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Abstract: Pollarding oak trees is a traditional silvopastoral technique practiced across wide areas of
the northern Zagros mountains, a unique and vast semi-arid forest area with a strong cultural and
ecological significance. So far, the effects of pollarding on tree structure in terms of DBH (diameter at
breast height)~H (height) relationships within the typical pollarding cycle, which often lasts 4 years,
has not been scientifically described. Here, we combine field inventories of DBH with H obtained
from photogrammetric UAV flights for the first time to assess DBH~H relationships within this
system. We conducted the research at six pollarded forest sites throughout the Northern Zagros. The
sampling encompassed all three main species of coppice oak trees. In the case of multi-stem trees, we
used the maximum DBH of each tree that formed a unique crown. A linear relationship between UAV
and extracted H and the maximum DBH of pollarded trees explained a notable part of the variation
in maximum DBH (R2 = 0.56), and more complex and well-known nonlinear allometries were also
evaluated, for which the accuracies were in the same range as the linear model. This relationship
proved to be stable across oak species, and the pollarding stage had a notable effect on the DBH~H
relationship. This finding is relevant for future attempts to inventory biomass using remote sensing
approaches across larger areas in northern Zagros, as well as for general DBH estimations within
stands dominated by pollarded, multi-stem coppice structures.

Keywords: DBH; Galajar; Northern Zagros; oak; Pollarding (Galazani); tree height; UAV photogrammetry

1. Introduction

Forests cover around 30% of the Earth’s land area [1], including semi-arid areas. Iran
is climatically diverse and encompasses a considerable portion of the world’s climate
zones [2]. However, the country is known to be dominated by semi-arid, arid, and fragile
vegetation ecosystems [3]. The Zagros mountains are home to a significant portion of Iran’s
semi-arid forests and woodlands, which encompass > 40% of Iran’s forests, accounting for
ca. six million ha [4,5]. These forests are particularly important from the socioeconomic,
soil conservation, and water-quality perspectives, as well as for providing considerable
non-market ecosystem services [6]. However, their quantity and quality have been almost
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constantly deteriorating over the last few decades due to a variety of natural and human-
induced factors [7–11], including, in particular, the high level of dependency of local
livelihood on these forests [12,13].

This close connection between people and nature in northern Zagros (located in the
West Azerbaijan and Kurdistan provinces, Iran) [14] has led to significant alterations in the
vegetative composition [15] and the primary structure of both trees and forest stands [16].
Historically, the high dependence of local forest dwellers on natural resources has made
inventive utilization of the forest to supply both human and livestock inevitable [17]. Most
forest dwellers practice some sort of silvopastoralism and highly depend on oak forests to
produce forage for their livestock throughout the year [18]. In particular, traditional animal
husbandry in northern Zagros faces a lack of pastures and fodder in the cold seasons. To
adapt their livelihoods to such limitations, the locals have developed a traditional silvopas-
toral method called pollarding (Kurdish: Galazani) [6,19]. Pollarding is a generic name for
pruning tree branches to provide both fodder (for domestic animals) and fuelwood [20].
Pollarding has been reported to be practiced in parts of Europe, Asia, Africa, and America,
especially for the benefit of using leaves and branches as animal fodder. Pollarding is hence
an important factor in livestock management and relates to this important source of income
in the farming economy [21–25]. Oak pollards are a part of traditional forest management
in many ecosystems and have a very long history of about 4000 years [26]. In Iran, and
as a part of the traditional management system in the northern Zagros, each rural family
traditionally owns, i.e., tenures, a part of the forest (Kurdish: Galajar) [27]. Each Galajar
is divided into three or four parcels with equal fodder productivity, termed Shanegala (in
Kurdish) [28]. This is due to the fact that a given Shanegala is used to perform pollarding
for winter fodder each year. Each Shanegala is pollarded in a three or four year pollarding
cycle [4,28], which annually occurs from mid-September to early October (pre-fall). How-
ever, pollarding is not carried out in this way everywhere and is carried out irregularly [29].
During pollarding, forest dwellers cut leafy branches (Kurdish: Bakhe) of oak trees, mostly
Quercus libani Olivier and Q. infectoria Olivier., and store them on large trees (Kurdish:
Dargala), on the ground, or on rock fragments in a cone-shaped formation known as a Gala
or a Loya Gala (in Kurdish). In winter, dried leafy Loya Gala branches are used to feed
livestock (especially Markhoz goats and sheep) [16]. The locals estimate pollarding ages to
conduct the above-mentioned pollarding cycle. Whereas a freshly pollarded tree is called
Korpa, the tree is termed Kor, Khert, and 2 Khert following one, two, and three years from
the time of its pollarding, respectively [30] (Figure 1).

Figure 1. Schematic representation of a pollarded tree at different pollarding stages. This figure
schematically shows how the shape and height of the tree changes following each year from an
un-pollarded tree (year 0) to the state after 10 years of pollarding.

One of the initial consequences of pollarding is reducing the tree canopy, which causes
stress on the tree and changes the typical pattern of tree growth [31,32]. However, some
studies [6,16,32–34] have shown that pollarding may result in a decrease in height, trunk,
crown area, canopy vigor, health, seed and coppice regeneration, and density.
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However, scientific knowledge on this traditional silvicultural approach is very sparse,
and the exact effects of pollarding on tree structure and vitality are not yet fully understood
(an overview of earlier studies focusing on this topic is summarized in Table 1). The first
step to thoroughly examining the pollarding approach and its temporal trajectories is to
adequately capture the tree structure of pollarded trees [35,36]. Field inventories typically
involve measuring the diameter at breast height (DBH), tree height, and the tree crown
diameter [37,38] but without considering the intrinsic features of pollarded trees, like
their distorted DBH~height and DBH~crown area relationships. With respect to potential
monitoring approaches, timely field measurements are challenging, as pollarding typically
takes place on mountain slopes [16,30,39], a problem that is exacerbated not only by the
subjectivity and required logistics for conducting field measurements (particularly for
attributes like tree height) but also by the fact that measurements might be prevented or
opposed by the local dwellers that assert a customary right to forest tenure over Galajars.

As an alternative or complement, remote sensing- and photogrammetry-based ap-
proaches may partly replace or amend field measurements [40]. Remote sensing has
been historically used in a variety of fields related to vegetation monitoring [41,42]. Well-
known pattern recognition algorithms in combination with space-borne active [43–45]
and passive [46–48] data have been largely employed yet face difficulties in small-scale
applications. Estimating the structural variables of single trees can be accomplished using
very-high-resolution (VHR) space-borne data [49], which are, however, often prohibitive
due to their high price and the lack of accessibility for politically sensitive areas like Iran.
As an alternative, three-dimensional ground sensors (e.g., terrestrial laser scanners) [50]
or aerial sensors (e.g., aerial laser scanners) [51] can be used. However, these tools are
often either unavailable, costly, or practically infeasible for large-area assessments or subse-
quent spatial upscaling to larger domains [52]. Consumer-grade unmanned aerial vehicles
(UAVs) may offer an intermediate solution [53] at an affordable cost [54]. Compared with
very-high-resolution spaceborne data, their application is associated with fewer limitations
regarding atmospheric correction and cloud cover because of their relatively low flight
altitudes [55]. Additionally, 3D point clouds can be created from raw UAV data by using
stereo image-matching techniques [56]. This enhances the level of structural analysis from
a planar space to a vertical space [57] and allows tree heights to be obtain with reasonable
accuracy, particularly in open forest environments. UAV photogrammetry is not limited to
forests when it comes to tree attribute estimation. Several studies have successfully employed
UAV photogrammetry to estimate the height and diameter of orchard trees as well [58–60].

The overall workflow of UAV photogrammetry in structural tree attribute estimation
involves mission planning, acquisition of aerial images using a UAV, preprocessing of
the images to correct distortions, image matching to determine position and orientation,
generation of a point cloud and digital surface model, subtraction of the digital surface
model to create a canopy height model, and estimation of tree heights using the canopy
height model [53,61]. The accuracy of the estimated tree heights depends on the quality
of the images, the image-matching accuracy, and the effectiveness of segmentation and
measurement algorithms.

Despite all of these benefits, it is important to also mention the limitations of UAV data.
The very small coverage of most UAVs is the primary obstacle, which is a consequence of
several factors, including (1) limited battery power/flight time, (2) limited flight area that can
be used for stereo analysis, and (3) the significant data volumes needed for creating digital
orthomosaics and digital terrain/surface models [62,63]. Despite these limitations, a few
earlier studies applied UAVs in the Zagros region to assess various forest attributes (Table 1).
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Table 1. The results of a systematic search on Web of Science® on relevant UAV-based studies within
Zagros. AB in the “Search Query” column stands for abstract.

Search Query
Result

Reference Year Description Region

AB = (UAV OR UAS) AND AB = (Zagros)

[61] 2022
Edge detection-based method for delineating

overlapped crowns of coppice trees using UAV
photogrammetry to monitor tree decline

Middle and South Zagros

[53] 2021 Structural variable extraction
of Zagros single trees Middle and South Zagros

[64] 2021

Intra- and interspecific interaction investigation
and their contribution to growth inhibition in

the patches of Pistacia trees
and Amygdalus shrubs

South Zagros

[65] 2017 Mapping part of a wild pistachio nature
reserve in Zagros open woodlands South Zagros

[66] 2017 Challenges and quality of landslide assessment
based on remotely sensed data Zagros Mountains

AB = (pollarded) AND AB = (Zagros)

[25] 2018
Quantitative description of the pollarding

process in the northern Zagros, with a focus on
foliage stacks resulting from pollarding

North Zagros

[67] 2018
Structural analysis of pollarded trees to

evaluate the effect of aspect on biometric
indices of oak trees

North Zagros

[16] 2017
Investigation of the effect of pollarding on the
increment in diameter of Lebanon oak trees by

comparing them to less disturbed stands
North Zagros

[6] 2014 Investigating the tree-pollarding process
in Galajars North Zagros

[18] 2012

Allometric relationship introduction for
estimating the crown and leaf biomass of

Q. libani using the DBH, tree height, crown
length, and crown width

North Zagros

[27] 2010 Evaluation of the capability of IRS-P6 data to
separate the pollarding areas North Zagros

However, the utility of UAVs as practical and affordable tools for structural assess-
ments of pollarded trees has not yet been examined and was set as the main objective of
this research. We were particularly interested in exploring the relationship between UAV-
derived tree heights and DBHs of the trees. This is particularly interesting for potential
future use cases to conduct simplified forest inventories exclusively based on UAV flights
to estimate wood volume and biomass.

Therefore, the specific objectives of this research are:

1. To test the feasibility of consumer-grade UAV data to estimate the height of pollarded
trees and to use these heights to estimate the DBH of the trees;

2. To understand how the essential DBH~H relationship is affected by the oak species
and the stage of pollarding and whether there is a difference between multi- and
mono-stemmed trees.

2. Materials and Methods
2.1. Subsection

The Zagros forests comprise 20% of Iran’s total vegetation cover and are a habitat to
multiple and endemic woody species, in particular, three oak species, including Q. brantii
Lindl., Q. infectoria Olivier, and Q. libani Olivier in both coppice and standard forms. The
forests play a critical role in the water supply and the economic and social welfare of
the local population [4]. The Zagros forests are biogeographically divided into northern,
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central, and southern zones [68], with all three oak species jointly occurring only in the
northern part [4,68].

We analyzed the structural attributes of pollarded stands across 6 sites near Baneh
county in Kurdistan province (Figure 2), one of the richest and most structurally diverse
ecosystems in Zagros [18]. We considered the presence of Galajars of various pollarding
ages when selecting the sites.
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Figure 2. Location and orthophotos of the study sites. Due to the proximity of each site to a village,
they were geographically subdivided into two distinct regions (Region 1 and Region 2). The study
areas consist of three sites with pollarded trees of Korpa age (S1, S3, and S6), one site of Kor age (S2),
and two sites of 2 Khert age (S4 and S5).

2.2. Materials

UAV photogrammetric products were applied to derive tree heights [37,38]. The de-
rived heights were then used to estimate the field-measured DBH of the trees. Furthermore,
the link between height and DBH was examined with respect to tree age, location, and
species groups. Tree crown area was originally considered an additional variable [69], but
we considered it to be less relevant since it is subject to continuous change during the
pollarding process [16,70].

2.2.1. Field Measurements

The field-collected data included a general plot description (general morphology,
aspect, presence of regeneration, and average slope), tree species, DBH (full callipering), and
pollarding age (Table 2). In addition, we selected 4 reference trees in each site with uniform
distribution throughout the site and measured their height using a clinometer. Finally, we
checked whether the trees were growing from seeds or from coppice. The precise UTM
coordinates of each tree were recorded using a Raymand® iRo-3 multi-frequency differential
GNSS (Makanpardaz Raymand Inc., Tehran, Iran). The inventories were completed at
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the 6 study sites during July–September 2021, the closest possible date to the UAV flights
(June 2021) and well before the start of the annual pollarding season (Section 2.2.2).

Table 2. Summary of field-collected information.

Site Area (m2) Age Average Slope (%)
Frequency of Tree Species

Q. brantii Q. libani Q. infectoria

Site 1 6360 Korpa 37 14 52 165
Site 2 2850 Kor 30 0 122 81
Site 3 3050 Korpa 10 2 40 17
Site 4 5360 2 Khert 10 5 130 25
Site 5 4920 2 Khert 12 31 36 29
Site 6 1400 Korpa 25 19 22 6

The fieldwork revealed that none of the trees in the 6 sites were of seed origin and were
therefore all considered coppice trees. Many trees had multiple stems, for which we measured
multiple DBH values. Figure 3 represents the structural variations to be expected in our site
based on the field observations and according to an experienced local ecologist. We did not
examine whether the root networks of individual trees were connected in the field.

Figure 3. Structural differences of the coppice trees based on field observations and according to
personal communication with a local ecologist. Please note that all of the inventoried trees were
associated with one or a combination of these 5 states. The solid line drawn over the roots shows the
forest floor, while the dashed grey line represents the breast height.

The maximum DBH value within an individual coppice tree was considered the DBH to
be estimated for each tree [53]. A visual representation of the DBH distribution at each study site
can be seen in Figure S1, while Table 3 shows the quantitative summary of DBH measurements.

Table 3. Quantitative description of maximum DBHs measured at each site. N: number of trees,
SD: standard deviation, Q1/Q3: 1st and 3rd quartiles.

Variable Site N Mean SD Minimum Q1 Median Q3 Maximum

DBH

Site 1 231 20.0 4.5 11 17 20 23 33
Site 2 203 17.2 3.5 10 15 17 19 28
Site 3 59 18.9 4.6 10 16 18 21 34
Site 4 160 18.7 4.4 11 15 18 21 34
Site 5 96 13.6 5.1 5 9 13 17 27
Site 6 47 15.8 5.1 5 13 15 19 29
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2.2.2. UAV Imaging

We used a consumer-grade DJI Phantom 4 pro multi-rotor UAV (DJI, 2016) for aerial
imaging. The device comprised a three-axis stabilization gimbal, a 1” CMOS sensor camera,
and an 8.8 mm/24 mm lens with a field of view of 84◦ (https://www.dji.com/phantom-4-
pro/info/, accessed on 14 August 2023). The flights for different sites were designed accord-
ing to site-specific topographic conditions and tree cover and were designed with an iOS
version of Pix4DCapture installed on an iPad 2018 tablet (accessible at https://support.pix4
d.com/hc/en-us/articles/204010419-iOS-Pix4Dcapture-Manual-and-Settings, accessed
on 14 August 2023). The flights were conducted for all six sites between 14 and 16 June
2021 (Table 4). Photogrammetric 3D modelling in forests is generally challenging [71].
To partially overcome the challenge, we additionally designed an oblique cross-flight in
addition to the nadir cross-flights based on our previous experiences as well as suggestions
by former studies [72,73]. The choice of a 60◦ oblique flight angle was based on preliminary
tests and following the recommendations of earlier studies [56]. The nadir and oblique
flights were conducted one minute apart.

Table 4. UAV imaging technical specifications.

Group Parameter Value

Flight

Altitude (m) 80
Overlap (%) 80

Side overlap (%) 80
Speed Medium
Aspect Nadir, oblique (60◦)

Georeferencing 3D control points 5 accurate 3D points were measured using PPK GNSS for each site
Images Resolution (px) 5472 × 3648

Products
Models DSM, DTM, CHM, orthomosaic

Resolution (cm) 5

Two approaches for processing the photogrammetric data were tested: (1) dense point
cloud production for oblique and nadir flights as two separate projects, followed by merging
the two models, and (2) merging the images of both flights and producing a 3D model using
all of the images. Our visual and quantitative checks on the results of both scenarios showed
that the first scenario added considerable noise during the merging of the two models despite
being more efficient from a processing cost point of view. The second approach was more
time-consuming due to the simultaneous processing of more images but resulted in denser and
more accurate models. Therefore, we applied the second option for all sites.

2.3. Methodology

The applied methodology primarily involved extracting tree heights from the crown
height model (CHM) [74], followed by examining DBH~H relationships using ordinary
least squares (OLS) models as well as a set of common, more complex, nonlinear approaches
tested and suggested by the literature (see Section 2.3.2).

2.3.1. Tree Height Estimation

Production of 3D models from overlapping UAV imagery [75] is highly dependent on
the surface color texture [63,71,76]. Due to the significant loss of leaved tree canopy within
pollarded sites, trees exhibit a relatively poor texture, which results in technical obstacles
during the image-matching process. Here, we produced optimal models by modifying
the key parameters of 3D model production. We performed an exhaustive search for the
optimal Agisoft Metashape 1.8 (https://www.agisoft.com, accessed on 14 August 2023)
hyperparameters [77]. Then, we automatically filtered the key points according to a strategy
that was based on an iterative process as follows: [78,79].

1. Removing all points that are seen in three images or fewer;

https://www.dji.com/phantom-4-pro/info/
https://www.dji.com/phantom-4-pro/info/
https://support.pix4d.com/hc/en-us/articles/204010419-iOS-Pix4Dcapture-Manual-and-Settings
https://support.pix4d.com/hc/en-us/articles/204010419-iOS-Pix4Dcapture-Manual-and-Settings
https://www.agisoft.com
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2. Removing the key points in such a way that the reprojection error is halved, followed
by optimizing the camera parameters;

3. Removing the points in such a way that the reconstruction uncertainty is halved,
followed by optimizing the camera parameters;

4. Removing points in such a way that the projection accuracy is halved, followed by
optimizing the camera parameters;

5. Returning to step 2 and repeating the steps until the stopping condition is reached.

It should be noted that our stop condition was reprojection error = 0.3 px, reconstruc-
tion uncertainty = 5 px, and projection accuracy = 3 px. Then, we created the digital surface
model (DSM), filtered the trees, and interpolated the area of the tree locations to create
the digital terrain model (DTM) [80] and created the CHM by subtracting the DTM from
the DSM. The tree heights could then be extracted from the CHM [81]. To do so, the trees
must first be segmented. Since the trees were generally sparse, we segmented the tree
crowns using the straightforward and efficient marker-controlled watershed segmentation
(MCWS) [82,83]. Using the maximum operator to extract the tree heights was infeasible
due to the presence of noise in the UAV-based canopy height models [84]. To avoid a strong
influence of corresponding outlier pixels, we assumed a normal distribution of the CHM
values in each tree segment and identified the largest value as the tree height at a 95%
confidence level. Thus, we considered heights that were >2SD (2 × standard deviation, the
95th percentile of all pixels in the tree crown segment) from the average. Figure S2 and
Table 5 show the visual and quantitative description of the tree height extraction results. To
validate the UAV-derived tree heights, we compared them with the field-measured heights.
The agreement with field-measured heights was reasonable, with an average difference of
0.3 m to 1.2 m (Figure S3).

Table 5. Quantitative description of tree heights extracted from the CHM. H: height.

Variable Site N Mean StDev Minimum Q1 Median Q3 Maximum

H

Site 1 231 6.7 1.2 3.4 5.7 6.5 7.6 9.6
Site 2 203 4.8 0.9 2.4 4.1 4.9 5.3 7.5
Site 3 59 3.7 0.5 2.9 3.4 3.5 3.7 5.7
Site 4 160 5.5 1.2 2.2 4.5 5.6 6.3 9.7
Site 5 96 4.5 1.2 1.7 3.8 4.0 5.5 6.9
Site 6 47 3.5 0.7 2.1 3.1 3.4 3.6 5.7

2.3.2. DBH Estimation

Despite the inherent correlation of DBH and tree height [85–87], pollarded trees are
not comparable to undisturbed (unpollarded) oak trees due to significant changes in the
crown area during the pollarding cycle (Figure 1). Thus, the DBH~height relationship
might also be influenced by other variables. We hypothesized that the link between tree
height and DBH differs across (1) single- and multi-stemmed trees, (2) trees of different
pollarding ages, (3) the number of trunks, (4) tree species, and (5) their interactions. Items
1, 3, 4, and 5 necessitate direct measurement of all individual trees and quantitative and
qualitative measurements by an ecologist. Conversely, item 2 can be obtained exclusively
through experience or by asking the Galajar’s local owner, thus negating the need for an
examination of the individual trees. Thus, we examined all of these variables, along with
the UAV-derived tree heights, to estimate the DBH to answer the question of whether field
inventories for all single trees (items 1, 3, 4, and 5) are needed to estimate the DBH from
the height obtained by the UAV. To identify the most important predictors, we applied
a backward stepwise selection until the stopping condition was met. Then, the most
effective independent variables were included in the final model [88]. Most ideally, we
were interested in finding a linear relationship between H and DBH, which is the least
dependent on additional field inventories and is easier to understand because of its linearity.
However, we were also interested in examining the nonlinear relationship between these
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two variables. To consider possible nonlinear DBH~H relationships, we also used three
well-known nonlinear relationships that were suggested by the relevant literature (Table 6).
We used the Levenberg–Marquardt algorithm [89] to solve these models, i.e., to find the
optimal values of the model parameters. Also, since we required initial values to find the
optimal parameters, 500 initial values were randomly considered for each model to ensure
the global optimum was found. We chose the optimal value according to the evaluation
criteria of root mean square error (RMSE) and R2

adj.

Table 6. List of well-known H~DBH nonlinear allometries used in this study.

Model Equation Source

1 1.3 + a
(

1− e−b×DBH
)c

[90]

2 1.3 + a
(

e−b×exp (−c×DBH)
)

[91]

3 a
1+b× e−c×DBH [92]

In OLS fits, one expects the model to improve as more variables are added but at
the cost of overfitting. We used ANOVA (analysis of variance) to determine whether a
relationship existed between two or more independent variables and a dependent variable.
ANOVA can be used to determine whether the coefficients of the regression model are
statistically significant and whether the differences among the independent variables are
significant. It is also used to evaluate the overall effect of the independent variables on the
dependent variable and to compare the relative importance of each of the independent
variables on the dependent variable [93]. We used both the Akaike information criterion
(AIC) and the Bayesian information criterion (BIC) to select variables [94]. Moreover, S,

which is defined as
√

SSE
DF , denotes the variance of errors around the regression line, where

SSE and DF are the sum of the squared residuals and the degree of freedom, respectively [95].
The R2 from 1− SSE

SST demonstrates the regression model’s overall performance, where SST
is the treatment sum of squares [96]. It is crucial to take a penalty for adding a variable to the
model into account. Hence, we used the R2

adj and R2
pred coefficient and 10-fold R2 and S to

evaluate how well each step performed. The coefficient R2
adj is derived from 1-MSE/MST

and R2
pred is derived from 1− PRESS

SST , where PRESS is a measure of the difference between
the predicted and observed values. To calculate PRESS, each observation is systematically
removed from the data set, the regression equation is estimated, and the accuracy of the
model in predicting the removed observation is determined. The 10-fold S measures the
average difference between the actual values and the predicted values in the test data set.
It provides an indication of how well the model fits the data. The 10-fold R2 measures
the proportion of variability in the response variable that is explained by the model. It
indicates the strength of the relationship between the predictors and the response variable.
The degree of freedom, which is a function of n (number of samples) and p (number of
parameters), is included in the denominator of MSE and MST; thus, it is easy to see whether
adding a variable to the model has a negative impact [95]. Therefore, it is necessary to use
this coefficient in regression equations that have more than one variable [96]. Also, if there
is a small difference between R2

adj and R2, R2 can be trusted, with a high probability that
this difference is small in all stages.

2.3.3. Outlier Detection for OLS Models

We developed regressions with the independent variable H (height) for various Galajar
ages. It was vital to identify and eliminate outliers prior to model evaluation, as noise
is a constant companion of UAV-based photogrammetric products. The difference in fit
(DFFITS) is an effective metric for detecting outlier data [94]; it is a mixture of the leverage
and R-Student metrics and evaluates the effect of each observation on the fitted values
of the regression model [97,98]. The ith data enters the model twice, once as test data
and once as training data, followed by comparison of the predicted values for the two
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variants. Although this is somewhat time-consuming in practice, it was proven that DFFITS
may be calculated using only the diagonal values of the hat matrix without re-modelling

each data point [94,99]. Here, we identified outliers as data with DFFITS ≥ 2 ×
√

p
n .

The p and n represent the number of regression terms and samples, respectively, which
were 6 and 796, respectively. Therefore, the data with DFFITS ≥ 0.1736 were discarded.
Cook’s distance criterion [97,100] was the second strategy that was employed to filter
outliers. The Cook’s distance criterion functions similarly to the DFITS criterion, with the
exception that it evaluates the changes in the regression coefficients. Here, we calculated
the aforementioned criterion for all of the data and identified outlier data as those with a
Cook′s distance ≥ 1.

3. Results
3.1. DBH Estimation
3.1.1. Finding Effective Variables in DBH Estimation

We used the backward stepwise selection to eliminate redundant or ineffective vari-
ables, with the p-value used as the selection criterion, i.e., the variable with the greatest p
was eliminated in each phase. The applied termination condition was alpha-to-remove
value = 0.1. The results are summarized in Table 7.

Table 7. The results of variable screening in the backward stepwise selection for inlier data. Height (H),
number of trunks (nTr), trunk (Tr), species (Sp), and pollarding age (Age) were the candidate terms.
nTr denotes the number of tree trunks, while the categorical variable Tr distinguishes between the
single-stem and multi-stem trees.

Parameter
p-Value

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9

Constant
H 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

nTr 0.305 0.396 0.166 0.266 0.204 ---- ---- ---- ----
Sp 0.028 0.013 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Age 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Tr 0.285 0.346 0.067 0.102 0.078 0.155 0.177 0.887 ----

H × nTr 0.170 0.200 0.170 0.393 ---- ---- ---- ---- ----
H × Sp 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

H × Age 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
H × Tr 0.049 0.056 0.039 0.079 0.045 0.040 0.174 ---- ----

nTr × Sp 0.348 0.408 0.309 ---- ---- ---- ---- ---- ----
nTr ×
Age 0.829 ---- ---- ---- ---- ---- ---- ---- ----

Sp × Tr 0.470 0.433 ---- ---- ---- ---- ---- ---- ----
Age × Tr 0.769 0.012 0.011 0.023 0.028 0.041 ---- ---- ----

S 3.1383 3.1350 3.1344 3.1351 3.1346 3.1358 3.1446 3.1463 3.1443
R2 (%) 58.9 58.9 58.8 58.6 58.6 58.5 58.2 58.1 58.1

R2
adj (%) 57.8 57.8 57.9 57.8 57.9 57.8 57.6 57.5 57.6

AICc 4104 4100 4098 4096 4095 4094 4097 4097 4095
BIC 4211 4198 4186 4175 4169 4164 4157 4152 4146

Tree species and pollarding age were the most influential variables for OLS fitting,
along with height (H) (Table 7). Furthermore, observing the effect of each of these two
variables on the R2 and R2

adj coefficients revealed that eliminating the species variable had
a negligible impact on the model accuracy. Therefore, only the pollarding age variable was
included in the final model. We also evaluated other nonlinear models (Table 6) to ensure
that our linear model was the appropriate choice (Table 8).
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Table 8. Comparing the performance of nonlinear allometries with linear models for inlier data.

Model Pollarding Stage
Estimated Parameter Evaluation Criteria

a b c DF SSE RMSE R2
adj

1
Korpa 9.267 0.050 1.512 334 759.172 1.508 0.300

Kor 6.234 0.099 2.701 198 39.224 0.445 0.729
2 Khert 9.659 0.043 1.356 253 104.486 0.643 0.747

2
Korpa 7.972 2.872 0.084 334 759.004 1.507 0.300

Kor 5.958 4.012 0.121 198 39.294 0.445 0.728
2 Khert 7.724 2.842 0.084 253 101.395 0.633 0.754

3
Korpa 8.820 4.335 0.110 334 758.747 1.507 0.301

Kor 7.082 5.493 0.146 198 39.356 0.446 0.728
2 Khert 8.497 4.255 0.113 253 100.750 0.631 0.756

a + b×DBH
Korpa 1.764 0.205 335 763.590 1.510 0.300

Kor 1.328 0.203 199 41.646 0.457 0.715
2 Khert 1.637 0.207 254 107.710 0.651 0.741

As shown in Table 8, the accuracies for different models were generally in the same
range despite the model complexities applied. Therefore, we used the DBH~H linear model,
which, in addition to its simplicity and comprehensibility, provides better interpretability
than nonlinear models.

3.1.2. Outlier Detection/OLS Model

Figure 4 shows the outlier samples and residual errors identified by the criteria that
were described in Section 2.3.3.

Figure 4. Outlier data in the regression models. The left panel shows the standard residual for data
that are >3 and <−3, considered outlier data. On the right panel, outlier data are shown in two
categories: large residuals and unusual X.

The final OLS was re-fitted after eliminating 35 trees (almost 4.4% of all trees) as outlier
data. The comparison of residual errors to the fitted values is shown in Figure 5.

The estimated coefficients for this equation are listed in Table 9, while Figure 6 illus-
trates the relationship between the tree height and DBH by age. A 95% confidence interval
for the coefficients was calculated to estimate whether the model might also be valid across
other regions beyond the parametrization domain of the six test sites.
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Figure 5. The relationship between the residual values and the fitted values, where Pearson’s
correlation coefficient = 0 indicates no linear relationship.

Table 9. The results of the analysis of the coefficients of the linear model.

Term Symbol Coef SE Coef. 95% CI T-Value p-Value VIF

Constant α0 10.852 0.581 (9.712, 11.992) 18.69 0.000

Age 2 Khert α1 −12.36 1.01 (−14.35, −10.37) −12.21 0.000 17.28
Kor α2 −9.83 1.40 (−12.57, −7.08) −7.02 0.000 28.71

H α3 1.4677 0.0972 (1.2769, 1.6585) 15.10 0.000 1.62

H × Age 2 Khert α4 2.111 0.185 (1.748, 2.474) 11.41 0.000 16.46
Kor α5 1.896 0.278 (1.350, 2.442) 6.82 0.000 27.36

The general equation was:

DBHMax = α0 + α1x1 + α2x2 + α3H + α4x1H + α5x2H. (1)

The corresponding values for the variables of x1 and x2 are presented in Table 10.

Table 10. The x1 and x2 coding and the final equation of linear regression for various pollarding ages.

Age x1 x2 Equation (DBHMax=)

Korpa 0 0 −10.85 + 1.48 H
Kor 0 1 1.02 + 3.37 H

2 Khert 1 0 −1.51+ 3.58 H
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Figure 6. Relationship between height and DBH.

Table 11 provides a summary of the model evaluation based on multiple criteria, while
Table 12 summarizes the analysis of variance (ANOVA).

Table 11. Summary of linear regression model evaluation.

S R2 R2
adj PRESS R2

pred AICc BIC 10-Fold S 10-Fold R2

3.21095 56.06% 55.78% 8267.26 55.40% 4124.24 4156.86 3.22838 55.25%

Table 12. Results of the ANOVA.

Source DF Seq SS Contribution Adj SS Adj MS F-Value p-Value

Regression 5 10,393.00 56.06% 10,393.0 2078.60 201.61 0.000
H 1 8594.60 46.36% 2351.3 2351.28 228.05 0.000

Age 2 217.80 1.18% 1721.6 860.80 83.49 0.000
H × Age 2 1580.50 8.53% 1580.5 790.26 76.65 0.000

Error 790 8145.00 43.94% 8145.0 10.31
Lack of fit 785 8110.00 43.75% 8110.0 10.33 1.48 0.359
Pure error 5 35.00 0.19% 35.0 7.00

Total 795 18,538.00 100.00%
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Table 12 shows the analysis of variance of the model. The model included five parameters,
in which high values of F and very low values of p emphasized their significance. The lack-of-fit
error (indicated by the high value of p) increased due to the discrete nature of the DBH values
(due to the cm measurement accuracy) and the continuous nature of the H values.

4. Discussion

The general objective of our study was to examine whether height derived from UAV
photogrammetry can predict the DBH of pollarded oak trees, which is challenging due
to the strongly altered canopy structures [27,67]. In the following, we first discuss the
technical aspects of UAV-based tree height determination and then reflect on the identified
DBH~H relationships.

Earlier studies discussed the challenges of producing realistic 3D models in forests
using UAV photogrammetry [101,102]. One challenge may be that tree crowns are observed
only with a limited number of pixels in UAV images. This complicates solving the collinear-
ity equations of automatic image-matching techniques [102]. Increasing the number of
sampled pixels has been suggested in such conditions [102]. Tu et al., (2021) showed that
the combined use of oblique and nadir flights (as compared to a nadir flight alone) can
improve 3D photogrammetry models by 35% [103]. However, this approach might also
be associated with image-matching issues such as changes in wind speed/direction and
the sun exposure that may occur due to the time lag between flights, hence complicating
the image-matching procedure. Here, we coped with these two issues by taking images
using continuous imaging under constant and calm wind conditions. One may also note
that pollarded trees are less sensitive to wind because of the generally sparser canopy
foliage compared with unpollarded trees. Additionally, we conducted the flights with
the shortest possible time lag of approximately one minute between the two flights, due
to which changes in sun exposure could be regarded as negligible. In order to overcome
many common image-matching problems in forests, we processed images of two oblique
(60◦) and vertical flights simultaneously to increase the number of candidate pixels in the
image-matching process [56].

All in all, our analysis returned accurate estimates of the tree height using UAV pho-
togrammetric models, with an average difference of 0.3 m to 1.2 m compared to the values
extracted from the CHM and the field measurement. This was in the range reported by other
studies, which obtained differences of between 0.3 m to 2.9 m [104] and 0.1 m to 0.5 m [57]
when estimating tree height from UAV data. The average heights of pollarded trees in our
study were in the range of 3.5–6.7 m, which can be considered at the lower end of the height
values reported in the literature for these silvopastoral systems [6,18,32]. The tree height of
pollarded trees is strongly influenced by the local inhabitants who practice pollarding. The
traditional owners of Galajars do not allow the crown of the tree to be out of their reach due
to the increase in height [30]. Furthermore, another reason for the low height of these trees
may be the low canopy cover of the stands. As a result, there is less competition between
trees to receive light (a factor influencing height growth) in pollarded stands, and thus the
trees tend to expand their crown horizontally rather than vertically (height growth) [105].

In terms of height–DBH relationships, previous studies on other forest types generally
showed that DBH is correlated with height [106,107]. Ref. [29] showed that the DBHs
and heights of pollarded trees of the species Quercus cerris L. were linearly correlated
(correlation coefficient = 0.464). Furthermore, Niemczyk and Bruchwald (2017) presented
relationships for estimating the DBH of Populus spp. trees and hybrids in coppice stands
using height and the form factor [108]. Finally, Ref. [109] investigated and compared the
relationship between the DBH and the height of Populus spp. in short rotations in northern
Poland in two cycles of 5 and 6 years.

In field inventories, height measurement is generally more difficult than DBH mea-
surement [110], often with lower accuracy of measured height than that of DBH [38,111].
Thus, allometries are often used to estimate height using the DBH in classical inventories of
standard forests (see Table 6). We argue that the contrary is true in our case and other compa-
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rable cases in stands comprising both single- and multi-stem coppice structures. The use of
photogrammetric UAV allows for the estimation of tree heights with reasonable accuracies,
whereas DBH measurements may be more time-consuming or prohibited. Therefore, we
estimated DBH using the UAV-derived tree heights for single- and multi-stem individuals
in this study. In our special case, we used the maximum DBH of pollarded coppice groups
(where trees are generally associated with more than one stem) as previously indicated in
Section 2.2. We first checked whether distinguishing between single- and multi-stem trees
(categorical variable of Tr in Table 7) improved the model quality. The high p-value for the
Tr variable throughout the variable selection suggested that this categorization was not
helping the model. As a result, we adopted the idea of using the maximum DBH.

The maximum DBH may also be suitable from an ecological perspective. In multi-
stemmed coppice oak clumps, dominant stems benefit more from the well-developed
parent-tree root system. Therefore, the dominant stem with maximum DBH typically
grows faster both in diameter and height. Although multiple stems often persist within
a clump for decades [112], as coppice stems grow larger, competition within the clump
increases and reduces the diameter and height growth of stems. Finally, only one or two
stems within each clump usually maintain their dominance in the crown position, and
other stems are oppressed or excluded due to natural thinning or traditional silvicultural
treatments [113]. Thus, we focused on establishing an allometry between the maximum
DBH of the coppice oak trees and our UAV-derived H measurements.

In one of the few other studies focusing on DBH~H relationships in coppice stands,
Niemczyk et al., (2016) used the allometric relationship suggested by [114] to estimate
height from DBH. This relationship was nonlinear and included two fitted coefficients that
were obtained by the samples measured in short rotations in northern Poland [109]. In
northern Zagros, such allometric equations do not exist, especially not for different stages
of pollarding. Therefore, we applied a linear model to explore the link between DBH and
height (Figure 5), in which we used the SE coefficient, T-value, and VIF to evaluate the
model coefficients (Table 9). The SE coefficient explains how using different sampling
techniques might lead to changes in the estimated coefficients [95]. Here, we observed
a higher SE coefficient for the pollarding age (Age) class 2 Khert, i.e., Galajar’s DBH at
the 2 Khert age was estimated more accurately. These linear models are not ecologically
realistic because the increase in tree height decreases with time, especially when the tree
reaches the forest canopy [115]. But this is only true if the forests are minimally disturbed,
whereas our studied forests are regularly changed by humans (see Figure 1). However, we
additionally tested nonlinear allometries (Table 6). Although the findings demonstrated
that nonlinear models exhibited slightly better accuracy than linear models, we chose to
utilize the linear model. This decision was based on the simplicity, comprehensibility, and
superior interpretability of linear models compared to nonlinear models.

In our study sites, pollarding results in the complete debranching of oak trees. There-
fore, one year later, pollarding trees have almost no crown and their height decreases by
1 to 1.5 m. With time, the tree crown recovers by producing new twigs and branches both
apically and laterally [33]. Just 4 years after pollarding (2 Khert class), the tree crown and
height reach their typical shape and condition. Thus, the relationship between DBH and
height is more reliable in such stands.

The linear model (Table 11) showed a reliable R2 in the overall assessment due to the
small difference between R2 and R2

adj. The R2
pred is essentially a validation that denotes

the degree of model reliability [116]. Furthermore, comparing k-fold S and k-fold R2 with
S and R2, respectively, can warn of overfitting. We set k to 10, for which the small difference
between the values rejected the hypothesis of model overfitting. In addition, the ANOVA
(Table 12) showed relatively high SSError, i.e., changes in DBHMax that cannot be explained
by the model. Since we chose DBHMax as the DBH value of the tree (except that the tree
was multi-stem), it added an error to the model, which can be seen in SSError. We instead
used DBHMax due to the fact that, in oak clumps, the dominant trees are significantly taller
than the oppressed trees and stay dominant until all others are thinned or die.
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The linear model suggested in this study allows for the prediction of DBH with
reasonable accuracies in coppice stands at the age of Kor and 2 Khert, but the accuracy
for stands in the Korpa age class is notably worse. Given that the models are also nearly
unbiased, there seems to be a certain potential to inventory the DBH and hence also the
biomass of oak coppice stands in Northern Zagros. Given the large areas covered by these
coppice stands and given the frequently underestimated forest cover of semi-arid forests in
global forest maps [117], this may be a relevant contribution to improve our understanding
of global biomass distribution patterns and the corresponding carbon stocks. In future
studies, it may be worthwhile to think about developing automated approaches to identify
the pollarding age of coppice stands from remote sensing data. This may be possible with
very-high-resolution UAV data but could also examined for other VHR data (if available).

5. Conclusions

In our research across silvopastoral systems (pollarded stands or Galajars) in Iran,
we demonstrated that tree height can be effectively estimated at the scale of individual
pollarded trees using UAV data. However, UAV photogrammetry is unable to directly
derive DBH, which led us to demonstrate how DBH for Galajars of various ages may be
estimated by tree height. We tested well-known nonlinear and linear allometries to model
DBH~H and compared their performance, which suggested that DBH can be estimated
with practically sufficient accuracy by solely using OLS with the independent variables
of height and oak species across Galajar ages. We showed that removing species from the
models was only associated with a marginal effect on the model accuracy; thus, we did not
use species as a variable in the models. That is, we suggest eliminating species information
when conducting pollarding-related field measurements, which would lead to significant
savings in expert and logistics costs. We also suggest conducting a comparative analysis on
pollarded and less-disturbed stands. Last but not least, one may note that we missed the
Khert age group in our six inventoried sites, which calls for additional surveys on this age
group to complement our results.
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111. Ucar, Z.; Değermenci, A.; Zengin, H.; Bettinger, P. Evaluating the Accuracy of Remote Dendrometers in Tree Diameter Measure-
ments at Breast Height. Croat. J. For. Eng. 2022, 43, 185–197. [CrossRef]

112. Shakeri, Z. Ecological and Silvicultural Effects of Pollarding on Oak Forests of Baneh. 2006. Available online: https://noordoc.ir/
thesis/83566 (accessed on 3 November 2023).

113. Johnson, P.S.; Shifley, S.R.; Rogers, R.; Dey, D.C.; Kabrick, J.M. The Ecology and Silviculture of Oaks; Cabi: Wallingford, UK, 2019;
ISBN 1-78-064708-5.

114. Näslund, M.; Skogsförsöksanstaltens Gallringsförsök i Tallskog. Meddelande Från Statens Skogsförsöksanstalt 29. In Swedish
with English Summary 1936; 169p. Available online: https://pub.epsilon.slu.se/10159/1/medd_statens_skogsforskningsanst_02
9_01.pdf (accessed on 3 November 2023).

https://helda.helsinki.fi/items/cd1ebbf0-808d-45cb-bfad-f984450cb96f
https://helda.helsinki.fi/items/cd1ebbf0-808d-45cb-bfad-f984450cb96f
https://doi.org/10.1371/journal.pone.0221082
https://www.ncbi.nlm.nih.gov/pubmed/31415638
https://doi.org/10.1093/jxb/10.2.290
https://doi.org/10.1073/pnas.18.1.1
https://doi.org/10.1073/pnas.6.6.275
https://www.ncbi.nlm.nih.gov/pubmed/16576496
https://doi.org/10.2307/1268249
https://doi.org/10.1080/01621459.1979.10481634
https://doi.org/10.3390/s120100453
https://doi.org/10.1109/TGRS.2020.3047435
https://doi.org/10.3390/f10100931
https://doi.org/10.13057/asianjfor/r050203
https://doi.org/10.1186/s40490-016-0077-8
https://doi.org/10.1186/s13007-021-00748-z
https://doi.org/10.5552/crojfe.2022.1016
https://noordoc.ir/thesis/83566
https://noordoc.ir/thesis/83566
https://pub.epsilon.slu.se/10159/1/medd_statens_skogsforskningsanst_029_01.pdf
https://pub.epsilon.slu.se/10159/1/medd_statens_skogsforskningsanst_029_01.pdf


Remote Sens. 2023, 15, 5261 21 of 21

115. Koch, G.W.; Sillett, S.C.; Jennings, G.M.; Davis, S.D. The Limits to Tree Height. Nature 2004, 428, 851–854. [CrossRef] [PubMed]
116. Colton, J.A.; Bower, K.M. Some Misconceptions about R2. Int. Soc. Six Sigma Prof. EXTRAOrdinary Sense 2002, 3, 20–22.
117. Shafeian, E.; Fassnacht, F.E.; Latifi, H. Mapping Fractional Woody Cover in an Extensive Semi-Arid Woodland Area at Different

Spatial Grains with Sentinel-2 and Very High-Resolution Data. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102621. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/nature02417
https://www.ncbi.nlm.nih.gov/pubmed/15103376
https://doi.org/10.1016/j.jag.2021.102621

	Introduction 
	Materials and Methods 
	Subsection 
	Materials 
	Field Measurements 
	UAV Imaging 

	Methodology 
	Tree Height Estimation 
	DBH Estimation 
	Outlier Detection for OLS Models 


	Results 
	DBH Estimation 
	Finding Effective Variables in DBH Estimation 
	Outlier Detection/OLS Model 


	Discussion 
	Conclusions 
	References

