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Abstract 

In the UK, there are approximately 330,000 holiday homes spread across a large number of mainly privately 

owned sites. These homes are often sited in exposed locations, are poorly insulated and are generally heated using 

expensive fuels, such as electricity or LPG. There is also a lack of empirical evidence available on the in situ 

energy performance of these homes. Consequently, it is not possible, given the existing evidence base, to 

determine whether these homes suffer from the same scale of building fabric thermal ‘performance gaps’ (between 

assumed and realised in situ performance) that have been documented for new build UK housing.  This paper 

presents the results obtained from undertaking detailed in situ thermal fabric tests on five new holiday homes. 

Whilst sample size reported here is small, the results indicate that a ‘performance gap’ exists for all of these 

homes. Results obtained indicate that this gap appears narrower than that documented for new build UK housing. 

The results also suggest that the scale of the ‘gap’ may be more a consequence of the way in which the design 

intent of these homes has been determined, i.e. a ‘prediction gap’. 
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Practical application 

This paper presents the results obtained from undertaking detailed building fabric thermal performance tests on a 

small sample of new holiday homes. The results of these tests indicate that although a building fabric thermal 

performance ‘performance gap’ exists in all of the holiday homes tested, the results suggest that the ‘gap’ is much 

smaller than that documented for new build UK housing and be more of a consequence of the way in which the 

design intent of these homes has been determined, i.e. a ‘prediction gap’, rather than a ‘performance gap’ between 
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assumed and realised in situ performance. These results could be used by industry to develop more appropriate 

prediction tools that are relevant to holiday homes. 

1 Context 

In the UK, and in most other industrialised countries, the thermal performance of the building fabric is very rarely 

tested or measured in the field, so traditionally it has been assumed that the building fabric performs thermally as 

the design originally intended (design intent). However, in recent years, a growing and well-founded body of 

evidence has emerged, both in the UK and internationally, that indicates that the building fabric of new and 

refurbished buildings does not always perform as the design intended. Empirical data obtained from the field 

indicate that the measured in situ thermal performance of the building fabric as-built is often much greater than 

the steady-state predicted thermal performance of the building fabric as-built(1, 2, 3,4). This difference between the 

measured and the predicted performance is commonly referred to as the building fabric ‘performance gap’. This 

‘performance gap’ has been observed at an elemental and at an aggregate level and differences between the 

measured and predicted performance of the building fabric of more than 100% have been documented(5). Such 

large discrepancies in performance are likely to have a detrimental effect on the energetic function of the dwellings 

concerned and their occupants comfort and health. 

Set within this context, this paper is concerned with investigating the thermal performance of the building fabric 

of new holiday homes in the UK only. Despite this, the findings and a number of the learnings from this paper are 

likely to be equally applicable to similar building types both within the UK and abroad. 

2 Introduction 

Holiday homes, also known as static caravans, are structures that have either been designed or adapted for human 

habitation. In order to comply with the definition of a caravan, they must not exceed certain size limits and must 

be capable of being transported by road from one place to another, in no more than two separately constructed 

sections, and then assembled on site(6).  They are normally prefabricated in a factory on a wheeled chassis 

(although skids have been used) and then transported by road to the site on the back of a transporter or trailer.  

Determining information on the holiday home industry in the UK is problematic, as very limited published data 

is available. Of the data that is available, the majority of it relates to park homes (also referred to as mobile homes) 

and much of this information is known to be out-of-date(7). Park homes, although often constructed in the same 

factory using the same technologies and techniques as holiday homes, differ in that they are specifically designed 



for permanent residence. Holiday homes, as the name suggests, are specifically designed to be used seasonally on 

a temporary basis. The National Caravan Council (NCC) estimate that there are approximately 330,000 holiday 

homes in the UK(8), equivalent to just over 1% of all of the current number of households in the UK(9). However, 

as not all of the manufacturers of holiday homes are members of the NCC, this figure is based more upon anecdotal 

evidence, rather than any verifiable empirical data(8). The NCC also log data on the number of new holiday homes 

manufactured each year by their members. In 2015, almost 17,000 (16,872) new holiday homes were 

manufactured in the UK by NCC members(10). 

The majority of the sites in which holiday homes are located are privately owned and are situated in rural and 

coastal areas that are not generally connected to the mains gas network. Consequently, space heating, water 

heating and cooking are most commonly provided using some of the most expensive fuels, namely electricity or 

bulk or bottled LPG which are currently 200% and 60% more expensive than mains gas per kWh, respectively(11). 

As a large proportion of these holiday homes tend to be located in exposed locations (e.g. near the coast), they 

can be particularly vulnerable to adverse weather conditions, so can be hard and costly to heat. In addition, as 

most of the parks are privately owned, the park owner is responsible for providing all of the infrastructure and 

services associated with the site. It is therefore common for there to be no sub-metering of electricity use on-site. 

Instead, one aggregate electricity meter may serve the entire park and the bill is equally shared by all of the 

residents of the site. As there is no direct relationship between the amount of electricity consumed by the occupants 

of the holiday homes and the amount billed, there is a risk that the occupants of these homes may be more energy 

profligate than the general population as a whole. This is particularly likely to be the case when the holiday home 

is used by holidaymakers, rather than private owners, as holidaymakers do not tend to be directly charged for the 

amount of electricity consumed. Instead, a notional cost for the amount of gas or electricity consumed will be 

factored into the cost of the holiday.  

Holiday homes are not required to comply with the thermal performance requirements of the Building 

Regulations. Instead, all new holiday homes must be built in accordance with BS EN 1647(12). Thermally, this 

standard classifies the holiday homes based upon the level of thermal insulation and space heating provided. In 

total, three levels of classification are provided, ranging from grade 1 to grade 3, each of which are summarised 

in Table 1. These levels of classification have not changed since this standard was first introduced in 2009(13, 14). 

For comparative purposes, the thermal insulation requirements for new park homes, which are contained within 

BS EN 3632:2015(15), have also been presented in Table 2, along with the various revisions that have been made 



to this standard since its introduction in 1970(16, 17, 18, 19). As can be seen from Tables 1 and 2, the thermal insulation 

requirements of new holiday homes are not particularly onerous and are considerably poorer than those required 

for park homes. It is also clear that the current thermal performance standards for holiday homes are significantly 

below that contained within Part L1A of the Building Regulations(20). Consequently, new holiday homes tend to 

be poorly insulated compared to their domestic and park home counterparts. In addition, as the requirements of 

BS EN 1647 only apply to new holiday homes, a significant proportion of existing holiday homes are likely to 

have been built to much lower thermal insulation standards, so consequently will be even more costly to heat.  

It is also clear from the available literature that there is a distinct lack of empirical evidence available on the in 

situ energy performance of holiday or park homes. Although some data are available on park homes, this tends to 

present the overall reductions in energy use that have been achieved by applying specific solutions, such as 

external wall insulation or higher performance windows (for instance, see(21, 22)). Very few published studies are 

available that have measured the in situ performance of the building fabric in any detail either prior to or post 

refurbishment. Of the studies that have, the most detailed was undertaken in the United States almost 40 years 

ago, which investigated the difference between the measured and predicted heat loss of a two-bedroom mobile 

home using a number of different coheating tests(23). This work found that when the outside temperatures were 

low, the measured heat loss was 5 to 17% greater than the predicted values depending upon the test undertaken, 

illustrating the presence of a building fabric thermal ‘performance gap’. Part of the reason for this discrepancy in 

performance was attributed to a thermal bypass occurring within the external wall of the mobile home. Other work 

undertaken in the UK as part of the UK Governments Carbon Emission Reduction Target (CERT) programme, 

investigated the thermal performance of 100 existing park homes, and then 20 of these homes following the 

application of two different types of external wall insulation systems(24). The in situ U-value measurements 

undertaken as part of this work prior to the upgrading work revealed that in a large number of cases, the measured 

in situ U-values were much greater than those contained within the relevant British Standard (BS 3632) that the 

home was manufactured to, signifying a ‘performance gap’ between the measured and predicted building fabric 

of these park homes. Consequently, it is not possible, given the existing evidence base, to determine how the 

building fabric of UK holiday homes performs as a whole and whether they are likely to suffer from the same 

scale of building fabric thermal ‘performance gap’ that has been documented for new build UK housing (see(5)).   

This paper presents the results obtained from undertaking a series of detailed building fabric performance tests on 

a small number of new build holiday homes. These tests have been undertaken for a number of reasons. Firstly, 



to characterise the aggregate building fabric thermal performance of these homes. Secondly, to enable a 

comparison to be undertaken between the design intent heat loss coefficient and that measured in situ. Thirdly, to 

establish whether a building fabric thermal ‘performance gap’ exists within these holiday homes. 

3 Test method 

In order to characterise the thermal performance of the building fabric of the holiday homes as-built, a series of 

in situ building fabric tests were undertaken on a small number of case study holiday homes (hereafter referred to 

as test caravans). All of these tests formed part of much larger project undertaken for Bourne Leisure Limited, on 

one the largest holiday home park operators in the UK, the aim of which was to determine the optimum levels of 

insulation (and U-values) that should be specified for the main external elements of their fleet hire caravans 

(see(25)). Only three of the tests undertaken on the test caravans will be discussed within this paper, namely: 

 Air pressure tests and leakage detection – These tests were undertaken to determine the intrinsic 

airtightness of each test caravan and to enable an approximation to be made of each test caravan’s 

background ventilation heat loss. Leakage detection, using thermal imaging, was also undertaken in order 

to identify the main air leakage points and paths within each test caravan. All of the pressure tests were 

performed along the lines of ATTMA Technical Standard L1 testing protocol for building envelopes 

(dwellings)(26). The tests were undertaken using an Energy Conservatory Minneapolis Duct Blaster® 

System with a DG700 dual-channel pressure gauge. The overall uncertainty in the tests is less than 

10%(27). In accordance with the advice given in CIBSE TM 23(28), both a pressurisation and 

depressurisation test were undertaken on each test caravan and the results averaged. This ensured that 

equal weight was given to both the pressurisation and depressurisation test result. 

 CO2 tracer gas decay measurements – A series of CO2 tracer gas decay measurements were undertaken 

within four of the test caravans (B to E) during the electric coheating tests in order to estimate their 

background ventilation rate. No CO2 tracer gas decay measurements were undertaken in test caravan A, 

due to its different size and form factor. The decay measurements involved artificially introducing short 

bursts of CO2 gas (5 minutes in duration) into the open plan living/kitchen area of the test caravan. CO2 

sensors located in the living/kitchen area and bedroom 1 were then be used to measure the rates of CO2 

decay over time. Background ventilation rates for the living area and bedroom 1 were then estimated 

based upon the period of time taken for the CO2 concentration to decay to the background level. These 



estimates were calculated in accordance with the method described within Roulet and Forandini(29). This 

test method has an uncertainty of less than 10%(30), based upon laboratory measurements. 

 Electric coheating test – The measured in situ heat loss of each of the test caravans was obtained by 

performing an electric coheating test. An electric coheating test is quasi steady-state aggregate test 

method that has been developed to measure the aggregate in situ heat loss (both fabric and background 

ventilation) of an unoccupied dwelling in W/K (see (31)). All of the electric coheating tests were 

undertaken based upon a modified version of the Leeds Beckett University (formerly Leeds Metropolitan 

University) whole house heat loss test method (coheating) protocol (see(32)). As the test caravans are of 

a lightweight construction and consequently have very low thermal mass, the test method was modified 

such that the heat loss coefficient (HLC) was estimated from a time period thought not to be influenced 

by direct or previously stored solar radiation, namely 18:00 – 05:59 inclusive (the tests were undertaken 

in February where sunrise and sunset was approximately 08:00 and 17:00, respectively). In addition, due 

to the limited time period associated with each test (approximately 1 week per test) and the fact that any 

thermal lag between a change in ΔT and the resultant change in heating power is likely to be minimal 

(due to the low thermal mass of the caravans), the electric coheating data was aggregated into hourly 

mean time intervals for the analysis. The uncertainty associated with the coheating test varies depending 

upon the test conditions. 

4 Test caravans 

The in situ measurements were undertaken on five unoccupied new build hire fleet caravans, each produced by a 

different manufacturer. Four of the caravans tested were 35 x 12ft models, with the remaining caravan being a 40 

x 14ft model. Dimensions of the caravans tested are contained within Table 3. To ensure that the performance of 

the caravans was representative of the model selected for testing, none of the manufacturers were informed of the 

particular caravan that was to be tested prior to the commencement of the in situ measurements. 

All of the tested caravans were located next to one another on the same site in North Yorkshire. The test caravans 

were orientated north/south (A-frame facing north and master bedroom facing south), to minimise solar gain 

through the large proportion of glazing located on the front elevation of the test caravans, and positioned in such 

a way that they all had as similar levels of exposure as was practically possible (see Figure 1). 

[insert Figure 1.] 



 

5 Results and discussion of the building fabric tests 

5.1 Air pressure tests and leakage identification 

5.1.1 Air permeability and air leakage rates 

The results of the air pressure tests undertaken on the test caravans are summarised in Table 4. For context and 

comparative purposes, the measured air permeability and air leakage values have been compared against the 

design figures that have been inserted into the appropriate national calculation methodology (In the UK, the 

Government’s Standard Assessment Procedure (SAP)(33) is used for new dwellings). For park and holiday homes, 

this is version 12 of the NCC’s Energy Efficiency Rating Calculator for Park and Caravan Holiday Homes(34). The 

values contained within this calculator thus represent the original design intent for each of the test caravans. Table 

4 also includes the corresponding extrapolated design air leakage rate for each test caravan based upon the design 

air permeability value inserted within the NCC Energy Efficiency Rating Calculator. These air leakage rates have 

been included to illustrate the size of the difference that can exist.  

For caravans, A, B and C, the measured air permeability values obtained when all of the purpose provided 

ventilation and gas drop out points1 were sealed are significantly lower than the design intent. For caravans B and 

C, this can be attributed to the fact that the manufacturers of these caravans claimed that no airtightness test had 

been undertaken on a suitably tested caravan, so the air permeability figure used for the design intent was the 

default value of 15 m3/(h.m2) @ 50Pa contained within the NCC Energy Efficiency Rating Calculator. This figure 

is artificially high to encourage manufacturers to undertake an air pressure test on their caravans. 

For caravan A, the measured figure obtained during the air pressure test was significantly lower than the measured 

value inserted into the NCC Energy Efficiency Calculator (7.7 as opposed to 11.5 m3/(h.m2) @ 50Pa). For 

caravans D and E, the opposite is true, with the measured air permeability values being significantly greater than 

the design intent. In the case of caravan D, the measured air permeability is over 300% greater than the design 

intent value, representing a significant performance gap. In caravan E, the discrepancy between the measured and 

design air permeability values was much smaller, with the measured air permeability being just over 30% greater 

                                                           
1 These consist of holes in the floor located beneath gas appliances that enable any leakage of gas, which is heavier than air, to escape from 

the holiday home. They are required for ventilation and safety purposes. 
 



than the design intent air permeability. However, this still represents a significant performance gap. Part of the 

reason for the discrepancies in air permeability may be attributable to the fact that the NCC Energy Efficiency 

Calculator allows the manufacturers to use an air permeability test result that has been obtained from a different 

sized caravan as long as it is of the same construction. However, they do ask that the manufacturer tests a caravan 

that is likely to be the worst case scenario for a particular construction, which is generally the smallest model built 

using that construction. Although this may explain some of the difference in the air permeability results, it is 

unlikely to explain the large difference in measured air permeability for caravan D. 

The results also illustrate that the air permeability of the caravans varies significantly, from just over 5 m3/(h.m2) 

@ 50 Pa for caravan C to just over 9 m3/(h.m2) @ 50 Pa for caravan D. On average, the air permeability of the 

test caravans was just over 7 m3/(h.m2) @ 50 Pa. This level of air permeability is lower than the minimum standard 

of 10 m3/(h.m2) @ 50 Pa that is contained within Part L1A of the Building Regulations(20) and is comparable to 

that achieved in new build housing in the UK. Interestingly, all of the test caravans achieved significantly lower 

levels of air permeability than the default value of 15 m3/(h.m2) @ 50 Pa contained within the NCC Energy 

Efficiency Calculator, suggesting that this default figure may be too high. 

It is also clear from Table 4 that there is significant difference between the two different metrics used to measure 

the airtightness of the test caravans, namely air permeability (based on exposed envelope area) and air leakage 

rate (based on internal volume). In all cases, the air leakage rate is more 50% greater than the air permeability 

figure. The reason for this is that the air permeability metric favours those buildings that have a high surface to 

volume ratio. In other words, for tall or long, narrow buildings, a large difference will exist between the air 

permeability and air leakage rate metrics, with the air permeability being the smaller metric of the two.  In contrast, 

for a near cubic building, the difference between these two metrics will be negligible. As holiday homes generally 

have a long, narrow form (a high surface to volume ratio), much lower figures will be obtained using the air 

permeability as opposed to the air leakage rate metric. 

5.1.2 Leakage identification 

In terms of air leakage identification, generally, all of the test caravans displayed a number of very similar and 

significant air leakage points and pathways. The main difference between the test caravans being the degree 

through which air leakage occurred at these points and pathways. Due to the degree of commonality associated 

with the leakage points and pathways, this suggests that there could potentially be an inherent industry wide 

weakness associated with the design of the caravans which has an adverse effect on airtightness. The main areas 



of air leakage were detected during depressurisation using thermal imaging. Thermal imaging was used as it not 

only highlights areas of direct infiltration, but can also indicate areas of indirect air leakage, such as air leakage 

through and between layers and voids in the construction. The main areas of direct air leakage identified within 

the caravans were where the services penetrated through the floor, wall or roof, such as at waste pipes, water 

pipes, central heating system pipes and at the gas entry point. As the majority of these penetrations are located 

beneath the kitchen cupboards, or beneath/behind sanitary fittings, in the main they are either hidden or obscured 

from view. In addition, direct and indirect leakage was also identified at the interfaces between different elements, 

such as the external wall/ground floor junction, the external wall corners, the external wall/roof junction and 

around door and window frames.  

5.2 CO2 tracer gas decay measurements 

The average air change rates obtained for each of the test periods in which CO2 tracer gas decay measurements 

were undertaken are summarised within Table 5. The results illustrate that a wide range of background ventilation 

rates (expressed in volumetric air changes per hour (ach-1)) were experienced for the test caravans over the electric 

coheating test period, ranging from as low as 0.24 ach-1 for caravan C to as high as 0.79 ach-1 for caravan D. As 

the external wind conditions varied significantly over the testing period, the nightly mean background ventilation 

rate obtained from the decay measurements has also been compared against the average wind speed recorded over 

the same time period (see Figure 2). This analysis indicates that for all of the test caravans, changes in the 

background ventilation rate appear to be generally consistent with changes in daily average wind speed, with the 

highest ventilation rates corresponding with the highest wind speeds. The average wind speed measured over the 

testing period was just over 5.0 ms-1, which is comparable with the figure contained within Appendix U of SAP(33) 

for February relating to the North East of England (5.2 ms-1). 

[insert Figure 2.] 

The CO2 tracer gas decay measurements have also been compared against the approximated average annual 

background ventilation rate of each test caravan contained within the NCC Energy Efficiency Calculator (see 

Table 5).  This figure has been approximated using the Q50/20 ‘rule of thumb’, which simply divides the air 

permeability at 50Pa (Q50) by 20. Although this calculation is consistent with the approach contained within the 

Government’s Standard Assessment Procedure (SAP) for the Energy Rating of Dwellings(33), which forms an 

integral part of Part L1A of the Building Regulations(20), there are a number of significant issues associated with 

utilising this approach. First of all, the ‘rule of thumb’ was originally devised by Kronvall and Persily (cited by 



Sherman(35)) and was based upon a large number of results obtained from dwellings in North American in the late 

1980’s. Therefore, it is not known whether the devisor of ‘20’ is directly applicable to dwellings constructed in a 

different country, such as the UK. Secondly, this ‘rule of thumb’ was originally applied to air changes per hour 

(ach-1 @ 50 Pa, rather than permeability in m3/(h.m2) @ 50 Pa, thus taking better account of the dwellings’ 

geometry. The consequence of applying this divisor to air permeability, rather than air leakage, is that it favours 

those dwellings that have a high surface to volume ratio. In other words, for dwellings of similar volume and 

similar overall levels of airtightness, a much lower background ventilation rate is attributed to narrower, taller 

dwellings than to a more cubic building. As the average dwelling in the UK is a two storey 3 bedroom semi-

detached property, which is nearly cubic in form, the difference between using Q50/20 or n50/20 is marginal. 

However, in the case of the test caravans, which have a very long and narrow built form, the difference between 

using Q50/20 or n50/20 to approximate the average annual background ventilation rate is likely to be significant. 

The scale of this difference is illustrated in Table 5, and is significant, with the n50 values being consistently higher 

than those obtained using the Q50 ‘rule of thumb’. This illustrates the existence of a potentially significant 

prediction gap. The comparison also reveals that for three of the four test caravans (B, C and E), the ventilation 

rates approximated using the n50/20 ‘rule of thumb’ are greater than those measured from the CO2 tracer gas decay. 

This suggests that the devisor of 20 may be too small. To be able to determine a more appropriate figure, the tracer 

gas decay and measured air leakage rates for each test caravan have been used to obtain a ‘rule of thumb’ devisor 

(see Table 6). The results contained within Table 6 suggest a range a devisors for the test caravans ranging from 

18 to 35, with a mean of 25. The mean of 25 is 25% greater than the devisor that is currently contained within the 

latest version of the NCC Energy Efficiency Rating Calculator relating to Q50, suggesting that the devisor 

incorporated within this calculator is too low. It is also much lower than the devisor of 40 derived by Miles-

Shenton, Farmer and Johnston(22) from measurements of two previously tested holiday homes.  

5.3  Electric coheating tests 

The electric coheating test results for all five test caravans are illustrated in Figure 3 and Table 7. For comparative 

purposes, the in situ measured Heat Transfer Coefficient (HTC) obtained from the electric coheating tests has also 

been compared against the design intent steady state HTC. The design intent HTC has been obtained directly from 

the NCC Energy Efficiency Calculator. Consequently, the background ventilation rate incorporated within these 

calculations is based upon the design intent air permeability figure (see Table 4).  

[insert Figure 3.] 



It is clear from Figure 3 and Table 7 that a range of performance exists between all of the tested caravans, with 

the in situ measured HTC ranging from 108 W/K to just under 128 W/K. To add context to these figures, this 

magnitude of  HTC is approximately equivalent to that recently measured in two 90m2 three bedroom two storey 

semi-detached masonry cavity dwellings (115.2 and 126.6 W/K), both of which were built to Code for Sustainable 

Homes (CSH) Level 5(36) and have a floor area almost three times that of the holiday homes.Table 7 also illustrates 

that the highest HTC was achieved in caravan B. This is despite the fact that caravan A is much larger and has a 

much greater heat loss area than caravan B. 

It is also apparent from Table 7 and Figure 3 that, in the majority of cases, the in situ measured HTC is greater 

than the design intent HTC, indicating a building fabric thermal ‘performance gap’. The only instance where this 

is not the case is in caravan A, where the in situ measured HTC is comparable to the design intent HTC. However, 

undertaking such a comparison can be misleading, as although the design intent HTC figure does take into account 

repeating thermal bridges when calculating the building fabric plane element U-values, it does not take into 

account non-repeating thermal bridges when calculating the total building fabric heat loss. The design intent HTC 

figure also incorporates background ventilation heat losses which have been approximated based upon the air 

permeability figures incorporated with the NCC Energy Efficiency Calculator, rather than those measured in situ. 

In all of the tested caravans, a difference was observed between the air permeability figures measured in situ and 

those contained within the NCC calculator and, in some cases, this difference was considerable. Furthermore, the 

background ventilation rate of each caravan has been approximated using the Q50/20 ‘rule of thumb’, which is 

unlikely to be appropriate for the test caravans. 

A more appropriate comparison would be to compare the in situ measurements with a predicted HTC, where the 

predicted HTC is derived from the in situ measured air leakage rate for each caravan (n50) and the background 

ventilation rate that has been approximated using the average devisor obtained during the CO2 tracer gas decay 

measurements; in this case 25. The result of this analysis is illustrated in Figure 4. This comparison shows that 

the measured HTC is much greater than the predicted HTC for test caravans B and C (28.2 and 24.5 W/K, 

respectively). For caravans A, D and E the difference between the measured and predicted HTC is marginal (0.4, 

3.0 and 2.1 W/K respectively). However, it should be noted that test caravan A is larger than all of the other test 

caravans and was not subject to any CO2 tracer gas decay measurements. Therefore, it may be that the devisor of 

25 is not appropriate for this test caravan. 

[insert Figure 4.] 



As previously discussed in the introduction, there is a distinct lack of empirical evidence available on the in situ 

performance of holiday or park homes, particularly the aggregate performance of the building fabric. Therefore, 

in order to be able to determine whether the scale of the performance gap measured for the test caravans is 

comparable to that measured within other sectors, the electric coheating test results have been compared against 

the new build dwellings data that are contained within one of the largest and most comprehensive databases of 

electric coheating data currently available in the UK, the Leeds Beckett Coheating Database. The results of this 

comparison are illustrated in Figure 5 and Figure 6. This database contains the results obtained from 27 new build 

dwellings, all of which were originally designed to meet, or in some cases significantly exceed, the building fabric 

thermal performance requirements contained within Part L1A of the UK Building Regulations 2006. Whilst the 

sample size reported here is very small, highlighting the practical difficulties associated with obtaining aggregate 

whole dwelling performance data on dwellings in the UK, the results suggest that in percentage terms, the average 

difference between the in situ measured and the predicted HTC for the new build dwellings is 44% (in absolute 

terms 44 W/K), compared to only 13% (in absolute terms 12 W/K) for the test caravans. This suggests that, based 

upon the limited amount of empirical data available, the building fabric performance gap associated with holiday 

homes appears to be narrower than that documented for new build UK housing. Part of the reason for this may be 

attributable to the fact that the holiday homes are constructed within a process controlled factory environment. 

[insert Figure 5.] 

[insert Figure 6.] 

6.0 Conclusions 

This paper has presented the results obtained from a number of in situ thermal performance tests that were 

undertaken on five new build holiday homes. Although it is recognised that the results presented come from a 

very small non-random sample, the electric coheating tests revealed that in all of the holiday homes, the measured 

HTC obtained from the electric coheating test was greater than the predicted HTC, indicating the presence of a 

building fabric ‘performance gap’ between the predicted and the actual heat loss. Although a ‘performance gap’ 

was measured in all of the holiday homes, the data revealed that the scale of the gap varied considerably between 

the various holiday homes, with only a marginal difference in performance being observed for three of the holiday 

homes. For the other two holiday homes, although the gap in performance was much greater, the size of the gap 

appears to be considerably smaller than that which has been observed in new build housing in the UK. One of the 



possible reasons why this performance gap is much smaller for the holiday homes may be attributable to the fact 

that these homes are mass produced within a process controlled factory environment. 

Another important key finding that has emerged from this study relates to the way in which the design intent 

performance of the holiday homes is currently determined. In terms of the building fabric heat losses, although 

the current version of the NCC Calculator does account for the additional heat loss attributable to repeating thermal 

bridges, it does not account for the additional heat loss attributable to non-repeating thermal bridges, unlike SAP 

which is used for energy rating dwellings(33). In SAP, non-repeating thermal bridges are accounted for either by 

adopting Accredited Construction Details(37), numerical modelling, using individual default values or using an 

aggregate default value. It is suggested that in any future revisions to the NCC Energy Efficiency Calculator, an 

aggregate default value or a series of accredited construction details are devised to account for non-repeating 

thermal bridges. With respect to the air pressure tests, the results revealed that all of the holiday homes achieved 

measured air permeability figures that were significantly different to the figures that were used within the NCC 

Energy Efficiency Calculator to predict their design intent building fabric thermal performance. In addition, the 

CO2 tracer gas decay measurements revealed that the current devisor of 20 that is incorporated within the NCC 

Energy Efficiency Calculator to approximate the average annual background ventilation rate is likely to be too 

low. Instead, the decay measurements revealed that the average devisor for the holiday homes is more likely to be 

around 25, some 25% greater than the devisor that is currently contained within the NCC Energy Efficiency 

Calculator. Further air pressure tests and CO2 tracer gas decay measurements should be undertaken to determine 

the range of devisors that are likely to be applicable to various geometries of holiday homes. Furthermore, the 

devisor that is currently incorporated within the calculator also relates to air permeability (Q50), rather than air 

leakage rate (n50) from which the ‘rule of thumb’ devisor was originally devised. In terms of the holiday homes, 

this is important, as the air pressure test results revealed that the difference between the n50 and Q50 value can be 

significant due to the holiday homes form factor (high surface area to volume ratio). These results suggest that the 

scale of the ‘performance gap’ that has been measured by the electric coheating tests may, in part, be more a 

consequence of the way in which the design intent of these homes has been determined, i.e. a ‘prediction gap’, 

rather than a reflection of an actual ‘gap’ between assumed and realised in situ performance.  
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Figure 1 Orientation of the test caravans on-site. 

 

Figure 2 Relationship between nightly mean background ventilation rate and average wind speed for each test. 

 

Figure 3 Comparison of the electric coheating test results with the design intent HTCs. 

 

Figure 4 Comparison of the electric coheating test results with the predicted HTCs using measured n50/25. 

 

Figure 5 Measured HTC versus steady-state predicted HTC of the test caravans and the Leeds Beckett new-build 

coheating database. 

 

Figure 6 Difference in the measured versus steady-state predicted HTCs of the test caravans and the Leeds Beckett 

new-build coheating database. 

 

Table 1 Classification of thermal insulation and heating for holiday homes according to BS EN 1647:2012. 

Classification 

Average U-value of the construction elements 

(W/m2K) Heating requirement 

Grade 1 1.7 None 

Grade 2 1.7 

Average temperature difference of at least 20 K between 

the inside and outside temperatures shall be achieved in 
the lounge, dining room and kitchen, when the outside 

temperature is 0 °C 

Grade 3 1.2 

Average temperature difference of at least 35 K between 

inside and outside temperatures shall be achieved in all 

rooms, except the toilet compartment, when the outside 
temperature is −15 °C. 

 

 

 



Table 2 Maximum average U-values according to BS EN 3632 (for park homes) and Part L1A of the Building 

Regulations 2013 Edition (for new dwellings). 

Standard 

Maximum average U-value of the construction elements (W/m2K) 

External wall Floor Roof Windows & doors 

BS 3632:1970 1.70 1.70 1.70 - 

BS 3632:1981 1.00 1.00 0.60 

Overall external wall U-value 

(including windows and doors)  1.8 

BS 3632:1989 1.00 1.00 0.60 

Overall external wall U-value 

(including windows and doors)  1.8 

BS 3632:1995 0.60 0.60 0.35 

Overall external wall U-value 

(including windows and doors)  1.0 

BS 3632:2005 0.50 0.50 0.30 2.00 

BS 3632:2015 0.35 0.35 0.20 1.60 (including frames) 

Part L1A 2010 0.30 0.25 0.20 2.00 

 

Table 3 Dimensions of the case study caravans. 

Caravan External caravan size (ft) Internal volume (m3) 

A 40 x 14 99.1 

B 35 x 12 81.2 

C 35 x 12 84.1 

D 35 x 12 87.3 

E 35 x 12 84.4 

 

Table 4 Air pressure test results for the test caravans (all gas drop-out points and purpose provided ventilation 

openings sealed). 

Caravan 

Measured Design 

Mean air permeability 

(m3/(h.m2) @ 50Pa) 

Mean air leakage rate 

(ach-1 @ 50Pa) 

Air permeability 

(m3/(h.m2) @ 50Pa) 

Back calculated air 

leakage rate (ach-1 @ 

50Pa) 

A 7.7 11.8 11.5* 17.7 

B 6.3 10.4 15.0 25.0 

C 5.2 8.4 15.0 24.3 

D 9.1 14.2 3.0* 4.7 

E 7.9 12.9 6.0* 9.8 

*Based upon a pressurisation test result undertaken by the manufacturer. 

 



Table 5 Summary of the approximated background ventilation rates. 

 Background ventilation rate (ach-1) 

Caravan Measured in situ Approximated using Q50/20 Approximated using n50/20 

B 0.40 0.32 0.52 

C 0.24 0.26 0.42 

D 0.79 0.46 0.71 

E 0.61 0.40 0.64 

 

Table 6 ‘Rule of thumb’ devisor based upon tracer gas decay measurements. 

Caravan ‘Rule of thumb’ devisor 

B 25.8 

C 34.9 

D 17.9 

E 21.2 

Average 25.0 

 

Table 7 Summary of the electric coheating test results. 

Caravan In situ measured HTC (W/K) Design intent HTC (W/K) 

A 118.1 (±2.4) 121.0 

B 127.9 (±2.1) 108.6 

C 108.1 (±1.7) 95.1 

D 115.4 (±3.6) 100.5 

E 123.5 (±2.0) 115.4 

 


