Aus der Klinik far
Hamatologie, Onkologie und Tumorimmunologie

der Medizinischen Fakultat Charité — Universitatsmedizin Berlin

DISSERTATION

Epstein-Barr Virus-spezifische T-Zell-Rezeptoren flr den
adoptiven Transfer transduzierter T-Zellen im Rahmen der

allogenen Stammzelltransplantation

Epstein-Barr virus-specific T cell receptors for adoptive transfer

of transduced T cells in allogeneic stem cell transplantation

zur Erlangung des akademischen Grades

Doctor of Philosophy (PhD)

vorgelegt der Medizinischen Fakultat

Charité — Universitatsmedizin Berlin

von

Maria Fernanda Lammoglia Cobo

Datum der Promotion: 30.11.2023






Table of contents i

Table of contents

TabIle Of CONTENTS .. ..oeii e e e e e e e e e e e e e et e e eeenen ii
S o = o] = SR v
S 0 0 10 =S v
LiSt Of @DBreVIAtIONS.........ui e e e Vi
Y 0] 1 = T USSP 1
ZUSAMIMENTASSUNG ...ttt ettt e ettt e e e e e e e e eeateta e e e e e e e e e eesbsaanaaeeeeeeeeeessnnnnaaens 2
R 11 0T [0 Tod 1 0] o SRRSO 3
P22 |V =1 1o To £ 6
2.1 ATHCIE Lo e e e e e aaaa 6
2.2 ATHCIE 2 e e e e aaaa 7
2.3 ATHCIE B e e a e aaaaa 9
3. RESUILS. ..t e e e e 11
X 0t Y 4 1 T3 [ 11
K N 4 T3 [ 13
0 T Y 4 1 T3 = 17
I 1Yo 1 11 Lo o U 21
4.1 Short summary Of FESUILS .....cooiiiiiiie s 21
4.2  Interpretation Of reSUILS........cooiiiiiiiiiie s 21
4.3 Embedding the results into the current state of research.................ccceeeeees 22
4.4  Strengths and weaknesses of the StudiesS..........ccoovvviiiiiiiiiiiiii 23
4.5 Implications for practice and/or future research .............ccccoeeeieiiiiii i, 24
SO0 [od (1] o] o USSP 26
S (=T (=] o= £ R 27
StatUtOry DECIAIAtION ...... .ot e e e et e e e e e e eeennna 35
Declaration of your own contribution to the publications.............ccccooooiiiiii 36
Excerpt from Journal SUMMArY LiSt..........ciiiiieiiiiiiiiiiie e e e e e 38
Printed copies of the publiCatioNS .............iiii i 43
CUITICUIUM VITAE ... e e e e e e e e e e e e e e 89
PUDBIICAtION TSt ..o e e e e e et e e e aaaaaas 90

ACKNOWIBAGMENTS ... e e et e e e e e e e e e et e e e e e eeeeas 91



List of tables [\,

List of tables

Table 1: Peptides used for graft Simulation.............coooeiiiiiiiiie e 7
Table 2: EBV-derived peptides for T cell product ..............cceeeiieeiiiiiiiiiiiiieee e 9
Table 3: Follow-up of EBV-specific T cells after adoptive transfer.............ccccvvvvvvvvnnnnnnn. 19



List of figures \Y

List of figures

Figure 1: Allogeneic stem cell transplantation (alloSCT) and the window susceptibility to

EBV INTECHON ... 4
Figure 2: Distinct phenotype compartments of TILS and TUMS ...........ccoovvvviiiiiiieeeeeeenee, 11
Figure 3: Clonal overlap among TIL, TUM, and peripheral blood T cells....................... 12
Figure 4: Presence of TCR target antigen in tumor and unaffected mucosa tissue....... 13
Figure 5: Peptide-specific expansion of CD8* T CellS........coooiiiiiiiiiiiii e 14
Figure 6: Clonal expansion after peptide stimulation .................cieiiiei i, 14
Figure 7: Selected TCRs are target-peptide SPECIfiC .........ccovvvrrreiiiieiieeeeeeeecee e 15
Figure 8: TCR-recombinant PBLs recognize EBV-infected cell lines............................. 16
Figure 9: T cell activation by EBV* LCLs is peptide- and HLA-dependent..................... 16
Figure 10: T cell expansion after peptide stimulation in the cellular product.................. 17

Figure 11: Identification of peptide-specific TCR clonotypes in the cellular product...... 18
Figure 12: Patient EBV viremia and CD8* T cell levels post-engraftment ..................... 19
Figure 13: Frequency of peptide-specific T cells before and after adoptive transfer......20



List of abbreviations

Vi

List of abbreviations
alloSCT: Allogeneic stem cell transplantation
AITL: Angioimmunoblastic T-cell lymphoma
APC: Antigen presenting cells
ATG: Anti-thymocyte globulin
ATMP: Advanced Therapeutic Medicinal Product
BL: Burkitt lymphoma
CsA: Cyclosporine A
CTL: Cytotoxic T cell lymphocytes
DLI: Donor lymphocyte infusion
EBV: Epstein-Barr Virus
EDTA: Ethylenediaminetetraacetic acid
EMA: European Medicines Agency
ELISA: Enzyme-linked immunosorbent assay
FACS: Fluorescence activated cell sorting
FBS: Fetal bovine serum
GC: Gastric cancer
G-CSF: Granulocyte colony stimulating factor
GvHD: Graft-versus-Host Disease
HL: Hodgkin lymphoma
HHV-4: Human Herpesvirus 4
HHV-6: Human Herpesvirus 6
HTS: High-throughput sequencing
IFN-y: Interferon y
ngs: Next-generation sequencing
LCL: Lymphoblastoid cell line
NFAT: Nuclear factor of activated T cells
NPC: Nasopharyngeal carcinoma
PB: Peripheral blood
PBMC: Peripheral blood mononuclear cells
PBS: Phosphate-buffered saline

PCR: Polymerase chain reaction



List of abbreviations Vil

e pMHC: Peptide-MHC

e PTLD: Post-Transplant Lymphoproliferative Disorder
e TAA: Tumor-associated antigens

e TCR: T cell receptor

e TIL: Tumor-infiltrating T cells

e TSA: Tumor-specific antigens

e TUM: T cell from unaffected mucosa

e Tx: Transplantation



Abstract 1

Abstract
More than one third of patients experience Epstein-Barr Virus (EBV) reactivation after
allogeneic stem cell transplantation (alloSCT) and up to 3% of transplanted patients de-
velop post-transplant lymphoproliferative disorders (PTLD). In healthy individuals, virus
epitope-specific T cells are critical for EBV control; however, post-transplant cytopenia
and immunosuppression leaves patients vulnerable to virus reactivation and associated
malignancies. Antibody-mediated depletion of B cells, which are natural targets and res-
ervoirs for EBV, delays the reconstitution of cellular immunity and comes with considera-
ble short- and long-term side effects.
The goal of this work is to identify EBV-specific T cell receptors (TCR) and transduce
them into T cells for adoptive transfer. Stimulation of stem cell grafts or peripheral blood
cells with EBV plasmid-recombinant antigen-presenting cells (APC) or EBV-derived pep-
tides leads to a substantial expansion of EBV-specific T cells; however, the degree of
expansion is dependent on an antigen-experienced memory compartment non-existing
in EBV seronegative donors. | present three articles that, combined, describe the identi-
fication and characterization of 16 different EBV-specific TCRs for TCR-based immuno-
therapy.
In the first article, we established efficient single cell immune phenotyping and TCR se-
guencing using rectal cancer infiltrating T cells as an example. In the second article, we
applied this technology to identify EBV peptide-specific TCRs which can be transduced
into peripheral blood T cells and recognize EBV-infected B cells. In the third article, we
tracked adoptively transferred virus-specific T cells in an alloSCT patient during EBV re-
activation.
We were able to establish a robust, GMP-compliant pipeline for the discovery of EBV-
specific TCRs with prophylactic and therapeutic potential. The use of single EBV-peptides
for stimulation facilitated targeting of different antigens, HLA-restrictions, and potentially
other viruses. Identified TCRs for selected HLA restrictions can be stored as TCR libraries
to prepare readily available off-the-shelf products.
Reconstitution of cellular immunity against EBV can offer protection against associated
complications and potentially contributes to a better outcome post-transplant. We pro-
pose adoptive transfer of virus-specific T cells transduced with carefully selected TCRs
as a prophylactic and therapeutic approach to prevent EBV-infection, reactivation, and

associated complications.
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Zusammenfassung
Bei mehr als einem Dirittel der Patienten kommt es nach allogener Stammzelltransplan-
tation (AlloSZT) zur Reaktivierung des Epstein-Barr-Virus (EBV) und bis zu 3% der Pati-
enten entwickeln eine lymphoproliferative Erkrankung nach Transplantation (PTLD).
EBV-spezifische T-Zellen spielen eine entscheidende Rolle bei der Virus-Kontrolle, je-
doch erhéht die Zytopenie und immunsuppressive Therapie nach AlloSZT das Risiko fur
eine EBV-Reaktivierung. Die Depletion von B-Zellen, den primaren Wirtszellen von EBV,
durch monoklonale Antikérper verzdgert die Wiederherstellung der zellularen Immunitat
und ist von schwerwiegenden Nebenwirkungen begleitet.
Ziel dieser Arbeit ist die Identifizierung EBV-spezifischer T-Zell-Rezeptoren (TCR) und
ihre Transduktion in T-Zellen fiir den adoptiven Transfer. EBV-spezifische T-Zellen kon-
nen ausgehend von unterschiedlichen Spenderzellen, mit rekombinanten antigen-préa-
sentierenden Zellen oder EBV-Peptiden in vitro expandiert werden. Das Ausmal} der Ex-
pansion ist spenderabhangig und insbesondere bei seronegativen Spendern ohne EBV-
spezifische Gedachtniszellen nicht erfolgreich. In drei Publikationen wird die Identifizie-
rung und Charakterisierung von insgesamt 16 verschiedenen EBV-spezifischen TCR be-
schrieben, die sich fur TCR-basierte Immuntherapien eignen.
In der ersten Vero6ffentlichung wird eine Einzelzell-Technik zur Immunphanotypisierung
und TCR-Sequenzierung am Beispiel Tumor-infiltrierender T-Zellen beim Rektumkarzi-
nom entwickelt. In der zweiten Vero6ffentlichung nutzen wir diese Technik zur Identifizie-
rung EBV-peptid-spezifischer TCRs, die, transduziert in T-Zellen, EBV-infizierte Zellen
erkennen. In der dritten Verd6ffentlichung verfolgen wir adoptiv-transferierte T-Zellen in
einem Patienten mit EBV-Reaktivierung nach AlloSZT.
Wir haben eine effiziente Methodik zur Identifizierung EBV-spezifischer TCRs mit pro-
phylaktischem und therapeutischem Potenzial etabliert. Die Verwendung einzelner Pep-
tide zur Stimulation erlaubt die Auswahl definierter Zielantigene bei bekannter HLA-Rest-
riktion und kann perspektivisch auch fiir die Identifizierung von TCRs gegen andere Viren
genutzt werden. Die Arbeiten ermdglichen potentiell den Aufbau von TCR Bibliotheken
mit exakt definierten Spezifitdten zur Herstellung gezielter Zelltherapeutika.
Die Wiederherstellung der zellularen Immunitat gegen EBV schitzt Patienten vor EBV-
assoziierten Komplikationen. Wir schlagen den adoptiven Transfer TCR-rekombinanter
Zellen mit sorgfaltig ausgewahlten Spezifitdten als prophylaktischen und therapeutischen

Ansatz gegen EBV-Infektion, Reaktivierung und assoziierte Komplikationen vor.
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1. Introduction

Allogeneic stem cell transplantation (alloSCT) is a treatment option for several malignant
and non-malignant hematological disorders, in which patients receive stem cells from an
HLA-matched or mismatched donor after chemo-, radiotherapy, and/or antithymocyte
globulin (ATG) conditioning. Along with increasing numbers of alloSCT procedures per
year [1], transplant-related mortality has significantly decreased over time [2].
Nevertheless, malignant relapse, Graft-versus-Host Disease (GvHD), and viral infections
severely compromise alloSCT success rates and the patients’ quality of life. Post-trans-
plant immunosuppression and lymphopenia also leave patients vulnerable to virus reac-
tivation and associated malignancies [3]. More than one third of immunocompromised
patients experience an Epstein-Barr Virus (EBV) infection and 3% (range 1-11%) of trans-
planted patients develop a post-transplant lymphoproliferative disorder (PTLD) in the first
year post-transplant [4—6].

EBYV is an oncogenic, DNA double-stranded gamma-herpesvirus (HHV-4) with a preva-
lence above 90% in adults [7]. After initial infection, EBV remains in an asymptomatic
latent state in memory B cells. Disruption of latency, if not controlled by T cells, is asso-
ciated with lymphoid and epithelial malignancies such as Burkitt lymphoma (BL), Hodgkin
lymphoma (HL), nasopharyngeal carcinoma (NPC), and gastric cancer (GC). 17% of
deaths in these four cancer types were caused by the EBV-attributed fraction [8].
Transition between EBYV lytic and latent phases is controlled by humoral and cellular im-
munity [9,10]. In the cellular response, EBV-specific T cells mediate killing of virus-pro-
ducing B cells and control EBV at its latent, less immunogenic stages [11]. In vitro studies
contributed to the isolation of CD8" T cells that recognize EBV-infected lymphoblastoid
cell lines (LCL) [12] and led to the identification of EBV-derived immunodominant epitopes
[13-19].

T cell depletion of donor grafts and conditioning regimes with ATG, while aimed to prevent
graft rejection and GvHD, hinders T cell-mediated responses against EBV and increase
the risk of EBV infection, reactivation, and development of EBV-associated lymphomas
[20,21]. Most cases of post-transplant EBV reactivation and EBV-associated PTLD take
place in the early post-engraftment period, when T cell immunity has not been reconsti-
tuted [22] (Fig. 1). Antibody-mediated depletion of B cells, which are natural targets and
reservoirs for EBV, further delays the reconstitution of cellular immunity and comes with

considerable short- and long-term side effects, such as opportunistic infections [23].
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Figure 1: Allogeneic stem cell transplantation (alloSCT) and the window susceptibility to
EBV infection

A typical regimen for alloSCT is shown. Starting with chemo- and/or radiotherapy conditioning
regimens, anti-thymocyte globulin (ATG) and cyclosporine A (CsA) as T cell-targeting immuno-
suppressants are used to avoid graft rejection and Graft versus Host Disease (GvHD) [24,25].
During early post-engraftment (day 20-100), lymphopenia leaves patients vulnerable to EBV in-
fection, reactivation, or PTLD development. CD8" and CD4" T cell immunity, critical for EBV con-
trol, is typically reconstituted from 6 months to one year (CD8") and up to two years post-trans-

plant (CD4") [26]. Tx= transplantation. Own representation: Lammoglia Cobo

Adoptive transfer of EBV-specific T cells offers a curative treatment option for EBV-asso-
ciated complications and reinstalls T cell immunity. Since the first successful use of EBV-
specific T cell therapy to treat PTLD in 1995 [27], several strategies to produce virus-
specific T cells have been established. Repeated stimulation of donor cells with EBV-
infected lymphoblastoid cells [27,28] or recombinant antigen-presenting cells (APC) [29]
lead to cytotoxic T cell expansion; however, serial stimulations are time consuming and
additional product safety testing is required when working with virus-infected cells. As an
alternative, stimulation of donor cells with EBV-derived peptides leads to rapid epitope-
specific T cell expansion without additional APCs [19,30]. These strategies can be
adapted to target multiple epitopes from either a single or several viruses (such as Cyto-
megalovirus (CMV)) for adoptive transfer of virus-specific T cells [31,32].

These strategies to produce EBV-specific T cells have one limitation in common: The
degree of expansion is dependent on the antigen-experienced memory compartment
non-existing in EBV seronegative donors. EBV seropositivity varies across age and geo-
graphical locations, with younger populations in North America and Europe developing
90% of seropositivity until early adulthood [33,34]. Delayed seroconversion in Western
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countries and the use of stem cell grafts from children or younger adults in haploidentical
transplantation increase the likelihood of donor EBV seronegativity and, therefore, the
risk of EBV infection and PTLD [35].

T cell receptor (TCR)-based immunotherapies circumvent this constrain, as re-expression
of carefully selected, peptide-specific TCRs in donor T cells can direct T cell immunity
against clinically-relevant targets [36]. Methodologies to identify EBV-specific TCRs [37—
40] face the challenge to optimize times and workload to simultaneously characterize
TCRs with different HLA restrictions and epitope specificities.

The goal of this work is the efficient identification and transduction of EBV-specific TCRs
for adoptive transfer in the context of two different HLA types. My hypothesis was that the
re-expression of carefully selected TCRs (from in vitro expanded CD8" T cell clones) in
third-party T cells leads to recognition of EBV-infected LCLs. Throughout the work, | de-
scribe the identification and characterization of 16 EBV-specific TCRs with prophylactic
and therapeutic potential for TCR-based immunotherapy.

In the first article, “Localization-associated immune phenotypes of clonally expanded tu-
mor-infiltrating T cells and distribution of their target antigens in rectal cancer” (Article 1)
[41], we established efficient single cell immune phenotyping and TCR sequencing using
rectal cancer infiltrating T cells as an example. We then applied this technology to identify
EBV peptide-specific TCRs which can be transduced into peripheral blood T cells and
recognize EBV-infected B cells. These results were published in the second article,
“Rapid single cell identification of Epstein-Barr virus-specific T cell receptors for cellular
therapy” (Article 2) [42]. In parallel to my main project, we tracked adoptively transferred
virus-specific T cells in an alloSCT patient after EBV reactivation and published the results
in the article “Reconstitution of EBV-directed T cell immunity by adoptive transfer of pep-
tide-stimulated T cells in a patient after allogeneic stem cell transplantation for AITL” (Ar-
ticle 3) [43].
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2. Methods

Article 1 [41]
Patient samples
Use of patient material was approved by the Charité University Hospital ethics com-
mittee (Num. EA1/007/16). Samples of colorectal tumors, unaffected mucosa, and
peripheral blood (PB) were obtained from five patients during surgery and PB was
additionally obtained at one follow-up visit. To collect tumor infiltrating T cells (TIL)
and T cells from unaffected mucosa (TUM), the tissue was cut into 2-4 mm? pieces
and incubated 30 min in PBS with 10mM ethylenediaminetetraacetic acid (EDTA).
While cells in suspension were passed through a 100 um cell strainer, the tissue was
incubated 30 min in RPMI1640 with 5% fetal bovine serum (FBS) and 0.5 mg/ml col-
lagenase NB 4. Tissue cells were then recovered through Percoll gradient centrifuga-
tion; peripheral blood mononuclear cells (PBMC), through Ficoll density gradient cen-
trifugation [44]. All cells were cryopreserved in RPMI 1640 with 50% FBS and 10%
DMSO.
Single cell sequencing
Barcoding, PCR amplification, library preparation, MiSeq lllumina sequencing, and in-
dex sorting were carried out as previously described [45]. Clones were defined when
two or more cells shared the same TCRa and TCRB amino acid sequences and a 10-
reads cutoff was set for cytokine and transcription factors expression. For each clone,
markers were considered either positive or negative based on the expression of more
than half of the clone’s single cells.
TCRp sequencing
Bulk TCRB sequencing was carried out as previously described with a frequency cut-
off of 10 reads [46].
TCR re-expression in 58af cell line
TCRs were manually selected, reconstructed, and synthetized for transfection in a
58a B hybridoma T cell line with recombinant human CD8 expression and a GFP re-
porter controlled by the nuclear factor of activated T cells (NFAT) [47]. TCR re-expres-
sion was confirmed with CD3 (clone UCHT1) staining and flow cytometry.
Coculture of TCR-recombinant 58a B cell lines with target cells
Co-culture of TCR-recombinant 58aB cell lines and target cells (tumor, unaffected

mucosa, or HLA-mismatched tissue) were carried out for 16h. Target cell numbers
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varied due to available patient material. NFAT-driven GFP expression was measured
with flow cytometry and fluorescence microscopy; supernatant IL-2 concentrations

were assessed using enzyme-linked immunosorbent assay (ELISA).

2.2 Article 2 [42]

X/
L X4

X/

Recovery of mononuclear cells from stem cell grafts

After transplantation of granulocyte colony stimulating factor (G-CSF)-mobilized pe-
ripheral blood stem cell grafts, remaining cells from five HLA-B*35:01* and one HLA-
A*02:01* EBV-seropositive adult donors were washed out of the stem cell bags with
0.9% sodium chloride solution. Mononuclear cells were recovered through Ficoll den-
sity gradient separation and frozen at 1-107 cells per vial. Use of patient material was
approved by the Charité University Hospital ethics committee (Num. EA2/197/18).
Peptide stimulation

Thawed mononuclear cells from stem cell grafts were cultured overnight and incu-
bated the next day with EBV-derived synthetic peptides (Table 1, final concentration:
1ug/ml) for 2 hours. Cells were washed twice and cultured for 9 days in CellGro DC
Medium with 50 IU/ml IL-2, 1% GlutaMAX, and 1% donor serum before freezing. Ad-
ditional medium (50 IU/ml IL-2, 1% GlutaMAX, and 1% donor serum) was supple-
mented on day 5. To measure peptide-specific T cell expansion, cells before and after
peptide stimulation were analyzed with flow cytometry using CD3 (clone UCHT1) and
CDS8 (clone RPA-T8) antibodies and EBV peptide-MHC (pMHC) tetramers.

Table 1: Peptides used for graft stimulation

Label Sequence Antigen Latent / Lytic HL.A-.re-
striction

HPV HPVGEADYFEY EBNA1 Latent B*35:01

YPL YPLHEQHGM EBNA3A Latent B*35:01

EPL EPLPQGQLTAY BZLF1 Lytic B*35:01

GLC GLCTLVAML BMLF1 Lytic A*02:01
CLG CLGGLLTMV LMP2A Latent A*02:01
FLY FLYALALLL LMP2A Latent A*02:01

YVL YVLDHLIVV BRLF1 Lytic A*02:01

Modified from Table 1, Lammoglia Cobo et al. 2022
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Flow cytometric single cell sort and TCR sequencing

Single pMHC*CD3*CD8* T cells were index-sorted into 96 well plates. Barcoding,
PCR amplification, and TCRa3 sequencing was carried out as previously described
[41,45]. Clones were defined as two or more cells with identical TCRa and 3 amino
acid sequences.

TCR transfection in 58af hybridoma cell line

Transfection of plasmids encoding selected TCRaf chains in CD8* 58a - hybridoma
cells was carried out as previously described [41,47].

Coculture of TCR-recombinant 58a B hybridoma cell line with target cell lines
To test TCRs for their (assumed) target peptide specificity, miniLCLs [48] were artifi-
cially loaded with target or non-target peptides and co-cultured with TCR-recombinant
58a B cells at a 10:6 ratio for 16h. For recognition of EBV-infected lymphoblastoid
(LCL) and lymphoma cell lines, target cell lines were co-cultured with the TCR-recom-
binant 58a3" cells at a 10:6 ratio for 16h.

NFAT-driven GFP was detected by flow cytometry and fluorescence microscopy; IL-
2 was measured from culture supernatant using ELISA. 58a 3 cells were stained with
anti-human CD8 (clone RPA-T8), anti-mouse CD3 (clone 17A2), and Zombie Red
live/dead staining for flow cytometry analysis.

TCR transduction in human lymphocytes

Part of the TCR[3 constant region was exchanged with its murine counterpart to reduce
probability of TCR mispairing with endogenous TCR. Furthermore, the murine con-
stant region expressed on transduced T cells allowed to measure TCR transduction
efficiency with an anti-mouse TCRp (clone H57-597) antibody [49].

293Vec-RD114 packaging cells were transfected with 18 ug of MP71-TCR vector. For
transduction, 1.5 million peripheral blood lymphocytes (PBL) from a third-party, HLA-
A*02:01* and HLA-B*35:01" donor were stimulated with 300 IU/ml IL-2 on anti-CD3-
and anti-CD28-coated plates for 2 days. PBLs were transduced with 1 ml of viral su-
pernatant, 400 1U/ml IL-2, and 8 pg/ml protamine sulfate and spinoculated on two
consecutive days. Cells were then kept 10 days in culture in fresh medium with 10%
FBS and 400 1U/ml IL-2 and rested 2 days with 40 IU/ml IL-2 before freezing. Before
freezing, TCR expression was confirmed with flow cytometry using anti-mouse TCR(
(clone H57-597) and anti-human CD8 (clone RPA-T8) antibodies.

Co-culture of TCR-recombinant T cells with EBV* LCLs
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2.3

TCR-recombinant human T cells were cocultured at a ratio of 50,000 T cells (average
transduction efficiency: 34%) with 10,000 EBV* LCLs for 16-20 h; exact effector-to-
target ratio depended on the respective TCR transduction efficiency. CD137 expres-
sion and IFN-y in the supernatant were measured as readouts with flow cytometry and
ELISA, respectively. As an additional control to estimate the cytotoxic potential for one
specific TCR-recombinant T cell and target coculture, CD107a expression and TNF-
a and Granzyme B in the supernatant were also measured with flow cytometry and

ELISA, respectively.

Article 3 [43]

«+ Patient clinical information

A patient with chemotherapy-refractory angioimmunoblastic T cell lymphoma (AITL)
received a G-CSF-mobilized stem cell graft from an HLA 10/10 match donor. 42 days
after transplantation (day 42), the patient relapsed for AITL and eventually developed
an EBV infection on day 66, which reached a peak in DNA copy levels in PB on day
89. For this reason, he received a donor lymphocyte infusion (day 76) and 4 weekly
Rituximab doses (starting on day 68). As major symptoms persisted, he received an
adoptive transfer of in vitro expanded, EBV-specific T cells (day 105). No EBV reacti-
vation was detectable after day 111. The patient died from treatment resistant HSV-1
reactivation on day 352.

Production of EBV-specific T cells

EBV-specific T cells were expanded by peptide stimulation from donor lymphocytes
[19]. Approximately 600 million PBMC were stimulated with synthetic, EBV-derived
peptides (Table 2) for 2 hours, washed, and cultured for 9 days before freezing. Addi-
tional medium was supplied on day 5. Use of patient PBMC was approved by the

University of Erlangen ethics committee (Ref. 4388).

Table 2: EBV-derived peptides for T cell product

Abb. | Sequence Antigen Abb. Sequence Antigen
CLG CLGGLLTMV LMP2 YPL YPLHEQHGM EBNA3A
GLC GLCTLVAML BMLF1 HPV HPVGEADYFEY EBNA1
YVL YVLDHLIVV BRLF1 EPL EPLPQGQLTAY BZLF1
FLY FLYALALLL LMP2 PYY PYYVVDLSVRGM BHRF1
RLR RLRAEAQVK EBNA3A VVRM | VWVRMFMRERQLPQS EBNA3C
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RPP | RPPIFIRRL EBNA3A FGQL | FGQLTPHTKAVYQPR BLLF1
QAK | QAKWRLQTL | EBNA3A IPQC | IPQCRLTPLSRLPFG EBNA1
RAK | RAKFKQLL BZLF1 TDAW | TDAWRFAMNYPRNPT BNRF1

Abb.= abbreviation. Modified from Table 1, Lammoglia Cobo & Ritter et al. 2022

s Flow cytometry and cell sort
50yl of patient’'s PB were stained in Trucount tubes with a CD8 (clone SK1), CD25
(clone 2A3), CD14 (clone MgP9), CD56 (clone B159), CD19 (clone SJ25C1), CD4
(clone RPA-T4), CD3 (clone UCHT1), and CD45 (clone HI30) antibody panel and
measured with flow cytometry to obtain an absolute cell count of leukocytes (CD45%),
lymphocytes (CD45"9"CD14), and lymphocyte-gated T cells (CD3%), B cells (CD19%),
and NK cells (CD56%). T cells were further subdivided into CD4* and CD8* T cells.
For multimer staining, one million cells from the cellular product were stained with
pPMHC pentamers; PE-Fluorotag; and CCR7 (clone 150503), CD8 (clone SK1), CD62
(clone DREG-56), CD45RA (clone HI100), CD4 (clone RPA-T4), and CD3 (clone
UCHT1) antibodies and measured with flow cytometry.

% TCRp bulk sequencing
DNA isolation was carried with the Qiagen AllPrep DNA/RNA Mini Kit. The TCR -
chains (TCRB) from 100 ng of cellular DNA, equivalent to approximately 14,500 T
cells, were amplified through multiplex PCR and sequenced with an lllumina
HiSeq2000 system [46].

« Definition of clones and peptide-specific T cells
We defined clones as cells with TCR rearrangements above a 0.01% percentage-
of-reads cutoff. To classify T cell clones as peptide-specific, we used (i) a frequency
cutoff of 0.1% before and after multimer sort to reduce noise and (ii) a ternary exclu-
sion criterion with an enrichment ratio (frequency after / frequency before multimer
sort): Clones with an enrichment ratio 10 times stronger in EPL-, RAK-, or HPV-multi-
mer-sorted populations as compared to the other two were designated as peptide-

specific.
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3. Results

3.1 Article 1 [41]

«* Tumor-infiltrating T cells (TILs) and T cells from unaffected mucosa (TUMs) show dis-

tinct immune phenotypes

Our first question in this project was whether there is a phenotypic difference between
TILs in the rectal tumor and TUMs. Multi-parameter flow cytometry with 13 different
differentiation and checkpoint molecule antibodies showed that phenotypes could be
compartmentalized as TIL, TUM, or overlapping (Fig. 2).

CD8* T cells
\ TlLs

® single TlLs

single unaffected
mucosa T cells (T ,,)

dimension 2

overlap

dimension 1

Figure 2: Distinct phenotype compartments of TILs and TUMs
t-Distributed Stochastic Neighbor Embedding (t-SNE) visualization. Modified from Fig. 2, Pen-
ter et al. 2019

Differential T cell presence in tumor, adjacent tissue, and PB

Using single cell index sorting, single TILs and TUMs were analyzed for clonality
(based on TCRaP sequencing), immune phenotypes, and cytokine expression. Clon-
ally expanded TILs could be phenotypically distinguished from clonally expanded
TUMs by characteristic TIM3 and PD1 expression.

While single cell sequencing is useful for the identification of clone-associated immune
phenotypes, TCRp bulk sequencing allows the search of TCR sequences in a larger
cellular cohort. We performed TCRp bulk sequencing of CD8* peripheral blood T cells
to search for TIL clonotypes previously identified by single cell sequencing.

From 149 expanded TIL clones, 61.7% were exclusively found in the tumor, 19.5%
were also detectable in unaffected mucosa, and 32.9% could be found circulating in
peripheral blood (Fig.3). Clones with the previously characterized TIM3* PD1* pheno-
type rarely appeared in PB and unaffected mucosa but were enriched in the tumor.

No TCR clonotype was found shared among patients.
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[l detected in peripheral blood

Figure 3: Clonal overlap among TIL, TUM, and peripheral blood T cells

Data from patient no. 3 are shown as an example. Single vertical and colored lines on the
outer ring represent expanded T cell clones. Gray area corresponds to non-expanded T cells.
Blue lines in the inner circle indicate clones that appeared in PB. Black connectors show
overlap of expanded TIL clones with TUM; gray connectors, of expanded TUM clones with
TIL. Modified from Fig. 4, Penter et al. 2019

Clonally expanded TILs recognize antigens on tumor and unaffected mucosa
cells

Four tumor-exclusive and three overlapping TCRs were chosen to determine whether
their target antigens were expressed solely on tumor tissue. Selected TCRs were ex-
pressed on 58a3- hybridoma cell lines carrying an NFAT-GFP reporter and were then
co-cultured with tumor and unaffected mucosa cells.

Rare cell aggregates with GFP expression were visible with fluorescent microscopy
indicating T cell antigen recognition. From four TIL-exclusive TCRs, one recognized
an antigen solely from the tumor, one solely from unaffected mucosa, and two from
both (one example of a TIL-exclusive TCR recognizing both tumor and unaffected
mucosa cells is shown in Fig. 4). From the three overlapping TCRs, two were activated
by both tumor and unaffected mucosa cells; one, only by unaffected mucosa. There-

fore, TIL target-antigens were not found exclusively on tumor cells.
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58-1C10 (40,000) +

58-1C10 (40,000) + anti-mouse CD3 cells from HLA-mismatched unaffected rectum (38,225)

58-1G10 (40,000) + cells from tumor (36,250)

Figure 4: Presence of TCR target antigen in tumor and unaffected mucosa tissue

Fluorescence microscopy of 1C10-recombinant 58a 3~ hybridoma reporter cells (58-1C10)
stimulated with plate-bound anti-mouse CD3 antibody (as positive control) or co-cultured with
tumor, unaffected mucosa, or HLA-mismatched unaffected mucosa (as negative control).
GFP was measured as a readout of TCR-driven activation. 1C10 TCR is shown as an exam-
ple of two TIL-restricted TCRs that were tested. Numbers in parenthesis indicate number of

cells in each co-culture. Modified from Fig. 5, Penter et al. 2019

3.2 Article 2 [42]

s Epitope-specific CD8* T cells expand after peptide stimulation
We stimulated mononuclear cells from 5 allogeneic stem cell grafts with three syn-
thetic peptides presented on HLA-B*35:01 (HPV, YPL, and EPL) and one graft with
four peptides presented on HLA-A*02:01 (GLC, CLG, FLY, and YVL) (Table 1). While
absolute leukocyte counts decreased, CD8* T cells expanded. Peptide-specific T cell
frequencies increased on average 42-fold (range: 1-228, median: 27) (Fig. 5) and ex-

pansion degree varied among donors and peptides.
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Figure 5: Peptide-specific expansion of CD8"* T cells
Data from one stem cell graft expansion driven by GLC peptide presented on HLA-A*02:01
are shown as an example. Plots were pre-gated on live, CD45*, CD3* lymphocytes. Modified

from Fig. 1, Lammoglia Cobo et al. 2022

Clonal T cell expansion patterns are donor- and peptide-dependent

We single cell index-sorted tetramer-binding CD8™* T cells from in vitro stimulated cells
and sequenced their TCRa- and 3 chains. We observed two different patterns regard-
ing the number and frequency of expanded T cell clones: i) expansions with a single
dominant clone of frequency above 40% in clonally expanded cells (example from 5
of 13 expansions in Fig. 6A, left pie chart) and ii) oligoclonal expansion (example from
8 of 13 expansions in Fig. 6A, right pie chart). Numbers and sizes of expanded T cell

clones varied among donors and peptides used for stimulation (Fig. 6B).
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Figure 6: Clonal expansion after peptide stimulation
(A) Example of an expansion with a single dominant clone (YPL) and an oligoclonal expansion
with a variety of less dominant clones (EPL). n= number of clones per graft after peptide

stimulation. Percentage indicates frequency of the most dominant clone. (B) Frequencies of
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individual clones among total identified clones per expansion per sample. G= graft number.
Modified from Fig. 2, Lammoglia Cobo et al. 2022

« Dominant T cell clones are target peptide-specific
To test TCR peptide specificity, we re-expressed TCRs of 17 dominant T cells cover-
ing specificities for EBV latent and lytic antigens on 58a3- hybridoma cells with NFAT-
driven GFP. Sixteen out of seventeen TCR-recombinant cell lines were activated
when co-incubated with target peptide-loaded miniLCLs expressing the required HLA-
molecule (Fig. 7). No signal was detected with non-target peptides or when HLA-mis-

matched miniLCLs were used as antigen-presenting cells.

100 plate-bound
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Figure 7: Selected TCRs are target-peptide specific

TCR-recombinant 58a 3" hybridoma cells were co-cultured with miniLCLs loaded with target
or non-target peptide. Plate-bound anti-mouse CD3 stimulation was used as positive control.
GFP expression indicated TCR-dependent T cell activation. Modified from Fig. 3, Lammoglia
Cobo et al. 2022

% TCR-recombinant lymphocytes recognize EBV* LCLs

Once we confirmed target peptide specificity, we tested whether TCR-recombinant T
cells recognized EBV-infected cell lines. To strengthen the translational approach, we
selected 7 TCRs for re-expression in third-party human PBLSs.

Three HLA-B*35:01- and four HLA-A*02:01-restricted TCRs were transduced in hu-
man PBLs with an average 34% (range 17.9% - 55.6%) of recombinant TCR expres-
sion in CD8" T cells. TCR-recombinant T cells were activated by HLA-B*35:01* (BO1-
LCL and DJS-LCL) or HLA-A*02:01* (BO3-LCL, DJS-LCL, and JY-LCL) LCLs, as
measured by CD137 expression and IFN-y production. Non-transduced T cells were
used as a negative control (Fig. 8). One recombinant TCR was used to characterize
T cell activation in more detail by using HLA-mismatched LCLs, target peptide-loaded
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LCLs, and additional readouts (CD107a expression and TNF-a and Granzyme B se-
cretion in cell culture supernatant). This analysis confirmed specific activation of T
cells transduced with EBV peptide-specific TCRs by LCLs (Fig. 9).
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Figure 8: TCR-recombinant PBLs recognize EBV-infected cell lines

PBLs were transduced with three HLA-B*35:01- and four HLA-A*02:01-restricted TCRs and
co-cultured with LCLs. CD137 expression and IFN-y production were measured as readouts
of T cell activation. Co-incubation of HLA-B*35:01-restricted, EPL-specific TCR is shown as
an example for 3 independent experiments. Bars show mean * standard error. * p<0.05 by

Welch two sample t-test. Modified from Fig. 4, Lammoglia Cobo et al. 2022
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Figure 9: T cell activation by EBV* LCLs is peptide- and HLA-dependent
hL-EPL11A7 and non-transduced T cells were co-cultured with HLA*35:01* BO1-LCLs or
HLA-mismatched JY-LCLs alone or loaded with 5uM EPL (target peptide). CD137 and

CD107a expression and IFN-y, Granzyme B, and TNF-a secretion in cell culture supernatant



Results 17

were measured as readouts. Bars show mean * standard error of triplicates. Modified from

Supp. Fig. 7, Lammoglia Cobo et al. 2022

3.3 Article 3[43]

X/
o

Multimer-binding CD8* T cells expand after peptide-stimulation

After stimulation of 600 million PBMCs with immunogenic EBV-derived peptides, ab-
solute T cell numbers doubled from 315 million to 631 million with a relative frequency
increase from 53% to 83% of all leukocytes. Of note, CD8* T cells increased 5.7-fold,
from 87.6 to 500 million cells (Fig. 10A).

Within the CD3*CD8" T cell compartment, cells that bound multimers loaded with
EBV-derived peptides RAK, EPL, and HPV increased 37.8-, 21.9-, and 17.3-fold, re-
spectively (Fig. 10B). After peptide stimulation, CD8* T cells shifted towards an effec-
tor memory phenotype (CCR7-CD45RA").
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Figure 10: T cell expansion after peptide stimulation in the cellular product

(A) Relative frequency of subpopulations in Leukocytes, T cells, and CD8* T cells. (B) RAK,
EPL, and HPV multimer staining before (day 0) and after (day 9) peptide stimulation. Modified
from Fig. 1, Lammoglia Cobo & Ritter et al. 2022

EBV peptide-specific clones dominate the TCR repertoire

Sequencing of 100 ng DNA (approximately 14,500 T cells) from the T cell product
before (day 0) and after peptide stimulation (day 9) revealed a strong expansion of V[3
segments VB6 and VB7 after peptide stimulation. V6 was the most dominant rear-
rangement in EPL and HPV multimer-sorted populations, while V34 and V37 were the

most frequent ones in RAK-sorted cells. While the most dominant clonotype on day 0
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X/

had a relative frequency of 1.4%, the most dominant one on day 9 had 14.5%, indi-
cating a strong selection process in the T cell product.

We found 327 EPL, 341 RAK, and 313 HPV multimer-binding clonotypes in the cellu-
lar product on day 9. Gating for multimer sort was stringent enough to achieve a purity
above 98%; however, contaminant and overlapping clonotypes with minor frequencies
still appeared. To remove unspecific multimer binding and characterize clones as pep-
tide-specific, we used additional frequency and ternary exclusion criteria of the enrich-
ment ratio for all three multimers. From 471 TCRs identified in the cellular product,
these criteria led to the identification and characterization of 40 EPL-, 28 RAK-, and 9
HPV-specific T cell clonotypes, which covered 15.1%, 30.3%, and 29.5% of total
reads, respectively (Fig. 11).

cellular product

471 TCRs
Others EPL-specific
394 TCRs 40 TCRs
25.2% 15.1%
RAK-specific HPV-specific
28 TCRs 9 TCRs
30.3% 29.5%

Figure 11: Identification of peptide-specific TCR clonotypes in the cellular product
Modified from Fig.2, Lammoglia Cobo & Ritter et al. 2022

EBV-specific T cell clones survive long-term in vivo after adoptive transfer

Before adoptive transfer, the patient had an EBV infection that reached a peak of
140,000 DNA copies/pl in blood on day 89 post-transplant. As major symptoms per-
sisted despite treatment of EBV viremia with DLI and Rituximab, the patient received
the adoptive transfer of EBV-specific cells on day 105 post-transplant. Along with an
initial peak of CD8* T cells on day 113, there was no further EBV reactivation after

transfer (Fig. 12).
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Figure 12: Patient EBV viremia and CD8* T cell levels post-engraftment
Modified from Fig. 3, Lammoglia Cobo & Ritter et al. 2022

TCRp bulk sequencing of PB on days 60, 120, 180, and 232 post-transplant were

used to monitor the fate of adoptively transferred, EBV-specific T cells. On day 60,

prior to T cell transfer, number of EBV-specific T cells remained low. After adoptive

transfer on day 105, we observed a substantial expansion of EBV-specific T cells on

day 120. The frequency of EBV-specific cells slowly decreased after this point (Table

3, Fig. 13). As no further EBV reactivation was detected after day 110, we conclude

only few T cell specificities survive long term and contribute to EBV control.

Table 3: Follow-up of EBV-specific T cells after adoptive transfer

EPL-specific T cells RAK-specific T cells HPV-specific T cells
sz:/ts- No. TCR | frequency No. TCR frequency | No. TCR | frequency
. clono- of reads clono- of reads clono- of reads

types (%) types (%) types (%)
60 2 3.67 4 4.78 0 0.00
120 34 15.43 21 5.06 6 2.37
180 33 11.05 21 3.92 5 2.45
232 34 7.09 18 1.21 3 0.19

Number of peptide-specific clonotypes and percentage of reads from CD8* T cell samples. Adoptive

transfer of EBV-specific T cells took place on day 105 post-transplantation (post-Tx). Modified from
Supp. Table 5, Lammoglia Cobo & Ritter et al. 2022
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Figure 13: Frequency of peptide-specific T cells before and after adoptive transfer
Heatmap shows the frequency of reads from single peptide-specific T cell clonotypes in total
CD8* T cells. Each horizontal line represents a single clone. Clones identified as D indicate
the peptide-specific clone with the highest frequency in the cellular product. Modified from Fig.
4, Lammoglia Cobo & Ritter et al. 2022
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4. Discussion

4.1 Short summary of results

In this work, my goal was to identify EBV peptide-specific TCRs for adoptive transfer of
TCR-transduced T cells after alloSCT. It was therefore necessary to i) establish a meth-
odology to determine TCRa- and 3 sequences at single cell resolution, ii) identify and test
re-expressed EBV-specific TCRs for clinical potential, and iii) understand long-term sur-
vival and associated viral control of adoptively transferred, EBV-specific T cells.

In Article 1 [41], | learned a methodology previously established in our lab to determine
immune phenotype and TCR sequences at the single cell level [44]. In Article 2 [42],
single cell TCR sequencing and TCR re-expression were used to identify 16 EBV peptide-
specific TCRs. Seven of these TCRs were transduced in third-party T cells and TCR-
recombinant T cells recognized EBV-infected LCL. In Article 3 [43], we tracked in vitro
expanded, EBV-specific T cells in an alloSCT patient after EBV reactivation. Long-term
survival of few EBV peptide-specific T cell clonotypes was associated with reconstitution
of EBV-specific immunity and protection against the virus. The patient died of systemic
HSV-1 reactivation (an EBV-unrelated cause), thus emphasizing the importance of

prophylactic strategies for viral control in a post-transplant context.

4.2 Interpretation of results

We had two starting materials available for EBV peptide-specific T cell expansion: G-
CSF-mobilized stem cell grafts (Article 2 [42]) and non-mobilized PBMC (Article 3 [43]).
Stem cell grafts had several advantages: There are plenty of CD8* T cells; no further
collection of donor samples is required (especially to avoid a second apheresis); and HLA
haplotyping and EBV serostatus are readily available. However, when unavailable, PBMC
proved to be an equally good source of EBV-specific CD8* T cells [30].

Peptide stimulation of donor material led to a strong expansion of pMHC multimer-bind-
ing, CD8* T cells (up to 74.8% of all TCR reads in the cellular product of Article 3 [43])
without the need of antigen-recombinant APC. These peptide-stimulated cells served as
either cellular product for adoptive transfer (Article 3 [43] and clinical study EudraCT
2012-004240-30) or as a source to identify EBV-specific TCRs (Article 2 [42]).

Despite the high level of purity in pMHC multimer* cell sorting, non-target clones appear
probably either due to unspecific multimer binding or contamination. To exclude them, we
used two different approaches: In Article 3 [43], we applied (i) stringent gating for a pMHC

multimer sort purity above 98%, (ii) a higher frequency cutoff before and after multimer
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sort, and (iii) a ternary exclusion criterion with an enrichment ratio at least 10 times higher
for one of the multimers to exclude multimer unspecific bindings. While this approach
removed most contaminants and cells with unspecific pMHC binding, an additional
method was required to test selected TCRs for functionality and peptide specificity.
Hence, in Articles 1 [41] and 2 [42], we sorted and sequenced T cells at the single cell
level and then re-expressed selected TCRs in the CD8* 58a3" reporter cell line. Single
cell sequencing has the advantage of yielding naturally occurring paired TCRa- and 3
sequences for clonal characterization and TCR re-expression. Using this method, we
identified EBV peptide-specific TCRs for adoptive transfer.

We developed two strategies to monitor EBV-specific T cells: In Article 3 [43], bulk se-
quencing of TCRp variable and joining segments from 14,500 T cells was used to track
expanded clonotypes from the cellular product in patient's PB samples. In Article 2 [42],
the TCR constructs contained a chimeric mouse constant to monitor TCR-recombinant T
cells using an anti-mouse TCRp antibody. These two methodologies give us the possibil-

ity to track adoptively transferred, EBV-specific T cells in patient's PB samples.

4.3 Embedding the results into the current state of research

There is a strong correlation between the presence of adoptively-transferred EBV-specific
T cells and the absence of EBV-associated lymphomas [50], EBV reactivation [51], and
the control of active infections [52,53]. For this reason, survival of either in vitro expanded
or TCR-recombinant, EBV-specific T cells and absence or control of EBV-associated
complications indicate prophylactic or therapeutic success after adoptive transfer.

To identify EBV-specific TCRs, sequencing methodologies can use donor T cell samples
without prior in vitro stimulation [54,55] or stimulated with either EBV-antigen-recombinant
APC [29,40] or EBV-infected cell lines [28] as starting material. We decided to stimulate
T cells in vitro with synthetic peptides to specifically expand low frequency EBV-specific
T cell clones and to increase single cell sort and sequencing efficiency with an enriched
target population. Despite using peptide-loaded target cells, TCR-recombinant T cells
were able to recognize EBV-infected LCLs and, therefore, naturally processed and pre-
sented peptides.

In our articles, pMHC multimer usage was restricted for analytic purposes and pMHC
tetramers were used as part of the TCR discovery platform. Previous studies used a mul-
timer-based approach to generate virus-specific T cell products [56-59]; however, our
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cellular product in Article 3 [43] was adoptively transferred without preselection of multi-
mer-binding cells [30] on two premises: 1) It is currently debated whether multimer-bind-
ing requires a higher affinity than T cell activation [60] and would therefore introduce a
bias and 2) multimer-binding may lead to prolonged T cell activation or altered function-
ality [56,61]. Still, pMHC multimers were essential to characterize epitope-specific com-
partments in detail in Article 3 [43] and to sort epitope-specific T cells for TCR identifica-
tion in Article 2 [42].

4.4 Strengths and weaknesses of the studies
To select TCRs for potential clinical application, we focused on TCRs targeting immu-
nodominant EBV-derived epitopes presented on selected HLAs. However, we were sur-
prised by the large TCR diversity and minimal TCR overlap among different donors for
TCRs with the same peptide specificity and HLA restriction. In Article 2 [42], we observed
T cell clonotype selection and clonal expansion patterns after peptide stimulation to be
donor specific, with only a few shared TCRs among donors. Due to this high diversity of
EBV-specific T cell clones, readily available TCRs with known specificity and which have
been tested for EBV* cell line recognition may offer a more consistent therapeutic ap-
proach for TCR re-expression and adoptive T cell transfer. This potentially curative ap-
proach is of particular importance in the case of EBV-seronegative donors with no EBV-
specific memory compartment available.
The mains strengths of our strategies are:
+ Identification of EBV-specific TCRs with clinical potential
o Epitope specificity is demonstrated by activation of recombinant reporter
cell lines in co-culture with target peptide-loaded cells.
0 Selected TCRs are not alloreactive.
0 TCR-transduced PBLs recognize EBV* LCLs.
% TCR clonotype identification through:
o0 molecular characterization of the cellular product and TCR bulk sequenc-
ing (Article 3 [43]),
o single cell index sorting and sequencing (Articles 1 [41] and 2 [42]), and
0 mMTCRp FACS staining (Article 2 [42]).
+« Flexibility of the manufacturing protocol to incorporate peptides from different an-
tigens, viruses, or presented on different HLA-types
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% Clinical translation of TCR-recombinant T cells available for patients with EBV in-
fection, EBV-reactivation, or EBV-associated malignancies, not restricted to a
post-alloSCT context

The main limitation of our approach is dependency on available data concerning immu-
nodominant epitopes. For example, information on HLA restrictions is mostly derived from
studies on populations of European descent. Despite this, EBV is a well-characterized
virus for which several immunodominant peptides have been identified and for which we
expect scientific knowledge, including from less-well represented population cohorts, to
keep expanding in the future.

While stimulation with high peptide concentrations may result in the expansion of irrele-
vant TCR clonotypes, we incorporated TCR re-expression in reporter cell lines and co-
culture of TCR-recombinant T cells with LCLs to validate peptide specificity and possible
clinical relevance. Our methodology proved to be highly selective, as 16 of 17 tested
TCRs were peptide-specific and T cells transduced with seven selected TCR were acti-

vated when co-cultured with EBV-infected cell lines.

4.5 Implications for practice and/or future research

The guestion remains as to which is the optimal TCR candidate for re-expression and
adoptive transfer. A combination rather than a single TCR will be the best approach for
clinical translation and, for improved survival, T cell transfers may even have to include
CD4* helper T cells. The complex pathogenesis of EBV-associated diseases involves
progression through several latency and lytic phases, with different antigen expression
patterns appearing in EBV-associated malignancies [62—64]. Considering EBV has co-
evolved with humans over thousands of years and produces a life-long infection in hu-
mans, a combination of T cell clones with different avidities, specificities, and phenotypes
remains in the T cell memory compartment and controls EBV in its different stages [65].
Polyclonal T cell expansion specific for a single epitope indicates in vivo selection of TCRs
with different affinities for one single specificity. Therefore, future studies can help clarify
the role of single EBV-specific T cells and their combined dynamics during EBV latency,
EBV lytic infection, and development of EBV-associated malignancies.

As we tracked adoptively transferred cells in the patient from Article 3 [43], we noticed
that only few peptide-specific T cell clonotypes survived long-term and mediated EBV
control. This points to the importance of carefully selecting several TCRs for re-expres-

sion and possible need for repeated adoptive T cell transfer.
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GMP-compliant protocols for a retroviral TCR transduction into human T cells have al-
ready been established [66,67] and will facilitate clinical translation as a gene therapy
according to the Advanced Therapeutic Medicinal Products (ATMP) of the European
Medicines Agency (EMA). Identified TCRs can therefore be compiled into an HLA-re-
stricted TCR library for transduction into third-party donor cells to produce readily availa-
ble, off-the-shelf products with a manufacturing and clinical license.

In this project, we selected four HLA-A*02:01 and three HLA-B*35:01-presented EBV-
derived peptides to establish an efficient platform for the identification of EBV-specific T
cells. Our methodology proved to be very robust, as 16 out of 17 reconstructed TCRs
were target peptide-specific. With this information, the flexibility of the manufacturing
pipeline easily allows us to expand our peptide library for additional EBV antigens, HLA-
restrictions, and transplant-relevant viruses such as CMV, Adenovirus, and Human Her-
pesvirus 6 (HHV-6). Finally, as PTLD is not limited to alloSCT but also present in adult
solid organ transplantation [68], our cellular products can be used in different post-trans-

plantation or immunocompromised scenarios as required.
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5. Conclusions

Adoptive transfer of EBV-specific T cells offers the possibility to reconstitute cellular im-
munity against EBV, protect patients against EBV-related complications without compris-
ing B cell immmunity, and therefore contribute to a better outcome post-transplant. In this
project, we were able to establish a robust pipeline for the discovery of EBV-specific TCRs
of clinical potential. The ability to easily exchange peptides in the process allows targeting
of different antigens, HLA-restrictions, and potentially other viruses. TCRs of defined pep-
tide specificity and HLA restriction can then be stored in TCR libraries to prepare readily
available off-the-shelf products.

Using single cell sorting and sequencing of in vitro peptide-stimulated cells, we identified
EBV peptide-specific TCRs which, transduced in third party T cells, recognize EBV-in-
fected cell lines. Simultaneously, we observed the long-term in vivo survival of adoptively
transferred EBV-specific T cells and the associated immune control of EBV in a case
study. Based on these finding, we propose adoptive transfer of virus-specific T cells trans-
duced with carefully selected TCRs as a prophylactic and therapeutic approach to prevent

EBV-associated complications.
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ABSTRACT

The degree and type of T cell infiltration influence rectal cancer prognosis regardless of classical tumor staging.
We asked whether clonal expansion and tumor infiltration are restricted to selected-phenotype T cells; which
clones are accessible in peripheral blood; and what the spatial distribution of their target antigens is.

From five rectal cancer patients, we isolated paired tumor-infiltrating T cells (TILs) and T cells from
unaffected rectum mucosa (Tyy) using 13-parameter FACS single cell index sorting. TCRaf sequences,
cytokine, and transcription factor expression were determined with single cell sequencing. TILs and Tym
occupied distinet phenotype compartments and clonal expansion predominantly occurred within CD8*
T cells. Expanded TIL clones identified by paired TCRaP sequencing and exclusively detectable in the tumor
showed characteristic PD-1 and TIM-3 expression. TCRR repertoire sequencing identified 49 out of 149
expanded TIL clones circulating in peripheral blood and 41 (84%) of these were PD-1" TIM-3". To determine
whether clonal expansion of predominantly tumor-infiltrating T cell clones was driven by antigens unigquely
presented in tumor tissue, selected TCRs were reconstructed and incubated with cells isolated from
comesponding tumor or unaffected mucosa. The majority of clones exclusively detected in the tumor
recagnized antigen at both sites.

In summary, rectal cancer is infiltrated with expanded distinct-phenotype T cell clones that either
i} predominantly infiltrate the tumor, i) predominantly infiltrate the unaffected mucosa, or i) overlap between
tumor, unaffected mucosa, and peripheral blood. However, the target antigens of predominantly tumor-
infiltrating TIL clones do not appear to be restricted to tumor tissue.
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Introduction

The incidence of colorectal cancer ranks fourth in men and
third in women among all cancer entities and the five year
survival rate is approximately 64% for all stages combined.'
Among a variety of prognostic parameters, the type and
density of tumor-infiltrating T cells (TILs) have been shown
to affect clinical outcomes and overall survival independent of
classical tumor-node-metastasis (TNM) staging.>”’

T cell function is determined by T cell receptor (TCR} speci-
ficity and the expression patterns of characteristic transcription
factors and cytokines.*'* Depending on their differentiation
state, T cells can contribute to recognition and elimination of
(foreign} antigens, autoimmunity, induction of tolerance, and
effective B cell responses. T cell-mediated tumor control relies
on the integration of antigen-dependent mechanisms (T cell
specificity} and mechanisms that are not directly antigen-
dependent (immune checkpoints, microenvironment).

According to current understanding, the role of TILs
includes the recognition and killing of tumor cells based on
their presentation of mutation-derived neo-antigens. In fact,
subsets of T cells from colorectal cancer patients have been
shown to recognize neo-antigens. Patients with microsatellite
instability, who can be expected to harbor high mutational
loads, have increased numbers of TILs and better clinical
outcomes.'™"* Furthermore, the therapeutic success of adop-
tively transferred in vitro-expanded neo-antigen-specific
T cells highlights their outstanding role in cancer control.'”
In addition to neo-antigens, certain unmutated self-antigens
have been shown to induce tumor-directed T cell responses
even across different patients.'®

T cell function is critically dependent on co-stimulatory
and co-inhibitory signals. Expression of immune checkpoint
molecules (PD-1 and TIM-3 among others) on colorectal
cancer-infiltrating T cells suggests an exhausted immune
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phenotype interfering with anti-tumor T cell function.'”
However, treatment of colorectal cancer with antibodies
against PD-1 or its ligand PD-L1 has not been effective to
date except in patients with a high mutational
burden.lS.H.l&lg

Defining the functions of different phenotype TILs and the
spatial distribution of their target antigens is critical for under-
standing the composition of immune cells in the cancer-
associated microenvironment and for the design of novel
immunotherapies. We asked whether clonal expansion and
tumor infiltration are restricted Lo selecled phenotype and speci-
ficity T cells, and which clones are accessible in the peripheral
blood of rectal cancer patients. To minimize phenolype diversity
due to location-dependent molecular and clinical features in
colorectal cancer,”™' we restricted the study to rectal cancer
patients. Our technologies for single cell phenolyping and TCR
sequencing™ *'  comparatively defined clonal expansion-
associated immune phenotypes of T cells from cancer tissue and
adjacent unaffected mucosa from five trealment-naive patients al
the single cell level. The identified clones were tracked in the
peripheral blood of the same patients at the time of surgical
tumor removal and one follow-up visit using multi-parameter
flow cytometry, TCRB repertoire and single cell sequencing.”
Selected T cell clones were recombinantly expressed®® and incu-
bated with cells isolated from tumor and unaffected mucosa of the
same patients to determine the spatial distribution of the corre-
sponding target antigens (Figure 1 for study specimens and
workflow).

Results

Tumor infiltration is associated with characteristic T cell
immune phenotypes

Rectal cancer shapes its microenvironment by attracting and
re-programming selected types of (immune) cells, supporting
tolerance and immune evasion. We hypothesized that
immune phenotypes of tumor-infiltrating T cells (TILs)
would be substantially different from T cells infiltrating the
adjacent unaffected mucosa (Tyn).

peripheral blood
five reclosigmoidal
cancer palients

follow-up (d46-106) — PBMC at follow-up

surgery (d0) ——————» PBMC at d0

Multi-parameter flow cytometry (FACS) was used to define
T cell immune phenotypes from TILs and Ty, isolated in parallel
from surgical specimens of five treatment-naive rectal cancer
patients (Figure 1, Table 1). The FACS panel included 13 markers
for the identification of major states of T cell differentiation and
selected immune checkpoint molecules (Suppl. Table 1). Using
t-stochastic neighbor embedding (1-SNE), we could identify phe-
notype compartments occupied by i) TILs, ii) Ty, and iii) T cells
with phenotype characteristics overlapping between both sites
(Figure 2(a)). Although the degree of phenotype overlap varied
between individual patients, these three compartments were con-
sistently identified in all patients (Suppl. Figure 1). CD8" T cell
phenotypes were especially distinct between TILs and Ty
(Figure 2). While CD38 and PD-1 were expressed on significantly
more CD8* TILs when compared to Tyyy, B- and T-lymphocyte
altenuator (BTLA) was expressed at higher frequencies on CD8*
Ting (Figure 2(b,c)). The immune checkpoint molecule TIM-3,
and CD57, a marker associated with exhausted-phenotype T cells,
were also enriched on TILs compared o Ty, although this
finding did not reach statistical significance.

Clonal expansion pred tly occurs in T cells with

distinct immune phenotypes

Previous studies have reported clonal expansion of CD4" and
CD8* TILs in colorectal cancer.'®*** We asked whether
clonal T cell expansion was associated with particular immune
phenotypes and applied our lechnology for single cell paired
TCRap and phenotype sequencing in combination with 13-
parameter FACS index sorting™ to four selected rectal cancer
patients. Randomly selected single TCRap® TILs and Ty
were index-sorted for single cell phenotyping and sequencing
(Figure 3(a), Suppl. Figures 2 and 3). Clonal expansion was
defined as the detection of at least two T cells with identical
TCRap complementarity-determining region (CDR})-3 amino
acid sequences. Numbers of expanded clones were not sig-
nificantly different between TILs and Ty (Figure 3(b)).
Independent of tissue location, expanded T cell clones were
predominantly CD8" (134 of 149 TIL clones and 85 of 105
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Figure 1. Study specimens and workflow. The distance between the tumor margin and the specimen of unaffected mucosa tissue was > 4 am for all cases but varied

between patients. PBMC: peripheral blood mononudlear cells, TiLs: tumor-infiltrating T cells, Tyw: T cells from unaffected mucosa, TCR: T cell receptor, d: day after

surgery.
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Table 1. Patient characteristics.

ONCOIMMUNOLOGY (@) 15864093

Pt Sex Age (years} Histology

Tumor stage M3l

HLA class 1 Clinical follow-up

1 f 80 Moderately differentiated adenocarcinoma  pT3 pN2a (4/12) MO G2 RO LO VO No  A* 02:01, 11:01  no follow-up data available
B* 08:01, 15:01
C* 03:04, 07:00

2 m 76 Mucinous adenocarcinoma pT3{m) pNOe (0/14) MO RO L0 VO No  A* 01:01, 68:01  alive +20 months, relapse-free
B* 51.01, 52:0
CF 04:01, 12:02

3 0m 57 Moderately differentiated adenocarcinoma  pT3 pMNO (0/13) MO G2 RO LO VO No  A* 32:01, 33:01  alive <20 manths, relapse-free
B® 07:05, 40:06
C* 15:02, 15:05

4 m 62 Moderately differentiated partially mucinous  pT2 pNO (0/16) MO G2 RO LO VO No  A* 24:02, 26:01  no follow-up data available

{< 309%) adenocarcinoma B* 13:02, 18:00

C* 06:02, 07:01

5 m 77 Moderately differentiated adenocarcinoma  pT2 pNO (0/14) MO G2 RO LO VO  No  nd. death +1 month

due to complication

Pt: patient, f: female, m: male, MSI: microsatellite instability, LO: no lymphatic vessel invasion, ¥0: no venous invasion, {m}: multiple primary tumors in a single site, n.

d.: not determined

Ty clones) (Figure 3(c)). Clonally expanded TILs could be
distinguished by phenotype from clonally expanded Ty
(Figure 3(d), Suppl. Figure 4), as clonally expanded TILs
were significantly more frequently CD38", PD-1%, and TIM-
3% (Figure 3(e})). IFNG, PRFI, and GZMB expression was
significantly different between clonally expanded and non-
expanded T cells (Suppl. Figure 5) and followed the same
patterns in TILs and Ty, Notably, the transcription factor
FOXP3 was predominantly expressed in non-expanded TILs
(Figure 3(a,f)).

Selectively tumor-infiltrating T cell clones express the
checkpoint molecules TIM-3 and PD-1 and rarely circulate
in peripheral blood

We asked whether subsets of clonally expanded TILs were pre-
ferentially detectable in the tumor, whether they overlapped with
adjacent unaffected mucosa or peripheral blood, and to what
extent circulation in peripheral blood was affected by complete
tumor removal. Peripheral blood mononuclear cells (PBMCs)
were isolated from each patient at the day of surgery and at one
follow-up visit (day 46-106 after surgery, Figure 1). Bulk CD8'
and CD8™ T cells were FACS-sorted (on average 5.8 x 10° and
1.2 % 10° cells per patient respectively, Suppl. Table 2, Suppl. Fig.
6) and their TCRP repertoires were sequenced using deep
sequencing. As prior experiments had shown that clonal T cell
expansion in TILs and Ty predominantly occurred in the
CD8" compartment (Figure 3(c}}, we focused on CD8" periph-
eral blood T cells for repertoire sequencing.

We detected on average 962 (range 343-2,244) individual
CD8" T cell clones per time point and patient by peripheral
blood TCRp repertoire sequencing (Suppl. Table 2} TCR
sequences from single TILs, Ty, and the corresponding periph-
eral blood showed substantial clonal overlap within individual
patients but not a single TCR overlapped between different
patients (Figure 4(a}}. From a total of 149 expanded TIL clones,
29 (19.5%) were detectable in the unaffected mucosa and 49
(32.9%) in the peripheral blood, whereas 92 (61.7 %) were exclu-
sively detectable among TILs (Figure 4(a,b)). Predominantly
tumor-infiltrating clones expressed PD-1 and TIM-3 (42.6%
and 21.2% of the clones respectively), whereas TIL clones that
overlapped with unaffected mucosa and/or peripheral blood were
PD-1" TIM-3" (Figure 4(c}). When focusing on the TIL clones

detectable in the peripheral blood, PD-1 and TIM-3 expression
was mostly absent (84% of the clones, Figure 4(d}).

The accurate determination of clonal overlap between T1Ls
and Ty relies on the stability of immune phenotypes over
time and the detection limit of our sequencing assays.

The immune phenotypes of peripheral blood CD8* T cells,
in particular CD38, integrin beta-7, and CD45RA expression,
were substantially different from TILs (Figure 4(e}), albeit stable
over time as shown for CD4 and CD45RA as examples (Figure 4
(f)). PD-1 and TIM-3 expression was enriched on clones selec-
tively infiltrating the tumor (Figure 4(c)} and rare in peripheral
blood (<1.4% and <6.6% of CD&" T cells for PD-1 and TIM-3,
respectively, Figure 4(e})). To focus on these rare populations,
we specifically sorted single peripheral blood T cells with
increased PD-1 or TIM-3 expression (184 cells per population
and patient, Suppl. Fig. 7} and sequenced their TCRs using
single cell sequencing (Suppl. Tab. 3}. Clones were determined
to be absent in the peripheral blood if they could not be detected
by TCRp repertoire or single cell sequencing (Figure 4(ab)).
The dominantly expanded CD8" T cell clones in the peripheral
blood were stable across different time points and clones with
a frequency of >0.2% in peripheral blood at the day of surgery
(day 0) were consistently detectable in the follow-up samples
(Figure 4(g)} regardless of surgical tumor removal. This suggests
that cues other than tumor neo-antigens are likely to be the
drivers of their expansion.

Expanded T cell clones, irrespective of their origins,
recognize antigens present in corresponding tumor and
unaffected mucosa tissues

PD-1" TIM-3" expanded T cell clones predominantly infil-
trated the tumor. We asked whether the presentation of
antigens driving clonal expansion of predominantly tumor-
infiltrating T cells was restricted to tumor tissue.

Based on their frequencies, we chose four T cell clones
exclusively detected in the tumor and three clones over-
lapping between tumor, unaffected mucosa, and peripheral
blood (Figure 5(a}, Table 2}. Their TCRs were reconstructed
and functionally expressed on 58a f~ T hybridoma cells
that had previously been transfected with GFP under the
control of nuclear factor of activated T cells (NFAT)** and
human CD8af chains.*® GFP expression and mouse 11-2
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dimension 1

100
2 L] O
8 75 $ -
'_
*o 50 —— I
a
: 5
5 25 .
2 . 0 éi :
0 e — e —
CD38 PD-1 TIM-3 BTLA CD57 CD28 ll‘ltetgn;;l CD45RA CCR7
0 Tow s
(o]
5200 326] ,5]498 282 {247 28.0
Tum
E 16.4 5.46 376
5 o 10t 10t 100 10° 0 0° 10t 10°
§ w708 436 36.2] 5261 2456
4
TiLs b
103‘
10%4 "
_@z} 348 : 245 36.0
i 103 10‘1 'JO5 0 W0 104 105 1] 103 10 105
CD38 PE-Cy7 PD-1 PerCP-Cy5.5 BTLA PE-CF594

Figure 2. Subsets of TILs and Ty, show distinct immune phenotypes. TILs and Ty pairs from five patients were stained in parallel with a multi-parameter FACS
panel. {a) t-5NE visualization distinguished TiLs from Ty, and identified immune phenotype compartments i} predominantly occupied by TILs, i) predominantly
occupied by Ty, or iii) occupied by T cells from both locations. Each data point represents one single cell from patient 3 as an example. {b) Detailed immune
phenotypes of CD8” TILs and CDB™ Typ from all n = 5 patients (n = 3 for TIM-3, n = 4 for CD28 and BTLA) determined by FACS were visualized as box plots.
* p < 0.05, Student’s t-test (c) shows detailed FACS plots for the parameters significantly differently expressed between TILs and Ty from patient 3 as an example.
Gates for CD38 and BTLA were set based on expression of the respective markers on TCRap™ cells. PD-1 gates were adjusted to the 98™ expression percentile on

TCRap™ cells. All FACS plots were pre-gated on single live TCRaB" lymphocytes.

production were detected as readouts for antigen-dependent
T cell activation. After stimulation with plate-bound anti-
mouse CD3 (positive control), the seven 58a™p~ cell lines
expressing recombinant TCRs were on average 77% GEP*

and produced on average 8,613 pg/ml murine IL-2 (Suppl.
Fig. 8). To test whether target antigens were presented,
TCR-recombinant 58a™p~ cells were co-incubated with left-
over cells isolaled from tumor and unaffected mucosa
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Figure 3. Clonal expansion-associated phenotype patterns of TILs and Ty, (a) Parallel next generation sequencing of TCRaf, transcription factor, and gytokine genes
from amplified cONA of single TILs and Ty, (Suppl. Figure 2 for sorting gates). The sequencing and FACS data of single cells are arranged in columns with each
column representing cne single cell. The top bar indicates TCR sequences; adjacent calumns with the same color in the top bar indicate single cells with identical
CDR3 amino adid sequences of their TCRap genes. Clonal expansion was defined as the detection of at least two cells with identical TCRap sequences. The lower part
of the heatmap is derived from the corresponding FACS index sort data and fluorescence intensities are color-coded from grey (lowest expression) to red (highest
expression) for the indicated parameters. The heatmap shows data from patient 1 as an example (see Suppl. Figure 3 for detailed data of all patients in the study). (b}
shows numbers of expanded T cell clones per patient. Each data point represents one patient (black, blue, red, green for patients 1, 2, 3, 4, respectively). (c) shows
D8 expression on expanded T cell clones. (d) Single TCR-sequenced TILs and Ty from patient 1 as an example are visualized with t-5NE. Clonal expansion was
enriched in CD8" compartments. (e} shows selected markers significantly differentially expressed between clonally expanded TILs and Ty, The left panel shows data
from all patients summarized as box plots. Each data point in the FACS plots {data from patient 1 as an example) represents one single cell belonging to an
expanded T cell dlone. An individual clone was considered pasitive for a particular marker based on the majarity of cells of the respective clone. Gates for CD38 were
set based on expression on TCRap™ cells. TIM-3 and PD-1 gates were adjusted to the 98™ expression percentile on TCRaR™ cells. {f) shows FOXP3 expression
determined by sequencing in non-expanded T cell clones. Box plots: The lower and upper hinges correspond to the 25™ and 75™ percentiles. The upper and lower
whiskers extend from the hinge to the largest or lowest values respectively, no further than 1.5 x inter-quartile range. Data beyond the end of the whiskers are
plotted individually.

*p < 0.05, **p < 0.01, Student’s t-test
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Figure 4. Clonal overlap between TILs and Ty, is associated with characteristic immune phenotypes. The outer circle shows single cell TCRap sequencing data of TiLs and Ty,
from patients 1-4. Cells with the same TCRaf CDR3 sequences are represented with the same color and cells are ordered by dlone size. Grey represents single non-expanded
T cells. The inner drcle indicates whether a particular T cell clone was detected in peripheral blood by TCRB repertoire or single cell sequencing at any time point. Connectors
indicate clonal overlap between TiLs and Ty, (black if the clone was expanded within TiLs, otherwise grey). (b} Abso]ute numbers o[ overlapping clones between clonally
expanded TILs, Ty {clonally expanded and no ded), and peripheral blood are shown in a Venn di fory 1-4 combined. (c) The left panel shows the frequency
of PD-1 and/or TIM-3 expression on expanded TIL clones also detectable in peripheral blood and/or unaffected mucosa for al patients combined. PD-17 TIM-37 summarizes cells
that were PD-17 and/or TIM-3". PD-17 TIM-3" cells were negative for both markers. FACS plots show data from patient 1 as an example. Each data point represents one single cell
of an expanded T cell dlone. An individual clone was considered positive for a particular marker based on the majority of cells of the respective done. P0-1 and TIM-3 gates were
adjusted to the 98™ expression percentile on TCRap™ cells. {d) shows the frequencies of PD-1 and/or TIM-3 expression on expanded TIL clones detectable in peripheral bload for
all patients combined. PD-17 TIM-37 summarizes cells that were PD-17 and/or TIM-3". PD-17 TIM-3™ cells were negative for both markers. (e) Paired TIL and peripheral blood FACS
phenotype data are visualized as box plots. The lower and upper hinges correspond to the 25™ and 75" percentiles. The upper and lower whiskers extend from the hinge to the
largest or lowest values respectively, no further than 1.5 x inter-guartile range. Data beyond the end of the whiskers are plotted individually. TIL data are derived from alln =5
patients (n = 3 for TIM-3, n = 4 for (028 and BTLA) including n =4 patients for peripheral blood phenotypes. (f] illustrates the consistency of peripheral blood immune phenotypes
over time. (g} shows frequencies of CD&™ peripheral blood T cell clones d 1 with TCR ire sequendng at the day of surgery (d0) and fallow-up. The figure shows
the most expanded dlones covering 80% of all sequendng reads per patient and time point. Each data peint represents one out of 519 dones from all patients combined.

PB: peripheral blood; * p < 0.05, ** p < 0.01, *** p < 0.005, Student’s t-test
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Figure 5. Spatial p ion of target antigens of predominantly tumor-infiltrating expanded T cells. (a} shows the expansion of individual T cell clanes only
detectable in the tumor or overlapping between tumor, unaffected mucosa, and peripheral blood. The figure shows data from all four patients combined and each
data point represents one clone. Clones selected for raconstruction and expression in 58a™ B~ cell lines were highlighted in red. CDR3 sequences and corresponding
patients for each reconstructed clone can be found in Table 2. (b—f) shows fluorescence microscopy of 58-1C10 (as an example for an expanded TCR only detectable
in TILs} unstimulated, stimulated with plate-bound anti-mouse CD3 (positive control), or after co-incubation with cells from the correspanding tumor, unaffected
mucosa tissue, or HLA-mismatched unaffected mucosa (negative contrel). Numbers in parentheses indicate absolute cell numbers for co-incubation. Fluorescence
microscopy was used to screen the entire co-incubation wells for GFP™ cells. (d-f) represent images of single GFP™ cells if any were detectable in the entire well. See
Supplementary Figure 10 for data from all re-expressed TCRs. For detailed cell numbers and culture conditions, see Supplementary Table 4.

Table 2. Spatial distribution and CDR3 amino acid sequences of T cell clones for re-expression on 58a™ B~ cells.

Detected in
TCR label Pt TRAV CDR3 alpha amino acid sequence TRAJ TRBV CDR3 beta amino acid sequence TRBJ TL  Tus PB
13810 2 27401 CAGGVNNNAGHNMLTF 39%01 20-1*01 CSARDLRESTDTOYF 2-3* Yes Yes Yes
11B1 2 8-2*01 CAVEDVEGCYQKEVTF 13*02 2 CASSCGGRASGEGEQFF 2-1*0 Yes Mo Mo
11E7 2 39" CAAPIMEYGNKLVF 47401 10-2*¢1 CASTPGLREKLFF 1-4*01 Yes Mo No
1cio 3 21" CAVTFPNAGNMLTF 39*01 6-6%1 CASSYGARLNTEAFF 1-1*01 Yes Mo No
164 4 13-1"01 CAVTIGTASKLTF 44%0M 29-1*¢1 CSVVGQDYEQYF 2-7*01 Yes No Mo
1A4-1 4 19401 CALSEYGGSQGNLIF 42%01 6-1%01 CASSEASGSWTGELFF 2-2%01 Yes Yes Yes
1A4-2 4 1-2%01 CAVTDSNYQLIW 33" 6-1*01 CASSENSGSWTGELFF 2-2%01 Yes Yes Yes

Pt: patient. PB: peripheral bloed. TRAV: TCRa V-gene and allele. TRAJ: TCRa J-gene and allele. TRBV: TCRP V-gene and allele. TRBJ: TCRE J-gene and allele. TCR-
recombinant 58a"f" cell lines were named “58-TCR label”, e.g. “58-1C10".

tissues (Suppl. Tab. 4 for cell numbers). We detected neither  cell line (Suppl. Fig. 9 as an example). However, by screen-
IL-2 production with ELISA nor GFP expression with FACS  ing with fluorescence microscopy, we could observe single
significantly above background for any TCR-recombinant cell aggregates containing GFP™ cells that could not be
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detected with FACS due to their low frequencies (Figure 5
(b-f)). Of the four expanded TCRs exclusively detected in
tumor tissue (Figure 5(a)), one recognized antigen only
within cells isolated from the tumor (11B7), one recognized
antigen only within cells isolated from unaffected mucosa
(1B4}, and two got activated by cells from both tumor and
unaffected mucosa (1C10 and 11B1, Figure 5(d.e) as an
example, Suppl. Fig. 10A for all re-expressed TCRs}. From
the three expanded TCRs detectable in tumor, unaffected
mucosa, and peripheral blood, two were activated by cells
isolated from both tumor and unaffected mucosa (13B10,
1A4-1), and one got activated only by cells isolated from
unaffected mucosa (1A4-2, Suppl. Fig. 10B).

In conclusion, rectal cancer is infiltrated by expanded
T cell clones that either i} selectively infiltrate the tumor but
are functionally inhibited by the expression of immune check-
point molecules or ii) overlap between tumor, unaffected
mucosa, and peripheral blood, show distinct immune pheno-
types, and, at least the dominant clones, persist after surgical
tumor removal. The antigens underlying selective TIL expan-
sion do not appear to be exclusively presented in tumor tissue.

Discussion

A variety of cellular cancer treatment approaches including adop-
tive T cell transfer, chimeric antigen receptor (CAR} T cells,
immune checkpoint blockade, and bispecific antibodies depend
on efficient, targeted T cell functions. We addressed the following
questions at the single cell level: i) Which are the phenotypes and
presumed functional capacities of rectal cancer-infiltrating T cells,
ii} are particular immune phenotypes associated with predomi-
nant tumor infiltration, iii} which TIL clones are accessible in
peripheral blood, and iv}) what is the spatial distribution of target
antigens of expanded TIL clones?

Data on detailed immune phenotypes of paired TILs and
Tina from the same patients are limited” and often disregard
the exact location of the tumor (different parts of the colon vs.
rectum). Studies addressing clonal T cell interrelatedness at
the single cell level are limited to single cases."®*>”

Irrespective of clonal expansion, we identified tumor infiltra-
tion-associated T cell immune phenotypes. CD38" and PD-1*
T cells were significantly enriched among TILs and we observed
similar trends for TIM-3 and CD57, though they did not reach
statistical significance. PD-1 and TIM-3 have previously been
shown to be expressed on colorectal cancer-infiltrating
T cells,'* however, PD-1-targeting therapies were particularly
effective in tumors with DNA mismatch-repair deficiencies.™
Notably, none of the patients in our study showed features of
microsatellite instability (Table 1}. The role of BTLA, a receptor
involved in regulation of T cell function, has been under debate.
Depending on downstream signaling pathways, BTLA may trans-
mit stimulatory or inhibitory signals possibly accounting for its
controversial roles in malignant melanoma, gastric, and gall blad-
der cancer.***” We show that BTLA was expressed on more than
50% of CD8" T cells isolated from peripheral blood, tumer, and
unaffected mucosa although expression was less on TILs com-
pared to Ty The functional and clinical significance of BTLA
expression on TILs and Typy in rectal cancer has to be determined
in future studies. Data on CD38 and CID57 expression on TILs in

comparison with Ty, are limited but CD38 expression has been
shown to be induced by the tumor microenvironment and can
inhibit CD8" T cell function via adenosine receptor signaling.®
Elevated numbers of CD57" T and NK cells have been reported at
the invasive margins of colorectal cancer.”

Independent from the particular set of markers, which will
be subject to change depending on the selection of parameters
and sample size in future studies, we conclude that immune
phenotypes of TILs and Ty, are substantially different.

Immune phenotypes and functions associated with clonal
T cell expansion can only be reliably studied at the single cell
level. To complement single cell paired TCRaf sequencing,
additional TCRp repertoire sequencing was chosen for selected
research questions. Tissue samples, especially from tumors and
unaffected mucosa, were limited and we were particularly
interested in clonal expansion-associated immune phenotypes.
Therefore, we applied single cell sequencing, which is superior
in terms of efficiency and the parallel determination of single
cell immune phenotypes. Surprisingly, numbers of expanded
clones were not significantly different between TILs and Ty,
While clonal TIL expansion could be tumor-specific/associated,
we assume the cues driving clonal Ty expansion not to be
directly tumor-related. This assumption is based on the major-
ity of expanded Ty clones not being detectable among TILs,
but a substantial amount overapping with peripheral blood
and showing phenotype characteristics of functional, non-
exhausted T cells (PD-17 TIM-37).

In sequencing several hundred single T cells per patient and
tissue type, there remains a chance of falsely determining clones
to be non-overlapping or non-expanded. However, the identi-
fied immune phenotypes were significantly associated with the
assigned status (overlapping vs. non-overlapping}. In summary,
combined single cell flow cytometry and sequencing data suggest
the functional differentiation of clonally expanded TILs towards
tolerance in an antigen-specific fashion by the expression of
immune checkpoint and inhibitory molecules (PD-1, CD57,
CD38). FOXP3 expression in non-expanded TILs can be
assumed to support the tolerogenic microenvironment. Albeit
not clonally expanded, a substantial proportion of CD4" TILs
were CD45RA CCR7'CD28" (Figure 3) characterizing them as
central memory T cells.”*® Their partial expression of TGFB
and FOXP3 mostly in the absence of PRFI, GZMEB, and IFNG
suggests tolerogenic differentiation. The clinical significance and
underlying differentiation mechanisms of these cells have to be
determined in future studies.

1t is important to accurately identify TIL clones circulating in
the peripheral blood, as a variety of therapeutic approaches rely on
the accessibility of tumor-specific T cells in the peripheral blood.
Consistent with previous studies,"’ expanded T cell clones in
peripheral blood remained mostly stable over time and unchanged
months after tumor resection, suggesting that their expansion was
not driven by resected tumor-associated neo-antigens. Dominant
T cell clones in the peripheral blood of healthy individuals have
been considered specific for antigens of chronic infections such as
cytomegalovirus (CMV} or Epstein-Barr virus (EBV), among
others. In fact, one of the most expanded peripheral blood
TCRs in patient 1 (TCRp CDR3 amine acid sequence:
CASSSANYGYTF), which was also expanded among this patient’s
TILs and Ty has already been reported CMV-specific.*
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As previously reported,"” particular phenotypes enriched in
TILs (PD-1*, TIM-3") were rare in peripheral blood (Figure 4(d}),
however, especially PD-1" peripheral blood T cells have pre-
viously been considered tumor-specific.'” To increase the chance
of detection, we extended our bulk sequencing data with high-
efliciency single cell TCRap sequencing of specifically sorted T cell
populations with increased PD-1 and TIM-3 expression.

A recent study suggests the distinction of exhausted-
phenotype, presumably tumor-specific, T cells and bystander
T cells in colorectal and lung cancer based on the expression
of the ecto-ATP/ADPase CD39.*® Selectively rectal cancer-
infiltrating T cells were exhausted and functionally inhibited,
as represented by PD-1, TIM-3, CD38, and CD57 expression.
By re-expressing selected TCRs in 58a f~ T hybridoma cell
lines and incubating them with cells isolated from their cor-
responding tissues, we showed that exhausted T cell clones
selectively expanded in tumor tissue could recognize antigens
presented on cells isolated from either site. The critical anti-
gens appeared to be presented on very few cells close to the
detection limit of our assays, which is not surprising since the
cell preparations were not enriched for any particular cell
type. Supplementary Figure 2 and microscopy (Figure 5)
show the majority of cells isolated from rectum tissue were
non-lymphocytes. In case a reconstructed TCR did not get
activated upon co-incubation, we cannot conclude whether
the lack of target antigen was due to the low frequency of
antigen-presenting cells or the target antigen indeed not being
presented in the investigated tissue. However, in vive, parti-
cular expanded T cell clones selectively infiltrated the tumor
tissue and were below the detection limits of our technologies
at any other site, incuding peripheral blood. A variety of
mechanisms, such as chemo-attraction, selective antigen
accessibility in vive, or inhibition of T cell expansion by
microenvironment-derived cues, among others, could account
for this observation. Recent studies on a variety of solid
cancers suggest antigens other than neo-antigens to drive
clonal TIL expansion in the tumor environment,'>*3#
which is in support of our findings. The clinical significance
of different phenotype TILs preferentially infiltrating tumor
tissue has to be determined along with TCR specificities in
future cohorts.

In conclusion, rectal cancer is infiltrated by clonally
expanded unique-specificity T cells that show dysfunctional/
exhausted immune phenotype patterns and rarely circulate in
the peripheral blood. Their target antigens, however, do not
seem 10 be exclusively presented in tumor tissue.

Patients and methods/materials and methods
Patients and sample preparation

Surgical specimens (one piece of rectal tumor and one piece of
unaffected recto-sigmoidal mucosa per patient} and heparin-
anticoagulated peripheral blood at surgery and one follow-up
time point were obtained from five treatment-naive rectal cancer
patients. All patients gave written informed consent and the study
was approved by the local ethics committee (protocol EA1/007/
16 to LH.}. TILs and Typy were isolated from fresh specimens
immediately after surgery as previously described.” In short,

ONCOIMMUNOLOGY (@) 15864099

tissue was cut into small pieces (2-4 mm®) and incubated in
PBS containing 10 mM Ethylendiaminetetraacetic acid (EDTA,
Invitrogen} for 30 min. Cells in suspension were passed through
a 100 pm cell strainer (Corning), tissue was incubated in
RPMI1640 containing 5% fetal bovine serum (FBS) and 0.5 mg/
ml collagenase (Serva, Collagenase NB 4} for 30 min. Finally, cells
were enriched through Percoll (GE Healthcare) gradient centri-
fugation and cryopreserved. Distances between the tumor and
unaffected mucosa specimens varied between patients but unaf-
fected mucosa samples were taken at least 4 cm apart from the
macroscopic tumor margin (Figure 1). PBMCs were isolated with
Ficoll-Paque PLUS (GE Healthcare) density gradient centrifuga-
tion. All cell preparations were cryopreserved in RPMI11640 con-
taining 50% FBS, 10% DMSO before further processing.

Fluorescence-activated cell sorting

Cells were thawed and stained with multicolor panels (Suppl.
Table 1}. Antibodies were used according to the manufacturer’s
instructions. TILs and Ty samples from each patient were
processed in parallel to minimize instrument and staining varia-
bility. For single cell sequencing, single cells were index-sorted
directly into 96-well plates pre-filled with OneStep RT-PCR buffer
{Qiagen) as previously described.* For TCRp repertoire sequen-
cing, bulk cells were FACS-sorted into tubes prefilled with
RPMI1640 containing 2% FBS. DNA was isolated immediately
after sorting using the DNeasy Blood & Tissue Kit (Qiagen} and
stored at 4°C until further processing. All cells were sorted using
a FACSAria™ Fusion high-speed cell sorter (BD Biosciences)
equipped with a 70 pm nozzle.

Single cell sequencing and phenotyping

PCR amplification, library preparation, and MiSeq (Illumina)
previously  described.****
Sequencing data were processed as previously described™
and scripts can be downloaded from https://github.com/
HansmannLab/TRECA. Cytokines and transcription factors
were determined expressed in single cells if we detected
more than 10 reads for the respective cytokine or transcrip-
tion factor transcript.®® In case of the seven TCRs chosen for
re-expression (Figure 5), transcripts of the second TCRa
chain of TCR 1A4 were identified by manually screening the
sequencing output. No additional TCRa chains could be
identified for the remaining six re-expressed TCRs (Table 2).

Clonal expansion was defined as the detection of at least
two cells with identical TCRa and TCRP amino acid
sequences. Index sorting assigned exact immune phenotypes
to every single sorted cell. Notably, some expanded clones
showed heterogeneous marker expression and a clone was

sequencing were done as

considered positive for a particular marker based on the
majority (> 50%) of cells with a particular TCR sequence.

TCRp repertoire sequencing

TCRP repertoire sequencing was done as previously described
and the read frequency cutoff for the definition of individual
clones was chosen at 107
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Recombinant T cell receptor expression in 58a 8~ cell
lines and co-incubation with tumor and unaffected
mucosa cell preparations

Selected TCRs were reconstructed by completing the missing
leader, V, and constant region parts with sequences down-
loaded from IMGT," and expressed in 58a B~ cell lines as
previously described.”® 58a B~ cell lines also expressed human
CD8ap chains™ and GFP under the control of nuclear factor
of activated T cells (NFAT),* so they light up green upon
activation. TCR-expression was confirmed by CD3 detection
with FACS. As positive controls, TCR-recombinant cell lines
were stimulated with plate-bound anti-mouse CD3 in 96-well
plates for 16 h. IL-2 was measured in cell culture supernatants
using the 1L-2 Mouse Uncoated ELISA Kit (Thermo Fisher}
and GFP expression was detected with FACS and fluorescence
microscopy. For co-incubation experiments (Figure 5 and
Suppl. Figs. 9-10), TCR-recombinant 58a™ [~ cells were incu-
bated with cells isolated from i} corresponding tumor, ii}
corresponding unaffected mucosa tissue, or iii} tumor or
unaffected mucosa from an HLA-mismatched patient as nega-
tive control. For TCRs, corresponding patients, and exact co-
incubation cell numbers, see Table 2 and Supplementary
Table 4. Numbers of cells isolated from tumor or unaffected
mucosa tissues varied between patients due to the size of
surgical specimens. The majority of cells isolated from tissues
were non-lymphocytes (Suppl. Figure 2}. All remaining cells
from each patient were used for co-incubation experiments
(Figure 5, Suppl. Figs. 9 + 10} to maximize the chance of
detection of TCR targets in the available specimens. Co-
incubations were done in 96-well plates in a volume of 150
ul RPMI1640 containing 10% FBS for 16 h at 37°C and 5%
CO,

Fluorescence microscopy

Bright field and GFP fluorescence images were recorded sepa-
rately using a Biorevo BZ-9000E instrument (Keyence}
equipped with an S Plan Fluor ELWD 20x lens and overlaid
for visualization.

HLA-typing

Genomic DNA samples were amplified using GoTaq Long
Range Polymerase (Promega) and HLA-locus-specific primers
(NGSgo workflow, GenDx}. Pooling of amplicons, fragmenta-
tion, adapter ligation, DNA clean-up, indexing PCR, second
clean-up, size selection, library pooling, quantification, and
denaturation were performed according to the manufacturer’s
instructions. Sequencing was done on a MiSeq instrument
(Ilumina) using 300 cycle kits (151 base pairs, paired-end
sequencing). Data were analyzed with NGSengine software
(GenDx}.

Data accessibility

Single cell sequencing data have been made publicly available
(DDBJ/EMBL/GenBank accession KCPLO000000O, first ver-
sion KCPLO1000000). TCRpP repertoire sequencing data are

available online (suppl_online_table_1.xlsx). Single cell cyto-
kine and transcription factor sequencing data along with the
corresponding FACS index sort data are available online
(suppl_online_table_2.xls).
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ARTICLE INFO ABSTRACT

“‘""ﬂf" History: Background and aims: Epstein  Barr virus (EBV] is associated with solid and hematopoietic malignancies. After

Received 11 December 2021 allogeneic stem cell transplantation, EBV infection or reactivation represents a potentially life-threatening con

Accepted 10 March 2022 dition with no specific treatment available in clinical routine. In vitre expansion of naturally occurring EBV-spe

cific T cells for adoptive transfer is time-consuming and influenced by the donor's T-cell receptor (TCR)
Key Words: repertoire and requires a specific memory compartment that is non-existent in seronegative individuals.
adoptive T-cell therapy The authors present highly efficient identification of EBV-specific TCRs that can be expressed on human T
llogeneic stem cell transplantation cells and recognize EBV-infected cells.
fﬁsﬂ;ﬁ:z;::lsngim Methods and Results: Mononuclear cells from six stem cell grafts were expanded in vitro with three HIA-
virus-assodiated mug'mndes B*35:01- or four HLA-A*02:01-presented peptides derived from six EBV proteins expressed during latent
and Ivtic infection. Epitope-specific T cells expanded on average 42-fold and were single-cell-sorted and
TCRe f-sequenced. To confirm specificity, 11 HLA-B*35:01- and six HLA-A"02:01-restricted dominant TCRs
were expressed on reporter cell lines, and 16 of 17 TCRs recognized their presumed target peptides. To con-
firm recognition of virus-infected cells and assess their value for adoptive therapy, three selected HLA
B*35:01- and four HLA-A®0Z:01-restricted TCRs were expressed on human peripheral blood lymphocytes,
All TCR-transduced cells recognized EBV-infected lyvmphaoblastoid cell lines.
Conclusions: The authors’ approach provides sets of EBY epitope-specific TCRs in two different HLA contexts.
Resulting cellular products do not require EBV-seropositive donors, can be adjusted to cell subsets of choice
with exactly defined proportions of target-specific T cells, can be tracked in vive and will help to overcome
unmet clinical needs in the treatrment and prophylaxis of EBV reactivation and associated malignancies.
@ 2022 International Society for Cell & Gene Therapy. Published by Elsevier Inc. This is an open access article

under the CCBY-NC-ND license (hrtp:ffcreativecommaons.org/licenses/by-nc-nd 4.0/}

Intreduction

Epstein—Barr virus (EBV) belongs to the family of gamma-her-

Tumf;l' PILELEES cl;':,m Uni .Nn'm[ielﬁ“ﬂr;:?];:T,I[emml,”w' mpchullsgly;"d pesviruses, and more than §0% of humans over the age of 20 are
lin 13353, Germany. - ! infected [ 1]. EBV predominantly infects B cells, resulting in differ-
E-mait address: leo.hansmann@charite.de (L. Hansmann). ent forms of latent {(non-productive) and lytic (virus producing)
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1465-3249/@ 2022 Interpational Society for Cell & Gene Therapy. Published by Elsevier Inc. This is an open access article under the CC BY-NC-NI license
(http: ffereativecommons.ongflice nses/by-nc-nd/4.0/)
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infection. Primary EBV infection of a human being is usually self-
limiting and controlled by T cell-dominated immune responses,
leading to latent virus persistence |2]. Infected cells present char-
acteristic sets of EBV peptides on HLA that can be recognized by
EBV-specific T cells [3,4]. In the proliferative latency 1l program of
B-cell infection, six EBV nuclear antigens and three latent mem-
brane proteins (LMPs), among others, are expressed. EBV nuclear
antigens regulate replication of the viral genome and are involved
in B-cell transformation, disruption of cell cycle checkpoints and
lymphoma development [5—-8]. Although LMP1 is a major trans-
forming protein, LMP2 can drive proliferation in the absence of B-
cell receptor stimulation and is involved in the induction of lym-
phoma-like phenotypes in B cells [9-11]. During the lytic phase,
approximately 70 EBV proteins are expressed, including transcrip-
tion factors BRLF1 and BZLF1, messenger RNA export factor BMLF1
and DNA polymerase processivity factor BMRF1, which contain
peptides that can be presented on HLA [3].

Clinical observations and experiences [rom adoptive transfer ol
EBV-specific T-cell products suggest that T-cell responses are critical
for controlling EBV infection and maintaining the latent phase
[12-16]. Immunodominant EBV epitopes that drive substantial CD8"
T-cell expansion have been identified in a variety of HLA contexts
[17-20). Expanded EBV epitope-specific T cells persist after acute
infection [21] and can constitute up to 5% of circulating CD8" T cells
in asymptomatic immunocompetent individuals [3].

Apart from often inapparent primary infection, EBV can cause life-
threatening complications, including post-transplantation lympho-
proliferative disorders (PTIDs), in states of severe immunosuppres-
sion associated with solid organ or allogeneic stem cell
transplantation {allo-SCT). During the first 100 days after allo-SCT, T
cells are typically substantially reduced in numbers and functionally
inhibited, allowing EBV reactivation in approximately 30% of patients,
with limited, non-specific treatment options available in clinical rou-
tine [22]. Especially at risk are EBV-seropositive patients who receive
stem cell grafts from seronegative donors—a constellation of increas-
ing relevance with rising numbers of younger haploidentical stem
cell donors [23]. PTLDs occur in 1-8% of patients after allo-SCT [24],
and close to 100% are EBV-associated when they develop within the
first 6 months [25]. In summary, it would be beneficial if clinical con-
ditions demonstrating impaired T-cell immunity and high risk of
EBV-associated complications could be bridged with easily accessible,
highly specific cellular products.

EBV-specific T-cell products have been shown to be eflective in
controlling infections and associated malignancies [13,26,27]. Cur-
rent strategies for the generation of virus-specific T-cell products
include in vitro expansion of epitope-specific (third-party) T cells
from peripheral blood or stemn cell grafts [27-29]. However, the fol-
lowing technical and clinical obstacles have prevented broad transla-
tion of such products into clinical routine: (i) in vitro expansion
requires an antigen-experienced memory compartment, (ii) frequen-
cies ol epitope-specific T cells can be variable between individuals
and products, {iii} donor selection and HLA allotypes are likely to
influence functional capacities of the product and {iv) such products
are laborious to produce and only directly available at a few special-
ized centers.

The authors hypothesized that the T-cell compartment of alloge-
neic stem cell grafts could be used to identify sets of T-cell receptors
(TCRs) specific for carefully selected latent and lytic EBV epitopes in
the context of pre-defined HLA backgrounds. These TCRs would be
available “off-the-shelf” for production of EBV-specific T-cell
products within minimum amounts of time. The authors'
approach allows the use of T-cell sources of choice independent
of EBV serostatus, guarantees target epitope specificity with
clearly defined [requencies of EBV-specific T cells, results in a
product that can be tracked in vive by specific antibodies and can

be expanded to other HLA allotypes for prophylaxis or treatment
of EBV and associated malignancies.

Methods
Stem cell grafts

The authors collected leftover material [rom six granulocyte col-
ony-stimulating factor-mobilized stem cell gralts of EBV-seropositive
donors who expressed either HLA-B*35:01 or HLA-AT02:01. Mononu-
clear cells were isolated using Ficoll-Paque PLUS {GE Healthcare, Chi-
cago, IL, USA) and cryopreserved in human serum albumin {Grifols,
Barcelona, Spain) supplemented with 10% dimethyl sulfoxide {Carl
Roth GmbH & Co. KG, Karlsruhe, Germany). The study was approved
by the local institutional review board (Ethikkommission der Char-
ité—Universititsmedizin Berlin; approval no. EA2/197/18), all partici-
pants gave written informed consent and the entire study was
conducted in accordance with the principles of the Declaration of
Helsinki.

Peptide-specific in vitro expansion

Mononuclear cells were thawed, washed twice with CellGro DC
medium (Sartorius CellGenix GmbH, Freiburg, Germany) and rested
for 16 h at 37°C and 5% carbon dioxide (CO,). Subsequently, 5 x 107
to 3 » 10° cells were stimulated for 2 h with synthetic peptides (JPT
Peptide Technologies, Berlin, Germany) at 1 gegfml. per peptide. Cells
were washed twice and expanded for 9 days at 2.5 » 10° cells/mL in
CellGro DC medium, 1% GlutaMAX (Life Technologies, Carlsbad, CA,
USA), 1% donor serum and 50 IUfmL I1-2 {aldesleukin; Novartis
Pharma GmbH, Fehrbellin, Germany) at 37°C and 5% CO,. Fresh
medium was supplied on day 5. After expansion, cells were crvopre-
served.

How cytometry

All flow cytometry reagents, including monoclonal antibodies and
livefdead dyes, were titrated and used according to the manufac-
turers' instructions. Phycoervthrin- and allophycocyanin-labeled
peptide major histocompatibility complex (pMHC) tetramers
(National Institutes of Health Tetramer Core Facility, Atlanta, GA,
USA) were provided at 1.1-1.5 mg/mL in water and diluted as 20%
glycerol (SERVA Electrophoresis GmbH, Heidelberg, Germany) stocks.
Per stain, the authors used 0.63 pL of pMHC tetramer stock solution
in 150 gL phosphate-buffered saline (Life Technologies) supple-
mented with 2% fetal bovine serum (FBS) (Life Technologies). Flow
cytometry data were acquired on Navios (Beckman Coulter, Brea, CA,
USA), LSRFortessa (BD Biosciences, Franklin Lakes, NJ, USA) and
Aurora {Cytek Biosciences, Fremont, CA, USA) instruments.

FAuorescence-activated cell sorting

Cells were thawed, rested in Roswell Park Memorial Institute
(RPMI) 1640 with 10% FBS for 1 h at 37°C and 5% CO» and stained
with monoclonal antibodies. Single cells were index-sorted into 96-
well plates pre-filled with OneStep reverse transcription polymerase
chain reaction buffer {QIAGEN, Hilden, Germany) using a FACSAria
Fusion cell sorter (BD Biosciences) as described previously [30].

Single-cell TCRx 8 sequencing

Polymerase chain reaction amplification, molecular barcoding,
library preparation and MiSeq (Illumina, San Diego, CA. USA)
sequencing were carried out as previously described [31,32]. Clonal
expansion was defined as two or more cells with identical TCRe and
TCRA CDR3 amino acid sequences. Cells that expressed two TCRw
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chains in combination with the same TCR# chain were defined as one
clone if TCRex chains were identical; cells in which only one of these
TCRe chains was identified were also included in the clone.

TCR expression on 58x~ 5~ cell lines

Missing sequence parts of leader, variable and constant regions of
selected TCRs were completed with data downloaded from the inter-
national ImMunoGeneTics information system. Reconstructed TCR
sequences were synthesized {Thermo Fisher Scientific, Waltham, MA,
USA) and expressed in 580 8 cell lines as previously described
[32,33] The 58~ A~ cells expressed human CD8e 2 chains and green
fluorescent protein {GFP) under the control of the nuclear factor of
activated T-cell promoter [33], thus indicating T-cell activation by
GFP expression. TCR expression was confirtned by mouse CD3 stain-
ing and detection by flow cytometry. As positive control for TCR acti-
vation, TCR-recombinant cell lines were stimulated with plate-bound
anti-mouse CD3 for 16 h at 37°C and 5% CO;. GFP expression was
measured with {low cytometry and IL-2 production was detected in
cell culture supernatants using the DuoSet enzyme-linked immuno-
sorbent assay (ELISA) ancillary reagent kit 2 {R&D Systems, Minneap-
olis, MN, USA).

TCR expression on third-party human T lymphocytes

TCRs were expressed on T cells of a healthy female, EBV-seroposi-
tive donor that expressed HLA-A02:01 and HLA-B*35:01. TCR inserts
were constructed as described earlier and human TCR constant
regions were replaced with mouse constant region sequences to min-
imize mispairing with endogenous TCR chains. All TCR constructs
were codon-optimized for expression in human cells. To generate
retroviral vector particles to transduce human cells, 18 pg MP71 vec-
tor, including the TCR insert, was diluted in 150 pl. water and
250 mM calcium dichloride and combined with 150 gL transfection
buffer, comprising 1.6 g sodium chloride (Sigma-Aldrich, Burlington,
MA, USA), 74 mg potassium chloride (Sigma-Aldrich), 50 mg diso-
dium hydrogen phosphate (Sigma-Aldrich) and 1 g 4-(2-hydrox-
yethyl)-1-piperazine ethanesulfonic acid (Sigma-Aldrich), and
100 mL water adjusted to pH 6.76. The mixture was added dropwise
to 8.5 » 10° 293Vec-RD114 producer cells {BioVec Pharma, Québec,
Canada). Cells were cultured at 37°C and 5% CO; [or 6 h, and medium
was changed afterward.

For transduction, 1.5 > 10° human lymphocytes were stimulated
with 400 [U/mL IL-2 {Chiron Corporation, Emeryville, CA, USA) in a
24-well plate pre-coated with 5 pg/mL anti-CD3 (BD Pharmingen,
San Diego, CA, USA) and 1 pg/mL anti-CD28 (BD Pharmingen) for
2 days. Afterward, cells were spinoculated on two consecutive days
for 90 min at 800 x g and 32°C with 1 mL filtered {0.45 pem pore size)
RD114 retroviral vector supernatant, 400 [U/mL IL-2 and & pgfmL
protamine sulfate (Sigma-Aldrich). Spinoculated cells were expanded
in cell culture medium supplemented with 400 IU/mL [L-2 for
10 days and rested for 2 days with 40 1U/mL IL-2 before cryopreserva-
tion. Efficiency of TCR transduction was determined with (low cytom-
etry by mouse TCRS constant region staining.

Lymphoblastoid and mini-lymphoblastoid cell lines

Lymphoblastoid cell lines (LCLs) were generated by transforma-
tion of peripheral blood mononuclear cells with supernatant of the
EBV strain B95.8 as previously described [34]. Mini-LCLs were pre-
pared by immortalizing HLA-B*35:01° or HLA-A®02:01" B cells with
the recombinant mini-EBV plasmid p1495.4 [35,36]. Mini-EBV plas-
mids contained less than half of the EBV genome, and mini-LCLs
could not produce infectious particles [27]. Detailed HLA class 1 data
of all LCLs and mini-LCLs used in this study are included in the sup-
plementary material.

Co-culture of TCR-recombinant cells with target cells

A total of 60000 TCR-recombinant 58~ cells were cultured
with 100000 antigen-presenting cells. Cells were co-cultured in 150
L RPMI 1640 and 10% FBS in 96-well plates for 16 h at 37"°C and 5%
CO,. For target peptide loading, 3 = 10° antigen-presenting cells
were incubated with the respective target peptide at 7.5 pmol/L for
30 min prior to co-culture.

TCR-transduced human lymphocytes were cultured at 50000 T
cells with 10000 potential target cells in 200 gL RPMI 1640 and 10%
FBS in 96-well plates at 37°C and 5% CO, for 20 h. Exact eflector-to-
target ratios of individual co-cultures depended on [requencies of
CD8" and TCR-transduced T cells within individual T-cell prepara-
tions and can be found in the supplementary material. Interferon
gamma (IFN-y), granzyme B and tumor necrosis factor alpha (TNF-a)
were determined in cell culture supernatants using a human IFN-y
ELISA set (BD) Biosciences), human granzyme B DuoSet ELISA kit (R&D
Systems) and human TNF-ez DuoSet ELISA kit (R&D Systems).

Results
Expansion of EBV epitope-specific T cells from stem cell grafts

Efficient identification of EBV epitope-specific TCRs requires suffi-
cient frequencies of specific T-cell clones. Therefore, the authors used
in vitro expansion of 5 » 107 to 3 » 10° mononuclear cells from five
EBV-seropositive allogeneic stem cell grafls in the presence of three
synthetic EBV-derived peptides presented on HLA-B"35:01 and one
additional graft with four synthetic peptides presented on HLA-
AT02:01 (Table 1). The peptides used were selected immunodomi-
nant epitopes expressed during lytic and latent infection phases, and
frequencies of specific CD8* T cells were determined by flow cytome-
try using pMHC tetramer staining.

During in vitro expansion, absolute numbers of CD8" T cells
increased (Figure 1A), and peptide-specific CD8" T cells expanded on
average 42-fold (range, 1-228). Degrees of expansion varied
between stem cell grafts and individual peptides (Figure 1B,C). Fre-
quencies of HPV-, YPL- and EPL-specific HLA-B*35:01-restricted CD8"
T cells increased on average 25-, 10- and 108-fold, respectively
(Figure 1B). Frequencies of GLC-, CLG-, FLY- and YVL-specific HLA-
AT02:01-restricted CD8" T cells increased 14-, 8-, 26- and 27-fold,
respectively (Figure 1C). Detailed cell numbers for each stem cell
graft before and after expansion can be found in supplementary Table
1. Representative pMHC tetramer staining is shown in Figure 10 (see
supplementary Figure 1; see supplementary Table 2).

Single-cell identification of EBV epitope-specific TCRs

Reliable and efficient identification of paired TCRxf sequences
from complex T-cell populations requires single-cell resolution. The
authors isolated epitope-specific CD8" T cells by pMHC tetramer
staining of stem cell grafts expanded in vitro and subsequent (luores-
cence-activated cell sorting (see supplementary Table 2). Gating lor
single-cell sorting is illustrated in Figure 2A. TCRxp genes of every

Table 1
Peptides for EBV epitope-specific in vitro expansion.

Label  Amino acid sequence  Protein Virus phase Presented on HLA
HPV HPVGEADYFEY EBMNA1 Latency L IL I B735:01
YPL YPLHEQHGM EBNAZA  Latency I B 3501
EPL EPLPOCGOLTAY BZLF1 Lytic B 35:01
GLC GLCTLVAML BMLFL Lytic AT02:01
G CLGGLLTMV LMP2A Latency I1. 111 A'02:01
FLY FLYALALLL LMP2ZA Latency I 111 A"DZ2:01
VL YVLDHLVW BRIF1 Lytic AT
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single sorted cell were sequenced using next-generation sequencing
(see supplementary Table 3), and clonal expansion was defined as
detection of identical TCRe 8 CDR3 amino acid sequences in at least
twao cells.

Numbers and sizes of expanded T-cell clones varied between stem
cell grafts and between epitope specificities { Figure 2B,C). Although in
vitro expansion resulted in, for example, 24 different EPL-specific T-
cell clones, with dominant clones accounting for only 9% of clonally
expanded cells {EPL-specific expansion of stem cell graft G5), another
expansion contained seven different YPL-specific clones, with the
dominant clone comprising 82% of clonally expanded cells
(Figure 2B). Frequencies of epitope-specific T-cell clones [rom all in
vitro expansions are summarized in Figure 2C. The strongest clonal
expansion was observed for CLG-specific T cells rom stem cell gralt
GG, where only one expanded clone could be detected.

When comparing TCR sequences of epitope-specilic clones
between individual grafts, five TCRs (two HPV- and three EPL-spe-
cific) were [ound in more than one stem cell graft, and their degree of
clonal expansion did not exceed 11% of clonally expanded T cells {see
supplementary Table 4). In summary, clonal expansion was stem cell
graft- and peptide-dependent and showed two patterns: {i) expan-
sion of a few dominant clones comprising almost the entire clonally
expanded T-cell compartment and (ii) expansion of a variety of less
dominant clones, each accounting for less than approximately 35% of
clonally expanded T cells.

Confirmation of target epitope spedificity of expanded T-cell clones

Although identification of largely expanded dominant clones
within pMHC tetramer-sorted T cells suggested target peptide speci-
ficity, specilicities of smaller size clones were less clear. To conflirm
target peptide specificity, the authors expressed TCRs o 17 expanded
T-cell clones covering specificities for all peptides that had been used
for in vitro expansion on 58§~ reporter T cells with nuclear factor
ol activated T-cell-driven GFP expression {Table 2, Figure 3A). TCR-
recombinant cell lines were named “58-[name of the TCR]" and incu-
bated with antigen-presenting cells loaded with the respective pepti-
des. GFP expression and IL-2 production were measured as indicators
of T-cell activation. Mini-LCLs were used as antigen-presenting cells
and loaded with peptides of choice.

All TCR-recombinant cell lines produced GFP and IL-2 upon stimu-
lation with plate-bound anti-CD3 (see supplementary Figure 2}. Upon
co-incubation with target peptide-loaded antigen-presenting cells,

Table 2
Epitope-specilic, recombinantly expressed TCRs.

16 of 17 TCRs were activated, and no activation could be detected
upon incubation with non-target peptide-loaded antigen-presenting
cells (Figure 3B,C; also see supplementary Figure 3). TCR EPL7A4
could not be activated by its presumed target peptide and was
excluded from further analysis. Notably, 58-GLC1B11 and 58-GLC1B4
shared an identical TCRA chain but expressed different alpha chains
{Table 2). The authors expressed both alpha chains individually
together with the corresponding TCRS chain, and both combinations
resulted in productive TCRs specific for the same target peptide. In
summary, the authors confirmed specificity for a panel of 16 TCRs
targeting EBV epitopes presented during the latent and lytic infection
phase.

TCR-transduced third-party human lymphocytes recognize EBV-infected
cell lines

To determine their translational potential, the authors selected
three HILA-B*35:01- and four HLA-A®02:01-restricted TCRs, con-
firmed that they were not broadly cross-reactive with HLA other
than the target HLA (see supplementary Figure 4; see supplementary
Table 5), expressed them in human lymphocytes and tested their
reactivity with EBV-infected cells. TCRs were expressed on CD4-
depleted human lymphocytes, and TCR-transduced T cells were co-
cultured with four EBV-infected LCLs (named BO1, JY, BO3 and DJS).
TCR-transduced lymphocytes were named “hl-[name of the TCR],"
and recombinant TCR expression was detectable on average on 34%
of CD8™ T cells (see supplementary Figure 5). CD137 expression on
CD&" T cells and IFN-y in cell culture supernatants were measured as
readouts for T-cell activation, and activation was assumed if either of
them was detectable.

TCR-transduced T cells of all six epitope specificities significantly
upregulated CD137 expression when incubated with at least one of
the corresponding LCLs (Figure 4A; also see supplementary Figure 6).
T cells speciflic for EPL, GLC, CLG, YVL and FLY also produced signifi-
cant amounts of IFN-y in comparison with non-transduced T cells
(Figure 4B). T cells expressing the HPV-specilic TCR (hL-
HPV13A10) were activated, as indicated by CD137 expression;
however, IFN-y production was low and did not reach statistical
significance because of relatively high background IFN-y levels of
non-transduced T cells, which varied between different LCL and
co-incubation experiments.

To further characterize the activation response of TCR-transduced
human T cells, the authors selected hl-EPL11A7 as an example and

Lalel HLA restriction G TRAV CDR3a A sequence TRA] TREV CDR3 4 AN sequence TRB] %k
HPV13A10  B"35:01 Gl 5°01 CAESYTGGFETIF 501 6-1701 CASGTEAFF 1-1"01 67
HPFVI3E12 B"35:01 Gl 10701 CVVSEEGGFETIF 9" 12-5"11 CASGLGGSNEQFF 2-1701 14
HPVIAZ B35:01 G3 20701 CAVQELVISGSRLTF ELH g'm CASTGAGEGPFF 1-1701 349
HPVAC10 BT35:01 G3 20701 CAVQAMTSSNYKLTF 53701 5701 CASSARTGELFF 2-2701 14
YPLID3 B*35:01 G2 1901 CAISEAGGFGNEKLTF 48701 10-3"01 CAISDPRDSYEQYF 2-7"01 B2
EPL11A7 B"35:01 Gl 1-2701 CAVMSSGGSYIPTF 601 10-3"01 CAISTGDSNOPOHF 1-5"01 13
EPL11A1Z B"35:01 Gl 47 CAFPGGNEIVE 4701 10-3"t1 CAISEWDSPTLNSPLHF 1-6701 10
EPLTA4 B35:01 G3 1901 CALSENYGONFVE 2601 12-3"01 CASSLLAATYNEQFF 2-1701 5
EPLTALD BT35:01 G3 1-2701 CAVRGSGGSYIPTF 6701 10-3701 CATGTGDSNQPOHF 1-5701 11
EPLL1ALD B"35:01 G4 24701 CAINAGGTSYGELTF 5201 7-3"01 CASSRDFYAYNEQFF 2-1"01 98
EPL13Ba B"35:01 G5 2701 CAVEDMNSGGYQRVTF 13702 28701 CASKRTATYEQYF 2-7°01 i
GLCIB11 A2 Gi 5°01 CAESTGRLIF 37rm 29-1"th CEVETCGTNERKLFF 1-4701 17
GLCIB4 ATO2:0 G6 5" CAESTSWGELOF 2402 20-1"01 CSVGTGGTNEKLFF 1-4"01 25
CLG3ALD AT0Z2:01 Gh 21701 CAILMDSNYQLIW 3370l 10-2702  CASSEDGMNTEAFF 1-101 100
FLY5D11 AT02:01 Gh 17°01 CATEGDSGYSTLTF 11°01 6-5"01 CASSYQGGNYGYTF 1-201 30
FLY5BS ATD2:01 Gh 1701 CATVGNSGYSTLTF 11°01 6-5"01 CASSKQGGNIQYF 24701 23
YVLIGEDT A0 Gi 38-2/DVETD1 CAYRSAFKLTF 48701 30701 CAWSVPLGRREELFF 1-4701 14

AA amino acid; of, clone frequency: G, stem cell graft; TRAJ, TCRe |-gene and allele; TRAV, TCRe V-gene and allele; TRB]. TCRE |-gene and allele; TRBV, TCRE
V-gene and allele.
* Among clonally expanded cells specific for the respective epitope.
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Figure 3. Confirmation of target peptide specificity of expanded T—cell clones. (A} TCRs selected for expression in 58c:~ £~ reporter T cells. Data points indicate individual T-cell

clones. Clone frequencies are indicated as frequencies of each individual clone within clonal

ly expanded pMHC tetramer-sorted cells. (B) TCR-recombinant cell lines wete co-incu-

bated with peptide-loaded antigen-presenting cells, and GFP expression was measured by flow cytometry as an indicator for T-cell activation. “Alone” refers to TCR-recombinant
58~ reporter cell lines alone. All histograms are pre-gated on live TCRae5'CD8* cells. One co-cuiltitre per peptide specificity is shown as an example. (C) IL-2 production as mea-

sured by ELISA in cell culture supernatants corresponding to {B) TCR-recombinant data. APC,

additionally determined CD107a expression and granzyme B and
TNF-« secretion after stimulation with two HLA-A*02:01-matched
LCLs (BO1 and DJS) and one HLA-A*02:01-mismatched LCL (JY) in the
presence of increasing target peptide concentrations. As expected,
responses were substantially stronger when LCLs were artificially

allophycocyanin; n.d., not detectable.

loaded with the target peptide. However, significant CD137 and
CD107a expression as well as [FN-y, granzyme B and TNF-« secretion
could already be detected without target peptide loading, and T-cell
activation was detectable only upon co-culture with HLA-matched
LCLs {see supplementary Figure 7).
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Fgure 4. Human T cells transduced with EBV epitope-specific TCRs recognize EBV-infected cells Three HLA-B*35:07-restricted (EPL1TATY, EPL11A12, HPVI3A10) and four HLA-

A"02:01-restricted (GLCIB11, CLG3A10, FLYSD1 1, YVL1GD1) TCRs were expressed in human lymphocytes (named “hL-[rame of the TCR]") and cultured with LCLs (BO1, BO3, DS,

I¥). HLA-B"35:01-restricted TCRs were cultured with HLA-B35:01 -expressing BO1 and DJ$ LCLs, HLA-A02:01 - restricted TCRs were cultured with HLA-A*02:01-expressing B03, D]S

and J¥ LCLs. Non-transduced T cells were used as negative controls. (A) CD137 expression determined by flow cytometry. Plots are pre gnLed on live CDS lymphocytes. Data show

three replicates from one experiment. (B IFN-y in cell culture superpatants was measured by ELISA Data are rep P (n = 3). Co-cultures of

eac?' experiment were done in triplicate. All bars represent mean values & standard error. Sigrificance determined by Welch two-sample f-test, 'I‘ = 005, P < 0.01, "™P < 0.001.
PE, phycoerythrin,

ative of i

Discussion approximately 30-40% of the population {HLA-A™02: 29%, HLA-B*35:
6%) [47].

The authors’ research addresses the unmet clinical need of avail- Reliable identification of EBV-specific TCRs required identification

ability of highly specific T-cell products with reliable and reproduc- of epitope-specific T cells and highly efficient TCRe £ sequencing at

ible characteristics for prophylaxis and treatment of EBV infection the single-cell level. The authors used pMHC tetramer staining for

and associated malignancies within minimum amounts of time. The fluorescence-activated cell sorting index sorting of single peptide-
authors defined sets of TCRs that guarantee EBV epitope specificity, specific T cells and subsequent paired TCRw S single-cell sequencing
recognize EBV-infected cells in two difTerent HLA contexts and can be [30,48]. The authors have previously demonstrated that the combina-
expressed in T-cell sources of choice. tion of these technologies represents one of the most reliable and

There are a variety of elegant methodologies for identification of efficient approaches for identification of paired TCRx S sequences
virus-specilic TCRs and in-depth characterization of their immune and associated immune phenotypes of single cells [31, 32]. In theory,
phenotypes [38—40]. The authors decided to use stem cell gralts for epitope-specific T cells could have been sorted without prior in vitroe
epitope-specilic T-cell expansion, which was especially helpful for expansion; however, [requencies ol epitope-specific T cells were low
identification of otherwise potentially low-frequency T-cell clones belore expansion {=1% of T cells), and accuracy and efliciency of sin-

against target antigens {e.g., derived from LMP2A). Although in the- gle-cell sorting and TCRaf sequencing increase substantially with
ory any T-cell source, including peripheral blood, may be sufficient, higher frequencies of target populations [49]. Degrees of clonal
stem cell grafts have considerable advantages: (i) detailed HLA typing expansion varied between stem cell grafts and peptides used for in
is readily available, {ii} EBV serostatus is provided, (iii) they are char- vitro expansion, yet epitope-specific TCRs could be successfully iden-
acterized with regard to T-cell content and {iv) leftover material [rom tified even in cases of oligoclonal expansions, in which clones of
one routine stem cell transplantation is suflicient for epitope-specific interest occupied less than 35% of CD8” clonally expanded T cells.

T-cell expansion, circumventing otherwise unnecessary higher vol- Five TCRs were expanded across different stem cell grafts. In the

ume blood draws from healthy individuals. Access to already HLA- setting of only partially matched HLA types and peptide-driven in
typed stem cell donors can be especially helpful for identification of vitro expansion followed by pMHC tetramer-specific sorting, overlap
epitope-specific TCRs in the context of uncommaon HLA types. In of TCR repertoires of sorted populations is difficult to predict and will
addition to these rather technical advantages, virus-specific T cells be influenced by the diversity of TCR repertoires and limited overlap

generated from stem cell donor specimens have already been used between individuals. For nine of the re-expressed TCRs, the
for clinically effective treatment [41-43], making them T-cell sources TCRe andfor TCRS chains had already been deposited in the public
of choice for the authors’ purposes. database VD]db; however, paired TCRe S information, which is criti-

To increase the chances of successful epitope-specific T-cell cal for specificity, was available only for TCRs GLC1B11 and FLYSD11
expansion and broad applicability of potentially resulting T-cell prod- [50]. For example, the TCRE chain of TCR HPV13A10 has been
ucts, the authors chose target epitopes that had previously been well described as part of a Melan A-specific TCR, whereas the alpha chain

characterized, are known to strongly contribute to life-long EBV-spe- of the same TCR can be part of a cytomegalovirus 1E1-specific TCR.
cific T-cell memory and effector repertoires in infected individuals The authors proved experimentally that, in combination, these alpha
[3,20,44-46] and are presented on HLA types covering and beta chains compose the EBV epitope-specific TCR HPV13A10,
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underlining the importance of paired TCRxf single-cell sequencing.
Furthermore, among pMHC tetramer-sorted cells, the authors identi-
fied TCRA chains that paired with two different TCRe chains. For ane
of these TCRA chains, the authors showed experimentally that com-
bining with either TCRe chain resulted in the productive TCRs
GLC1B4 and GLC1B11, which were specific for the same epitope.

To confirm epitope specificity of selected TCRs, the authors used
modified 58~ 8~ cells as reporter cells and mini-LCLs as antigen-pre-
senting cells. Mini-LCLs contain a selected set of latent EBV genes
[35]; however, none of the TCR-recombinant 58z~ " cell lines were
activated by mini-LCLs, most likely due to low target antigen expres-
sionfpresentation. Nevertheless, mini-LCLs could efficiently present
artificially loaded peptides.

EBV epitope specificity for a variety ol publicly available TCRs
has already been demonstrated using artificially peptide-loaded
antigen-presenting cells; however, data on TCRs thal recognize
EBV-infected cells without additional peptide loading are limited.
The single-cell resolution of the authors' approach yielded sets of
candidate TCRs specilic for the target peptides of choice. To dem-
onstrate that the identified TCRs could indeed recognize virus-
infected cells, seven TCRs against latent and lytic phase epitopes
were expressed on human lymphocytes and incubated with LCLs
that expressed the required HLA-A"02:01 or B*35:01 allele. LCLs
show a latency Il EBV gene expression pattem and a general cel-
lular phenotype that closely correspond to PTLDs [51]. All tested
TCRs showed in vitre reactivity with LCLs by CD137 upregulation
andfor IFN-y production, making them promising candidates for
translation into highly specific T-cell products for adoptive trans-
fer. The authors chose IFN-y secretion as the readout for T-cell
activation because it requires triggering of at least 20-50% of
TCRs on a T cell, and cytotoxic activity can be assumed if [FN-y
secretion is detectable [52). As an example, for one TCR, the
authors showed that in case of target antigen recognition, both
CD107a expression and granzyme B and TNF- secretion were
also detectable. Although the majority of LCLs are not in the lytic
infection phase, it has already been shown that LCls can effi-
ciently activate T cells recognizing lytic phase epitopes [53].

With respect to potential TCR cross-reactivity with HLAs other
than the target HLA, the authors could not detect T-cell activation
upon incubation with HLA-mismatched mini-LCLs for all seven TCRs
that were transduced into human peripheral blood lymphocytes.
However, more detailed studies of HLA cross-reactivity are likely
required before therapeutic application can be implemented. For TCR
expression in human peripheral blood lymphocytes, the authors
replaced the human TCR constant regions with their murine counter-
parts to (i) avoid mispairing of TCRe 8 chains [54] and (ii) allow stain-
ing with mouse TCRA constant region antibodies. Whether
expression of the murine constant regions could result in therapeuti-
cally relevant immunogenicity has to be determined in [urther stud-
ies; however, TCRef mispairing could also be avoided by using
minimally murinized TCR constant regions, reducing the risk of
immunogenicity [55].

In addition to EBY infection and PTLDs, there are a variety of EBV-
associated solid malignancies in which the pathophysiological role of
EBV is still a matter of debate. Especially in Hodgkin lymphoma, natu-
ral killer/T-cell lymphoma and nasopharyngeal carcinoma, not all
EBV antigens can be assumed to be equally expressed and presented
[40,56]. Nevertheless EBV-directed T-cell therapy might represent a
targeted therapeutic option with tolerable side effects and promising
results in (pre-)clinical applications [57,58].

Canclusions
The authors present ellicient identiflication of EBV-specific

TCRs for translation into highly specific cellular therapeutics that
can be available within minimum amounts of time. T-cell

products will have exactly defined EBV epitope-specific T-cell
content and can be tracked in vive by mouse TCRE constant
region staining. T-cell sources for TCR expression and composi-
tions of T-cell subsets are the investigator's choice and can poten-
tially be adjusted and functionally manipulated before adoptive
transfer. The authors’ methodologies can be expanded to other
epitopes and HLA types and might be successfully applied bevond
EBV and other viral infections.
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Abstract

Reconstitution of the T cell repertoire after allogeneic stem cell transplantation is a long and
often incomplete process. As a result, reactivation of Epstein-Barr virus (EBV) is a frequent
complication that may be treated by adoptive transfer of donor-detived EBV-specific T cells.
We generated donor-derived EBV-specific T cells by stimulation with peptides representing
defined epitopes covering multiple HLA restrictions. T cells were adoptively transferredto a
patient who had developed persisting high titers of EBV after allogeneic stem cell transplan-
tation for angioimmunoblastic T-cell lymphoma (AITL). T cell receptor beta (TCRE) deep
sequencing showed that the T cell repertoire of the patient early after transplantation (day
60) was strongly reduced and only very low numbers of EBV-specific T cells were detect-
able. Manufacturing and in vitro expansion of donor-derived EBV-specific T cells resulted in
enrichment of EBV epitope-specific, HLA-restricted T cells. Monitoring of T cell clonotypes
at a molecular level after adoptive transfer revealed that the dominant TCR sequences from
peptide-stimulated T cells persisted long-term and established an EBV-specific TCR clono-
type repertoire in the host, with many of the EBV-specific TCRs present in the donor. This
reconstituted repertoire was associated with immunological control of EBV and with lack of
further AITL relapse.

PLOS Pathogens | hitps://doi.org/10.1371/joumal.ppat. 1010206  April 22, 2022
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Author summary

A characteristic feature of all herpesviruses is their persistence in the host's body after pri-
mary infection. Hence, the host’s immune system is confronted with the problem to con-
trol these viruses life-long. When the immune system is severely compromised, for
example after stem cell transplantation from a foreign (allogeneic) donor, these viruses
can reappear, as they persist in the host’s body life-long after primary infection. Epstein-
Barr virus (EBV) is a herpesvirus that can cause life-threatening complications after stem
cell transplantation and only reinforcement of the host’s immune system can reestablish
control over the virus. Here we show that ex vivo manufactured EBV-specific T cells can
reestablish long-term control of EBV and that these cells persist in the host’s body over
months. These results give us a better understanding of viral immune reconstitution post-
transplant and of clinically-relevant T cell populations against EBV.

Introduction

Linked to its high prevalence in adults, approximately 30-40% of patients reactivate Epstein-
Barr virus (EBV} after MHC-matched allogeneic stem cell transplantation (allo-SCT}), as deter-
mined by virus-specific PCR of cells of the peripheral blood [1]. Reactivation of EBV worsens
outcome after allo-SCT, since it imposes the risk of EBV -associated post-transplant lympheo-
proliferative disorder (PTLD) and is associated with malignancies such as angioimmunoblastic
T cell lymphoma (AITL) [2]. AITL is a rare form of T cell non-Hodgkin Lymphoma in which
concomitant EBV infection often occurs [3]. EBV appears to play a role in AITL pathogenesis
and histological development [2,4], either through EBV-infected B immunoblasts found at
early AITL stages adjacent to neoplastic T cells [5-7] or infection of both cells types [8]. For
this reason, EBV serostatus and viral loads serve as important prognostic factors [9,10], espe-
cially among young patients [11].

EBV DNA load in peripheral blood is routinely monitored by polymerase chain reaction
(PCR) in patients after allo-SCT to allow for pre-emptive treatment strategies [12]. Since no
specific antiviral therapy is available to date, treatment of EBV-related disease in patients after
allo-SCT focuses on three major strategies: (i) in-patient depletion of EBV-transformed B cells
with antibodies -with depletion of other B cells as collateral damage- (ii} reduction of immuno-
suppression, or (iii) application of EBV-specific, donor-derived T cells [13-16].

The availability of B cell-depleting antibodies has reduced the occurrence of PTLD after
allo-SCT [17], but comes with severe side effects and costs. Due to the long-term depletion of
B cells, antibody generation is abolished and patients are at risk of severe infections, especially
with encapsulated bacteria whose control requires antibody opsonization [18,19]. Therefore,
frequent application of intravenous immunoglobulins is necessary. Furthermore, the problem
of failing immunological control of EBV is not resolved.

As an alternative strategy, several groups have focused on the development of EBV-specific
T cell transfer, as reactivation of EBV is associated with use of T cell-depleted grafts or insuffi-
cient T cell reconstitution after transplantation. This approach does not bear the risk of devel-
oping de novo graft versus host disease [20-24]. Adoptive transfer of natural EBV-specific T
cells from EBV-positive donors has been performed and is considered overall a success due to
its effectiveness and safety [23]. For patients with EBV-seronegative donors, where natural
EBV-specific T cells are not available, adoptive transfer of EBV TCR-transduced T cells is a
promising alternative [25-29].

PLOS Pathogens | hitps://doi.org/10.1371/joumal.ppat. 1010206  April 22, 2022 2/25
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We have recently described a Good Manufacturing Practice (GMP)-compliant method for
the generation of CMV- and EBV-specific T cells by stimulation of G-CSF mobilized alloge-
neic stem cell grafts or conventional PBMC with MHC-I- and MHC-II-restricted epitope pep-
tides derived from viral proteins [24]. We selected peptides that allow for comprehensive
quality control of the product and subsequent follow-up within the patient after adoptive
transfer, using flow cytometry with peptide-MHC multimers. However, little is known about
the detailed structure of the EBV-specific T cell repertoire recognizing each epitope and its fate
after adoptive transfer into the patient.

Here, we generated multi-epitope-specific T cells by peptide stimulation and adoptively
transferred them to a patient with severe EBV reactivation after allo-SCT. We selected several
peptides for defined latent and lytic epitopes of multiple well-established HLA restrictions.
Using peptide-MHC multimer binding in flow cytometry and high-throughput sequencing of
the TCRp repertoire, we show that stimulation of T cells with EBV peptides generates a prod-
uct with a clonotypic TCRf repertoire that is strongly focused on EBV -specific sequences, and
that this repertoire can be tracked long-term i vivo after adoptive transfer in the patient to
demonstrate immune reconstitution.

Results
Manufacturing of EBV-specific T cells

A 55-year-old, EBV-seropaositive patient suffered from biopsy-confirmed chemotherapy-
refractory AITL (Stage IVB, EBV', see S1 and S2 Figs) and was transplanted with G-CSFE-mobi-
lized peripheral blood stem cells from an HLA 10/10 matched unrelated donor. Concomitant
with leukemic relapse shortly after transplantation (day 42}, the patient developed high EBV
titers in peripheral blood on day 66 and received conventional unmanipulated donor lympho-
cyte infusion (DLI) on day 76 and Rituximab four times weekly on days 68-89. As major
symptoms of EBV reactivation (night sweats, fever, itching of the skin, and elevated liver
enzymes) were not controlled, we decided to prepare and adoptively transfer peptide-stimu-
lated EBV-specific T cells (ATCT) on day 105. An overview of the patient history is provided
in 81 Table and 83 Fig,

To prepare EBV-specific T cells, a total of 600 million conventional PBMC (frozen fraction
of the preparation for conventional DLI} were stimulated with a pool of defined EBV-derived
peptides (1 ug/ml per peptide, Table 1), similar to the procedure published previously [24].
Peptide-stimulated cells were subsequently expanded in a closed bag system for 9 days. Fig 1A
(left panel) shows the compaosition of the PBMC before peptide stimulation (day 0) and of the
resulting cell composition after 9 days of expansion. The dominant fraction of cells in the
product were CD3" T cells (84.8%). B cells, NK cells and monocytes were reduced to 5.8% of
all cells. Other cells (9.4%) were mainly macrophages, activated monocytes, neutrophils (all
CD11b%, CD68"}, and few remaining granulocytes. As shown in Fig 1A (right panel), total
CD3" T cell number increased from approximately 315 million to 631 million cells over the
9-day period, and a total of approximately 750 million cells were harvested.

The T cell product was analyzed before and after peptide stimulation with peptide-MHC
multimers (Fig 1B} corresponding to the six peptides of the stimulation pool that were
restricted through HLAs present in transplant donor and recipient (Table 1). On day 0, 2.4%
of CD8' T cells, mainly in the CCR7-negative subset, specifically bound peptide-MHC multi-
mers. By day 9, T cells specific for five of the six epitopes had strongly expanded and now
amounted to 64.6% of all CD8" T cells. Two epitopes (RAK and EPL) from the immediate-
early protein BZLF1 and one epitope (HPV} from the latent antigen EBNA1 were particularly
dominant. Intracellular cytokine staining after restimulation demonstrated, as expected [44],

PLOS Pathogens | hitps://doi.org/10.1371/joumal.ppat. 1010206  April 22, 2022 3/25
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Table 1. Peptide pool used for T cell stimulation.

label AA Seq peptide length protein P ted on HLA reference matched with patient

CLG CLGGLLTMV 9 LMP2 AT02:01 [30)

GLC GLCTLVAML 9 BMLF1 A*02:01 [3132)

YVL YVLDHLIVV 9 BRLF1 ATD2:01 [33]

FLY FLYALALLL 9 LMP2 A"02:01 [34)

RLR RLRABAQVE 9 EBNA3A AM03:01 [35) +
RPP RPPIFIRRL 9 EBNA3A B*07:02 [35)

QAK QAKWRLQTL 9 EBNA3A B*08:01 [38] ‘
RAK RAKFKQLL L BZLF1 B08:01 [37] +
YPL YPLHEQHGM 9 EBNA3A B*35:01 [36] +
HPV HFVGEADYFEY 11 EBNA1L B*35:01 [38] +
EPL EPLPQGQLTAY 11 BZLF1 B*35:01 [33) +
PYYV PYYVVDLSVRGM 12 BHRF] DR™4 [39]

VVRM VVRMFMRERQLPQS 14 EBNA3C DR*11 [40]

FGQL FGQLTPHTKAVYQPR 15 BLLF! DR*13 [41)

rQc [PQCRLTPLSRLPFG 15 EBNAL DR*13 [42]

TDAW TDAWRFAMNYPRNPT 15 ENRF1 DR*15 [43]

AA:amino acid sequence.

hitps:/fdoi ore/10.137 1/journal. ppat. 101 0206.1001

that a variable proportion of CD8" T cells specific for these epitopes secreted 1EN-y in response
to single peptide stimulation (Fig 1C). A high proportion of IFN+y-secreting CD8" cells
(13.2%, compared to 24.1% of multimer-staining cells) was seen for the EPL epitope. An
increase of IFN-y concentration and other cytokines was also detected in patient serum after
adoptive transfer (S4 Fig). While more than half (53.6%} of CD3" T cells of the PBMCs (day 0}
had initially a naive phenotype (CCR7*/CD45RA"), these were reduced to 15.4% on day 9 (Fig
1D}, In contrast, the proportion of T cells with effector/effector memory phenotype (CCR7/
CD45RA '} changed from 22.8% to 80.0%. The three most dominant multimer-binding CD8"
T cell populations (EPL, RAK, and HPV) had a dominating effector memory phenotype in the
cellular product, despite a stronger CD62L expression in EPL- and RAK-specific T cells as
compared to HPV-specific T cells (S5 Fig).

Separate analysis showed that T cell memory phenotypes were extensively changed in the
CD8" but hardly in the CD4* T cell subset (Fig 1E), while expression of the activation markers
CD25, HLA-DR and CD38 was also largely limited to the CD8" subset (Fig 1F). As far as is
known (and disregarding the possibility of promiscuous HLA class II restriction [45]}, pep-
tides presented on HLA-DR to CD4" T cells and which were used for stimulation (Table 1}
were not restricted for any donor or patient HLA-ABC meolecule. Consequently, EBV-specific
CD4" T cells may not have been stimulated by the EBV peptide pool, and therefore memory
and activation markers on CD4" T cells were not altered.

Analysis of the TCR repertoire of the T cell product

Having demonstrated that stimulation of T cells with a pool of EBV peptides results in strong
expansion of peptide-specific CD8" effector and effector/effector-memory T cells, we next ana-
Iyzed the T cell receptor -chain (TCR[) repertoire before and after peptide stimulation. To
this end, we amplified the TCRp of flow cytometry-sorted CD8" T cells via high-throughput
sequencing (HTS} (see 6 Fig for multimer sorting gating strategy and purity). For compara-
bility, the same amount of DNA (100 ng per analysis}—representing the equivalent number of

PLOS Pathogens | hitps://doi.org/10.1371/joumal.ppat. 1010206  April 22, 2022 4/25



Printed copies of the publications 68

PLOS PATHOGENS Reconstitution of T cell immunity against EBV by adoptive transfer of peptide-stimulated T cells
A o restof 800
& leukocytes
% “ monocytes pr 600
g 2
£ “NKeels 8 450
2 [e]
5 = Bcells s
2 200
G » Tcells
0
day 0 day 9
B
RLR RAK HPV YPL neg.
b 0.1 0.9 I ; oal o‘o‘ 0.0
el 5 g~ : day 0
Q w 1
E a0
§ - 340 0.9 [i 0| days
Tl e e B e e e
CCR7 -
c CD8" T cells

EPL

day 0

86.6

SSC
i
CD45RA

day 9

=CD4*=CD8"

© temra
u efffem
= cm

= naive

% of T cells

1 day 0 day9 day0O day9
cDs* CD4*
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day 9. (C) IFN-y secretion of peptide-specific T cells after restimulation with single peptides on day 9, assessed by
intracellular cytokine staining (neg.: unstimulated CD8™ T cells, pos.: stimulation of T cells with ionomycin). (D) Flow
cytometric analysis of T cell memory/differentiation markers on day 0 and day 9. Plots on the right side are pre-gated on
CD3" cells. temra = terminally differentiated effector memory T cells (CCR7 CD4SRA"), efffem = effector/effector
memory T cells (CCRTCDM5RAT), em = central memory T cells (CCRT" CD45SRA™), nafve = najve T cells
(CCRTTCD45RAT). (E) Percentage of T cell subsets within CD4" and CD8™ T cells. (F) Flow cytometric analysis of T cell
activation markers CD25, HLA-DR and CD38 within the CD4" and CD8" T cell compartment.

hitps//dol.ong/10.1371/journal.opal. 1010206 6001

T cell rearrangements (approximately 14,500 T cells}—was employed for each library prepara-
tion. Within a first study, we were able to demonstrate that analyzing this constant amount of
T cells reliably reflects T cell composition and T cell diversity [46].

Following this approach, we observed a strong change in the usage of TCR V[ segments of
the sorted CD8" T cells before and after EBV peptide stimulation (Fig 2A, left panel}. While
the proportion of V19, 20, and 4 was reduced over 9 days of cultivation, we observed an
expansion of VB6 and V7 chains. Next, we enriched EBV epitope-specific CD8" T cells by
flow cytometry cell sorting based on peptide-MHC multimer binding on day 9. Interestingly,
individual patterns of V{3 usage were characteristic for each EBV epitope (Fig 2A, right panel),
with predominant V36 usage in EPL and HPV multimer-enriched CD8" T cells, and V7 and
V{4 predominant in RAK-enriched T cells.

Individual clonotypes were defined as TCR[p complementarity-determining regions 3
(CDR3} DN A sequences with a percentage of reads equal to or above the cut-off of 0.01%. We
compared the frequencies of the 25 most abundant TCRP clonotypes at day 0 and day 9 of the
CD8" T cells, ordered by read frequency in descending order (Fig 2B, left panel}. While the
percentage of the most common clonotype (labeled by arrow) of the total CD8' T cell fraction
on day 0 was 1.4%, the most dominant clonotype on day 9 reached 14.5%.

Analysis of the clonotype distribution of multimer-sorted T cells (Fig 2B, right panel}
revealed a steep distribution curve for epitope HPV-sorted T cells with the most dominant sin-
gle TCRP clonotype (CASGTEAFF) representing 38.8% of all HPV-sorted TCRp sequence
reads. In contrast, RAK- and EPL-sorted CD&" T cells showed a less steep distribution curve,
indicating a higher variety of different TCRp clonotypes.

A higher percentage of the most common clonotype correlated with a lower total number
of different clonotypes per sample. This correlation was also present in clonotype numbers in
CD8" T cells before and alter peptide stimulation (Fig 2C, left panel). At day 0, we identified
1,957 different TCRp clonotypes (cutoff 0.01% of reads) derived from an equivalent of approx-
imately 14,500 T cells (100 ng input DNA}). This number was reduced to 471 clonotypes after
stimulation, and 276 of these were shared in both samples. These 276 clonotypes accounted for
27.4% of total sequence reads on day 0 and for 80.8% of reads on day 9. Of these 276 clono-
types, 208 were found in multimer-sorted populations: 108 in EPL-, 97 in RAK-, and 96 in
HPV peptide-MHC multimer-binding T cells (overlapped clonotypes had only minor frequen-
cies). These 208 clonotypes accounted for 16.2% of all CD8* TCRf sequence reads of the
healthy donor (day 0). This fraction increased to 77.5% of all detected CD8" T cell TCRs in the
peptide-stimulated T cell product (day 9).

After flow cytometric cell sorting with the three peptide-MHC multimers, a total of 327 clo-
notypes were present in cells sorted with EPL multimer, 341 clonotypes in RAK-sorted cells,
and 313 clonotypes in HPV-sorted cells. Multimer sorting gate was kept stringent to achieve a
sorting purity above 98% (56 Fig). To clearly identify epitope-specific clonotypes and remove
both overlapping and contaminant cells in multimer-sorted populations, we established two
additional filters: (1} a frequency cutoff of 0.1% before and after multimer sorting, and (2) a
requirement that epitope-specific clonotypes were at least ten times more highly enriched in
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TCRB clonotypes within CD8" T cells on day 0 and day 9. The table shows the presence of the 276 shared TCRs from days 0 and 9 in total CD8'
T ecells and in multimer-sorted CD8" T cells from day 9, along with their camulative percentage in total CD8" T cells per day. Right panel:
Number of epitope-specific TCRp clonotypes and their proportion of cumulative TCRf sequence reads within the overall CD8" T cell product

on day 9.

hitps/idoi.ora/10.1371/iournal.ppat. 10102066002

one of the multimer-sorted cultures than in the other two (ternary exclusion criterion}. This
analysis resulted in the identification of 40 EPL-, 28 RAK-, and 9 HPV-specific TCRs. (Fig 2C,
right panel, epitope-specific clonotype identification in 7 Fig, TCR overview in §2-584 Tables).
Notably, the 77 epitope-specific clonotypes represented 74.7% of all TCRp reads on day 9. This
finding confirmed that day 9 peptide-expanded T cells were dominated by EBV epitope-spe-
cific CD8" T cells. Among these, the 9 HPV-specific clonotypes accounted for 29.5% of all
CD8" clonotypes on day 9, which again reflects the steep distribution curve shown in Fig 2B
(right panel} and the high proportion of dominant clonotypes such as CASGTEAFF in the
HPV-sorted fraction.

To illustrate how EBV peptide-sorted T cell clonotypes expanded after peptide stimulation,
the 30 most common TCRP clonotypes on day 0 and day 9 as well as the 10 most common clo-
notypes of EPL-, RAK-, and HPV-sorted T cells are listed in Table 2. Therein, the most domi-
nant TCRp clonotype for 3 EBV peptides is color-coded according to the peptide. Peptide
stimulation resulted in a strong expansion of the dominant clonotypes for the three peptides.
The dominant HPV-sorted TCRp clonotype (CASGTEAFF) was also the most dominant one
in day 9 CD8" T cells and had been expanded 24-fold as compared to day 0. Within the multi-
mer-sorted T cell fraction, this specific clonotype accounted for 38.8% of sequencing reads.
Similar results were obtained for EPL and RAK dominant clonotypes. However, the HPV-spe-
cific TCRP clonotype CASGTEAFF was found three times due to different DNA sequences
coding for the identical amino acid sequence. Overall, these three clonotypes accounted for
66.2% within the HPV -sorted fraction.

T cell expansion after adoptive T cell transfer

To follow the in vive fate of adoptively transferred peptide-stimulated T cells, we analyzed the
peripheral blood of the patient before and after transfer. Fig 3A shows T cell immune reconsti-
tution in absolute T cell numbers after allo-SCT. Between day 34 and day 89, we observed mas-
sive expansion of CD4" cells that was caused by the relapse of the underlying CD4" AITL, as
confirmed on a molecular level by preponderance of a single T-cell clonotype in a lymph node
(51 Fig). This hematologic relapse was accompanied by high fever and EBV reactivation
emerging on day 66 and peaking on day 89 with 140,000 copies per ml peripheral blood (Fig
3A). The patient received four Rituximab doses weekly, starting on day 68, and an unseparated
donor lymphocyte infusion (DLI} containing 5.0 Mio. CD3" T cells/kg body weight on day 76
(S1 Table). No further therapy was given at that point. Over the course of the following 21
days, T cell counts strongly decreased. We therefore decided to generate an EBV-derived pep-
tide-stimulated T cell product from frozen DLI portions. This product was transferred at a
dose of 1.0 Mio CD3' T cells/kg body weight on day 105 post-allo-SCT. As shown in Fig 3A,
CD8" T cells expanded after adoptive transfer for 8 days (day 105 to 113}, followed by a decline
over 13 days until day 126 and stable maintenance thereafier.

‘When the TCRp repertoire within the donor’s PEMC fraction used as DLI (Fig 3B, day 0}
was analyzed, we obtained 2375 clonotypes within the CD4* compartment and 1957 clono-
types within the CD8" compartment, which is a typical degree of TCR diversity observed in
healthy donors with the assay used here [46]. Consistent with an expected narrowing of the
TCR repertoire following allo-SCT [48], our patient’s TCR[ repertoire was strongly reduced in
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Table 2. Expansion of distinct clonotypes after EBV-derived peptide stimulation.

CD8" T cells day 0 CDE" T cells day 9 HLA multimer-sorted T cell product
reads (%) CDR3 reads (%) CDR3 reads (%) CDR3 peptide
1426 | CASTTPGGRNEKLEF 14.464 13.732
1426 | CATSRARGSGANVLTF 10.491 | CASSSQRQGRTYEQYF 5.709 | CASSDSGTTENEQFF
1.271 | CSAKGSLETEAFF 7.862 3.672 | CASSDSGIHNSPLHF

1.044 | CASSYPGQLNEKLFF

7.020 | CASGTEAFF

3.487 | CASSDTSALNTEAFF

0.975 | CASSQDPGNTEAFF

2.700 | CASGTEAFF

3.425 | CAISTGDSNQPQHF

0.757 | CASSEGYSNQPQHF

2.407 | CASTSSRGGGNTIYF

3.132 | CASRGGQGQETQYF

0.629 | CSASDTGISGANVLTF
0.605
0.572 | CASSQDYAGHQPQHF

2.359 | CASGNEQYF 2.604 | CASRTGEVNEQFF
2.028 | CASSQASYVQGDGYTF 2.081 | CASSTGDSNQPQHF
1.959 1.817 | CASGTFDSNQPQHF

0.454 | CSAKGGYDTEAFF

1.929 | CASGSEAFF

1.730 | CASSDSGMTEAFF

0.440 | CASSLNGEGTYEQYF

1.339 | CAISTGDSNQPQHF

38.810

0.436 | CSVRGRENSPLHF

1170 | CASSPGGGTEAFF

17.472 | CASGTEAFF

0.356 | CASSMALTATNEKLFF

1.144 | CASSSLNTEAFF P2

9.966 | CASGTEAFF

0.354 | CASSPTGNTEAFF
0.347
0.326 | CASSQESDYGYTF

0.984 | CSARDRGDTYEQYF

7.303 | CASGSEAFF

0.940 | CASRTGEVNEQFF

3.890 | CASRPTGFDGYTF

0.925 | CSAGQGEGYEQYF

1.998 | CASGNEQFF

0.319 | CASSQADSFSGNTIYF

0.863 | CASRPPGPFYEQYF

1.383 | CSAALRPVPRTGYTF

0.273 | CASSQESGHLNTEAFF

0.862 | CASSTGDVNQPQHF

1.130 | CASSSRSGELFF

0.246 | CASSAETGGGEKAFF
0.242
0.225 | CASSQGPNYEQYF

0.853 | CASSQGLPLNTEAFF

1.019 | CASIPRTKTEAFF

0.827 | CASSYGPYEQYF

0.636 | CASGNEQFF

0.746 | CASSDSGIHNSPLHF

18.947

0.217 | CASSIGQAYEQYF

0.729 | CASRGGQGQETQYF

9.985 | CASSSQROGRTYEQYF

0.216 | CASSESPAGEQYF

0.672 | CASSDSGTTFNEQFF

5.449 | CASSQGLPLNTEAFF

0.203 | CSARDPGSSYEQYF

0.583 | CASSSLNTEAFF P2

5.294 | CASTSSRGGGNTIYF

0.202 | CASSLAPGYLYYEQYF

0.479 | CSARGASPQANYGYTF

2.834 | CSAGQGEGYEQYF

0.195 | CSARGGETEAFF

0.432 | CASSDTSALNTEAFF

2.810 | CASSSLNTEAFF P2

0.192 | CASSEAGTGRSEQYF

0.427 | CASSYSSFRGGNSPLHF

2.442 | CASSSLNTEAFF P2

0.189 | CASSKTMGMGTDTQYF

0.414 | CASGNEQFF

2.330 | CASSLIASGGYNEQFF

0.186 | CASGTEAFF

0.403 | CASSSLNTEAFF

2.025 | CASSQGVTDYWNEQFF

0.175 | CASSLSYEQYF

0.394 | CASSQPGGLEQYTF

1.946 | CASSQGTGENYGYTF

Ranking of the top 30 TCRP clonotypes in donor-derived CD8™ T cells before peptide stimulation (day 0, left column), after peptide stimulation (day 9, middle column},
and after peptide stimulation with HLA multimer FACS sorting on day 2 (right column, top 10 clonotypes for each specificity). Clonotypes with identical CDR3 peptide
sequence are presented separately in case of a different underlying CIVR3 DNA sequence and marked in red. The most dominant clonotype per multimer-sorted T cells

are color-coded regarding the peptide used for sorting. P2: public donotypes pr

Iy published. [17]

hitps:/fdoi.org/10.137 1fjournal.ppat. 1010206.1002

both compartments (CD4": 236, CD8": 108 clonotypes) on day 60 after allo-SCT (before DLI
and adoptive transfer of EBV peptide-stimulated T cells). In line with hematologic relapse, one
clone was predominant in the CD4" fraction of peripheral blood (CSARDRTGSEKLFF). This
clone represented the CD4" AITL, which was confirmed by analysis of DNA retrieved from a
lymph node biopsy at the time of initial diagnosis (1 Fig). On day 120 (fifteen days after adop-
tive transfer of peptide-stimulated T cells), we observed an increase in T cell diversity, which
was higher in CD8" T cells (645 clonotypes) than in CD4" T cells (402 clonotypes). This sug-
gested that adoptive transfer on day 105 contributed to diversification of the patient’s TCR rep-
ertoire, in particular through transfer of EBV-specific CD8+ T cells.

PLOS Pathogens | hitps://doi.org10.1371/joumal.ppat. 1010206  April 22, 2022
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Fig 3. T cell and clonotype expansion after ic stem cell t pl ion and adoptive transfer of EBV-specific T cells. (A) Flow eytometric
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detected on day 56 in peripheral blood. Time points of Rituximab application are marked with an asterisk (7). ATCT = adoptive T cell transfer. {B) TCR
clonotype diversity in CD4” and CD8™ T cells in peripheral blood of the patient. For comparison, the diversity in donor’s PBMC is shown. (C) Flow cytometric
monitoring of peripheral blood CD8™ T cells using HLA peptide- MHC multimers (EPL, RAK, ITPV) on the day of ATCT (day 105) and thereafter. (D)
Cumulative frequency of TCR clonotypes specific for each of the epitopes EPL, RAK, and HPV in CD#" T cell populations. Data points for donor’s PBMC, T
cell product after peptide stimulation, and peripheral blood of the patient before {day 60) and after ATCT (day 120, day 180, and day 230) are shown.

https://doi.org/10.1371/journal. ppat.1010206.6003
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Multimer staining was used to track EBV-specific T cells until day 232 after allo-SCT (Fig
3C}). We observed a strong expansion of EPL- and RAK-specific CD8" T cells, which were two
of the three dominant EBV specificities in the T cell product. On day 105, immediately before
adoptive transfer, a small fraction of HLA multimer-binding CD8" T cells had been detectable
in peripheral blood. Over the course of 8 days after transfer, RAK- and EPL-multimer-binding
CD8" T cells strongly expanded in vivo (from 14/ul to 55/ul and from 28/ul to 120/, respec-
tively}. Analysis of the TCRp repertoire (Fig 3D} before adoptive T cell transfer (ATCT) on
day 60 revealed that the patient had not mounted a significant T cell response against EPL,
RAK, and HPV epitopes: Only 6 of 77 epitope-specific clonotypes were detectable. This situa-
tion had changed 15 days after adoptive transfer of peptide-stimulated T cells (day 120}, when
the total number of different multimer-binding clonotypes present had increased to 61. In
comparison to day 60, by day 120 EPL- and HPV-specific T cell read frequencies increased
significantly (EPL: from 3.67% to 15.43%, HPV: 0.00% to 2.37%), while RAK was relatively
stable (RAK: 4.78% to 5.06%), Thereafter, clonotype diversity in CD8" T cells remained
rather constant (Fig 3B}, while epitope-specific clonotypes gradually declined until day 232
but were detectable throughout the observation period (follow-up of epitope-specific TCRs in
55 Table).

A complete frequency analysis of the 77 EBV epitope-specific clonotypes is shown in Fig 4A
as a heat map (comparison in the T cell product before and after multimer sort in S8 Fig). At
the beginning of the EBV peptide-stimulated T cell product manufacture (which at this point
represents the donor’s natural T cell repertoire on day 0), we found 55 EBV-specific clonotypes
to be present in the patient at this time. These clonotypes represent 5.43% of the CD8' TCRp
repertoire before peptide-stimulation on day 0 (S5 Table). 15 days after adoptive transfer (day
120), the 77 EBV epitope-specific clonotypes accounted for 22.86% of all TCR gene reads
found in the patient. On our last measurement (day 232}, 45 EBV-specific clonotypes
remained detectable, representing 8.49% of all TCR reads. Thus, by adoptive transfer of pep-
tide-stimulated T cells, we reinstalled a large part of the donor’s specific T cell repertoire tar-
geting three EBV epitopes, which is especially reflected by the dominant clonotypes for each
epitope (Fig 4B upper panel and Table 2). EBV-specific T cell reconstitution in the patient
included two previously described (and thus public} clonotypes specific for EPL and RAK (Fig
4B, lower panel, and Table 2}, but one of these became undetectable on day 232 [31,33). Itis
noteworthy that neither dominant nor proven public clonotypes were found among the 6
EBV-specific clonotypes on day 60 in the patient, when EBV began to reactivate in the period
before ATCT.

Discussion

Adoptive transfer of EBV-specific T cells for the treatment of EBV-associated lymphoma in
the immunocompromised host has been shown to effectively mediate virus control [50]. Fur-
thermore, it has been demonstrated that adoptively transferred EBV -specific T cells contribute
to long-term immunity [20]. However, although several dominant EBV-derived T cell epitopes
and their HLA restriction were identified over the past decades [30-43], it remains unclear
which and how many TCRs recognize those epitopes and are being expanded in vivo, Follow-
up in patients after primary infection with EBV suggests few clonotypes with high frequencies
dominate epitope-specific responses long-term [51]. Similar observations were made after
adoptive transfer of EBV-specific T cells [52,53], thus pointing towards TCR clonotypes of
potential clinical interest. Beyond single clonotypes, EBV-specilic T cell frequencies, repertoire
diversity, and long-term survival of TCR clonotypes contribute to control active EBV infection
[54], latency [55], and EBV -associated malignancies [56-58].
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Fig 4. Frequencies of specific TCRP clonotypes before and after adoptive T cell transfer. (A) Frequency heatmap of individual
epitope-specific TCR clonotypes in donor PBMC, T cell product, and feur time points after transplantation in the patient {day 60, day
120, day 180, and day 232). Clonotype frequency is displayed as a percentage from 0.01% (limit of detection) to 14.4637 by increasing
celour depth. Each row represents one specific TCR clonotype. Identified public TCR sequences {P1 and P2) previously published
[47,49] are shown in grey boxes. The most dominant clones (D 1-3) within each specificity are shown in pink boxes. ATCT: adoptive
T cell transfer. (B) Frequencies of public clonotypes (P) and dominant clenotypes (D) in different samples.

https://doi.org/10.1371/journal. ppat.1010206.5004
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In this study, we manufactured and extensively analyzed at a molecular level the fate of
adoptively transferred T cells enriched for specificity against multiple EBV-derived epitopes.
It vitro stimulation with defined EBV latent and Iytic epitopes resulted in a strong expansion
of three EBV epitope-specific CD8" T cell populations (two lytic antigen epitopes and one
latent antigen epitope). Each of the three specificities were reconstituted in vivo and T cells
were maintained in the patient for at least five months. Furthermore, we comprehensively
characterized the T cell clonotype repertoire for each of the epitope specificities by combining
flow cytometry and high-throughput sequencing of TCRJ3 rearrangements.

This study was carried out in an EBV -seropositive patient who, after chemotherapy and
allo-SCT fora CD4" AITL, suffered from relapse and simultaneous increase of peripheral
blood EBV load, most likely associated with the leukemic relapse of the lymphoma. EBV -
encoded RNA (EBER} in situ hybridization (IsH} analysis of AITL in the lymph node at diag-
nosis revealed the AITL tumor to be EBV negative (82 Fig). This suggests that high EBV titers
derived from an active infection site other than the AITL. However, simultaneous high EBV
viremia and AITL relapse suggests a strong association between AITL and EBV infection,
including a possible role in its pathogenesis [2] and increased aggressiveness [4].

Despite DLI and Rituximab treatment, adoptive transfer of T cells enriched for EBV epi-
topes was provided due to persistence of severe B-symptoms and increasing levels of EBV viral
DNA in the peripheral blood. In addition, on day 60 post allo-SCT, we observed a complete
lack of EBV peptide-MHC multimer-binding T cells for the six known HLA-relevant epitopes.
Owing to the risk of recurrent EBV reactivation [59] and its concomitant occurrence with
AITL relapse, we believe adoptive transfer of EBV-specific T cell products hold promise to sup-
port the treatment of AITL by controlling EBV infection [60,61].

‘We cannot exclude at this point that the conventional DLI may indeed have contributed to
the surviving EBV memory T cell pool; nonetheless, we were able to track EBV-specific T cell
clonotypes coming from the adoptive transfer that persisted long-term in the patient. In con-
trast to the conventional DLI, EBV-specific T cells immediately expanded after adoptive trans-
fer, resulting in a profound cytokine release syndrome (54 Fig).

Variance between ex vivo and in vivo expansion of epitope-specific cells, especially against
antigens of latency and lytic phases, may arise from differences in differentiation phenotype
and epitope availability at both stages. Although T cells in the cellular product mostly lacked
CCR7 expression (CCR7 CD45RA ), both Iytic BZLE-1 EPL- and RAK-specific T cells had
stronger CD62L expression than latent EBNA1 HPV-specific T cells (S5 Fig). CD62L expres-
sion facilitates homing into lymph nodes through adhesion to high endothelial venules (HEV)
[62], with a closer association to central memory phenotype (CD62L CD45RA '} [63]. This dif-
ference may indicate a higher proliferative strength, a stronger expansion (as seen in Fig 3C),
less exhaustion, and better homing ability of the Iytic antigen-specific T cells. An alternative
hypothesis to the difference in expansion between lytic and latent antigen-specific T cells is the
availability of their target epitope: The strong expansion of EPL- and RAK-specific T cells in
peripheral blood and cytokine release (S4 Fig) happened directly after transfer, when ongoing
EBV viremia (suggestive for lytic cycle) may have provided profound Iytic epitope presenta-
tion. EBV viremia decrease over time and lesser epitope availability would explain why few clo-
notypes remained and survived |()t‘Jg-l.t:r111, which is cx[)::{_tu.l as a natural modulation of the
immune T cell response. On the other hand, HPV-specific T cells (latent antigen EBNA1)
strongly expanded ex vivo but not in peripheral blood in vivo, either due to its homing to an
active infection site, such as a lymph node, or the unavailability of their target antigen. In either
case, we demonstrated that in vifro T cell stimulation with a defined set of peptides results in
broad spectrum TCR repertoire expansion of various dominant clonotypes for relevant latent
and lytic epitope specificities, which then get further selected in vivo based on need during the
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course of viral reactivation. They might therefore contribute to reinstallation of a natural
occurring immunity similar to the one observed in the donor.

Approximately 10 days after adoptive transfer of EBV-specific T cells and approximately 40
days after conventional DLI, the patient developed a skin rash, high bilirubin and liver enzyme
elevation in the sense of acute GvHD (see S9 Fig). We cannot clearly attribute this to either
DLIor the T cell product. The conventional DLI contained approximately 53.6% naive T cells
(equivalent to day 0 analysis for the manufacturing, see Fig 1D). In total 201 Mio. naive T cells
were infused with the conventional DLI (5.0 Mio. CD3" T cells/kg). In contrast, a total of only
11.55 Mio. naive T cells were infused along with the EBV-specific T cell product (1 Mio. CD3"
T cells/kg). We would speculate retrospectively that GvHD was mainly due to the conventional
DLI, and that the cytokine release syndrome induced by the EBV-specific T cell product aug-
mented the naive T cell response. The patient received 1mg/kg Prednisone and responded
very quickly to this treatment, which is also reflected in the rapid decline of CD&" T cells in the
peripheral blood. However, despite the high dose of steroids, the patient did not reactivate
EBV again and EBV-specific T cells persisted at a lower level demonstrating steroid resistance.

Our TCR high-throughput sequencing approach is based on samples of 100 ng cellular
DNA and therefore has a limited resolution of 14,500 T cells, with a frequency cut-off of 0.01%
(approximately 100 reads per T cell). This is suitable to obtain insights into clonotype diversity
but will not detect every virus-specific TCR clonotype in patient samples or T cell products.
High-throughput sequencing was able to reveal multiple EBV-specific clonotypes even in the
complex T cell repertoire of the healthy donor, whose cells were used to manufacture EBV-
specific T cells for adoptive transfer.

Expansion of EPL-, RAK-, and HPV-MHC multimer-binding T cells after peptide stimula-
tion correlated with the expansion of distinct clonotypes, as shown by flow cytometry and
TCRP high throughput sequencing. However, we found TCRs in the MHC multimer-sorted
CD8" population that were not enriched (as compared with unsorted populations) but were
still detectable, presumably due to unspecific MHC multimer-binding. Nonetheless, this frac-
tion represented the purest pool of T cells for a defined specificity (sorting purity above 98%)
and was used to for multimer ternary exclusion.

Of note, the use of peptide-MHC multimer binding introduces a bias for TCRs with higher
alfinities because the affinity threshold required for multimer binding is higher than the one
for T cell activation [64]. Therefore, we would conclude both BZLF1- and EBN Al-specific clo-
notypes identified in this study to have relatively higher aflinity levels.

We mapped TCR sequences from peptide-MHC multimer-binding T cells back to the
unsorted T cell pools before (d0} and after (d9} peptide stimulation. Using this strategy, we
were able to identify previously described TCRp sequences [31,32] and numerous new and
naturally occurring clonotypes with relatively high frequencies in the normal donor. For
example, three sequences with three distinct specificities found in the donor (Table 2,

highlighted) accounted for 1.1% of the donor’s repertoire. These were among the donor’s 30
clonotypes with the highest frequencies and persisted long term after adoptive transfer in the
patient. The presence of dominant clonotypes for single peptide specificities is reinforced by
the fact that three different DNA sequences coded for HPV-specific TCRp clonotype
CASGTEAFF.

TCR donotypes complying with both inclusion criteria (frequency above 0.1% before and
after multimer sort in T cell product and multimer ternary analysis) were identified as EBV
epitope-specific. The frequency cutoff of 0.1% was selected to reduce noise, while ternary anal-
ysis allows us to exclude unspecific multimer-binding clonotypes. Using both criteria com-
bined, we were able to identify EBV epitope-specific T cells which clearly dominate the T cell
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product (77 of 471 clonotypes account for 74.8% of reads} and persist long-term after adoptive
transfer.

It is relevant that such few EBV-specific clonotypes were detectable on day 60, while the
patient’s EBV viral load in peripheral blood was increasing. In contrast, EBV epitope-specific
clonotypes from the unsorted and MHC multimer-sorted CD8" populations on day 9 were
found 15 days after adoptive transfer (day 120} with a significant increase in frequencies and
diversity of TCR clonotypes (Fig 4A). Therefore, we could see an association between the pres-
ence of several EBV epitope-specific clonotypes on day 120 and the absence of EBV DNA in
the peripheral blood thereafter. Due to the association of EBV infection and AITL relapse,
EBV control could have positively influenced AITL regression, as has been observed in PTLD
[65].

Success of ATCT after allo-SCT depends on restoring immunity against viruses without
viral reactivation, in the absence of Graft versus Host Disease (GvHD) [66]. Several indicators
of restored EBV-specific T cell immunity are: (i} the persistence of adoptively transferred,
functional virus-specific T cells [20,67-69], (ii) absence and regression of EBV -associated lym-
phomas [65,70-72], and (iii) control of virus reactivation and viremia in vive [69,73-76). We
would therefore argue that the presence of EBV epitope-specific, expanded clonotypes in the T
cell product, their long-term persistence in the patient, and lack of further EBV reactivation or
relapse point to an important role of these clonotypes in controlling EBV, AITL, and other
EBV-associated malignancies.

In conclusion, we were able to confirm the long-term presence of expanded, EBV epitope-
specific CDa" T cell clonotypes following adoptive transfer in the patient, thereby restoring
anti-EBV T cell immunity. To further validate these findings, a recently closed multicenter
phase 1/I1a clinical study (NCT02227641, EudraCT: 2012-004240-30) used this manufacture
technique to generate T cell products with double specificity against CMV and EBV for
patients after allo-SCT. The results of this study will further increase our knowledge on poten-
tially protective virus-specific TCR repertoires after allo-SCT.

Material and methods
Ethics statement

The patient gave written informed consent prior to transplantation for extended immunomo-
nitoring using standard flow cytometry, multimer analysis, and TCR HTS. The ethics commit-
tee of Friedrich-Alexander-University Erlangen-Niirnberg gave approval for this study
(approval No.: 4388). In addition, the patient gave written consent for the attempt to cure
using donor-derived EBV-specific T cells.

EBYV viral load analysis

EBV viral load measurement was carried out with whole blood EDTA as part of regular fol-
low-up in the hospital for all allo-SCT patients. The QiaSymphony DSP Virus/Pathogen Mini
Kit (QIAGEN, Hilden, Germany) was used for viral nucleic acid purification, while real-time
PCR was established in-house and adapted from literature [77].

in situ hybridization
EBER in sifi hybridization was carried out on an AITL lymph node sample at time of
diagnosis.
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Generation of EBV-specific T cells

EBV-specific peptides were generated in a GMP-conform fashion as described previously
[68]. Peptides used for stimulation are shown in Table 1. In brief: frozen donor lymphocytes
were obtained and thawed for Ficoll density centrifugation, vielding 826 x 10° PBMC. PEMC
were frozen until use. 600 million PBMC were incubated with peptide mix for 2h. After subse-
quent washing steps, cells were incubated in a closed bag system for 9 days. Medium was
added according to the manufacturing protocol on day 5. Quality assessment of the product
included bacterial culture and eubacterial PCR, flow cytometric analysis, and trypan blue
method for viability.

Flow cytometry analysis of cultivated cells and peripheral blood

To quantify cell types, peripheral blood (50 ul per sample} was stained in TruCount tubes
containing fluorescent beads (BD Biosciences) with the following antibodies: anti-CD8
FITC (clone §K1}, anti-CD25 PE (clone 2A3), anti-CD14 PerCP (clone MgP9}, anti-CD56
APC (clone B159}, anti-CD19 PE-Cy7 (clone §]25C1}), anti-CD4 APC-Cy7 (clone
RPA-T4}, anti-CD3 V450 (clone UCHT1}, and anti-CD45 V500 (clone HI30, all clones
from BD Bioscience}. After incubation at room temperature for 15 min, 450 ul of red cell
lysis buffer (BD Biosciences) was added and samples were incubated for further 20 min.
Cells were analyzed subsequently after staining using a FACS Canto II flow cytometer
{Becton Dickinson). Leukocytes were gated as CD45* and lymphocytes as CD45"#CD14”
cells. Within the lymphocyte population, T cells were determined as CD3", B cells as
CD19*, NK cells as CD56" cell populations. T cell subpopulations were analyzed for CD4
and CD8 expression. Cell counts/ul were calculated based on bead count and sample vol-
ume in TruCount tubes (BD Bioscience). Cultivated cells were stained with the same
panel but without cell quantification by TruCount tubes.

For analysis of T cells with multimer staining, 1x1 0° cells either PBMC isolated from
peripheral blood by Ficoll density centrifugation or taken from cultivated cells on day 0 and
day 9, were stained with HLA-matched peptide-MHC pentamers (Prolmmune, Oxford, UK),
and subsequently counterstained with PE-fluorotag (Proimmune}, anti-CCR7 FITC (clone
150503, R&D Systems, Minneapolis, MN, USA), anti-CD8 PerCP (clone SK1}, anti-CD62L
APC (clone DREG-56), anti-CD45RA PE-Cy7 (clone HI100), anti-CD4 APC-Cy7 (clone
RPA-T4), and anti-CD3 V450 (clone UCHT], all clones BD Biosciences). Cells were analyzed
using a FACS Canto II flow cytometry analyzer (Becton Dickinson). Vital lymphocytes were
gated in F5C vs, SSC. T cells were identified by their CD3 expression. T cell subpopulations
were identified by CD4 and CD8 expression. T cells binding an EBV peptide-MHC multimer
were analyzed within the CD8" T cell population.

Cultivated cells after harvest were further analyzed for IFN-y production upon antigen-spe-
cific restimulation. Therefore, day 9 cells were restimulated with the epitopes RLR, RAK,
QAK, EPL, HPV, or YPL (each peptide 0.5ug/ml}), or PMA-ionomycin for positive control. To
inhibit IFN-y secretion, GolgiStop (BD Biosciences) was added for the time of restimulation (5
hours). Afterwards, cells were harvested and stained with the following surface markers: anti-
CD3 PerCP (clone SK7}, anti-CD8 PE-Cy7 (SK1}, and anti-CD4 APC-Cy7 (clone RPA-T4).
Then, cells were washed and treated with 250pl CellFix /Perm buffer (BD Biosciences} for 20
minutes, 4" C. Cells were then washed with Perm-/Wash buffer (BD Biosciences) and subse-
quently intracellularly stained with anti-IFN-y-FITC (clone B27} for 30 minutes at 4°C. After-
wards, cells were once washed with Perm-/Wash-buffer and once with PBS. After cell fixation,

samples could be analyzed by flow cytometry.
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Cell sorting

Whole blood samples (EDTA) were processed by density gradient centrifugation (Ficoll) to
obtain mononuclear blood cells (PBMC). For flow cytometry sorting, PBMC were stained

with anti-CD4 FITC (clone SK3), anti-CD8 PE (done SK1), anti-CD 14 PerCP (clone M@P9,
all clones BD Biosciences, Franklin Lakes, NJ, USA), and anti-TCRop (clone BW242/412, Mil-
tenyi Biote, Bergisch Gladbach, Germany). Cells were gated on (i} vital lymphocytes in for-
ward/side scatter, (ii) exclusion of doublets, and (iii) TCRaf' CD14™ T cells. Within the T cell
population, CD4" and CD8" T cells were sorted into separate tubes (MoFlow, Beckman Coul-
ter, Brea, CA, USA). A purity of > 98.0% was achieved as monitored by reanalysis of the sorted
samples.

Multimer cell sorting was performed using HLA-matched peptide-MHC pentamers
obtained from Prolmmune. Of the EBV-specific expanded T cells (day 9), 40x10°cells were
incubated with RAK-HLA-B*08:01-, 40x10°cells with HPV-HLA*B35:01-, and 18x10°cells
with EPL-HLA"B35:01-multimers, according to manufacturer’s recommendation. Afterwards
cells were washed and stained with PE-fluorotag (Prolmmune) binding to the peptide loaded
HLA multimers, anti-CD8 FITC (clone 8K1, BD Biosciences}, anti-CD14 PerCP (clone MgP9,
BD Biosciences), and anti-TCRa3 (clone BW242/412, Miltenyi Biotec, Bergisch Gladbach,
Germany). Cells were gated on (i) vital lymphocytes in forward/side scatter, (ii) exclusion of
doublets, and (iii} TCRep" CD14° T cells. Then, the CD8" multimer-binding population was
sorted out and used for further analysis by TCRf sequencing.

DNA isolation

DNA was extracted from flow cytometry-sorted T cells using the Qiagen AllPrep DNA/RNA
Mini Kit (Qiagen) according to the manufacturer’s instructions. Quantification of the
extracted DNA was done employing a Qubit 1.0 Fluorometer (Invitrogen, Carlsbad, CA,
USA).

Capillary electrophoresis
CDR3 length repertoires of TCRP sequences were generated by using the BIOMED-2 primer
sets for PCR-based clonality analysis [78]. The fluorescence-labeled amplicons were size-sepa-

rated and detected via automated laser scanning by a 3130 Genetic Analyzer (Applied Biosys-
tems; Darmstadt, Germany}).

High-throughput sequencing of TCRp gene clonotypes

Amplification of TCRp from 100 ng of cellular DNA (approximately 14,500 T cells) with mul-
tiplex PCR, sequencing of amplified TCR] gene libraries (HiSeq2000), and data processing
were performed as previously described [46]. Employing a two-step PCR strategy, the TCRp
amplicons were tagged with universal Illumina adapter sequences, including an additional bar-
code during a second amplification step, allowing parallel sequencing of several samples on
Tllumina HiSeq2000 (Illumina, San Diego, CA). Our amplicon sequences covered the entire
CDR3 length and V[ and ]| segments in parts and using the lllumina paired-end technology
(2x 100 bp} provided a high sequence accuracy.

The multiplex primers used contain a universal adapter sequence as a tail at the 5" end com-
plementary to the 3’ ends of second amplification adaptor primers. The adaptor PCR primers
contained universal sequences that permitted solid-phase PCR on the Illumina Genome Ana-
Iyzer (HiSeq 2000 Sequencing System}. Primary amplification (final volume: 50 ul) was pro-
cessed, including 100 ng DNA, 1.0 uM equimolar V3 and ] primer pools, PCR buffer, 3mM
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MgCl2, 0.2mM of each dNTP and 1U AmpliTaq Gold DN A Polymerase (Applied Biosystems,
Foster City, CA). The amplification was performed on a DNA thermal cycler (GeneAmp1
PCR System 9700, Applied Biosystems) for 34 cycles at 62°C annealing temperature. All PCR
products were purified using the QlAquick PCR Purification Kit (Qiagen) and diluted (final
amount: 500 pg} for further amplifications. Adapter PCRs were set up with Phusion HF Buffer,
1.0 puM forward and reverse adapter primers, 0.05mM of each dNTP and 1U Phusion High-
Fidelity DNA Polymerase (Finnzymes, Espoo, Finland). Secondary amplification was per-
formed for 12 cycles at 58°C annealing temperature. Products were isolated from a 2% agarose
gel using the Wizard1 SV Gel and PCR Clean-Up System (Promega, Mannheim, Germany).
DNA concentration was determined via the Qubitl 1.0 Fluorometer (Invitrogen) [46]. Clono-
types were defined as TCRP clonotypes with a percentage of reads equal to or above a 0.01%
cut-off. Reads with frameshift or stop codon were considered as non-functional TCR[S rear-
rangements and excluded from analysis.

Peptides

The manufacturing process involved stimulation of peripheral mononuclear cells by a fixed
pool of peptides derived from various EBV proteins. The sequence of selected peptides, their
HLA restriction, and reference is shown in Table 1. Peptides were synthesized by JPT Peptides
Berlin (Germany) at a purity of 95%. All raw materials used for peptide synthesis were CE cer-
tified and all materials were fully synthetic. 5% contamination of the peptide product is consid-
ered to be smaller oligomers of the original design, due to inefficient elongation.

Identification of EBV epitope-specific TCR clonotypes

‘We applied two criteria to TCR clonotypes found in the T cell product, either before or after
multimer sort, to consider them as epitope-specific: First, we used a cutoff of 0.1%, represent-
ing approximately 10 T cells, to reduce noise. Then, we applied a ternary exclusion criterion
based on the multimer enrichment ratio, defined as frequency after multimer sort / frequency
before multimer sort. The enrichment factor for a given multimer must be at least ten times

bigger than for the other two multimers to be considered epitope-specific.

Supporting information

S1 Fig. Lymphoma diagnosis and relapse. (A} GeneScan analysis of T cell receptor gamma
(TRG) and beta (TRB) demonstrated clonal T cell populations in the lymph node biopsy (day
166 before transplant). (B) HTS of TCRf rearrangements of the lymph node permit identifica-
tion of the lymphoma-specific TCR[ sequence (in bold}). (C} The lymphoma-specific TCRp
sequence could be identified again in the recipient on day 60 after transplantation in peripheral
blood.

(TIF)

$2 Fig. No presence of EBV in the AITL. (A} EBER in situ hybridization (IsH) of the lymph
node at diagnosis. An infectious mononucleosis sample was used as positive control. (B} Stain-
ing of the lymph node at diagnosis. H&E: Hematoxylin and eosin.

(TIF)

§3 Fig. Timeline of patient clinical history. dpt: days post transplantation; ECOG: Eastern
Cooperative Oncology Group; R-ICE: Rituximab, Ifosfamide, Carboplatin, and Etoposide
Phosphate; GvHD: Graft-versus-Host Disease.

(TIE}
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54 Fig. Serum cytokine levels after adoptive transfer of EBV-specific T cells (ATCT)
(TIF)

S5 Fig. T cell differentiation markers in the cellular product. Multimer binding T cells were
gated on CD8" T cells. Plots were gated on multimer-binding T cells. Numbers indicate per-
centages.

(TIE)

S6 Fig. Sorting of peptide-MHC multimer-binding T cells. (A) Flow cytometric analysis gat-
ing for peptide-MHC multimer sorting. (B} Re-analysis of peptide-MHC multimer-sorted
cells. Numbers indicate percentages.

(TIF)

$7 Fig. Identification of epitope-specific T cells. Scatter plots show [requency before and
after multimer sort of the T cell product on day 9 of T cell clonotypes with a frequency above
0.1% in both populations. Each dot represents a single TCR clonotype. Red dots symbolize
TCR clonotypes that pass a ternary exclusion criterion of at least ten times the multimer
enrichment ratio for one multimer as compared with the other two and were, therefore, identi-
fied as epitope-specific.

(TIF)

S8 Fig. Enrichment of epitope-specific clonotypes after sorting on day 9. Frequencies of epi-
tope-specific clonotypes (77 TCRs) is shown in unsorted CD8" T cell product and MHC multi-
mer-sorted sample. Clonotype [requency is displayed as a percentage from 0.01 (limit of
detection) to 14.4637 by increasing colour depth. Each row represents one specific TCR rear-
rangement. Identified public TCR sequences (P1 and P2) published [28,30] are highlighted in
grey boxes. The most dominant clones (D 1-3) within each specificity are highlighted in pink
boxes.

(TIF)

§9 Fig. GvHD monitoring. (A} Enzyme levels in blood and (B) biomarker levels in plasma
were used to monitor GvHD progress. GOT: glutamic oxaloacetic transaminase, AST: aspar-
tate transaminase, GLDH: glutamate dehydrogenase, LDH: Lactate dehydrogenase, gGT:
gamma-glutamyltransferase, CRP: C-reactive protein.

(TIF)

S1 Table. Patient characteristics and treatment. AITL: angiocimmunoblastic T cell lym-
phoma; IgG: Immunoglobulin G; IgM: Immunoglobulin M; pos.: positive; neg.: negative;
R-CHOP: Rituximab, Cyclophosphamide, Hydroxydaunomycin, Oncovin, and Prednisone;
R-ICE: Rituximab, Ifosfamide, Carboplatin, and Etoposide; Fc: fragment crystallizable region;
PD: progressive disease; SD: stable disease; allo-SCT: allogeneic stem cell transplantation;
ATG: antithymocyte globulin; HLA: human leukocyte antigen; CMV: Cytomegalovirus; EBV:
Epstein-Barr Virus; DLI: donor lymphocyte infusion; ATCT: adoptive T cell transfer; GvHD:
Graft-versus-Host Disease; CsA: cyclosporin; HSV-1: Herpes-Simplex Virus-1.

(PDF)

52 Table. EPL-specific T cells. TCRE V] 1D: identification number for TCRP variable-joining
rearrangement, AA: amino acid.

(PDE)

§3 Table. RAK-specific T cells. TCRB V] 1D: identification number for TCR variable-joining
rearrangement, AA: amino acid.
(PDF)
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$4 Table. HPV-specific T cells. TCRB V] ID: identification number for TCR variable-joining
rearrangement, AA: amino acid.
(PDF)

§5 Table. Presence of EPL-, RAK-, and HPV-specific T cells in different samples.
(PDF)
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