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Abstract

Bacteroides fragilis is a universal member of the dominant commensal gut phylum Bacteroi-

detes. Its fermentation products and abundance have been linked to obesity, inflammatory

bowel disease, and other disorders through its effects on host metabolic regulation and the

immune system. As of yet, there has been no curated systems-level characterization of B.

fragilis’ metabolism that provides a comprehensive analysis of the link between human diet

and B. fragilis’ metabolic products. To address this, we developed a genome-scale meta-

bolic model of B. fragilis strain 638R. The model iMN674 contains 1,634 reactions, 1,362

metabolites, three compartments, and reflects the strain’s ability to utilize 142 metabolites.

Predictions made with this model include its growth rate and efficiency on these substrates,

the amounts of each fermentation product it produces under different conditions, and gene

essentiality for each biomass component. The model highlights and resolves gaps in knowl-

edge of B. fragilis’ carbohydrate metabolism and its corresponding transport proteins. This

high quality model provides the basis for rational prediction of B. fragilis’ metabolic interac-

tions with its environment and its host.

Author summary

The bacteria within our digestive system play many critical roles in linking what we con-

sume to our health. They can break down compounds we cannot, making more nutrients

available. Moreover, the byproducts they produce can influence the human body to make

different choices, such as storing more or less energy as fat or raising blood sugar levels.

There is therefore a need to understand and predict which byproducts the major gut bac-

teria will produce when given different nutrients, which would expand our understanding

of the connection between diet and metabolic disorders like diabetes and inflammatory

bowel disease. To this end, we constructed a mathematical model of the metabolism of the

common gut bacterium Bacteroides fragilis. With this model, we outlined the bacterium’s

ability to use 142 different nutrients and the range of possible byproducts. We further ana-

lyzed how these nutrients would impact the ratios of the most prominent byproducts,
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examined how it could digest the complex sugars found in milk, and predicted that it

could use the byproducts of other bacteria. Altogether, our results outline the possible

roles B. fragilis plays in the human gut and begin to determine how it fits into the broader

community of bacteria around it.

Introduction and background

Bacteroides fragilis is a human commensal colon bacterium [1]. It is gram-negative, anaerobic

but somewhat aerotolerant, and ferments dietary fibers and resistant starches [1,2]. The bacte-

rium belongs to the phylum Bacteroidetes, which along with Firmicutes comprises 90% of the

total gut microbiota [3], and is essentially universal in humans. B. fragilis can consume an

assortment of carbohydrates, including host protein glycans [1,4]. The bacterium excretes vol-

atile fatty acids (VFA) and other carboxylic fermentation products such as acetate, propionate,

lactate, and fumarate. The regulation of liver and intestinal human metabolism is partially

influenced by these products and their abundance ratios. These metabolites are therefore asso-

ciated with the development of obesity, inflammatory bowel disease (Crohn’s disease and

ulcerative colitis), and other diet associated disorders [5–8]. The metabolic associations are dif-

ferent for each of these fermentation products. Acetate can suppress appetite, reducing overall

caloric intake. Propionate is known to inhibit lipogenesis, while acetate promotes it, in certain

conditions. Both propionate and butyrate promote gluconeogenesis, affecting blood sugar

homeostasis [6,8]. Thus, while carbohydrates promote overall VFA production in the gut, the

effects on host metabolism vary significantly depending on the metabolic activity and fermen-

tation profiles of specific bacteria. Bacteroides species primarily produce acetate and propio-

nate, while members of the Firmicutes phylum produce more butyrate [1,5].

While the metabolism of the related B. thetaiotaomicron and its carbon utilization has been

well studied and mathematically modeled [9], our knowledge of B. fragilis’ metabolism has

been relatively limited. Therefore, the ability to predict the production flux ranges of these

VFAs from the ubiquitous B. fragilis and its growth rates in various environments is critical for

delineating B. fragilis’ and the other Bacteroides species contributions on host physiology.

Current efforts have been faced with issues connecting individual observations about

growth phenotypes or enzyme activities to form a complete understanding of B. fragilis’
metabolism and design strategies to modulate its behavior. Genome-scale metabolic models

(GEMs) overcome this barrier by representing metabolism with a set of reactions derived from

the organism’s genome [10]. Therefore, a GEM would create a comprehensive, quantitative

model of metabolism, enabling the user to elucidate the interactions between B. fragilis’ meta-

bolic components and optimize VFA production rates [11].

An annotated genome provides the GEM with enzymes and transporters that are available

to the organism and associates them with biochemical reactions. During the manual curation

of the GEM, enzyme functions and transporters may be added and corrected with available

data in the literature. Manual curation is further supported by databases such as BiGG [12]

and KEGG [13], which contain information on enzymes, reactions, and substrates for the pur-

poses of metabolic modeling and analysis. Then lipidomics, proteomics, and other data are

integrated into the GEM to describe the metabolites needed to produce the organism’s bio-

mass, which yields the biomass reaction [14].

Furthermore, the metabolic rates in a GEM are constrained by the definition of the avail-

able resources in the media and by the reversibility of all reactions as inferred by thermody-

namics. These constraints, assumptions, and reaction stoichiometries narrow down the
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possible ranges of metabolic reaction fluxes. Therefore, a GEM is able to identify which reac-

tions and pathways must be active and at what rates under defined conditions. To date, GEMs

have been used to predict the growth rate or ability to utilize a variety of nutrients, the maximal

output rates of desired metabolites, and the minimal number of reactions needed to produce a

desired output for thousands of species across all domains of life [12,15].

In this work, we reconstructed a GEM for Bacteroides fragilis strain 638R refined with

experimental growth and metabolite utilization data. We subsequently deployed the model to

analyze systems-level features of its metabolic network, its ability to produce different VFAs

across conditions, and its efficiency in utilizing different carbon sources for growth. Together,

our results outline B. fragilis’ potential metabolic role within the gut microbial community by

identifying its possible inputs, outputs, and preferred substrates. We also compare our model

to an existing semi-automatic reconstruction. The model, named iMN674 to follow conven-

tion, enables the integration of multi-omics data sets and the generation of hypotheses with

respect to the metabolism and niches of B. fragilis.

Results and discussion

Model reconstruction

The genome-scale metabolic reconstruction iMN674 of Bacteroides fragilis contains 1,109

metabolites distributed across three compartments, i.e. the extracellular space, the periplasm,

and the cytosol. The model contains 1,362 metabolites in total associated with 1,634 reactions.

The associated pathways of these are broken down in Fig 1. Of these reactions, 142 are

exchange reactions, 253 are transporters, and the remaining 1,239 are metabolic. The reactions

are associated with 674 genes excluding pseudogenes identifying non-enzymatic reactions,

exchanges, and reactions with no identified gene. The complete model is available as a

MATLAB file, COBRApy json file, and spreadsheet format (S1 and S2 Files).

Our model was generated following the procedure outlined by Thiele and Palsson [10],

beginning with finding reactions associated with genes in the annotated genome on the KEGG

database. Additional pathways not present in the database were gathered through a search of

the literature (see the “Reference” column of the reactions sheet of S2 File for reactions added

this way). The initial draft model was assembled using these gathered reactions, the necessary

exchange reactions to provide metabolites, and an initial biomass composition estimate. This

is followed by an iterative process of examining the model’s growth on known substrates, accu-

racy of ATP production, and other features. Deficits are fixed by delving back into the litera-

ture and finding additional transporters, reactions, and constraints to further refine the model.

Nine reactions were included in the model without genome annotation, excluding non-

enzymatic reactions. For comparison, iML1515, a highly comprehensive model of E. coli, con-

tains 113 such reactions [16]. In iMN674, three of these were transporters for metabolites B.

fragilis was experimentally shown to consume, but no suitable genes could be found to import

these metabolites. Transport mechanisms in the Bacteroidetes phylum as a whole remain

unclear for a number of carbohydrates and further work will be required to elucidate these

processes [1]. In addition to missing annotation for genes involved in carbon utilization, there

is also a lack of information on the genes required for replication. About half of the essential

genes in B. fragilis 638R previously determined through transposon gene disruption have no

identified function [17]. Our model has a sensitivty and specificity of 0.27 and 0.86 when pre-

dicting gene essentiality. Note that as so many essential genes lack annotation, they could not

be included in the mode. S1 Table contains this comparison and a list of essential genes. One

reaction in iMN674 with no gene association is thymidine monophosphate kinase (E.C.

2.7.4.9). This reaction is necessary for the production of dTDP from dTMP, and thereby the
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Fig 1. An overview of the model’s reactions and basic properties. (A) In the major subsystem plot, subsystems

associated with major macromolecule types were grouped. Transport associated reactions are shown in red. (B) The

secondary subsystem bar plot, which expands the “other” category in the first plot.

https://doi.org/10.1371/journal.pcbi.1011594.g001
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production of dTTP for DNA replication. No match for this enzyme in B. fragilis’ genome

could be identified. The enzymes on either side of this reaction in the dTTP production path-

way are present, so in consideration of the necessity of this enzyme for growth the reaction

was included in the model without a gene association. A complete list of reactions without

genome annotations is provided in S2 Table.

These unknowns and gaps leave 25 percent of the reactions unable to carry flux. These reac-

tions are generally associated with secondary metabolites and are entirely uninvolved in pro-

ducing growth metabolites. For example, the genome contains several enzymes involved in the

production of quorum sensing molecules, but the complete pathways have not been identified

[18]. This renders the few known quorum sensing reactions disconnected from the metabolic

network. There are also reactions associated with the degradation and export of various drugs.

As these miscellaneous molecules are not otherwise part of the model, their associated reac-

tions cannot carry flux. Many such reactions are secondary uses of more common enzymes

which are added to automated reconstructions in a species independent manner. Additionally,

this may also be a reflection of B. fragilis’ apparent proclivity to carry a diverse set of enzymes

for a broader range of possibilities [1].

The biomass reaction provides the objective function in most simulations performed and

its components define which pathways must be active under any growth conditions [10]. We

defined a biomass reaction consisting of amino acids, lipids, carbohydrates, DNA and RNA

monomers, cofactors, minerals, and the cycling of carrier molecules for these components like

tRNAs. This information was compiled from data on B. fragilis and other members of the Bac-
teroides genus (see Methods - Biomass objective). The biomass reaction contains 98 metabo-

lites, and is as detailed as possible to maximize the model’s accuracy. Its components are

summarized in Fig 2.

Experimental nutrient utilization

We validated B. fragilis 638R’s ability to utilize 44 nutrients in a dilute complex medium exper-

imentally. The change in OD600 after two days was measured to determine which nutrients B.

Fig 2. The biomass components consumed in the model. The central pie chart shows the percent of consumed metabolites that belong to each

category. Next to each sector is a diagram representing how a typical component is represented in the biomass reaction. Water, hydrogen, and

other minor components of these reactions are not shown.

https://doi.org/10.1371/journal.pcbi.1011594.g002
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fragilis utilizes (see Methods - Nutrient utilization experiment). Then the model was simulated

with and without each nutrient to confirm if the model also predicted an increase in growth

rate. The model predicted that many metabolites would only be beneficial in conjunction with

others, as elaborated upon in Results—Co-metabolism. Thus a dilute complex medium was

chosen to reveal which nutrients could be utilized, without the need of testing thousands of

combinations.

The results of our growth experiment and other growth predictions are summarized in Fig 3.

Our model achieves a sensitivity and specificity of 0.9 and 0.96 when predicting growth or no

growth on these nutrients. The full results are in S3 Table. Full simulation details are in S4 Table.

Additionally, the model was curated to predict growth phenotypes in a variety of media

routinely used to grow B. fragilis [19–23]. The ATP requirements of the model were optimized

to constrain the growth rate within 20% of the values presented in Varel and Bryant and

Spence et al [19,20], those used in Fig 3. This yielded a growth-associated ATP maintenance

(GAM) coefficient of 24.9 and a non-growth (NGAM) coefficient of 38.9. Our GAM is signifi-

cantly lower than the values in many other models (such as 75.5 in iML1515), due to us explic-

itly modeling ATP consumption in tRNA charging and amino sugar synthesis for biomass (see

Methods - ATP maintenance coefficients). The mean percent error over the data from these

sources was 14%. B. fragilis cannot use amino acids as the sole nitrogen source [20], and we

found no growth improvement in the dilute complex medium when amino acids were added.

With the incorporation of these growth rates from the literature and our metabolite utiliza-

tion experiment, we have consolidated the available growth rate data and expanded the knowl-

edge of which substrates B. fragilis may use. Subsequently, we analyzed carbon utilization

pathways and determined condition-dependent fermentation profiles.

VFA production

The model captures the production of a variety of VFAs from glucose or other carbon sources.

The fermentation products identified in Onderdonk and Gorbach and Frantz and McCallum

(1979) [22,24] were examined to determine how much of each VFA could be produced at a

fixed growth rate and carbon intake. Isovalerate was not included in the model, as the pathway

that produces it has not been fully characterized. Table 1 displays these results.

To construct Table 1, the model was simulated with glucose, ammonia, sulfide, and miner-

als (see S4 Table). The growth rate was constrained to be at 95% of the optimal value, in the

range [0.406, 0.428]. This allows for a broader range of metabolic choices to be represented

rather than being limited to the one optimum. The model was then optimized to maximize the

output of each metabolite along the rows. The corresponding column is the amount of each

carbon containing product produced. Thus, row one represents the results of the simulation

when ethanol production was the objective being maximized. The rows of this table thereby

outline the range of possible fermentation product outputs. The main diagonal represents the

maximum amount of each that may be produced.

In each of the cases shown in Table 1, the model predicts that of the 120 mmol/gDW/h of

carbon entering the system as 20 mmol/gDW/h of glucose, 93.8 mmol/gDW/h or 78% of the

original carbon leaves the system as one of the above fermentation products or carbon dioxide;

the rest becomes biomass. The VFA ratios in Frantz and McCallum (1979) [22] are attainable

by the model without altering the optimal growth rate by more than 5%. These results outline

the range of VFA production possibilities; any values between those shown in the table will

also be possible. The actual in vivo ratios of output products must be determined by factors

other than which pathways are available. These could include transcriptional control, transla-

tional control, or enzyme inhibition.
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The model predicts that acetate and propionate are partially decoupled. Acetate can be pro-

duced without propionate, but propionate production is acetate dependent. In general, the

model primarily produced acetate and there were no conditions in which acetate flux was

zero. The model could not produce butyrate at all, in line with the observed phenotype for this

species. There are a few butyrate-utilizing enzymes present in the model, but the production

Fig 3. A comparison of in silico and experimental growth phenotypes. This bar chart compares predicted and

experimental growth rates for five media from the literature. The legend below describes the carbon and nitrogen

sources, with numbers corresponding to the bars in the main figure. Full details are present in S4 Table. Conditions 1

and 2 were found in Spence et al [19], Fig 2A and 2B. Conditions 3–5 are from Varel and Bryant [20], Fig 1 curves 1, 3,

and 4. For most metabolites, the associated exchange reaction was allowed a maximal uptake of 20 millimoles per gram

dry weight of organism per hour (mmol/gDW/h), except maltose which was constrained to 10 mmol/gDW/h as it

contains two units of glucose.

https://doi.org/10.1371/journal.pcbi.1011594.g003
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pathway is incomplete. A similar result has been previously observed in the reconstruction of

B. thetaiotaomicron’s metabolism [9].

Additionally, the model was analyzed to determine which metabolite would allow for the

largest increase in the production of each fermentation product. When added to provide an

additional flux of 10 mmol carbon per gram dry weight per hour (C-mmol/gDW/h), maltose

provided the greatest increase in yield of all of the products except butyrate. The acetate to pro-

pionate ratio was most decreased by glucose and other carbohydrates. It was most increased

by supplementation of amino acids and glucosamine. In general, nitrogenous compounds

increased the acetate to propionate ratio while simple carbohydrates decreased the ratio. S5

Table contains the full results. This implies that propionate production increases most in nitro-

gen depleted, carbohydrate rich conditions, such as a low protein or high carbohydrate diet

[25].

Growth efficiency on different carbon sources

To predict which metabolites best promote growth of B. fragilis, the efficiency of B. fragilis’
growth on various carbon sources was determined (Fig 4). This efficiency, calculated as simu-

lated biomass yield per millimole of carbon taken in, represents how well a given carbon

source can be incorporated into biomass. Common carbohydrates like glucose, starch, and

fructose are the most efficiently used by B. fragilis. Some of these can either be immediately

hydrolyzed to glucose or are converted to glucose in the non-oxidative pentose phosphate

pathway. Therefore, their efficiency is similar to that of glucose. On the lower end of the effi-

ciency spectrum is fucose, which was predicted to have 26% the efficiency of glucose. Fucose is

split into two molecules, dihydroxyacetone phosphate and L-lactaldehyde. The former is trans-

formed into pyruvate via glycolysis, while the latter is converted into propanediol and

exported, producing no further energy. Fucose-containing substrates such as 2’- and 3’-fuco-

syllactose similarly showed a reduced efficiency. These and other fucosylated oligosaccharides

form 35–50% of human milk oligosaccharides [26]. The inefficiency of B. fragilis in metaboliz-

ing fucose-containing carbon sources may help explain why B. fragilis and other Bacteroidetes

species are less common in the neonatal gut microbiome than in adults [27].

Two of the most efficient substrates identified by the simulation are maltose and glucose-

6-phosphate. The maltose phosphorylase reaction splits the maltose units apart and yields glu-

cose and glucose-1-phosphate. This can be converted to glucose 6-phosphate via phosphoglu-

comutase. Therefore, half of the carbohydrate in maltose enters glycolysis without ATP use,

greatly improving the energy yield. Starch is instead hydrolyzed into glucose subunits and

does not provide this benefit.

Table 1. Fermentation Product Output Rates (mmol/gDW/h) on a Minimal Glucose Medium at a Fixed Growth Rate.

Ethanol Acetate Propionate Butyrate Succinate Fumarate D-Lactate L-Lactate CO2

Ethanol 25.5 8.17 0 0 0 0 0 0 26.49

Acetate 0 46.92 0 0 0 0 0 0 0

Propionate 0 13.22 19.08 0 0 0 0 0 10.14

Butyrate 0 46.43 0 0 0 0 0 0 0.98

Succinate 0 27.86 0 0 9.53 0 0 0 0

Fumarate 5.63 28.03 0 0 0 6.62 0 0 0

D-Lactate 0 8.17 0 0 0 0 25.5 0 0.98

L-Lactate 0 8.17 0 0 0 0 0 25.5 0.98

CO2 25.50 8.17 0 0 0 0 0 26.49

https://doi.org/10.1371/journal.pcbi.1011594.t001
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Co-metabolism of fermentation products and amino acids

While discussion of Bacteroides’ metabolism is typically focused on carbohydrates, amino

acids and fermentation products from other microbes are generally available to these microor-

ganisms in the colon. B. fragilis cannot utilize any single amino acid or mixture of amino acids

as the sole nitrogen source [20] and the model reflects this. Our model further suggests that B.

fragilis cannot produce ATP from acetate, propionate, butyrate, or ethanol. However, the pres-

ence of these fermentation end products in addition to other substrates still confers a growth

advantage for B. fragilis. It has been previously observed that B. fragilis consumes acetate in

conjunction with other organic molecules and is enriched by the consumption of alcohol,

which is converted to acetate by the liver [28]. To investigate the potential for VFA co-metabo-

lism, the model was simulated with a range of carbon sources in addition to a mixture of fer-

mentation products, a mixture of amino acids, both mixtures, or neither, all provided at a flux

of up to 20 mmol/gDW/h. The growth rates under these conditions were then compared. The

addition of these molecules was considered to improve the growth rate if the rate increased by

more than 0.001 h-1. Conditions where the model predicted growth with VFAs or amino acids

are listed in Table 2.

The VFA mixture, containing acetate, propionate, butyrate, ethanol, and pyruvate, did little

to improve the growth rates of B. fragilis. When it did improve, it increased by only 6% on

average, despite the massive increase in available carbon. The presence of fermentation prod-

ucts allowed for weak growth on lactate, malate, fumarate, succinate, and several amino acids,

none of which could act as sole carbon sources. Generally, the VFAs were incorporated into

acyl-CoA and used to assemble lipids. Since VFAs can not be used to produce the same range

Fig 4. Simulated growth yields per mole of carbon on different substrates. iMN674 was simulated on a minimal medium containing

ammonia, sulfide, and minerals. The carbon source indicated in each bar was given a maximal intake flux of 120 C-mmol/gDW/h. The

predicted growth rate was divided by the carbon flux to indicate the growth efficiency. Metabolites in green contain fucose. Metabolites

in red have the same efficiency as glucose.

https://doi.org/10.1371/journal.pcbi.1011594.g004
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of biomass precursors as glucose, utilization of VFAs only marginally improved the growth

rate of B. fragilis.
The amino acid mixture had a greater impact on B. fragilis’ growth and resulted in a 15%

increase in growth on average across conditions. This included a 30% increase in growth on

glucose and glucose equivalents. In addition to improved growth in the presence of amino

acids, we also observed a greater resilience of B. fragilis to gene knockouts. When glucose was

the sole carbon source, 127 genes were essential for producing at least one biomass compo-

nent. These genes were identified by deleting each gene and its associated reactions in the

model one at a time to simulate single gene knockouts. If the model predicted no growth, the

gene was labeled as essential. Each of these genes, on average, blocked the production of 9 bio-

mass components when deleted. When amino acids were included, this effect dropped to 123

genes which blocked only 6 components on average. Even a relatively small amount of amino

acids significantly improved the robustness of B. fragilis. This effect remained even when the

maximum uptake of the amino acids was limited to 0.01 mmol/gDW/h. Table 3 identifies the

genes that are no longer essential for growth with the addition of amino acids. There were six

additional non-essential genes that decreased the growth rate by more than 10% when deleted

in the glucose medium but not when supplemented with amino acids.

Each row in Table 3 corresponds to a gene in the model that is essential when grown on glu-

cose as the sole carbon source but not when a small amount of amino acids is supplemented.

The last column states which metabolites cannot be synthesized when that gene is deleted. One

may expect that arginine, histidine, and proline production was restored by direct assimilation

of those amino acids, but no transporter for these metabolites is currently annotated.

Fig 5 shows how the availability of amino acids saves nucleotide metabolism from the

effects of deleterious knockouts.

No genes changed in essentiality when a mixture of fermentation products was supple-

mented to the model. While VFAs can supplement glucose by forming acyl-CoA, the cell is

Table 2. Predicted Growth Rates for Metabolites Which Were Not a Sole Carbon Source, but Allowed Growth

When Supplemented with VFAs or Amino Acids.

Metabolite Growth with VFAs (h -1) Growth with Amino Acids

Acetaldehyde 0 0.11

Alanine 0.09 0

Aspartate 0.11 0

Citrate 0.32 0.11

Ethanol 0 0.11

Fumarate 0.11 0

Glutamate 0.1 0

Lactate 0.1 0.11

Malate 0.32 0.11

Succinate 0.11 0

https://doi.org/10.1371/journal.pcbi.1011594.t002

Table 3. Differentially Essential Genes.

Gene Identifier Function Metabolites Blocked

BF638R_RS02825 Aminotransferase All 8 NTPs and dNTPs; NADH/NADPH;

Several amino acids

BF638R_RS14560 Methionine synthase 6 amino acids

BF638R_RS19065 Methylenetetrahydrofolate reductase Arginine, histidine, proline

BF638R_RS02840 Homoserine O-succinyltransferase Arginine, histidine, proline

https://doi.org/10.1371/journal.pcbi.1011594.t003
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still dependent on glucose for most biomass precursors. VFAs and amino acids together

allowed for low levels of growth (0.11 h -1, 25% of that on glucose) without an additional car-

bon source. S5 Table contains the full results of these co-metabolism simulations.

Overall, these results suggest that even though amino acids and fermentation end products

are neither necessary nor sufficient for biomass production alone, they provide an advantage

for B. fragilis. Even with only minute influxes, amino acids allowed flux through several inac-

tive pathways and allowed growth when otherwise essential genes were knocked out. The gut

microbiome is a complex environment, so it is highly beneficial for B. fragilis to be able to uti-

lize a wide range of metabolites. B. fragilis’ possible niches and metabolism within the colon

could therefore be much broader than originally thought and might not only be limited to

catabolism of polysaccharides.

Human oligosaccharide catabolism in B. fragilis
The ability to digest HMOs is a major driving factor deciding which organisms are prevalent

in the infant gut microbiome [26,29]. To further investigate the ability of B. fragilis to utilize

components of human milk, reactions were added to represent the degradation of the 15 most

abundant human milk oligosaccharides (HMOs) [30]. B. fragilis has been shown to digest

some oligosaccharides in the periplasmic space [4], so these digestion reactions were assumed

to be in the periplasm as well.

B. fragilis possesses enzymes capable of digesting a broad range of oligosaccharides. Each

bond in each of these compounds could be paired to an enzyme potentially capable of breaking

it. S6 Table provides a list of compounds and the enzymes needed to digest them. For several

bonds, there are multiple enzymes in the genome that could perform the necessary hydrolysis.

This aligns with previous work that suggests B. fragilis readily consumes HMOs [31] and

bovine milk oligosaccharides [32] and suggests that B. fragilis could digest them completely.

Other bacteria such as Bifodobacterium and Enterococcus spp. are nonetheless able to outcom-

pete B. fragilis when certain HMOs are increased in abundance in the infant gut microbiome

Fig 5. Purine biosynthesis is saved from gene knockouts by external amino acids. This figure shows an abbreviated

view of purine synthesis in B. fragilis. The nitrogen in purine bases is taken from amino acids. These amino acids are

produced in transamination reactions involving TCA intermediates. Thus, the gene knockouts corresponding to these

transamination reactions (red Xs) are lethal, as the production of key amino acids and all purines is halted. However, if

amino acids are made available in the environment (blue arrows), purine biosynthesis is able to proceed. Pyrimidine

production is also aspartate dependent, so it is rescued similarly.

https://doi.org/10.1371/journal.pcbi.1011594.g005
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[33], indicating that the interplay between these microbes is defined by something other than

whether or not the oligosaccharides can be utilized.

B. fragilis has been shown to be able to scavenge human N-linked glycans [4]. The ten most

abundant N-linked glycans from human transferrin identified by Abu Bakar et al [34] were

added as representatives. Again, all oligosaccharides were able to be fully divided into the com-

ponent monomers in multiple ways. As human N-glycans share the same core and many

repeated motifs, it is therefore likely that most such glycans can be used as a carbohydrate

source for B. fragilis. The predicted ability to both liberate and consume the sialic acids in

these oligosaccharides stands in contrast to the closely related B. thetaiotaomicron, which can-

not consume the sialic acids it frees [35]. Sialic acids act as a carbon source for pathogenic Clos-
tridioides difficile and Salmonella typhimurium [35], and have been shown in gnotobiotic

mouse models to consume sialic acids liberated by B. thetaiotaomicron [36]. B. fragilis could

therefore be competing with these pathogenic bacteria for sialic acid.

Comparison of iMN674 to automated AGORA2 model

Heinken et al recently published semi-automatic reconstructions of 7,302 human associated

microorganisms [37], including a model for Bacteroides fragilis 638R. This model, while

refined through some experimentally available growth data, did not undergo the same degree

of curation as iMN674. Excluding exchange reactions, the AGORA2 model has 936 reactions

without genome annotation, compared to 9 reactions in our model. Among these 936 reac-

tions, 103 are indispensable for the model to grow, even when all exchanges are fully open.

This number increases to 133 essential genes with no annotations when limited to a glucose,

ammonia, and mineral medium. None of the 621 transporters present in the AGORA2 model

have gene associations. Overall, more than 50 percent of the non-exchange reactions lack

genome annotations. iMN674, which has genome support for all but 9 reactions, contains a

smaller reaction network, but the degree of certainty in these reactions is much higher. More-

over, iMN674 has been refined and curated to accurately reflect experimental data. When

comparing model-data agreement as in Fig 3, our model achieves a sensitivity and specificity

of 0.90 and 0.96; the AGORA2 model’s sensitivity and specificity are 0.55 and 0.88. While

semi-automated models provide a good tool for the community, well curated models such as

iMN674 contain an experimentally refined and evidenced reconstruction that provides the

highest accuracy to study the metabolism of the target organism.

Conclusion

Here we present the genome-scale metabolic model iMN674 of the ubiquitous gut bacterium

B. fragilis. The model was refined and validated by examining the growth phenotypes of the

bacterium identified in the literature and discovered via nutrient utilization experiments. In

addition, the ATP requirements for growth and stasis were calculated to provide realistic

growth rates. Lastly, the model was shown to be able to produce fermentation products in

experimentally observed ratios.

The metabolic model allowed for the various fermentation products to be produced across

a range of ratios at a fixed growth rate. This indicates that these ratios are controlled by some

other feature of B. fragilis, such as transcriptional regulation or post-translational enzyme con-

trol. The fermentation yields of B. fragilis are influenced by the availability of carbohydrates

and nitrogenous compounds in the media, highlighting the complex interplay between envi-

ronmental conditions and metabolism for B. fragilis. The model demonstrates how even

metabolites that cannot produce biomass by themselves can be co-metabolized by B. fragilis
and could provide an ecological advantage for the bacteria to survive in diverse conditions.
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Overall, we demonstrated that iMN674 accurately captures the metabolic nature of B. fragi-
lis and acts as a platform for further hypothesis generation regarding the microorganism, the

effects of our diet on its growth, and its influence on the host. The gaps in iMN674, in particu-

lar lack of knowledge about carbohydrate transporters, highlight gaps in our understanding of

B. fragilis’ metabolism. Additional work is needed to further validate the model and contextu-

alize its results. As this knowledge is acquired, it will be continually incorporated into iMN674,

allowing it to continually improve its accuracy in quantitative phenotypic prediction.

Methods

Initial model generation

The initial draft models were generated using the RAVEN Toolbox version 2.5.0 (Fig 6, first

panel. The rest of Fig 6 outlines the rest of the methods). [38]. A first draft was reconstructed

via the KEGG species code method (getKEGGModelForOrganism(‘bfg’)), which generates a

model based on the assigned protein homologies for the organism in question on KEGG

(release 98) [39]. Another was made using a pre-trained hidden markov model to find homol-

ogous proteins in the organism’s genome (getKEGGModelForOrganism(’bfg’,bfg_’protein.

faa’,’prok90_kegg94’). This was done using the same genome found for B. fragilis 638R (acces-

sion number GCA_000210835.1). The models made by either method were nearly identical

and thus the gene-reaction associations from both were merged. These methods were chosen

over using existing models as templates as few suitably phylogenetically related organisms with

high-quality models could be found. Using KEGG allowed for a wider range of reactions to be

considered, while template-based methods would only return the presumably limited set of

reactions at the intersection of B. fragilis’ and the template’s metabolism.

The RAVEN Toolbox’s output is in KEGG format. KEGG does not include transporters or

detailed lipid reactions, so these were mapped to BiGG reactions (BiGG version 1.6). BiGG is a

UC San Diego based database of GEMs in a mostly standardized format [12]. Additionally,

uncommon reactions in B. fragilis not present in BiGG or KEGG had to be created and added

Fig 6. A flowchart outlining the general methodology from initial model generation to model analysis.

https://doi.org/10.1371/journal.pcbi.1011594.g006
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manually, such as 2’-fucosyllactose degradation. Potential transporters and lipid reactions

were identified by BLAST comparison to other gut bacteria models, including the E. coli
model iML1515 [16] and the salmonella pan-reactome model iYS1720 [40]. Additional trans-

porters were found in the Transporter Classification Database (2021 update) [41]. Custom

reactions representing these transporters were created and added to the model. In the cases

where B. fragilis is known to consume a metabolite but no suitable transporter could be found

in the genome, the metabolite was assumed to enter the periplasm through porins then enter

the cytosol.

The reactions were then manually curated. To be included in the model, a protein coding

sequence from the genome must be sufficiently similar to a prokaryotic gene applied to that

reaction in another model or in the KEGG enzyme database. Similarity was assessed by

BLAST, with cutoffs of identity > 30%, query cover> 95%, and e-value< 10−15. Enzymes

with multiple possible roles were initially assumed to have all the possible functions assigned

to it in KEGG unless refuted by evidence found in the literature. For example, the gene 5’/3’-

nucleotidase SurE has the enzyme commission numbers 3.1.3.5, 3.13.6, and 3.6.1.11 [42]. Each

of these are associated with the hydrolysis of phosphate from a variety of nucleotides, leading

SurE to be associated with 30 reactions. Reactions with sufficient BLAST scores were rejected

if the genome annotation or other evidence suggested the genes associated with them were

more likely to be associated with another, incompatible enzyme. Genes with vague annotations

or unclear enzymatic function were noted as low confidence.

All metabolites in the model were paired with formulas and names. Complex cofactors that

are not produced or consumed, but only cycled, were given the formula ‘R.’ These include

tRNAs and acyl-carrier proteins. The metabolite formulas were kept consistent to prevent any

reactions from producing or consuming any atoms except hydrogen. Molecule charge was not

considered. Unbalanced or unclear reactions such as R08411 from KEGG were removed. All

reactions were given descriptive names and subsystems. Reaction reversibility was assigned

based on whether the majority of models in BiGG marked the reaction or similar reactions as

reversible or not. All reversible reactions were given default bounds of +/- 1,000 mmol/gDW/

h, while irreversible reactions had the lower bound set to 0 mmol/gDW/h. Exchange reactions

were generally given bounds of [–20, 1,000] mmol/gDW/h.

Biomass objective function

Data on the molecular composition of B. fragilis is limited. Consequently, data from a variety

of sources had to be considered to construct an estimate of the biomass composition. The pro-

portions of the organism’s dry weight in each major category (lipids, carbohydrates, proteins,

DNA, and RNA) were taken from Frantz and McCallum (1980) [43], which examined strain

ATCC 23745. The data from the exponential growth phase was averaged and used. The data

did not sum to 100%, so the remainder was assumed to be the cofactor, mineral, and metabo-

lite contribution not measured in the study.

Within the DNA category, the percent of each nucleotide was calculated by the percent of

each found in the genome. Due to a lack of RNA-seq experiments, the relative amounts of

each RNA monomer was assumed to be the same as in the genome.

Within the carbohydrates category, the amounts were taken from Cherniak et al [44] and

Kasper [45] then averaged. These data were calculated from the outer membrane of various B.

fragilis strains and were taken to be representative of the overall composition. As carbohydrate

monomers are incorporated into polymers via nucleotide carriers, they are included in the bio-

mass reaction in the form carrier-carbohydrate -> released carrier or as the consumption of
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polymerized monomers. This forced flux through the nucleotide-sugar reactions, improving

the realism of the model and its energy needs.

The amino acid composition was found in Sok et al [46] for the related species B. rumini-
cola. This data did not measure the abundances of asparagine, glutamine, or tryptophan. The

total did not add to 100%, so the unaccounted for abundance was divided equally between

these. Similar to the carbohydrates, these metabolites were included in the form trna-amino

acid -> free trna, with the amino acid being consumed.

The lipids were drawn from Eiichi and Miyagawa [47], which measured lipid composition

in B. fragilis. Its results detailed the percent composition of each chain length and desaturation

level, but not the headgroups. Reactions were added in the model to have at least one represen-

tative from each chain type. The percent biomass assigned to each chain type was divided

equally between all the lipids present in that category in the model.

Lastly, cofactor, mineral, and vitamin consumption was taken from iML1515. The specific

values were re-scaled to fit the metabolite and cofactor percentage used here. Some metabolites

in this category were removed if they did not otherwise appear in the B. fragilis model and

there was no experimental evidence to expect they were a necessary component. The final bio-

mass objective function was calculated by normalizing the sum of weights of all these mole-

cules to be 1 gram. For metabolites with carrier molecules, the mass used in the calculation

was that of the free metabolite.

Gap filling

The draft model could not produce every biomass precursor. To fill these gaps, new reactions

were added from BiGG and KEGG. The model was then run with all exchange reactions open

and optimized for maximal production of each biomass metabolite. If a given reaction

improved the number of biomass components that could be produced, it was appended to a

list of new reactions to confirm via BLAST or literature search. This was repeated iteratively

until the model could produce all precursors and therefore yield a non-zero flux through the

biomass reaction. The process was repeated until the model could grow under all conditions

found in the literature (see S7 Table).

The draft model contained many reactions that could not carry flux. Many of these were

secondary uses of enzymes. Such enzymes are a major source of dead-end metabolites and

blocked reactions in GEMs [10,48]. Some reactions, including transporters of common metab-

olites and fragments of common pathways, could be connected to the rest of the metabolic net-

work by gap filling. 399 reactions remain that cannot carry flux. 87 of them have dead end

metabolites on both ends, leaving them entirely disconnected from the network.

ATP maintenance coefficients

The ATP maintenance coefficients related to growth and stasis (GAM and NGAM) were cal-

culated by minimizing the error between growth rates found in the literature and predicted by

the model. These included the growth rates shown in Varel and Bryant [20], Fig 1, and Spence

et al [19] Fig 2A and 2B. Where peptides or casitone were mentioned, we activated all amino

acid exchange reactions. S4 Table details the medium compositions for this process under Fig

3, but generally exchanges for main carbon and nitrogen sources were set to 20 mmol/gDW/h.

This process is implemented in the script for Fig 3. At each iteration, the model was optimized

in each condition and the growth rates were recorded. The overall error was defined as the

maximum relative error between the model and experimental values, as to constrain the largest

error. The error was then minimized using MATLAB’s fminsearch function with an initial
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estimation of [100,6]. This yielded a GAM and NGAM of 24.9 and 38.9. Repeating with a grid

of initial guesses always returned these values.

Nutrient utilization experiment

Bacteroides fragilis 638R was grown from a glycerol stock in 50 mL of anaerobic BHI media

(Teknova B9500). This media was supplemented with a 1% dilution of Remel R450951 vitamin

K and hemin solution, 4 mM cysteine, 0.1% weight by volume yeast extract (RPI Y20020-250),

and a 1% dilution of trace minerals (ATCC MD-TMS), and a pinch of resazurin. The bacteria

were grown for two days before the experiment to reach exponential phase. Two liters of the

same media but at 0.15x BHI concentration were mixed, degassed, and autoclaved as well in

sealed anaerobic bottles. 0.15x BHI was selected to give low but non-zero growth, so that

improvements from the added nutrient would be more visible.

Autoclaved 16x125mm Hungate tubes with butyl stoppers were used to test the individual

conditions. The tubes were individually opened, then a needle with flowing nitrogen placed

into it to displace oxygen and provide positive pressure. Similar needles were placed into the

0.15x BHI media bottles after opening to ensure they remained anoxic. Using a serological

pipette, 10ml of the media was placed in each tube before sealing. The tubes were allowed to

rest until the color of resazurin dissipated. Then 100 microliters of a prepared 0.5 M solution

of one of the nutrients was added, bringing the tube to 5 mM. Lastly, 100 microliters of the

growing bacteria were added. This was repeated for each nutrient in triplicate. To the control

tube 100 microliters of water was added in place of a nutrient.

200 microliters were drawn from each tube for an initial OD600 reading, and then the

tubes were incubated at 37 C for 44 hours before taking a final OD600 reading. To decide if a

set of tubes showed growth, the average change in OD600 for that condition was compared to

the average OD600 change of the control tubes. If it was more than 0.05 higher, the condition

was considered to have shown improved growth over the control. Otherwise it was considered

to have shown no improvement.

The gap filling was then repeated to allow for growth under any newly identified conditions.

In the model, a growth increase of 0.01 or higher was considered to be a positive result. If the

model predicted growth where the data suggested it should not, low confidence reactions and

transporters were removed to eliminate the false positive.

Computation

All simulations were performed in MATLAB R2022b on an UBUNTU version 22.04.1 work-

station. Optimizations were performed using the flux balance analysis feature of the Cobra

Toolbox (version 3.4) [49] using the solver Gurobi 9.5.2. Chemical structures were generated

using the Smi2Depict web interface of ChemDB [50]. FBC curation to make a standard refer-

ence for iMN674 was made using FROG analysis software (version 0.2.2) [51]. A MEMOTE

report for the model was generated with MEMOTE 0.11.1 (S3 File) [52].
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