiomics signature might be even higher than in the 
present study [42].

In conclusion, radiomics is feasible and showed good 
discrimination irrespective of the modeling technique 
in detecting LN metastases in patients with known lung 
cancer. The classifier LASSO showed to be suitable as a 
diagnostic tool and even outperforms the expert radiolo-
gists, except for high probabilities. Radiomics failed to 
improve clinical benefit as a prescreening tool.
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