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During the COVID-19 pandemic we utilized an AI-driven T cell epitope

prediction tool, the NEC Immune Profiler (NIP) to scrutinize and predict

regions of T cell immunogenicity (hotspots) from the entire SARS-CoV-2 viral

proteome. These immunogenic regions offer potential for the development of

universally protective T cell vaccine candidates. Here, we validated and

characterized T cell responses to a set of minimal epitopes from these AI-

identified universal hotspots. Utilizing a flow cytometry-based T cell activation-

induced marker (AIM) assay, we identified 59 validated screening hits, of which

56% (33 peptides) have not been previously reported. Notably, we found that

most of these novel epitopes were derived from the non-spike regions of SARS-

CoV-2 (Orf1ab, Orf3a, and E). In addition, ex vivo stimulation with NIP-predicted

peptides from the spike protein elicited CD8+ T cell response in PBMC isolated

from most vaccinated donors. Our data confirm the predictive accuracy of AI

platforms modelling bona fide immunogenicity and provide a novel framework

for the evaluation of vaccine-induced T cell responses.

KEYWORDS

T cell, COVID-19, CD8+ lymphocytes, CD4+ lymphocytes, vaccine, SARS-CoV-2,
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Introduction

The rapid deployment of SARS-CoV-2 vaccines mitigated

global hospitalization rates and is estimated to have saved

between 14 and 20 million lives during the first year of

vaccination (12). However, although over 13 billion doses have

been administered to date and ~70% of the world’s population has

received at least one dose (13), the limited capacity of current

vaccines to fully suppress infectivity raises concerns about emerging

variants (14).

Because CD8+ T cells are vital in forging protective immunity

against viruses and can control COVID-19 infection in the early

stages, even in the absence of a serological response (7, 15–17), we

sought to develop a refined approach for the characterization of

epitopes capable of eliciting cell-mediated immune response to aid

in the development of T cell vaccines.

The NEC Oncoimmunity Immune Profiler (NIP) is an example

of an AI algorithm that employs a unique machine learning

approach to predict T cell immunogenicity for any Human

Leukocyte Antigen (HLA) allele. The NIP algorithm has

previously been used to analyze the SARS−CoV−2 proteome to

delineate universal blueprints for potential COVID-19 T cell-based

vaccines (1). This involved scanning all possible minimal epitopes

of length 9 and 10 amino acids in the SARS−CoV−2 proteome and

in predicted regions of T cell immunogenicity (hotspots) that could

potentially be used as universally protective T cell vaccine

candidates, or as biomarkers to monitor T cell responses induced

during infection or vaccination. Compared to other algorithms, the

NIP platform is expected to identify bona fide T cell antigen

hotspots because it predicts the immunogenicity of antigens not

only based on HLA-peptide binding affinity, but also based on

features that determine the propensity of an antigen to undergo

intracellular processing and be presented on the cell surface.

From all the SARS−CoV−2 hotspots identified by the NIP

algorithm (1), we selected a group of 101 peptides with lengths of 9

to 10 amino acids predicted to preferentially stimulate response in

CD8+ T cells (18). Although the relevance of non-spike regions in

SARS-CoV-2 evolution has not been as extensively investigated as done

for the S protein (19, 20), the peptide selection used in this study

included a significant number of epitopes from those regions because

their inclusion in vaccines is expected to broaden and boost protective

T cell memory response (21). Using flow cytometry and PBMC isolated

from previously infected and/or vaccinated patients, we tested the

antigenicity of these peptides by quantifying the expression of

activation-induced markers (AIMs) CD137, CD40L, IFNg, and TNF

as previously shown (2–4). Moreover, to overcome the limitations of

single-population analysis, we adopted a multimarker-based data

analysis strategy which allowed us to capture the full spectrum of the

T cell response. This approach not only confirmed preferential

activation of CD8+ T cells by NIP peptides but also helped identify

novel SARS-CoV-2 immunogenic epitopes, the majority of which

belonged to non-spike regions. Subsequent testing of healthy

individuals who received 2 or 3 doses of COVID-19 vaccine showed

that NIP peptides elicited CD8+ T cell activation ex vivo, indicating that
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these epitopes can be used as a complementary screening tool for the

assessment of cell-mediated immune response.

Altogether, our data suggest that these antigens not only have

the potential to control viral infection and spreading if used in a

vaccine but may also provide the groundwork for the formulation of

diagnostic tools specifically designed to monitor CD8+ T cell

response and infection during the post-pandemic period, when

new variants are expected to emerge.
Materials and methods

Patients

T cell reactivity to NIP-predicted peptides was validated ex vivo

using PBMC isolated from blood collected between July 2nd, 2022,

and November 3rd, 2022, from 12 healthy donors who received ≥ 2

doses of (mRNA) vaccines (Moderna/mRNA-1273 or Pfizer/

BioNTech BNT162b2) and have contracted COVID-19 infection.

Blood was collected one more time from a subgroup of subjects for

peptide deconvolution experiments. Informed consent was

obtained from all donors and approved by the Health Region

South-East Regional Ethics committee.
Reagents

Spike-C (PepTivator® SARS-CoV-2 Prot_S Complete;

Miltenyi, # 130-127-953), and Spike-I (PepTivator® SARS-CoV-2

Prot_S; Militenyi, # 130-126-700) pools are collections of

lyophilized 15-mers peptides with 11 aa overlaps spanning either

the immunodominant regions (Spike-I pool sequence domains: aa

304-338, 421-475, 492-519, 683-707, 741-770, 785-802, and 885-

1273), or the entire length (Spike-C pool sequence: aa 5-1273) of the

SARS-CoV-2 spike glycoprotein (Protein QHD43416.1, GenBank

MN908947.3). The full list of NIP peptides, including their length

and corresponding protein, is reported in Supplementary Table S1

(1). Peptides were synthesized by GenScript (Piscataway, NJ, USA)

at a purity ≥85% and stored at a final concentration of 1.5mg/mL.

Peptide solubilities are reported in Supplementary Table S1.
PBMC isolation and biobanking

PBMC were isolated from whole blood using CPT tubes (BD

vacutainer, # 362782) according to manufacturer instructions.

Briefly, blood was spun at room temperature (1600g x 25

minutes) to separate PBMC, which were then transferred into a

50mL tube, washed in cold PBS (Gibco, # 10010-015), counted,

and resuspended in FBS (Gibco, # 10270-106) complemented with

10% DMSO. Cells (≥ 5 million per cryogenic tube) were

transferred in liquid nitrogen for long-term storage after

overnight pre-chilling at -80°C in Mr. Frosty freezing containers

(Nalgene™, # 5100-0001).
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T cell activation assay

Quantification of T cell activation was performed by flow

cytometry as previously described (2–4). Briefly, PBMC were

thawed, washed twice, and resuspended in RPMI 1640 medium

with GlutaMAX™ supplement (Thermo Fisher Scientific, # 61870-

010), 1mmol/L Sodium Pyruvate (Gibco # 11360-039), 1mmol/L

MEM NEAA (Gibco # 11140-035), 50nmol/L 1-thioglycerol

(Sigma-Aldrich, # M1753), 12mg/mL Gentamycin (VWR, # E737),

and 10% heat-inactivated Foetal Bovine Serum (Gibco, # 10270-

106). Cells were stimulated for 3 hours with Spike-I or Spike-C

pools (8ml each), or NIP pools at a final concentration of 1.5mg/mL

per peptide in a 96-well round bottom cell culture plate (1M cells in

200mL/well). After further 18h incubation with Brefeldin A/

Monensin cocktail (GolgiStop 500X, Invitrogen # 00-4980-93),

cell pellets were washed once in cold PBS and stained for flow

cytometry. To test the performance of the pool, T cell activation was

performed as described before. Briefly, PBMC were washed in cold

RPMI 1640 medium with GlutaMAX™ supplement before

undergoing live cell enrichment in magnetic columns according

to manufacturer instructions (MACS MultiStand, # 130-042-303

with OctoMACS™ Separator). PBMC were distributed on a 96-well

round bottom cell culture plate (200mL/well) at 10 million cells per

mL in TexMACS medium (Miltenyi, # 130-096-197) supplemented

with 1mmol/L Sodium Pyruvate (Gibco # 11360-039), 1mmol/L

MEM NEAA (Gibco # 11140-035), 50nmol/L 1-thioglycerol

(Sigma-Aldrich, # M1753), 12mg/mL Gentamycin (VWR, # E737),

and 20U/mL IL-2 (R&D # AFL202). After 3h incubation, cells were

washed, treated with appropriate stimuli in presence of anti-CD28/

CD49d co-stimulatory antibodies (1:200 dilution; BD # 347690),

and incubated for 1h. After an additional 18h incubation with

Brefeldin A/Monensin cocktail, cells were harvested for flow

cytometry processing.
Flow cytometry

Pellets were washed in FACS Wash Buffer [PBS1X w/o Ca++ &

Mg++ (Gibco # 10010023) supplemented with 1% bovine serum

albumin (VWR, #K719)] and stained in 150mL of cold PBS

containing Fixable Near IR Live/Dead viability stain (Molecular

Probes, # L34976) for 10 minutes in the dark. Cells were then

washed one time in cold PBS1x and then resuspended in 50µL of

FACS Wash Buffer containing the following fluorochrome-conjugated

antibodies: BV605 anti-human CD3 (Clone SK7; BD Biosciences, #

563219), PerCP-Cy5.5 anti-human CD4 (Clone OKT4; Biolegend, #

317428), and Alexa Fluor 488 anti-human CD8 (Clone OKT8;

Invitrogen, # 53-0086-42). After 30 minutes incubation on ice, cells

were washed once and permeabilized for 30 minutes at room

temperature in 150µL BD Cytofix/Cytoperm solution and washed

two times in 200µL of 1x BD perm/wash solution (BD Biosciences

Fixation and permeabilization kit; # 554714). To increase detection

sensitivity (5), we detected AIM markers by staining after

permeabilization. Cells were resuspended in 50µL of 1x BD perm/

wash solution containing the following fluorochrome-conjugated
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antibodies: APC anti-human CD137 (Clone 4B4-1; BD Biosciences,

# 550890), BV711 anti-human CD40L (Clone 24-31; Biolegend, #

310837), PE anti-human IFNg (Clone 4S.B3; Biolegend, # 502509), and
BV421 anti-human TNFA (Clone MAb11; BD Biosciences, # 562783).

Antibody concentration was adjusted according to manufacturer

instructions. After 25-minute incubation in the dark, cell pellets were

washed once in PBS, resuspended, and acquired on an Attune NxT

Flow Cytometer (Thermo Fisher). For pool performance experiments,

stimulated cells were washed once in 1xPBS containing 5% FBS and

0.1% sodium azide, and then stained in the dark for 10 minutes with

0.5mL of Fixable Near IR Live/Dead viability stain (Molecular Probes, #

L34976) in a final volume of 10mL cold PBS containing 5% FBS. Cells

were then permeabilized at 4°C for 20 minutes in 100mL BD Cytofix/

Cytoperm solution (BD # 554714), washed twice in 200mL of 1x BD

perm/wash solution, and stained in 20µL of 1x BD perm/wash solution

containing the following fluorochrome-conjugated antibodies: AF488

anti-human IL-2 (Clone MQ1-17H12; BioLegend, # 500314), PerCP-

Cy5.5 anti-human CD8 (Clone RPA-T8; BioLegend, # 301032), PE

anti-human CD137 (Clone 4B4-1; BioLegend, # 309804), PE-CF594

anti-human Granzyme B (Clone GB11; BD # 562462), PE-Cy5 anti-

human (CD4 Clone RPA-T4; BD # 566925), PE-Cy7 anti-human TNF

(Clone MAb11; Invitrogen, # 25-7349-82), AF647 anti-human IFNg
(BioLegend, #502516), BV510 anti-human CD40L (Biolegend,

#310830), BV605 anti-human CD3 (Clone SK7; BD # 563219), and

BV421 anti-human Perforin 1 (Clone dG9; BioLegend # 308122).

BV711 anti-human CD107a antibody (Clone H4A3; BioLegend, #

328640) was added at the time of cell stimulation. Antibody

concentration was adjusted according to manufacturer instructions.

After 30-minute incubation in the dark, the cell pellet was washed twice

in BD Perm/Wash™ buffer, resuspended, and acquired.
Evaluation of T cell phenotype

T cell reactivity was evaluated using the reactivity score (RS). RS

values were generated as previously reported (4) from the analysis of

cell populations defined by the combined expression of 4 AIMs

normally used to quantify T cell activation (3, 6–8). These markers

and 3 gating areas of interest (Single +, Double +, and All) were used to

define the 16 partially overlapping T cell populations listed in

Supplementary Table S3. Out of the 16 T cell populations, we

selected those whose response (frequency after stimulus minus

background frequency) was informative in determining the degree of

vaccine-induced response in healthy donor or immunocompromised

patients, as previously described (4). The response frequency for each

population was normalized by the average frequency of all

measurements made for that population. We assigned a value of

‘zero’ to populations whose post-stimulation frequency was lower

than their respective background frequency. The RS was then

independently computed for each reactivity pattern shown in

Supplementary Figure S3 by averaging the normalized frequency of

the specific populations that defined each pattern. An empirical

threshold of 0.2 RS units was chosen as the level below which the

response was considered low or absent. The compounded scores were

calculated by adding the RS of each pattern.
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AI-driven antigen presentation and
immunogenicity prediction

The immunogenicity of the peptides was predicted using the NEC

Immune Profiler (NIP), an AI platform composed of several

proprietary T cell epitope machine-learning prediction algorithms.

The AI platform considers 1) the binding affinity of the peptide for

the HLA alleles using 43 separate machine learning predictors that

compute IC50 (nM) scores in an ensemble model, and 2) the antigen

processing by the antigen processing machinery (APM) of the host

infected cell. An ensemble of 12 Support Vector Machines and one

neural network included in NIP and trained on validated mass

spectrometry immunopeptidome datasets determined which peptides

have the optimal features to be efficiently processed by the APM. The

binding affinity scores, and the antigen processing scores are then used

to predict the antigen presentation (AP) potential of each candidate

peptide based on an ensemble machine learning model trained on a

large proprietary database consisting of 10’s of millions of mass spec

immunopeptidome datapoints. Finally, a bioinformatics assessment is

made to assess the “difference from self” properties of the candidate

peptides whereby each peptide is queried against the human self-

proteome to capture the degree of “foreignness” of the peptide and

increase the likelihood of identifying peptides that trigger a reactive T

cell that is not tolerized in the T cell repertoire of the patient/donor.

This score was termed here as the immune presentation potential (IP).
Peptide selection

A previously-described peptide:HLA immunogenicity

prediction tool (1) was used to identify candidate immunogenic

peptides for validation. Briefly, predictions were made for each 9-

mer and 10-mer candidate from the original Wuhan SARS-CoV-2

reference sequence (GenBank MN908947.3, downloaded April

15th, 2020). Both AP and IP predictions were made for each

peptide and HLA from among the 100 most common HLAs.

Based on these predictions, a set of “hotspots” enriched in

predicted immunogenic peptides were identified based on either

AP, IP, or both. Further, hotspots were designated as either

“filtered” or “unfiltered” according to their conservation in the

GISAID database. From among these hotspots, two sets of peptides

were initially selected for validation. The selection was based

specifically on 15 Class-I HLA alleles common in the Norwegian

population. A first set of 66 peptides for validation was selected

from any of the hotspots which passed the conservation filtering.

These peptides could originate from any protein, but they all exceed

stringent thresholds of (AP > 0.7) and (IP > 0.6) for at least one

Norwegian allele. A second set of 35 peptides were selected

specifically from hotspots in the spike protein. These hotspots

were not required to pass the conservation filtering. The same AP

and IP thresholds were used. Percentile rank scores (9), where lower

values are better, were indicated for each peptide-HLA

combination. We note that these percentile rank scores are only

for presentation purpose; they were not used for epitope selection.
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Cross-reactivity to seasonal CoVs

We identified cross-reactive peptides to seasonal human CoV

(sCoV) by using a two-step alignment approach. We first constructed

a BLAST database of all complete human sCoV genome sequences for

229E (taxon ID # 11137), OC43 (taxon ID # 31631), NL63 (taxon ID #

277944), and HKU1 (taxon ID # 290028) downloaded from NCBI on

July 5th, 2022. A loose BLASTP search (BLASTP search parameters:

evalue = 100000, word_size = 2, qcov_hsp_perc = 75, gapopen = 6,

gapextend = 2, comp_based_stats = F) was first used to align each

peptide to all sequences in the database. As a second filtering step, a

normalized BLOSUM-based similarity measure (10) was calculated

between each peptide and the local alignment found with BLASTP.

All alignments with a score less than 0.75 were removed. Peptides with

less than 100 remaining alignments in the database were filtered. We

consider any peptide with at least 20 alignments to the genomes of a

given species to be cross-reactive with that species. We note that this step

removes any peptides which align to regions that are not highly

conserved across the different genomes.
The immune epitope database

Literature-curated data were retrieved from IEDB (11) on May

5th, 2023. At this time the IEDB database reported a total of 3037

curated SARS-CoV-2 linear T cell epitopes experimentally shown to

activate human T cells ex vivo.
Statistical analysis

Statistical analyses were performed using GraphPad Prism V.8

(GraphPad software). Wilcoxon matched pairs signed rank test and

Mann-Whitney U Two-tailed test were used where appropriate. For

Principal Component Analysis (PCA) and plots loading, data were

first standardized and the top two principal components by

eigenvalues were selected for representation.
Results

Selection of NEC immune profiler SARS-
CoV-2 immunoreactive epitopes

To identify CD8+ T cell epitopes relevant in vaccine-induced

responses, we validated and characterized a group of 9 to 10 amino

acid-long peptides identified by the NEC Immune Profiler (NIP)

algorithm (Supplementary Table S1). In a previous study (1) the

NIP AI platform was used to identify T cell immunogenic hotspots

from all minimal epitopes screened in a moving window across the

entire SARS-CoV-2 proteome. These hotspots were predicted by

the AI to be universally protective against most Class I HLA alleles

in the human population. Due to the source of the PBMC samples

(Norway), we selected from these hotspots the top-ranked peptides
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for the 15 most frequent alleles in the Norwegian population. The

list included the following alleles: HLA-A*01:01, HLA-A*02:01,

HLA-A*03:01, HLA-A*23:0, HLA-A*29:02 HLA-B*07:02, HLA-

B*08:01, HLA-B*15:01, HLA-B*15:02, HLA-B*40:01, HLA-

B*44:02, HLA-C*03:03, HLA-C*04:01, HLA-C*07:01, and HLA-

C*07:02 (Supplementary Table S1). The frequency information of

the HLA alleles in the Norwegian population was derived from the

Allele Frequency Net Database (AFND) (22). Of 101 peptides 43

belonged to the spike protein and 58 to non-spike regions, including

the envelope protein (N = 2), the Orf1ab (N = 49), and the Orf3a

(N = 7). It is important to note that the HLA genotype of the donors

was not known at the time of the peptide selection process, and in

some cases the donors were likely to be non-ethnic Norwegians.

Therefore, the AI algorithm was blind to the HLA status of the

patients to assess the universal nature of the candidate

immunogenic epitopes. The rationale for peptide selection and

the features of NIP-predicted peptides are described in Methods

and in Supplementary Table S1, respectively.
Peptide screening by single
population analysis

T cells were stimulated with NIP 9-mer/10-mer peptides

(random pools) or with overlapping 15-mer pools (Peptivator

Spike-I or Spike-C, see Methods) and reactivity assessed using the

flow cytometry-based AIM (Activation-Induced Marker) assay (see

“Evaluation of T cell phenotype” in Methods). We measured the

response according to the frequency changes of 16 partially

overlapping T cell populations defined by the combined expression

of the 4 AIMs used in the assay (Figure 1A, Supplementary Table S3,

and Methods). Although hit identification based on the analysis of

single populations, such as CD8+ T cells expressing CD137 in

combination with IFNg (CD137+ IFNg+, Figure 1B) or alone

(CD137+, Figure 1C) was sufficient to confidently detect reactivity

to Peptivator pools or NIP random pools (RPs) in top responders, the

evaluation of medium to low-level responses was more challenging.

This was partly due to the level of the background signal, which, as

shown for two of the top responders, HD 118 and HD114, was often

high (Figures 1D, E; red and black rectangles). These data indicate

that rarer but potentially relevant T cell specificities could have been

overlooked in single population analysis of AIMmarkers due, among

other reasons, to high and/or fluctuating background signal (noise).
Reactivity score analysis
of the T cell response

To minimize the dependence on the signal features of any

specific marker and thus increase confidence in hit identification,

we have calculated a reactivity score (RS) metric to determine the

level of response in both CD8+ and CD4+ T cell subsets, using

frequency data of selected cell populations defined by the combined

expression of 4 AIMs, as previously described (4). We found that

among 108 tests (PBMC from 12 donors challenged with 9 different

stimuli), 21 of the top 30 RS for CD4+ T cells (70%) were obtained
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in response to Peptivator mixes (Spike-C or Spike-I; Figure 2A).

Conversely, 18 of the top RS for CD8+ T cells (60%) were obtained

following NIP RP stimulation (Figure 2B). Accordingly, the overall

ranking of RSs associated to response to NIP RP was significantly

higher in CD8+ T cells than in CD4+ T cells (Figure 2C; 0.46 vs. 0.30

median RS values; Wilcoxon signed-ranked test; P < 0.0001), and

the CD8+/CD4+ T cell RS (CD8/CD4 RS) ratios after stimulation

with NIP RP were significantly higher than the ratios measured

after stimulation with the Peptivator mixes (Figure 2D; median

value of 1.12 vs. 0.58; Mann-Whitney; P < 0.0001), a result

consistent with the fact that differently than Spike-C and Spike-I

pools, which are composed of 15 amino acid-long peptides and are

thus expected to preferentially activate CD4+ T cells, NIP RPs are

collections of shorter 9 to 10-mers peptide preferentially presented

to CD8+ T cells by MHC class I molecules (18, 23, 24). These data

not only support the validity of NIP predictions but also indicate

that NIP peptides can be used for a more specific evaluation of

vaccine induced CD8+ T cell response.
Patterns identification and screening
hit validation

Following a more granular examination of AIMs frequency

data, we identified variation in response phenotypes and markers

that were modulated together in some patients. The CD137 pattern

(CD137 Pattern #1) in Supplementary Figure S2 is shown as an

example: Four partially overlapping T cell populations expressing

CD137 alone or in combination with other AIMs clustered based on

their frequency change following stimulation. Overall, we identified

7 activation patterns (Supplementary Figure S3A, S3C), 4 of which

were associated with the CD8+ T cell response (Supplementary

Figure S3A). A high degree of intra-donor and inter-donor

heterogeneity in terms of response emerged from this analysis:

For example, in some donors, such as HD 118, the response to

stimulation (NIP RP A5) was primarily driven by the CD137

Pattern, whereas in others, such as HD 117 and HD 138, the

response was associated to frequency upregulation in CD40L+ cell

populations (CD40L Pattern; Supplementary Figure S3B). Overall, 9

of 12 donors showed detectable changes in at least one of the 7

activation patterns identified from the dataset (4 associated to CD8+

and 3 associated to CD4+ T cells; Supplementary Figure S3). We

further compared the RS analysis results with the polyfunctional T

cell responses of the donors by measuring the frequency of single,

double, and triple positive events post-stimulation. A frequency

threshold for positivity of 0.01% with at least 10 double positive

events above background yielded fewer hits than the RS, even when

the RS threshold was raised to 0.3 relative units (Supplementary

Figure S4A). Because nearly all T cell responses were captured by

IFNg or TNF expression, our analysis focused on the frequencies of

IFNg+ and TNF+ cells that were single, double, and triple positive

for TNF, IFNg and/or the third most common marker, CD137

(Supplementary Figure S4B). Despite substantial heterogeneity in T

cell response, the RS method showed higher sensitivity than the

polyfunctional analysis and helped identify relevant NIP pools for

further evaluation.
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Next, to validate the antigenicity at the single epitope level, we

tested responses to individual peptides in CD8+ T cells from 5 of

previously tested SARS-CoV-2-infected donors, who also received 3

doses of mRNA vaccines (Figure 3). By examining the change in the

activation patterns, we found that each peptide elicited detectable

response (RS > 0.2 units) in at least one of the 5 donors. In two

donors (donor 2 and 3) reactivity was observed across all 4 patterns,

while in others, peptides stimulation resulted in pattern-specific

responses (see TNF, CD40L, or CD137 pattern-associated responses

in donors 1 and 5). Notably, sequence analysis revealed that our

screening independently identified epitopes with shared amino acid

sequences (not shown).
Frontiers in Immunology 06
Networks depicting the relationship between donor (nodes; N =

7) and the magnitude of response (edges) to each peptide based on

cumulative RS (Compounded Scores) calculated from the RS of

each pattern (see Methods) confirmed that the NIP epitopes of

length 9 and 10 amino acids prevalently activate CD8+ T cells

(Figure 4A), whereas the Spike-C 15-mer-long peptide pool

preferentially stimulates CD4+ T cells (Figure 4B). Patient

comparison by compounded scores, showed that donor 4

(HD118) displayed a uniquely strong and broader CD8+ T cell

response to NIP universal hotspots peptides (Figures 4A, C), and

that only two donors (donor HD 131 and donor HD 112)

responded more strongly to the Spike-C pool than any peptides
B

C

D

E

A

FIGURE 1

Screening hit identification by single population analysis. (A) AIM combinations and gated areas of interest (black squares) defining the 16 partially
overlapping cell populations evaluated in the study. The magnitude of response is defined for each population as the frequency of the stimulation
signal (stimulus) minus background frequency (baseline). (B, C) Degree of activation for (B) IFNg+ CD137+ and (C) CD137+ CD8+ T cell populations in
donors stimulated with Peptivator mixes (Spk-I and Spk-C) or random NOI’s protein pools (NOI RP). (D) Representative flow data for the activated T
cell populations taken from panels B and C (red and black rectangles, respectively). The top responses for patients HD118 (RP-6, RP-5) and HD 114
(RP-5, RP-3) are shown.
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(Figure 4C). Conversely, only 2 of 7 donors showed greater

responses to NIP peptides than to the Spike-C pool in the CD4+

T cell compartment (donor HD 114 and donor HD 138; Figure 4D),

confirming at the same time the reactivity bias previously

observed with the NIP RPs and the robustness of NIP AI

platform predictions.
Epitope breakdown by
region and identification of new
antigenic determinants

Epitope breakdown by region of origin and novelty status

according to curated scientific literature data retrieved on May

5th, 2023, from The Immune Epitope Database (IEDB) (11),

indicated that while 49.5% of the NIP peptides originally selected

for the screening (N = 101) have already been described, 50.5% were

never reported before (Figures 5A, B). Moreover, we found that the

majority of the newly found epitopes (67%) originated from the

Orf1ab region (Figure 5C), whereas 62% of already reported

epitopes originated from the S protein (Figure 5D). A similar

pattern was observed in the 59 validated NIP peptides selected for

the NIP pool (Figure 5E, Supplementary Table S2) among which

33/59 (56%) were never reported before (Figure 5F). Of note,

among the newly identified epitopes, Orf1ab region peptides were

overrepresented (23/33, 70%; Figure 5G), while enrichment in S
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protein peptides was seen among epitopes that were already been

reported (22/26, 85%; Figure 5H). These results indicate that the

universal hotspots detected by the NIP algorithm not only harbour

known immunogenic epitopes, but also contain novel antigenic

determinants of potential interest.
NIP pool performance testing

Having validated the immunogenicity of single NIP peptides,

we pooled the top S protein NIP peptides and used the resulting mix

(Spike NIP pool) to test CD8+ T cell response in 19 healthy double-

vaccinated donors using a modified stimulation protocol and an

extended flow panel (see Methods). We found that the response to

the Spike NIP pool and Peptivator mix (Spike-C + Spike-I) were

comparable (Figure 6). Specifically, there was a significant

correlation between the level of response attained by stimulation

with the NIP pool and the Peptivator mix in different T cell

populations defined by the co-expression of multiple AIMs

including CD137+ IL2+ (Spearman’s r = 0.73; P = 0.0004),

CD137+ TNF+ (Spearman’s r = 0.53; P = 0.021), TNF+ CD107+

(Spearman’s r = 0.72; P = 0.0004), and CD137+ IFNg+ (Spearman’s r

= 0.47; P = 0.043) T cells (Figure 6A). Although the correlation was

lost when response was evaluated by looking at other CD8+ T cell

populations, such as TNF+ IFNg+ (Spearman’s r = 0.21; P = 0.38),

TNF+ PRF1+ (Spearman’s r = 0.11; P = 0.64) or TNF+ GZMB+
B
C

D

A

FIGURE 2

Reactivity score analysis of T cell response. (A, B) Top 30 responses to Peptivator pools (Spike-C or Spike-I) or NIP random pools (RP) according to
the reactivity scores (RS) independently calculated for the CD4+ (A) and the CD8+ (B) T cell compartment. (C) CD4+ and CD8+ T cell reactivity
scores following stimulation with NIP random pools (N = 90). (D) Comparison of CD8/CD4 RS ratios for the Peptivator pools (N = 24) and NIP
random pools (N = 84). Mann-Whitney U test values are shown.
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(Spearman’s r = 0.40; P = 0.091) cells (Figure 6B), PCA analysis of

all the markers confirmed a substantial similarity in the response to

the two stimuli in terms of immunological polyfunctionality

(Figure 6C). Notably, we observed that when assessing T cell

populations defined by specific combinations of markers, such as

TNF and IFNg, or CD137 and IFNg, vaccine-induced reactivity for
Frontiers in Immunology 08
some donors could only be detected after stimulation with the Spike

NIP pool. Overall, 7 donors displayed response frequencies < 0.01%,

independently of the combination of AIM markers examined or the

stimulus type, whereas 63% (12/19) of the donors showed CD8+ T

cell reactivity toward the Spike NIP pool. These data validate our

analysis and demonstrate the utility of the Spike NIP pool as a
FIGURE 3

Screening hits validation. Response to stimulation with single peptides in 5 donors. The RS for each reactivity pattern is shown for each tested
epitope. The empirical threshold for reactivity is shown (shaded area; RS ≤ 0.2). Donor 1 = HD 131; Donor 2 = HD 114; Donor 3 = HD 138; Donor 4
= HD 118; Donor 5 = HD 110.
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complementary screening tool for the assessment of vaccine-

induced T cell response, particularly in assays based on the use of

a limited number of markers.
Discussion

Here, we report the experimental validation of SARS-CoV-2 T

cell epitopes previously identified by an AI prediction algorithm as

being immunogenic target candidates for a potential COVID-19 T

cell-based universal vaccine (1). All epitopes validated in this study

were derived from immunogenic viral hotspots predicted to be

immunodominant in the human population and were selected

according to their predicted affinity for prevalent HLAs in the

Norwegian population. In addition to validating these epitopes as a
Frontiers in Immunology 09
complementary screening tool for the assessment of vaccine-

induced T cell reactivity, we have identified novel antigenic

peptides from both the S protein and the non-spike regions of

the virus.

Many T cell epitope prediction tools rely on HLA binding affinity

as a proxy for T cell immunogenicity (25–30). More recent tools use

mass spectrometry immunopeptidome data to perform prediction of

immunogenic T cell epitopes for MHC-I (e.g., the proprietary model

known as EDGE) (31) and/or MHC-II alleles (e.g., the MARIA

models) (32). These and other models are similar to NIP and are

an important advance, as they are based on cell surface-presented

antigens using mass spec immunopeptidome data as a source of

training data (31, 33–38). However, this approach performs well for

only a small minority of HLA alleles in the human population,

because sufficient binding affinity training data exists only for this
B

C D

A

FIGURE 4

Peptide-donor network of compounded scores. (A, B) Peptide-donor network for the CD8+ (A) and the CD4+ (B) T cell compartment. Edge
thickness is proportional to the magnitude of the compounded reactivity score for each of the 56 peptides (blue nodes). N = 7 donors (red nodes).
(C, D) Comparison of the compounded reactivity scores of each peptide for (A) CD8+ and (B) CD4+ T cells. Orange dots represents the values for
the Spike-C pool. Peptide ID is shown for top responses.
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small minority (11, 39) and HLA binding affinity alone is a necessary

but not sufficient property to define true immunogenicity.

Furthermore, although some of these tools use flanking sequences

to capture some elements of antigen processing, many algorithms rely

on mono HLA-allelic cell lines to train their models, and therefore

miss the endogenous antigen processing and presentation features

emerging from the competition among several HLA alleles naturally

present in multiallelic cells. In addition to this artefact, many of these

tools have trained their algorithms to predict, in an improved

manner, aspects of HLA-peptide binding from the mass spec

immunopeptidome data but not HLA-peptide cell surface

presentation or T cell immunogenicity. To overcome these

limitations, NIP utilizes an ensemble machine-learning model that

is trained on a broad set of both publicly available and proprietary

mass spec immunopeptidome data, and combines four dedicated

HLA binding affinity models, 13 antigen processing models, and

other protein and expression features to predict the ability of the

peptide to navigate through the endogenous antigen processing and
Frontiers in Immunology 10
presentation (AP) machinery of the cell and be ultimately presented

on the cell membrane as an HLA:peptide complex. Eachmodel learns

the interplay between the other models in a holistic manner capturing

the true determinants of antigen presentation to the cell surface and T

cell immunogenicity, above and beyond HLA binding characteristics

alone. Candidate peptides with high AP potential are also probed

using additional bioinformatics toolkits to quantify the degree of

“foreignness” relative to the human proteome and therefore their

likelihood to activate T cell response in a patient.

Hits from the ex vivo validation screening were identified based on

the analysis of T cell populations expressing CD137, TNF, IFNg, or
CD40L. These four AIMs are typically used alone or in combination to

evaluate T cell reactivity (2, 3, 40). We observed remarkable

interpatient heterogeneity in terms of the immunophenotype of the

vaccine-specific T cell response. For example, T cell activation in some

donors was primarily marked by CD137 upregulation, but in others,

changes in CD40L expression were the predominant response.

Furthermore, we found that NIP peptide pools significantly
B C

D

E F G

H

A

FIGURE 5

Epitope breakdown by region and identification of new antigenic determinants. (A) Number of NIP peptides by location (Spike, Orf1ab, Orf3a, E) and
novelty status (Reported vs. New). (B) Breakdown by novelty status. (C, D) Breakdown by location of new (C) and already reported (D) peptides as
shown in (B). (E) Number of experimentally validated NIP peptides organized by location and novelty status as shown in (A). (F-H) Breakdown by
novelty status and location as shown in (B, D).
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outperformed Peptivator megapools in terms of identifying patients

with positive anti-SARS-CoV-2 CD8+ T cells responses, even though

response was detected in CD4+ T cells from most donors according to

changes in at least one of the 3 activation patterns defined in the study.

Nonetheless, CD4+ T cell and CD8+ T cell responses were generally

independent except for a few donors who displayed a particularly

strong response to the vaccine. These results may be partly due to the

different length of the peptides used in the study as well as on the

likelihood that undetected responses may fall below the quantification

limit of the assay. In this regard, it is worth noting that 15-mers

peptides not only can directly bind MHC Class II molecules and be

presented to CD4 T cells, but they can also be processed to 8 to 12

amino acid-long peptides capable of binding Class I and being

presented to CD8 T cells.

Given the significant inter-donor heterogeneity, we sought to

develop a data analysis strategy based on the combination of the

frequency values of T cell populations defined by the expression of all

possible AIMs combinations, as shown in Figure 1A, to compute a

global reactivity score for each T cell compartment (CD8+ and CD4+ T

cells). A similar approach was previously used to investigate vaccine-

induced T cell response in a cohort of immunocompromised bone

marrow-transplanted patients (4). This data-driven, heuristic method

improved detection sensitivity and helped identify additional
Frontiers in Immunology 11
immunogenic sequences that would have been otherwise missed.

Furthermore, we observed that while the set of minimal NIP-derived

9 to 10-mers tested in this study preferentially activated CD8+ T cells,

the Peptivator mix pool, which is composed of 15-mers peptides,

preferentially stimulated CD4+ T cells. These results not only

corroborated the notion that peptide length is an important factor in

determining the type of T cell response (18, 23, 41–45), but also

provided further cross validation for the analytical methodology used

in the study. While these findings provide a promising avenue for

future research, the study is limited by the sample number and

nationality of patient samples. The inclusion of diverse demographic

groups, multiple geographical locations, and different stages of

infection or vaccination status will provide more robust and

generalizable data to further validate the predictive capabilities of AI

platforms such as NIP, and the effectiveness of these peptides as

screening tools.

Since January 11th, 2020, when the first death from COVID-19

was reported by the Chinese government, SARS−CoV−2 has

infected nearly 800 million individuals (46) and demonstrated a

remarkable capability of evolving, particularly through mutations

within the S protein (19). By interrogating the Immune Epitope

Database and Analysis Resource (IEDB), a repository of and

reference resource for epitopes associated to infection,
B

C D

A

FIGURE 6

Performance testing of the Spike NIP pool. (A, B) Comparison of CD8+ T cell response to Peptivator mix (Ptv; y-axis) and Spike NIP pool (NIP; x-axis)
in 19 vaccinated healthy donors. T cell populations are shown above each graph. Spearman’s r and P values are shown. (C) PCA analysis and Loading
plot dimensions for Spike NIP pool and Peptivator mix treatments. (D) Breakdown of the response by T cell population and stimulus type: NIP, Spike
NIP pool; Ptv., Peptivator mix (Spike-I + Spike-C); NR, No Response.
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autoimmunity, and allergic processes (47), we found that most of

the new peptides validated in the study belonged to non-spike

regions, including the Orf1ab region, the accessory protein Orf3a,

or the envelope (E) protein. While the Orf1ab encodes two non-

structural polyproteins, pp1a and pp1ab, which are directly

transcribed by cellular ribosomes and proteolytically processed

into 16 non-structural proteins (48), the Orf3a may act as a non-

selective permeable cation channel with high sequence homology to

the SARS CoV-1 viroporin, and is likely involved in various steps of

the life cycle of the virus including endocytosis, lysosomal

dynamics, viral genome transcription, and virion exocytosis (49,

50). Furthermore, it has been postulated that specific mutations

within these regions may have been positively selected via epistatic

interactions early in the pandemic (51). Indeed, in SARS-CoV-2,

the Orf3a protein may work in coordination with the E protein,

another highly conserved essential structural protein with viroporin

function (52), to help release the virion from the host cell through

the modification of the membrane permeability (53). The

identification of novel antigenic peptides from non-spike regions

is a result of interest because most of the studies on SARS-CoV-2

evolvability and antigenicity have been focusing on S protein

(19, 20).

The NIP AI platform has been previously used to demonstrate

the high level of conservation of predicted T cell epitopes among all

mutated peptides identified in variants of concern (VOCs) (54).

However, additional studies will be necessary to establish the

functional importance and the hypothetical evolutionary stability

of these regions, particularly, to determine whether megapools

composed of non-structural peptides could be used as a screening

tool for the detection of virus-specific T cell response toward VOCs

carrying divergent S or N protein sequences, which are expected to

emerge. Moreover, future research should focus on examining the

extent of cross-reactivity of these peptides with other coronaviruses,

to inform the development of broader spectrum vaccines or

therapies. Finally, considering that some immunocompromised

patients who fail to generate protective antibody levels still retain

a cell-mediated immune response (6, 55–57), these peptides could

be employed as a complementary screening tool for the assessment

of vaccine-generated CD8+ T cell immune response elicited by

vaccines in high-risk patients with a compromised immune system.
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