
Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

Automatically Proving Termination and Memory Safety for
Programs with Pointer Arithmetic

Thomas Ströder · Jürgen Giesl ·
Marc Brockschmidt · Florian Frohn ·
Carsten Fuhs · Jera Hensel ·
Peter Schneider-Kamp · Cornelius Aschermann

Abstract While automated verification of imperative programs has been studied intensively,
proving termination of programs with explicit pointer arithmetic fully automatically was still
an open problem. To close this gap, we introduce a novel abstract domain that can track
allocated memory in detail. We use it to automatically construct a symbolic execution graph
that over-approximates all possible runs of a program and that can be used to prove memory
safety. This graph is then transformed into an integer transition system, whose termination
can be proved by standard techniques. We implemented this approach in the automated
termination prover AProVE and demonstrate its capability of analyzing C programs with
pointer arithmetic that existing tools cannot handle.

Keywords LLVM · C programs · Termination ·Memory Safety · Symbolic Execution

1 Introduction

Consider the following standard C implementation of strlen [62,72], computing the length
of the string at the pointer str. In C, strings are usually represented as a pointer str to
the heap, where all following memory cells up to the first one that contains the value 0 are
allocated memory and form the value of the string.

int strlen(char* str) {char* s = str; while(*s) s++; return s-str;}

To analyze algorithms on such data, one has to handle the interplay between addresses
and the values they point to. In C, a violation of memory safety (e.g., dereferencing NULL,
accessing an array outside its bounds, etc.) leads to undefined behavior, which may also

Supported by Deutsche Forschungsgemeinschaft (DFG) grant GI 274/6-1, Research Training Group 1298
(AlgoSyn), and the Danish Council for Independent Research, Natural Sciences.

Thomas Ströder · Jürgen Giesl · Florian Frohn · Jera Hensel · Cornelius Aschermann
LuFG Informatik 2, RWTH Aachen University, Germany

Marc Brockschmidt
Microsoft Research Cambridge, UK

Carsten Fuhs
Dept. of Computer Science and Information Systems, Birkbeck, University of London, UK

Peter Schneider-Kamp
Dept. of Mathematics and Computer Science, University of Southern Denmark, Denmark

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/59432949?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Thomas Ströder et al.

include non-termination. Thus, to prove termination of C programs with low-level memory
access, one must also ensure memory safety. The strlen algorithm is memory safe and
terminates, because there is some address end≥ str (an integer property of end and str)
such that *end is 0 (a pointer property of end) and all addresses str≤ s≤ end are allocated.
Other typical programs with pointer arithmetic operate on arrays (which are just sequences
of memory cells in C). In this paper, we present a novel approach to prove memory safety
and termination of algorithms on integers and pointers automatically. Our abstract domain is
tailored to track both integer properties which relate allocated memory addresses with each
other, as well as pointer properties about the data stored at such addresses.

To avoid handling the intricacies of C, we analyze programs in the platform-indepen-
dent intermediate representation (IR) of the LLVM compilation framework [51,53]. Our
approach works in three steps: First, a symbolic execution graph is created that represents
an over-approximation of all possible program runs. We present our abstract domain based
on separation logic [61] in Sect. 2 and the automated generation of such graphs in Sect. 3.
In Sect. 4 we show the correctness of our construction. In this first step from LLVM to
the symbolic execution graph, we handle all issues related to memory, and in particular
we prove memory safety of our input program. In Sect. 5, we describe the second step of
our approach, in which we generate an integer transition system (ITS) from the symbolic
execution graph, encoding the essential information needed to show termination. In the last
step, existing techniques for integer programs are used to prove termination of the resulting
ITS. In Sect. 6, we compare our approach with related work and show that our implementation
in the termination prover AProVE proves memory safety and termination of typical pointer
algorithms that could not be handled by other tools before.

A preliminary version of parts of this paper was published in [67]. The present paper
extends [67] by the following new contributions:

– We lift the restriction of analyzing only programs with exactly one function to non-
recursive programs with several functions.

– We show how to consider alignment information in the abstract domain. In [67], we just
assumed a 1 byte data alignment for all types.

– In [67], we only handled memory allocation using the LLVM instruction alloca. In
this paper, we extend our abstract domain and our symbolic execution rules to handle
the external functions malloc and free. This allows us to model memory safety more
precisely. Up to now, we could only prove absence of accesses to unallocated memory,
whereas now, we can also show that free is only called for addresses that have been
returned by malloc and that have not been released already. Note that if memory is not
released by the end of the program, then we do not consider this as a violation of memory
safety, because it does not lead to undefined behavior.

– We added more symbolic execution rules for LLVM instructions, and give a detailed
overview of our limitations in Sect. 6.

– To represent all possible program runs by a finite symbolic execution graph, it is crucial
to merge abstract program states that visit the same program position. We have substan-
tially improved the merging heuristic of [67] in order to also analyze programs where
termination or memory safety depend on invariants relating different areas of allocated
memory. Such reasoning is required for programs like the strcpy function from the
standard C library. Our symbolic execution can now handle such programs automatically,
whereas [67] fails to prove memory safety (and hence also termination).

– We prove the soundness of our approach w.r.t. the formal LLVM semantics from [73],
and provide all proofs in the paper.

Automatically Proving Termination and Memory Safety for Programs with Pointer Arithmetic 3

2 Abstract Domain for Symbolic Execution

In this section, we introduce concrete LLVM states and abstract states that represent sets of
concrete states. These states will be needed for symbolic execution in Sect. 3.

To simplify the presentation, we restrict ourselves to types of the form in (for n-bit inte-
gers), in* (for pointers to values of type in), in**, in***, etc. Like many other approaches
to termination analysis, we disregard integer overflows and assume that variables are only
instantiated with signed integers appropriate for their type.

define i32 @strlen(i8* str) {

entry: 0: c0 = load i8* str
1: c0zero = icmp eq i8 c0, 0
2: br i1 c0zero, label done, label loop

loop: 0: olds = phi i8* [str,entry],[s,loop]
1: s = getelementptr i8* olds, i32 1
2: c = load i8* s
3: czero = icmp eq i8 c, 0
4: br i1 czero, label done, label loop

done: 0: sfin = phi i8* [str,entry],[s,loop]
1: sfinint = ptrtoint i8* sfin to i32
2: strint = ptrtoint i8* str to i32
3: size = sub i32 sfinint, strint
4: ret i32 size }

We consider the strlen func-
tion from Sect. 1. In the corre-
sponding LLVM code,1 str has the
type i8*, since it is a pointer to the
string’s first character (of type i8).
The program is split into the ba-
sic blocks entry, loop, and done.
We will explain this LLVM code in
detail when constructing the sym-
bolic execution graph in Sect. 3.

An LLVM state consists of a
call stack, a knowledge base with
information about the values of symbolic variables, and two sets which describe memory
allocations and the contents of memory. The call stack is a sequence of stack frames, where
each stack frame contains information local to its corresponding function. In particular, a
stack frame contains the current program position which is represented by a pair (b, j). Here,
b is the name of the current basic block and j is the index of the next instruction. So if Blks is
the set of all basic blocks, then the set of program positions is Pos = Blks×N. To ease the for-
malization, we assume that different functions do not have basic blocks with the same names.
Moreover, a stack frame also contains information on the current values of the local program
variables. We represent an assignment to the local variables VP (e.g., VP = {str,c0, . . .})
in the i-th stack frame as a partial function LV i : VP ⇀ Vsym (where “⇀” denotes partial
functions). We use an infinite set of symbolic variables Vsym with Vsym ∩VP = {} instead
of concrete integers. In this way, our states can represent not only concrete execution states,
where all symbolic variables v∈Vsym are constrained to a concrete fixed number in Z, but also
abstract states, where v can stand for several possible values. Such states will be needed for
symbolic execution. To ease the generalization of states in Sect. 3.3, we require that all LV i
occurring in a call stack are injective and have pairwise disjoint ranges. Let Vsym(LV i)⊆Vsym
be the set of all symbolic variables v where there exists some x ∈ VP with LV i(x) = v.

In addition to the values of local variables, each stack frame also contains an allocation
list ALi. This list contains expressions of the form Jv1, v2K for v1,v2 ∈ Vsym, which indicate
that v1 ≤ v2 and that all addresses between v1 and v2 have been allocated by an alloca

instruction. This information is stored in the stack frames, as memory allocated by alloca

in a function is automatically released when the control flow returns from that function.
A program position, a variable assignment and an allocation list form a stack frame FR,

and we represent call stacks as sequences [FR1, . . . ,FRn] of such stack frames, where the
i-th stack frame has the form FRi = (pi,LV i,ALi). The topmost frame is FR1, and we use
“·” to decompose call stacks, i.e., [FR1, . . . ,FRn] = FR1 · [FR2, . . . ,FRn]. A new stack frame

1 This LLVM program corresponds to the code obtained from strlen with the Clang compiler [23]. To
ease readability, we wrote variables without “%” in front (i.e., we wrote “str” instead of “%str” as in proper
LLVM) and added line numbers.

4 Thomas Ströder et al.

is added in front of the sequence whenever a function is called, and removed when control
returns from it. For any call stack CS = [FR1, . . . ,FRn] where each stack frame FRi uses
the partial function LV i for the local variables, let Vsym(CS) consist of Vsym(LV1)∪ . . .∪
Vsym(LVn) and of all symbolic variables occurring in AL1, . . . , or ALn.

The second component of our LLVM states is the knowledge base KB⊆ QF IA(Vsym), a
set of quantifier-free first-order formulas that express integer arithmetic properties of Vsym.
For concrete states, the knowledge base constrains Vsym(CS) in such a way that their values
are uniquely determined, whereas for abstract states several values are possible.

Many of the rules for symbolic execution in Sect. 3 have conditions where one has to
check validity of formulas obtained from the knowledge base of the current state. In principle,
any SMT solver can be used for this check. Most of these formulas only use linear integer
arithmetic, but for programs with non-linear expressions (like x * y), the resulting formulas
can also contain non-linear arithmetic. As validity is not decidable for non-linear integer
arithmetic, the power of the SMT solver influences the power of our analysis, since symbolic
execution rules can only be applied if the proof for their applicability conditions succeeds.

The third component is the global allocation list AL. It is used to model memory allocated
by malloc, where allocated parts of the memory are again represented by expressions of
the form Jv1, v2K. In contrast to alloca, memory allocated by malloc needs to be released
explicitly by the programmer. In this paper, we assume that reading from memory locations
that are currently allocated but not initialized, yields an arbitrary fixed value. To remove this
assumption, a structure similar to AL could be used to track initialized memory regions.

As the fourth and final component, PT is a set of “points-to” atoms v1 ↪→ty v2 where
v1,v2 ∈ Vsym and ty is an LLVM type. This means that the value v2 of type ty is stored
at the address v1. Let size(ty) be the number of bytes required for values of type ty (e.g.,
size(i8) = 1 and size(i32) = 4). As each memory cell stores one byte, v1 ↪→i32 v2 means
that v2 is stored in the four cells at the addresses v1, . . . ,v1 + 3. The size of a pointer type
ty* is determined by the data layout string in the beginning of an LLVM program. On 64-bit
machine architectures, we usually have size(ty*) = 8, and on 32-bit architectures we usually
have size(ty*) = 4. In the following let us consider some fixed value for size(ty*).

Finally, to model possible violations of memory safety, we introduce a special error state
ERR. In particular, this state is reached when accessing non-allocated memory. The following
definition introduces our notion of (possibly abstract) LLVM states formally.

Definition 1 (LLVM States) LLVM states have the form (CS,KB,AL,PT) where CS ∈
(Pos× (VP ⇀ Vsym)× {Jv1, v2K | v1,v2 ∈ Vsym})∗, KB ⊆ QF IA(Vsym), AL ⊆ {Jv1, v2K |
v1,v2 ∈ Vsym}, and PT ⊆ {(v1 ↪→ty v2) | v1,v2 ∈ Vsym, ty is an LLVM type}. Additionally,
there is a state ERR for possible memory safety violations. For a state a = (CS,KB,AL,PT),
let Vsym(a) consist of Vsym(CS) and of all symbolic variables occurring in KB, AL, or PT .

In a call stack CS = [(p1,LV1,AL1), . . . ,(pn,LVn,ALn)], we often identify the mapping
LV i with the set of equations {xi = LV i(x) | x ∈ VP ,LV i(x) is defined} and extend LV i to
a function from VP]Z to Vsym]Z by defining LV i(n) = n for all n ∈ Z. We also often
identify CS with the set of equations

⋃
1≤i≤n{xi = LV i(x) | x ∈ VP ,LV i(x) is defined}. Let

V fr
P = {xi | x ∈ VP , i ∈N>0} be the set of all these indexed variables that we use to represent

stack frames. Moreover, we write AL∗ for the union of the global allocation list with the
allocation lists in the individual stack frames, i.e., AL∗ = AL∪AL1 ∪ . . .∪ALn. Thus, AL∗

represents all currently allocated memory (by alloca or malloc) in the current state. We
say that a state (CS,KB,AL,PT) is well formed iff for every “points-to” information v ↪→ty

w ∈ PT , there is an allocated area Jv1, v2K in AL∗ such that |= KB⇒ v1 ≤ v∧ v≤ v2. So PT
only contains information about addresses that are known to be allocated.

Automatically Proving Termination and Memory Safety for Programs with Pointer Arithmetic 5

As an example, consider the following abstract state for our strlen program:

([((entry,0), {str1 = ustr}, {})], {z = 0}, {Justr, vendK}, {vend ↪→i8 z}) (†)

It represents states at the beginning of the entry block, where CS = [((entry,0),LV1,{})]
with LV1(str) = ustr and no memory was allocated by alloca. Due to an earlier call of
malloc, the memory cells between LV1(str) = ustr and vend are allocated on the heap, and
the value at the address vend is z (where the knowledge base is {z = 0}).

To define the semantics of abstract states a, we introduce the formulas 〈a〉SL and 〈a〉FO.
Here, 〈a〉SL is a formula from a fragment of separation logic [61] that defines which concrete
states are represented by a. The first-order formula 〈a〉FO is a weakened version of 〈a〉SL,
used for the automation of our approach. We use it to construct symbolic execution graphs,
as it allows us to apply standard SMT solving [59] for all reasoning. We also use 〈a〉FO for
the subsequent generation of integer transition systems from symbolic execution graphs.

The formula 〈a〉FO contains KB, and in addition, it expresses that the pairs Jv1, v2K in
allocation lists represent disjoint intervals. Moreover, two values at the same address must
be equal and two addresses must be different if they point to different values in PT . Finally,
all addresses are positive numbers.

Definition 2 (Representing States by FO Formulas) The set 〈a〉FO is the smallest set with

〈a〉FO = KB ∪ {1≤ v1∧ v1 ≤ v2 | Jv1, v2K ∈ AL∗} ∪
{v2 < w1∨w2 < v1 | Jv1, v2K,Jw1, w2K ∈ AL∗, (v1,v2) 6= (w1,w2)} ∪
{v2 = w2 | (v1 ↪→ty v2),(w1 ↪→ty w2) ∈ PT and |= 〈a〉FO⇒ v1 = w1} ∪
{v1 6= w1 | (v1 ↪→ty v2),(w1 ↪→ty w2) ∈ PT and |= 〈a〉FO⇒ v2 6= w2} ∪
{v1 > 0 | (v1 ↪→ty v2) ∈ PT}.

Now we formally define “concrete states” as abstract states of a particular form. A con-
crete state c uniquely describes the call stack and the contents of the memory. So we require
that (a) 〈c〉FO is satisfiable to ensure that c actually can represent something, and that (b)
c has unique values for the contents of all allocated addresses. Here, we represent memory
data byte-wise, and since LLVM represents values in two’s complement, each byte stores a
value from [−27,27−1]. This byte-wise representation of the memory enforces a uniform
representation of concrete states, and thus (c) we allow only statements of the form w1 ↪→i8

w2 in PT for concrete states. Moreover, this restriction ensures that concrete states are really
legal states. (Otherwise, we would have to check whether two statements w1 ↪→ty1 w2 and
w1 ↪→ty2 w3 with ty1 6= ty2 in the same state are compatible or whether they contradict each
other.) Finally, (d) all occurring symbolic variables must have unique values.

Definition 3 (Concrete States) Let c = (CS,KB,AL,PT) be an LLVM state. We call c a
concrete state iff c is well formed and all of the following conditions hold:
(a) 〈c〉FO is satisfiable,
(b) for all Jv1, v2K ∈ AL∗ and for all integers n with |= 〈c〉FO⇒ v1 ≤ n∧n≤ v2, there exists

(w1 ↪→i8 w2) ∈ PT for some w1,w2 ∈ Vsym such that |= 〈c〉FO⇒ w1 = n and |= 〈c〉FO⇒
w2 = k for some k ∈ [−27,27−1],

(c) there is no w1 ↪→ty w2 ∈ PT for ty 6= i8,
(d) for all v ∈ Vsym(c) there exists an n ∈ Z such that |= 〈c〉FO⇒ v = n.
Moreover, ERR is also a concrete state.

A state a 6= ERR always stands for a memory-safe state where exactly the addresses in
AL∗ are allocated. Let→LLVM be LLVM’s evaluation relation on concrete states, i.e., c→LLVM

c holds iff c evaluates to c by executing one LLVM instruction. Similarly, c→LLVM ERR

6 Thomas Ströder et al.

means that the evaluation step performs an operation that may lead to undefined behavior.
An LLVM program is memory safe for c 6= ERR iff there is no evaluation c→+

LLVM ERR,
where→+

LLVM is the transitive closure of→LLVM.
As mentioned, in addition to 〈a〉FO, we also introduce a separation logic formula 〈a〉SL for

every state a. We consider a fragment of separation logic which extends first-order logic by a
predicate symbol “↪→” for “points-to” information and by the connective “∗” for separating
conjunction. As usual, ϕ1 ∗ϕ2 means that ϕ1 and ϕ2 hold for disjoint parts of the memory.
The semantics of separation logic can then be defined using interpretations of the form
(as,mem) which represent the values of the program variables and the heap. The (partial)
assignment function as : V fr

P ⇀ Z is used to describe the values of the program variables
(more precisely, as operates on variables of the form xi to represent the variable x ∈ VP
occurring in the i-th stack frame). Moreover, a partial function mem : N>0 ⇀ {0, . . . ,28−1}
with finite domain describes the memory contents at allocated addresses (as unsigned bytes).

To deal with symbolic variables in formulas, we use instantiations. Let T (Vsym) be the set
of all arithmetic terms containing only variables from Vsym. Any function σ :Vsym→ T (Vsym)

is called an instantiation. Thus, σ does not instantiate V fr
P . Instantiations are extended to

formulas in the usual way, i.e., σ(ϕ) instantiates every free occurrence of v ∈ Vsym in ϕ by
σ(v). An instantiation is called concrete iff σ(v) ∈ Z for all v ∈ Vsym.

Definition 4 (Semantics of Separation Logic) Let as : V fr
P ⇀ Z, mem : N>0 ⇀ {0, . . . ,

28−1}, and let ϕ be a formula such that as is defined on all variables from V fr
P that occur in ϕ .

Let as(ϕ) result from replacing all xi in ϕ by as(xi). Note that by construction, local variables
xi are never quantified in our formulas. Then we define (as,mem) |= ϕ iff mem |= as(ϕ).

We now define mem |= ψ for formulas ψ that may contain symbolic variables from
Vsym (this is needed for Sect. 3). As usual, all free variables v1, . . . ,vn in ψ are implicitly
universally quantified, i.e., mem |= ψ iff mem |= ∀v1, . . . ,vn.ψ . The semantics of arithmetic
operations and predicates as well as of first-order connectives and quantifiers are as usual.
In particular, we define mem |= ∀v.ψ iff mem |= σ(ψ) holds for all instantiations σ where
σ(v) ∈ Z and σ(w) = w for all w ∈ Vsym \{v}.

We still have to define the semantics of ↪→ and ∗ for variable-free formulas. For n1,n2 ∈Z,
let mem |= n1 ↪→ n2 hold iff mem(n1) = n2.2 The semantics of ∗ is defined as usual in
separation logic: For two partial functions mem1,mem2 : N>0 ⇀Z, we write mem1⊥mem2 to
indicate that the domains of mem1 and mem2 are disjoint. If mem1⊥mem2, then mem1]mem2
denotes the union of mem1 and mem2. Now mem |= ϕ1 ∗ϕ2 holds iff there exist mem1⊥mem2
such that mem = mem1]mem2 where mem1 |= ϕ1 and mem2 |= ϕ2. As usual, “|= ϕ” means
that ϕ is a tautology, i.e., that (as,mem) |= ϕ holds for any interpretation (as,mem).

To formalize the semantics of an abstract state a, i.e., to define which concrete states are
represented by a, we now define 〈a〉SL. In 〈a〉SL, we combine the elements of AL∗ with the
separating conjunction “∗” to express that different allocated memory blocks are disjoint. We
have to include an additional separated conjunct true to represent further allocations that we
do not know of. In contrast, the elements of PT are combined by the ordinary conjunction
“∧”. So (v1 ↪→ty v2) ∈ PT does not imply that v1 is different from other addresses occurring
in PT . Similarly, we also combine the two formulas resulting from AL∗ and PT by “∧”, as
both express different properties of the same memory addresses.

Definition 5 (Representing States by SL Formulas) For v1,v2 ∈ Vsym, let 〈Jv1, v2K〉SL =

2 We use “↪→” instead of “ 7→” in separation logic, since mem |= n1 7→ n2 would imply that mem(n) is
undefined for all n 6= n1. This would be inconvenient in our formalization, since PT usually only contains
information about a part of the allocated memory.

Automatically Proving Termination and Memory Safety for Programs with Pointer Arithmetic 7

1≤ v1 ∧ v1 ≤ v2 ∧ (∀x.∃y. (v1 ≤ x≤ v2)⇒ (x ↪→ y)).

Reflecting two’s complement representation, for any LLVM type ty, we define 〈v1 ↪→ty v2〉SL =

v1 > 0 ∧ 〈v1 ↪→size(ty) v3〉SL ∧ (v2 ≥ 0 ⇒ v3 = v2) ∧ (v2 < 0 ⇒ v3 = v2 +28·size(ty)),

where v3 ∈ Vsym is fresh. We assume a little-endian data layout (where the least significant
byte is stored in the lowest address).3 Here, we let 〈v1 ↪→0 v3〉SL = true and 〈v1 ↪→n+1 v3〉SL =
(v1 ↪→ (v3 mod 28)) ∧ 〈(v1 +1) ↪→n (v3 div 28)〉SL.

Let a = (CS,KB,AL,PT) be an abstract state. It is represented in separation logic by4

〈a〉SL = CS ∧ KB ∧ (true∗ (∗ϕ∈AL∗ 〈ϕ〉SL)) ∧ (
∧

ϕ∈PT
〈ϕ〉SL)

Clearly, we have |= 〈a〉SL⇒ 〈a〉FO for any abstract state a. So 〈a〉FO only contains first-
order information that holds in every concrete state represented by a.

Now we can define which concrete states are represented by an abstract state. Note that
due to Def. 3, we can extract an interpretation (asc,memc) from every concrete state c 6= ERR.
Then we define that a (well-formed) abstract state a represents all those concrete states c
where (asc,memc) is a model of some (concrete) instantiation of a.

Definition 6 (Representing Concrete by Abstract States) Let c = (CSc,KBc,ALc,PTc)
be a concrete state where CSc uses the functions LVc

1, . . . ,LVc
n. For every x ∈ VP where

LVc
i (x) is defined, let asc(xi) = n for the number n ∈ Z with |= 〈c〉FO⇒ LVc

i (x) = n.
For n∈N>0, the function memc(n) is defined iff there exists a w1 ↪→i8 w2 ∈PTc such that

|= 〈c〉FO⇒w1 = n. Let |= 〈c〉FO⇒w2 = k for k ∈ [−27,27−1]. Then we have memc(n) = k
if k ≥ 0 and memc(n) = k+28 if k < 0.

We say that an abstract state a = ([(p1,LVa
1,ALa

1), . . . ,(pn,LVa
n,ALa

n)],KBa,ALa,PTa)
represents a concrete state c = ([(p1,LVc

1,ALc
1), . . . ,(pn,LVc

n,ALc
n)],KBc,ALc,PTc) iff a is

well formed and (asc,memc) is a model of σ(〈a〉SL) for some concrete instantiation σ of the
symbolic variables. The only state that represents the error state ERR is ERR itself.

So the abstract state (†) from the strlen program represents all concrete states c =
([((entry,0),LV1,{})],KB,AL,PT) where memc stores a string at the address asc(str1).5

3 From LLVM to Symbolic Execution Graphs

We now show how to automatically generate a symbolic execution graph that over-approxi-
mates all possible executions of a given program. For this, we present symbolic execution
rules for some of the most important LLVM instructions. We start with the rules for the LLVM
instructions in our strlen example in Sect. 3.1. In Sect. 3.2, we present rules for a more
advanced example including memory allocation and function calls.

While there already exist approaches for symbolic execution of C or LLVM (e.g., in the
tools KLEE [18] and Ufo [1]), our new abstract domain is particularly suitable for tracking
explicit information about memory allocations and the contents of memory, allowing a fully

3 A corresponding representation could also be defined for big-endian layout. This layout information is
necessary to decide which concrete states are represented by abstract states, but it is not used when constructing
symbolic execution graphs (i.e., our remaining approach is independent of such layout information).

4 We identify sets of first-order formulas {ϕ1, ...,ϕn} with their conjunction ϕ1∧ ...∧ϕn. Thus, CS is identi-
fied with the set resp. with the conjunction of the equations

⋃
1≤i≤n{xi = LV i(x) | x ∈ VP ,LV i(x) is defined}.

Moreover, we wrote (true∗ (∗ϕ∈AL∗ 〈ϕ〉SL)) to ensure that this part of the formula is true if AL∗ =∅.
5 The reason is that then there is an address end ∈ N>0 with end ≥ asc(str1) such that memc(end) = 0

and memc is defined for all numbers between asc(str1) and end. Hence if a is the state in (†), then memc |=
σ(〈a〉SL) holds for any instantiation σ with σ(ustr) = asc(str1), σ(vend) = end, and σ(z) = 0.

8 Thomas Ströder et al.

automated analysis of programs with direct memory access and pointer arithmetic. Most other
existing tools cannot successfully analyze termination of such programs fully automatically
without the specification of invariants by the user. In particular, we also have rules for refining
and generalizing abstract states. This is needed to obtain finite symbolic execution graphs that
represent all possible executions. We present our algorithm to generalize states in Sect. 3.3.

3.1 Basic Symbolic Execution Rules

Our analysis starts with the set of initial states that one wants to analyze for termination, e.g.,
all states where str points to a string. So in our example, we start with the abstract state (†).
Fig. 1 depicts the symbolic execution graph for strlen. Here, we omitted the component
AL = {Justr, vendK} for the global allocation list, which stays the same in all states in this
example. We also abbreviated parts of CS, KB, and PT by “. . . ”. Instead of vend ↪→i8 z and
z = 0, we directly wrote vend ↪→ 0, etc.

The function strlen starts with loading the character at address str to c0. Let p : ins
denote that ins is the instruction at position p. Our first rule handles the case p : “x = load

ty* ad”, i.e., the value of type ty at the address ad is assigned to the variable x. In our
rules, let a always denote the state before the execution step (i.e., above the horizontal line
of the rule). Moreover, we write 〈a〉 instead of 〈a〉FO. As each memory cell stores one byte,
in the load-rule we first have to check whether the addresses ad, . . . ,ad+ size(ty)−1 are
allocated, i.e., whether there is a Jv1, v2K ∈ AL∗ such that 〈a〉⇒ (v1 ≤ LV1(ad) ∧ LV1(ad)+
size(ty)−1≤ v2) is valid. Then, we reach a new state where the previous position p = (b, i)
is updated to the position p+ = (b, i+1) of the next instruction in the same basic block, and
we set LV1(x) = w for a fresh w ∈ Vsym. Here we write LV1[x := w] for the function where
(LV1[x := w])(x) = w and for y 6= x, we have (LV1[x := w])(y) = LV1(y). Moreover, we
add LV1(ad) ↪→ty w to PT . Thus, if PT already contained a formula LV1(ad) ↪→ty u, then
〈a〉 implies w = u. We used this rule to obtain B from A in Fig. 1.

In memory access instructions like load, one can also specify an optional alignment al
which indicates that the respective addresses are divisible by al. This alignment information
is generated by the LLVM code emitter (e.g., by the compiler from C to LLVM). It is a hint to
the code generator (which transforms LLVM code into machine code) that the address will
be at the specified alignment. The code generator may use this information for optimizations.

Note in the rules that LV1 is a partial function, i.e., LV1 may not be defined for all x∈ VP .
But according to [53], in well-formed LLVM programs all uses of a variable are dominated by
its definition. So LV1(x) is always defined when we read from x during symbolic execution.

load from allocated memory (p : “x = load ty* ad [, align al]” with x,ad ∈ VP , al ∈ N)

((p, LV1, AL1) ·CS, KB, AL, PT)

((p+, LV1[x := w], AL1) ·CS, KB, AL, PT ∪{LV1(ad) ↪→ty w})
if

• there is Jv1, v2K ∈ AL∗ with |= 〈a〉 ⇒ (v1 ≤ LV1(ad) ∧ LV1(ad)+ size(ty)−1≤ v2),
• |= 〈a〉 ⇒ (LV1(ad) mod al= 0), if an alignment al≥ 1 is specified,
• w ∈ Vsym is fresh

In a similar way, we formulate a rule for instructions that store a value at some address
in the memory. The instruction “store ty t, ty* ad” stores the value t of type ty at the
address ad. Again, we check whether LV1(ad), . . . ,LV1(ad)+ size(ty)−1 are addresses in
an allocated part of the memory. The information that ad now points to t is added to the set
PT . All other information in PT that is not influenced by this change is kept.6

6 For any terms, “Jt1, t2K⊥ Jt1, t2K” is a shorthand for t2 < t1 ∨ t2 < t1.

Automatically Proving Termination and Memory Safety for Programs with Pointer Arithmetic 9

[((entry,0), {str1 = ustr, . . .},{})], {. . .}, {vend ↪→ 0}A

[((entry,1), {str1 = ustr,c01 = v1, . . .},{})], {. . .}, {ustr ↪→ v1,vend ↪→ 0}B

[((entry,1), {str1 = ustr,c01 = v1, . . .},{})],
{v1 = 0, . . .}, {. . .}

C [((entry,1), {str1 = ustr,c01 = v1, . . .},{})],
{v1 6= 0, . . .}, {ustr ↪→ v1,vend ↪→ 0}

D

. . .
[((entry,2), {str1 = ustr,c0zero1 = v2, . . .},{})], {v2 = 0, . . .}, {vend ↪→ 0, . . .}E

[((loop,1), {str1 = ustr,olds1 = v3, . . .},{})], {v3 = ustr, . . .}, {vend ↪→ 0, . . .}F

[((loop,2), {str1 = ustr,s1 = v4, . . .},{})], {v4 = v3 +1,v3 = ustr, . . .}, {vend ↪→ 0, . . .}G

[((loop,3), {str1 = ustr,c1 = v5,s1 = v4, . . .},{})], {. . .}, {v4 ↪→ v5,vend ↪→ 0, . . .}H

[((loop,3), {str1 = ustr,c1 = v5, . . .},{})],
{v5 = 0, . . .}, {. . .}

I

. . .

[((loop,3), {str1 = ustr,c1 = v5,s1 = v4, . . .},{})],
{v5 6= 0, . . .}, {v4 ↪→ v5,vend ↪→ 0, . . .}

J

[((loop,4), {str1 = ustr,czero1 = v6,c1 = v5,s1 = v4,olds1 = v3, . . .},{})],
{v5 6= 0,v6 = 0,v4 = v3 +1,v3 = ustr, . . .}, {v4 ↪→ v5,vend ↪→ 0, . . .}

K

[((loop,4), {str1 = vstr,c1 = vc,s1 = vs,olds1 = volds, . . .},{})],
{vc 6= 0,vs = volds+1,volds ≥ vstr,vs < vend , . . .}, {vs ↪→ vc,vend ↪→ 0, . . .}

L

[((loop,3), {str1 = vstr,c1 = wc,s1 = ws,olds1 = wolds, . . .},{})],
{ws = wolds+1,wolds = vs,vs < vend , . . .}, {ws ↪→ wc,vend ↪→ 0, . . .}

M

. . .
[((loop,4), {str1 = vstr,c1 = wc,s1 = ws,olds1 = wolds, . . .},{})],
{wc 6= 0,ws =wolds+1,wolds = vs,vs < vend , . . .}, {ws ↪→wc,vend ↪→ 0, . . .}

N

Fig. 1 Symbolic execution graph for strlen

store to allocated memory (p : “store ty t, ty* ad [, align al]”, t∈VP∪Z, ad∈VP , al ∈ N)

((p, LV1, AL1) ·CS, KB, AL, PT)

((p+, LV1, AL1) ·CS, KB∪{w = LV1(t)}, AL, PT ′ ∪{LV1(ad) ↪→ty w})
if

• there is Jv1, v2K∈AL∗ with |= 〈a〉 ⇒ (v1 ≤ LV1(ad) ∧ LV1(ad)+size(ty)−1≤ v2),
• PT ′ = {(w1 ↪→sy w2) ∈ PT | |= 〈a〉 ⇒ (JLV1(ad), LV1(ad)+size(ty)−1K⊥ Jw1, w1+size(sy)−1K)},
• |= 〈a〉 ⇒ (LV1(ad) mod al= 0), if an alignment al≥ 1 is specified,
• w ∈ Vsym is fresh

If load or store accesses a non-allocated address or if the address does not correspond
to the specified alignment, then memory safety is violated and we reach the ERR state.

load or store on unallocated memory (p : “x = load ty* ad [, align al]” with x,ad ∈ VP
and al ∈ N, or p : “store ty t, ty* ad [, align al]” with t∈VP∪Z, ad∈VP , and al ∈ N)

((p, LV1, AL1) ·CS, KB, AL, PT)

ERR
if

there is no Jv1, v2K∈AL∗ with |= 〈a〉 ⇒ (v1 ≤ LV1(ad)∧LV1(ad)+size(ty)−1≤ v2)

load or store with unsafe alignment (p : “x = load ty* ad, align al” with x,ad ∈ VP
and al ∈ N>0, or p : “store ty t, ty* ad, align al” with t∈VP∪Z, ad∈VP , and al ∈ N>0)

((p, LV1, AL1) ·CS, KB, AL, PT)

ERR
if 6|= 〈a〉 ⇒ (LV1(ad) mod al= 0)

The instructions icmp and br in strlen’s entry block check if the first character c0
is 0. In that case, we have reached the end of the string and jump to the block done. Thus,
we now introduce rules for integer comparison. For “x = icmp eq ty t1, t2”, we check

10 Thomas Ströder et al.

if the state contains enough information to decide whether the values t1 and t2 of type ty are
equal. In that case, the value 1 resp. 0 (i.e., true resp. false) is assigned to x.

icmp eq (p : “x = icmp eq ty t1, t2” with x ∈ VP and t1, t2 ∈ VP ∪Z)

((p,LV1, AL1) ·CS, KB, AL, PT)

((p+,LV1[x := w], AL1) ·CS, KB∪{w = 1}, AL, PT)

if |= 〈a〉 ⇒ (LV1(t1) = LV1(t2))
and w ∈ Vsym is fresh

((p,LV1, AL1) ·CS, KB, AL, PT)

((p+,LV1[x := w], AL1) ·CS, KB∪{w = 0}, AL, PT)

if |= 〈a〉 ⇒ (LV1(t1) 6= LV1(t2))
and w ∈ Vsym is fresh

Other integer comparisons (for <, ≤, . . .) are handled analogously. Note that LLVM
always represents integers in two’s complement, as does the knowledge base in our states.
However, some instructions explicitly consider values in an unsigned way, and this needs
to be reflected in our evaluation rules. As an example, suppose that |= 〈a〉 ⇒ v = −27 ∧
w = 27− 1. Then signed comparison yields v < w, but unsigned comparison yields v > w,
because v is stored as (10000000), whereas w is stored as (01111111). So for an unsigned
comparison, we check whether the two values to be compared are either both positive or both
negative, i.e., have the same sign. In this case, the comparison on the unsigned interpretation
coincides with the signed comparison. For different signs, negative numbers (like v =−27)
are always greater than positive ones (like w = 27−1). As an example, the following rule
illustrates the affirmative case (w = 1) of unsigned less-or-equal (ule).

icmp ule (p : “x = icmp ule ty t1, t2” with x ∈ VP and t1, t2 ∈ VP ∪Z)

((p,LV1,AL1) ·CS, KB, AL, PT)

((p+,LV1[x := w], AL1) ·CS, KB∪{w = 1}, AL, PT)

if |= 〈a〉 ⇒ (LV1(t1)≤ LV1(t2))∧ (sgn(LV1(t1)) = sgn(LV1(t2))) ∨ (LV1(t1)≥ 0)∧ (LV1(t2)< 0)
and w ∈ Vsym is fresh

The rules for icmp are only applicable if KB contains enough information to evaluate
the respective condition. Otherwise, a case analysis needs to be performed, i.e., one has to
refine the abstract state by extending its knowledge base. This is done by the following rule,
which transforms an abstract state into two new ones.7

refining abstract states (p : “x = icmp eq ty t1, t2”, x ∈ VP , t1, t2 ∈ VP ∪Z)

((p, LV1, AL1) ·CS, KB, AL, PT)

((p, LV1, AL1) ·CS, KB∪{ϕ}, AL, PT) | ((p, LV1, AL1) ·CS, KB∪{¬ϕ}, AL, PT)

if 6|= 〈a〉⇒ϕ and 6|= 〈a〉⇒¬ϕ and ϕ is LV1(t1)=LV1(t2)

In state B of Fig. 1, we evaluate “c0zero = icmp eq i8 c0, 0”, i.e., we check if the
first character c0 of the string str is 0. Since this cannot be inferred from B’s knowledge
base, we refine B to the successor states C and D and call the edges from B to C and D
refinement edges. In D, we have c0 = v1 and v1 6= 0. Thus, the icmp-rule yields E where
c0zero= v2 and v2 = 0. We do not display the successors of C that lead to a program end.

The next instruction in our example is “br i1 c0zero, label done, label loop”,
a conditional jump (or branch) to another block. Let us first consider a similar, but simpler
case. The instruction “br label bnext” means that the execution has to continue with the
first instruction in the block bnext. When execution moves from one block to another, in the

7 Analogous refinement rules can also be used for other conditional LLVM instructions, e.g., conditional
jumps with br or other cases of icmp.

Automatically Proving Termination and Memory Safety for Programs with Pointer Arithmetic 11

new target block one first evaluates the phi instructions that may be present at its beginning.
These instructions are needed due to the static single assignment form of LLVM and initialize
the variables in the target block depending on from which block we are entering the target
block. Such phi instructions may only occur at the beginning of a block, i.e., every block
starts with a (possibly empty) sequence of phi instructions. A phi instruction has the form
“x = phi ty [t1,b1], . . . ,[tn,bn]”, meaning that if the previous block was b j, then the value
t j is assigned to x. All t1, . . . , tn must have type ty. A peculiarity of phi instructions is that
all phi instructions in the same block are executed atomically together. So all local variables
occurring in t1, . . . , tn still have the values that they had before entering the new target block.

To handle phi in combination with the br instruction at the end of the previous block, we
introduce an auxiliary function firstNonPhi. For any block b, firstNonPhi(b) is the index of
the first non-phi instruction in b. Moreover, we define the function computePhi to implement
the parallel execution of all phi statements “x1 = phi ty1 [t1

1,b
1
1], ..., [t1

n1,b
1
n1]”,

. . . , “xm = phi tym [tm
1 ,b

m
1], ..., [tm

nm,bm
nm]” at the start of the block bnext. Its argu-

ments are the current values LV of the local variables, the current block b j, and the target
block bnext, and it returns a pair (LV ′,KBphi), where LV ′ reflects the updated local variables
and KBphi contains information on the new symbolic variables introduced in LV ′:

computePhi(LV,b j,bnext) = (LV[x1 := w1, . . . ,xm := wm], {w1 = LV(t1
j), . . . ,w

m = LV(tm
j)}),

where w1, . . . ,wm ∈ Vsym are fresh. Now we can define a rule that allows us to perform an
unconditional jump with br to a block bnext and that executes bnext’s phi instructions.

unconditional br (p : “br label bnext” with bnext ∈ Blks)

(((b, i), LV1, AL1) ·CS, KB, AL, PT)

(((bnext, j), LV ′1, AL1) ·CS, KB∪KBphi, AL, PT)

if (LV ′1,KBphi) = computePhi(LV1,b,bnext) and j = firstNonPhi(bnext)

For conditional branches “br i1 t, label b1, label b2”, one has to check whether
the current state contains enough information to conclude that t is 1 (i.e., true) or 0 (i.e.,
false). Then the evaluation continues after the phi instructions of block b1 resp. b2.

conditional br (p : “br i1 t, label b1, label b2” with t ∈ VP ∪{0,1} and b1,b2 ∈ Blks)

(((b, i), LV1, AL1) ·CS, KB, AL, PT)

(((b1, j1), LV ′1, AL1) ·CS, KB∪KBphi, AL, PT)

if |= 〈a〉 ⇒ (LV1(t) = 1), (LV ′1,KBphi) = computePhi(LV1,b,b1), j1 = firstNonPhi(b1)

(((b, i), LV1, AL1) ·CS, KB, AL, PT)

(((b2, j2), LV ′1, AL1) ·CS, KB∪KBphi, AL, PT)

if |= 〈a〉 ⇒ (LV1(t) = 0), (LV ′1,KBphi) = computePhi(LV1,b,b2), j2 = firstNonPhi(b2)

With the br instruction, one now jumps to the loop block in State F . Note that we sim-
plified the equalities resulting from computePhi in F , to avoid renaming in the presentation.

The strlen function traverses the string using a pointer s, and the loop terminates
when s eventually reaches the last memory cell of the string (containing 0). Then one jumps
to done, converts the pointers s and str to integers, and returns their difference. To perform
the required pointer arithmetic, “bd = getelementptr ty* ad,in t” increases ad by the
size of t elements of type ty (i.e., by size(ty) · t) and assigns this address to bd.8

8 Since we do not consider struct data structures in this paper, we disregard getelementptr instructions
with more than two parameters. Note that getelementptr instructions with just two parameters suffice for
several levels of de-referencing (where memory has to be accessed after each getelementptr instruction).

12 Thomas Ströder et al.

getelementptr (p :“bd = getelementptr ty* ad,in t”, ad,bd∈VP , t∈VP ∪Z)

((p, LV1, AL1) ·CS, KB, AL, PT)

((p+, LV1[bd1 := w], AL1) ·CS, KB∪{w = LV1(ad)+ size(ty) ·LV1(t)}, AL, PT)
if w∈Vsym
is fresh

In Fig. 1, this rule is used for the step from F to G, which implies s = str+1. In the
step to H, the character at address s is loaded to c. To ensure memory safety, the load-rule
checks that s is in an allocated part of the memory (i.e., that ustr ≤ ustr+1 ≤ vend). This
holds because 〈G〉 implies ustr ≤ vend and ustr 6= vend (as ustr ↪→ v1,vend ↪→ 0 ∈ PT and
v1 6= 0 ∈ KB). Finally, we check whether c is 0. We again perform a refinement which yields
the states I and J. State J corresponds to the case c 6= 0 and thus, we obtain czero= 0 in K.

Finally, we present rules for the instructions ptrtoint and sub that are used in the
block done of the strlen example. The ptrtoint instruction simply converts pointers to
integers and is needed to perform subsequent arithmetic operations on them (e.g., to subtract
one address from another in the strlen algorithm). In a similar way, we also have rules to
handle other LLVM instructions for casting between pointers and different types of integers.

ptrtoint (p : “x = ptrtoint ty* ad to in” with x,ad ∈ VP)

((p, LV1, AL1) ·CS, KB, AL, PT)

((p+, LV1[x := w], AL1) ·CS, KB∪{w = LV1(ad)}, AL, PT)
if w∈Vsym
is fresh

In sub instructions of the form “x = sub ty t1, t2”, both t1 and t2 must have the
type ty and the variable x also gets this type. We use similar rules to handle other LLVM
instructions for other arithmetic, Boolean, and bit manipulation operations.

sub (p : “x = sub ty t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪Z)

((p, LV1, AL1) ·CS, KB, AL, PT)

((p+, LV1[x := w], AL1) ·CS, KB∪{w = LV1(t1)−LV1(t2)}, AL, PT)
if w∈Vsym
is fresh

3.2 Advanced Symbolic Execution Rules

Now we also present rules that allow allocation of memory, function calls, and manipulation
of larger memory chunks. We start with a rule for the alloca statement. The instruction “x =

alloca ty, in t” allocates memory for t elements of the type ty. Here, x is an identifier
from VP of type ty* and t is either an identifier or a natural number. Thus, a new interval
is allocated (i.e., the allocation list AL1 of the current stack frame is extended by Jv1, v2K
for fresh symbolic variables v1,v2) and KB is extended by v2 = v1 + size(ty) ·LV1(t)− 1.
Moreover, the address of the first memory cell in the newly allocated block is assigned to x.
Thus, we update LV1 by x = v1. Again, the code emitter may have added an alignment al.
In contrast to load and store, it is not designed as a hint for the code generator but as a
requirement that the result of the allocation must be at least al-aligned. If no alignment is
specified or al= 0, one uses the alignment align(ty) specified by the ABI (application binary
interface) of the target machine and operating system. The code emitter writes information
on the ABI alignment of pointers and the most common integer, vector, and floating point
types in the header of the LLVM program. For all remaining types, the ABI alignment is
computed from these given alignments. Allocating 0 bytes results in undefined behavior,
which may therefore violate memory safety and affect the termination behavior.

Automatically Proving Termination and Memory Safety for Programs with Pointer Arithmetic 13

alloca (p : “x = alloca ty, in t [, align al]” with x ∈ VP , t ∈ VP ∪Z, and al ∈ N)
((p, LV1, AL1) ·CS, KB, AL, PT)

ERR
if 6|= 〈a〉 ⇒ (LV1(t)> 0)

((p, LV1, AL1) ·CS, KB, AL, PT)

((p+, LV1[x := v1], AL1 ∪{Jv1, v2K}) ·CS, KB′ ∪{v2 = v1 + size(ty) ·LV1(t)−1}, AL, PT)
if

• we have |= 〈a〉 ⇒ (LV1(t)> 0),
• KB′ = KB∪{v1 mod c = 0}, where c = al, if al≥ 1 is specified, or else c = align(ty),
• v1,v2 ∈ Vsym are fresh

Note that alloca is used to allocate memory on the stack, whereas malloc and free

allocate and release memory on the heap. The latest versions of LLVM do not have built-
in malloc or free instructions anymore, but one has to call them as external functions
(provided by the standard C library). For LLVM programs that call malloc or free, we
use the following two inference rules. The rule for malloc mainly differs from the rule
for alloca by placing the newly allocated memory region into the global allocation list
instead of the allocation list of the current stack frame. Here, “x = call i8* @malloc(in
t)” allocates t bytes and the address of the first memory cell in this block is assigned to
x. Depending on the processor architecture of the target machine, the allocated memory is
8-byte or 16-byte aligned. Our rule for malloc currently does not take into account that
malloc may also return NULL without allocating any memory. However, we could easily
support this by introducing a corresponding second successor state for this possible outcome.

malloc (p : “x = call i8* @malloc(in t)” with x ∈ VP and t ∈ VP ∪Z)

((p, LV1, AL1) ·CS, KB, AL, PT)

((p+, LV1[x := v1], AL1) ·CS, KB′ ∪{v2 = v1 +LV1(t)−1}, AL∪{Jv1, v2K}, PT)
if

• we have |= 〈a〉 ⇒ (LV1(t)> 0),
• KB′ = KB∪{v1 mod c = 0}, where c = 8 for 32-bit platforms and c = 16 for 64-bit platforms,
• v1,v2 ∈ Vsym are fresh

LLVM does not explicitly distinguish between the heap and stack, but applies the same
memory model for both (using load and store). However, memory acquired by alloca is
automatically released at the end of the function in which it was allocated, while memory ac-
quired by malloc has to be released explicitly by calling free. The instruction “call void

@free(i8* t)” releases the allocated memory block starting at the address t. Moreover, it
deletes those entries from PT which are known to correspond to this memory block. Calling
free on NULL does not change the state. If free is called with an address that is neither the
beginning of an allocated memory block in the global allocation list (of memory allocated
by malloc) nor NULL, then memory safety is violated and we reach the state ERR.

free (p : “call void @free(i8* t)” with t ∈ VP ∪Z)

((p, LV1, AL1) ·CS, KB, AL]{Jv1, v2K}, PT)

((p+, LV1, AL1) ·CS, KB, AL, PT ′)
if

• v1,v2 ∈ Vsym,
• |= 〈a〉 ⇒ (LV1(t) = v1),
• PT ′ results from PT by removing all v ↪→ty w

where |= 〈a〉 ⇒ v1 ≤ v∧ v≤ v2

((p, LV1, AL1) ·CS, KB, AL, PT)

((p+, LV1, AL1) ·CS, KB, AL, PT)
if |= 〈a〉 ⇒ (LV1(t) = 0)

((p, LV1, AL1) ·CS, KB, AL, PT)

ERR
if • 6|= 〈a〉 ⇒ (LV1(t) = 0),
• there is no Jv1, v2K ∈ AL with |= 〈a〉 ⇒ (LV1(t) = v1)

14 Thomas Ströder et al.

[((main,0), {i1 = vi, . . .},{})], {. . .}, {}, {}A′

[((main,0), {i1 = vi, . . .},{})], {vi < 1, . . .}, {}, {}B′ [((main,0), {i1 = vi, . . .},{})], {vi ≥ 1, . . .}, {}, {}C′

. . .
[((main,1), {i1 = vi,ineg1 = vineg, . . .},{})],{vi ≥ 1,vineg = 0, . . .}, {}, {}D′

[((main,2), {bytes1 = vbytes, . . .},{})],{vi ≥ 1,vbytes = vi, . . .}, {}, {}E ′

[((main,3), {bytes1 = vbytes,ad1 = vad, . . .},{})],{vadend = vad+ vbytes−1,vbytes = vi, . . .}, {Jvad, vadend K}, {}F ′

[((main,4), {pos1 = vpos, . . .},{})],{vadend = vad+ vi−1,vpos = vi−1, . . .}, {Jvad, vadend K}, {}G′

[((main,5), {last1 = vlast, . . .},{})],{vadend = vad+vi−1,vlast = vadend , . . .}, {Jvad, vadend K}, {}H ′

[((main,6), {last1 = vlast, . . .},{})],{vadend = vad+ vi−1,vlast = vadend , . . .}, {Jvad, vadend K}, {vadend ↪→ 0}I′

[((entry,0), {str1 = ustr, . . .},{}),((main,6), {. . .},{})],{vadend = vad+vi−1, . . .}, {Jvad, vadend K}, {vadend ↪→ 0}
J′

. . .

[((done,4), {size1 = vsize, . . .},{}),((main,6), {. . .},{})],{. . .}, {Jvad, vadend K}, {vadend ↪→ 0}K′

[((main,7), {len1 = vsize,ad1 = vad, . . .},{})],{. . .}, {Jvad, vadend K}, {vadend ↪→ 0}L′

[((main,8), {len1 = vsize, . . .},{})],{. . .}, {}, {}M′

Fig. 2 Symbolic execution graph for main

To illustrate the rules for allocating and releasing memory, assume that we call the func-
tion strlen within a main function with a pointer to a memory area allocated by malloc.
The symbolic execution graph for the corresponding LLVM program is depicted in Fig. 2.
The first instruction is icmp slt, which checks if the function argument i in signed inter-
pretation is less than 1 (slt). Since in state A′, we do not have any information on i, we

int main (int i)
if (i < 1) i = 1;
char* str = (char*) malloc(i * sizeof(char));
str[i-1] = ’\0’;
int len = strlen(str);
free(str);
return len;

define i32 @main(i32 i) {

main: 0: ineg = icmp slt i32 i, 1
1: bytes = select i1 ineg, i32 1, i32 i
2: ad = call i8* @malloc(i32 bytes)
3: pos = add i32 bytes, -1
4: last = getelementptr i8* ad, i32 pos
5: store i8 0, i8* last
6: len = call i32 @strlen(i8* ad)
7: call void @free(i8* ad)
8: ret i32 len}

refine A′ to the states B′ and
C′. C′ is then evaluated to D′,
where the result of the com-
parison is assigned to ineg.
Depending on the value of
ineg, the select instruction
assigns 1 or i to the vari-
able bytes. In F ′, the call of
malloc has been evaluated:
the entry Jvad, vadend K is added
to the global allocation list and
in the knowledge base we keep
the relationship between the
start address vad and the end
address vadend . In M′, the allo-
cated memory area is released again, leading to an empty global allocation list and an empty
list PT at the end of the program. The transition from I′ to J′ corresponds to a call of the
function strlen and the transition from K′ to L′ corresponds to a return from this function.

The symbolic execution rules for the select instruction are analogous to the rules for
icmp. The instructions call and ret for calling and returning from a function are needed
when going beyond intraprocedural analysis. The rule for call pushes a new frame on the
call stack whose position is the entry point of the called function and the argument values are
assigned to its parameters. When the ret instruction is encountered, the top frame is popped
from the stack again. For reasons of space, we only present the rules for non-void functions.

Automatically Proving Termination and Memory Safety for Programs with Pointer Arithmetic 15

call (p : “x = call ty @function(ty1 t1, ..., tyn tn)” with x ∈ VP , t1, . . . , tn ∈ VP ∪Z)

((p, LV1, AL1) ·CS, KB, AL, PT)

(((function.entry,0), LV0, {}) · (p, LV1, AL1) ·CS, KB′, AL, PT)
if

• function.entry is the entry block of function
• function is declared as function(ty1 u1, . . . ,tyn un),
• w1, . . . ,wn ∈ Vsym are fresh,
• LV0(u1) = w1, . . . ,LV0(un) = wn, and LV0(x) is undefined for all x ∈ VP \{u1, . . . ,un}
• KB′ = KB∪{w1 = LV1(t1), . . . ,wn = LV1(tn)},

ret (p0 : “ret ty t”; p1 : “x = call ty ...” with x ∈ VP , t ∈ VP ∪Z)

((p0, LV0, AL0) · (p1, LV1, AL1) ·CS, KB, AL, PT)

((p+1, LV1[x := w], AL1) ·CS, KB∪{w = LV0(t)}, AL, PT ′)
if

• w∈Vsym is fresh,
• PT ′ results from PT by removing all v ↪→ty w where there exists some Jv1, v2K ∈ AL0

with |= 〈a〉 ⇒ v1 ≤ v∧ v≤ v2

3.3 Generalizing Abstract States

In the strlen example and its graph in Fig. 1, after reaching K, one unfolds the loop once
more until one reaches a state K̃ at position (loop,4) again, analogous to the first iteration.
To obtain finite symbolic execution graphs, we generalize our states whenever an evaluation
visits a program position (b, j) twice and the domains of the local variable mappings LV i
in the two states are the same. Thus, we have to find a state that is more general than
K = ([(p,LVK

1 ,{})],KBK ,AL,PTK) and K̃ = ([(p,LV K̃
1 ,{})],KBK̃ ,AL,PT K̃). For readability,

we again write “↪→” instead of “↪→i8”. Then p = (loop,4), AL = {Justr, vendK}, and

LVK
1 = {str1 = ustr,c1 = v5,s1 = v4,olds1 = v3, . . .}

LV K̃
1 = {str1 = ustr,c1 = ṽ5,s1 = ṽ4,olds1 = ṽ3, . . .}

PTK = {ustr ↪→ v1,v4 ↪→ v5,vend ↪→ z}
PT K̃ = {ustr ↪→ v1,v4 ↪→ v5, ṽ4 ↪→ ṽ5,vend ↪→ z}
KBK = {v5 6= 0,v4 = v3 +1,v3 = ustr,v1 6= 0,z = 0, . . .}
KBK̃ = {ṽ5 6= 0, ṽ4 = ṽ3 +1, ṽ3 = v4,v4 = v3 +1,v3 = ustr,v1 6= 0,z = 0, . . .}.

Our aim is to construct a new state L that is more general than K and K̃, but contains
enough information for the remaining proof. We now present our heuristic for merging states
that is used in our implementation.

To merge K and K̃, we keep those constraints of K that also hold in K̃. To this end, we
proceed in two steps. First, we create a new state L = ([(p,LVL

1 ,{})],KBL,ALL,PTL) using
fresh symbolic variables vx for all x ∈ VP where LVK

1 and LV K̃
1 are defined. This yields

LVL
1 = {str1 = vstr,c1 = vc,s1 = vs,olds1 = volds, . . .}.

We then create mappings µK (resp. µK̃) from L’s symbolic variables to their counterparts
in K (resp. K̃), i.e., µK(vx) = LVK

1 (x) if LVK
1 (x) is defined. In our example, µK(vstr)=ustr,

µK(vc)= v5, µK(vs)= v4, µK(volds)= v3, and µK̃(vstr)= ustr, µK̃(vc)= ṽ5, µK̃(vs)= ṽ4,
µK̃(volds)= ṽ3. By injectivity of LVK

1 , we can also define a pseudo-inverse of µK that maps
K’s variables to L by setting µ

−1
K (LVK

1 (x)) = vx if LVK
1 (x) is defined and µ

−1
K (v)=v for all

other v∈Vsym (µ−1
K̃

is analogous). So symbolic variables in K and K̃ corresponding to the

16 Thomas Ströder et al.

same program variable are mapped to the same symbolic variable by µ
−1
K and µ

−1
K̃

.

In a second step, we use the mappings µ
−1
K and µ

−1
K̃

to check which constraints of K also

hold in K̃. So we set ALL = µ
−1
K (AL)∩µ

−1
K̃

(AL) = {Jvstr, vendK} and

PTL = µ
−1
K (PTK)∩µ

−1
K̃

(PT K̃)

= {vstr ↪→ v1,vs ↪→ vc,vend ↪→ z}∩{vstr ↪→ v1,v4 ↪→ v5,vs ↪→ vc,vend ↪→ z}
= {vstr ↪→ v1,vs ↪→ vc,vend ↪→ z}.

Here, v1 is not changed by µ
−1
K and µ

−1
K̃

because it is not assigned to a program variable.
It remains to construct KBL. Essentially, we would like to take the intersection of those

formulas that are implied by the knowledge bases of K and K̃. So in principle, we would like
to define the knowledge base of the new merged state L as follows:

KBL = { ϕ | |= µ
−1
K (〈K〉)⇒ ϕ and |= µ

−1
K̃

(〈K̃〉)⇒ ϕ } (1)

However, with this definition KBL would be an infinite set of formulas, which is not suitable
for automation. Thus, we restrict the definition of KBL to a finite subset of (1) that can be
automatically generated from the knowledge bases of the states K and K̃. This restriction is
only a heuristic and has no impact on the correctness, since it would already be correct to
include all formulas of (1) in the knowledge base of the generalized state.

Our heuristic for the restriction of (1) considers K’s knowledge base and extends it by
certain additional formulas. This leads to a finite set ⟪K⟫. For these finitely many formulas
we then check whether they are also implied by 〈K̃〉 (when renaming variables appropriately).

More precisely, we have v3=ustr (“olds= str”) in 〈K〉, but ṽ3=v4, v4=v3 +1, v3=
ustr (“olds=str+1”) in 〈K̃〉. To keep as much information as possible, we rewrite equa-
tions to inequations before performing the generalization. So let ⟪K⟫ result from extending
〈K〉 by t1 ≥ t2 and t1 ≤ t2 for any equation t1 = t2 ∈ 〈K〉. In our example, we obtain v3 ≥ ustr
∈ ⟪K⟫ (“olds≥ str”). Moreover, for any t1 6= t2 ∈ 〈K〉, we check whether 〈K〉 implies t1 >
t2 or t1 < t2, and add the respective inequation to ⟪K⟫. In this way, one can express sequences
of inequations t1 6=t2, t1+1 6=t2, . . . , t1+n 6=t2 (where t1≤t2) by a single inequation t1+n<t2,
which is needed for suitable generalizations afterwards. We use this to derive v4 < vend ∈ ⟪K⟫
(“s< vend”) from v4 = v3 +1, v3 = ustr, ustr ≤ vend, ustr 6= vend, v4 6= vend ∈ 〈K〉.

We then let KBL consist of all formulas ϕ from ⟪K⟫ that are also implied by 〈K̃〉, again
translating variable names using µ

−1
K and µ

−1
K̃

. Thus, we have
⟪K⟫ = {v5 6= 0,v4 = v3 +1,v3 = ustr,v3 ≥ ustr,v4 < vend, . . .}

µ
−1
K (⟪K⟫) = {vc 6= 0,vs = volds+1,volds = vstr,volds ≥ vstr,vs < vend, . . .}
µ
−1
K̃

(〈K̃〉) = {vc 6= 0,vs = volds+1,volds = v4,v4 = v3 +1,v3 = vstr,vs < vend, . . .}

KBL = {vc 6= 0,vs = volds+1,volds ≥ vstr,vs < vend, . . .}.
In Fig. 1, we do not show the second loop unfolding from K to K̃, and directly draw a

generalization edge with a dashed arrow from K to L. Such an edge expresses that all concrete
states represented by K are also represented by the more general state L. Semantically, a state
a′ is a generalization of a state a iff |= 〈a〉SL⇒ µ(〈a′〉SL) for some instantiation µ .

In the strlen example, we continue symbolic execution in state L. Similar to the exe-
cution from F to K, after 5 steps another state N at position (loop,4) is reached. In Fig. 1,
the dotted arrows from L to M and from M to N abbreviate several evaluation steps. As L
is again a generalization of N using an instantiation µ with µ(vc) = wc, µ(vs) = ws, and
µ(volds) = wolds, we draw a generalization edge from N to L. The construction of a sym-
bolic execution graph is finished as soon as all leaves have only one stack frame, which is at a

Automatically Proving Termination and Memory Safety for Programs with Pointer Arithmetic 17

. . .

s1 u1

. . . 0

s2 u2

u1−s1≥ u2−s2

I′′

. . .

s1, dst u1

. . . 0

s2, src u2

u1−s1≥ u2−s2

A′′

. . .

s1 dst u1

. . . 0

s2 src u2

u1−s1≥ u2−s2

B′′

. . .

s1 dst u1

. . . 0

s2 src u2

u1−s1≥ u2−s2

dst−s1= src−s2

C′′

Fig. 3 The strcpy function and a graphical illustration of its symbolic execution

ret instruction. We call a non-empty symbolic execution graph with this property complete.
In particular, a complete symbolic execution graph cannot contain an ERR state.

The approach presented so far is sufficient to prove memory safety (and together with
the techniques in Sect. 5 also termination) of the strlen function, cf. Sect. 4 and 5. Up to
now, when merging states we make relations between symbolic variables explicit (by adding
inequations between symbolic variables). Then, these inequations are retained in the merged
state if they are present in both states to be merged. In other words, these inequations restrict
the state space of the represented concrete states and we want to keep as many restrictions as
possible during merging in order to obtain a more precise abstraction. In some cases, however,
it is also important to make relations between differences of symbolic variables explicit (e.g.,
about the distance between addresses). So in addition to inequations like v1 ≥ v2 or v1 > v2 in
⟪K⟫, we may also add equations like v1−v2 = w1−w2 for symbolic variables v1,v2,w1,w2.
By making these equations explicit, they can also be retained when merging states.

So far, relations established and preserved by instructions within a “loop” (i.e., a path
through the program leading from some program position back to the same position) are
usually retained by our merging heuristic. For example, the instruction s = getelementptr

i8* olds, i32 1 within the block loop leads to the relation v4 = v3 +1 in K and to the
relation ṽ4 = ṽ3+1 in K̃, where v4 and ṽ4 correspond to the program variable s and v3 and ṽ3
corresponds to the program variable olds. Thus, the relation vs = volds+1 is also contained
in the merged state L for the corresponding “merged” symbolic variables vs and volds.

However, relations established before a loop may be generalized or removed during merg-
ing. As example, the instruction olds = phi i8* [str,entry], [s,loop] assigns the
value of str to the variable olds when the block loop is entered for the first time. So in the
state K, we had the relation v3 = ustr where the symbolic variables v3 and ustr correspond
to the program variables olds and str. Since in K̃, the value of olds has been increased
by 1, this is generalized to the inequation volds ≥ vstr in the merged state L. So by merging
states, we lose the information on the exact distance between olds and its initial value str.

char* strcpy(char* s1, char* s2) {
char* dst = s1;
char* src = s2;
while ((*dst++ = *src++) != ’\0’);
return s1; }

Of course, we need to abstract to obtain a
finite representation of all evaluations. How-
ever, we might want to keep the knowledge
that two distances between different symbolic
variables are the same. This knowledge is nec-
essary for a successful analysis of the strcpy function on the right (cf. [62,72]). This func-
tion copies the string at the source address s2 to the destination address s1. The while loop
of the function terminates as soon as the value 0 is reached in the source string.

To ease readability, we do not depict the full symbolic execution graph. Instead, Fig. 3
shows a graphical illustration of some key program states in the execution of strcpy. The

18 Thomas Ströder et al.

initial state I′′ describes states in which the destination s1 begins an allocated memory block
whose length is at least as long as the source string s2. Moreover, the symbolic variables
u1 and u2 refer to the last address in each allocated memory block. State A′′ corresponds
to the first entry into the loop, in which the program variables dst and src point to the
same addresses as s1 and s2, respectively. After one loop iteration, both src and dst have
been incremented by one, as shown in B′′. For the states A′′ and B′′, the merging approach
presented so far would generate a state requiring only s1 ≤ dst ≤ u1 and s2 ≤ src ≤ u2,
but it would not keep any information about the exact distances of dst from s1 and of src
from s2. However, this is not sufficient to prove memory safety (and hence termination)
of the strcpy function, as this generalized state would also represent cases in which the
destination memory area starting at dst is shorter than the source area. To handle such
examples successfully, our merging heuristic needs to relate the difference between dst and
s1 with the difference between src and s2, obtaining a state such as C′′.

So when merging two states a and b, we also check whether there are symbolic variables
va

1,v
a
2,v

a
3,v

a
4 with (va

1,v
a
2) 6= (va

3,v
a
4) in state a such that va

1 − va
2 = k1 · (va

3 − va
4) for some

constant k1. To simplify the search, we only consider cases where va
3− va

4 = k2 for some
constant k2, and to avoid several equivalent equations due to symmetries, we require that
k1 > 0 and k2 ≥ 0. If the corresponding relation vb

1− vb
2 = k1 · (vb

3− vb
4) also holds for the

symbolic variables vb
1,v

b
2,v

b
3,v

b
4 in state b that are “merged with” va

1,v
a
2,v

a
3,v

a
4, then the relation

v1− v2 = k1 · (v3− v4) is added to the knowledge base of the merged state for the “merged”
symbolic variables vi. So for strcpy, since dst− s1 = src− s2 holds in both states A′′

and B′′, this equation is contained in the knowledge base of the state C′′ that results from
merging A′′ and B′′. When merging states in this way, termination of strcpy can be proved
automatically, similar to strlen. Def. 7 formalizes our technique for merging states.

Definition 7 (Merging States) Let a = ([(p1,LVa
1,ALa

1), ...,(pn,LVa
n,ALa

n)],KBa,ALa,PTa),
b = ([(p1,LVb

1,ALb
1), . . . ,(pn,LVb

n,ALb
n)],KBb,ALb,PTb) be abstract states. Moreover, for all

i ∈ {1, . . . ,n}, let the domains of LVa
i and LVb

i coincide. Then c = (CSc,KBc,ALc,PTc) with
CSc = [(p1,LVc

1,ALc
1), . . . ,(pn,LVc

n,ALc
n)] results from merging the states a and b if

• LVc
i = {xi = vi

x | x ∈ VP where LVa
i (x) is defined } for all 1≤ i≤ n and fresh pairwise

different symbolic variables vi
x. Moreover, we define µa(vi

x) = LVa
i (x) and µb(vi

x) =
LVb

i (x) for all x ∈ VP where LVa
i (x) is defined, and we let µa and µb be the identity on

all remaining variables from Vsym.
• PTc = µ−1

a (PTa)∩µ
−1
b (PTb), ALc = µ−1

a (ALa)∩µ
−1
b (ALb), and ALc

i = µ−1
a (ALa

i)∩
µ
−1
b (ALb

i) for all 1 ≤ i ≤ n. Here, the “inverse” of µa is defined as µ−1
a (v) = vi

x if v =
LVa

i (x) and µ−1
a (v) = v for all other v ∈ Vsym (µ−1

b is defined analogously).

• KBc = { ϕ ∈ µ−1
a (⟪a⟫) | |= µ

−1
b (〈b〉)⇒ ϕ }, where ⟪a⟫ is the smallest set such that

– 〈a〉 ⊆ ⟪a⟫
– t1 = t2 ∈ ⟪a⟫ =⇒ t1 ≥ t2, t1 ≤ t2 ∈ ⟪a⟫
– (t1 6= t2 ∈ ⟪a⟫∧ |= 〈a〉 ⇒ t1 > t2) =⇒ t1 > t2 ∈ ⟪a⟫
– (t1 6= t2 ∈ ⟪a⟫∧ |= 〈a〉 ⇒ t1 < t2) =⇒ t1 < t2 ∈ ⟪a⟫
– |= 〈a〉 ⇒ v1− v2 = k1 · k2∧ v3− v4 = k2 =⇒ v1− v2 = k1 · (v3− v4) ∈ ⟪a⟫

for all k1,k2 ∈ N with k1 > 0 and all v1,v2,v3,v4 ∈ Vsym(a) with (v1,v2) 6= (v3,v4).

Note that ⟪a⟫may contain arbitrary formulas from QF IA(Vsym) since 〈a〉 ⊆ ⟪a⟫. More-
over, the terms t1, t2 in ⟪a⟫\ 〈a〉 are arbitrary (possibly non-linear) arithmetic terms. So our
definition for ⟪a⟫ is beyond those classes of formulas that are typically used in abstract inter-
pretation (i.e., beyond octagons [57] and even polyhedra [29]). This is crucial for the success
of our approach, since the conditions of programs often contain formulas that are not in these

Automatically Proving Termination and Memory Safety for Programs with Pointer Arithmetic 19

restricted classes. Indeed, our definition of ⟪a⟫ was very successful in our implementation.
We now define a rule to compute generalization edges automatically. Recall that semanti-

cally, a state a′ is a generalization of a state a iff |= 〈a〉SL⇒ µ(〈a′〉SL) for some instantiation
µ . To automate our procedure, we define a weaker relationship between a and a′. We say that
a′ = (CS′,KB′,AL′,PT ′) is a generalization of a = (CS,KB,AL,PT) with the instantiation
µ whenever the conditions (b) – (f) of the following rule are satisfied. Again, let a denote
the state before the generalization step (i.e., above the horizontal line of the rule) and let a′

be the state resulting from the generalization (i.e., below the line).

generalization with µ

([(p1, LV1, AL1), . . . ,(pn, LVn, ALn)], KB, AL, PT)

([(p1, LV ′1, AL′1), . . . ,(pn, LV ′n, AL′n)], KB′, AL′, PT ′)
if

(a) a has an incoming evaluation edge,9

(b) LV i and LV ′i have the same domain and LV i(x) = µ(LV ′i(x)) for all 1≤ i≤ n and all x ∈ VP where
LV i and LV ′i are defined,

(c) |= 〈a〉 ⇒ µ(KB′),
(d) if Jv1, v2K ∈ AL′, then Jµ(v1), µ(v2)K ∈ AL,
(e) if Jv1, v2K ∈ AL′i, then Jµ(v1), µ(v2)K ∈ ALi (for all 1≤ i≤ n),
(f) if (v1 ↪→ty v2) ∈ PT ′, then (µ(v1) ↪→ty µ(v2)) ∈ PT

The above rule does not refer to the merging of states in Def. 7, but it introduces a general
form of “generalizations”. The correctness of this rule is obvious, as it clearly implies
|= 〈a〉SL⇒ µ(〈a′〉SL). Condition (a) is needed to avoid cycles of refinement and generaliza-
tion steps in the symbolic execution graph, which would not correspond to any computation.

Of course, many approaches are possible to compute such generalizations. Thm. 8 shows
that the merging heuristic from Def. 7 satisfies the conditions of the generalization rule. So
if a state c results from merging a and b, then c is indeed a generalization of both a and b.
Thm. 8 also shows that if one uses the merging heuristic for generalizations, then the construc-
tion of symbolic execution graphs always terminates when applying the following strategy:

(1) If b is the next state to evaluate symbolically and there is a path from some state a to
b, where a and b are at the same program position, the domains of all functions LV in
a are equal to the domains of the corresponding functions LV in b, b has an incoming
evaluation edge, and a has no incoming refinement edge, then:

(1a) If a is a generalization of b (i.e., the corresponding conditions of the generalization
rule are satisfied), then we draw a generalization edge from b to a. Here, any SMT
solver can be used to prove Condition (c) of the “generalization” rule.

(1b) Otherwise, remove a’s children, and add a generalization edge from a to the merging
c of a and b. If a already had an incoming generalization edge from some state q,
then remove a and add a generalization edge from q to c instead.

(2) Otherwise, just evaluate b symbolically as usual, applying refinements when needed.

Theorem 8 (Soundness and Termination of Merging) Let c result from merging the states
a and b as in Def. 7. Then c is a generalization of a and b with the instantiations µa and µb,
respectively. Moreover, if a is not already a generalization of b, and n is the height of the call
stacks in a, b, and c, then |⟪c⟫|+(∑1≤i≤n |ALc

i |)+ |ALc|+ |PTc|< |⟪a⟫|+(∑1≤i≤n |ALa
i |)+

|ALa|+ |PTa|. Here, for any conjunction ϕ , let |ϕ| denote the number of its conjuncts. Thus,
the above strategy to construct symbolic execution graphs always terminates.

Proof To show that c is a generalization of a and b with the instantiations µa and µb, we have

9 Evaluation edges are edges that are not refinement or generalization edges.

20 Thomas Ströder et al.

to prove that the conditions (b) – (f) of the generalization rule are satisfied. By definition,
LVa

i (x) = µa(vi
x) = µa(LVc

i (x)) and LVb
i (x) = µb(LVc

i (x)) for all 1≤ i≤ n and all x ∈ VP ,
which proves (b). Moreover, for Jv1, v2K ∈ ALc, we have Jv1, v2K ∈ µ−1

a (ALa) and Jv1, v2K ∈
µ
−1
b (ALb). This implies Jµa(v1), µa(v2)K ∈ ALa and Jµb(v1), µb(v2)K ∈ ALb, which proves

(d). Condition (e) on ALc
i and condition (f) on PTc can be proved in a similar way.

It remains to prove (c). As KBc ⊆ µ−1
a (⟪a⟫), we have |= ⟪a⟫⇒ µa(KBc) and therefore

also |= 〈a〉⇒ µa(KBc). Moreover, as |= µ
−1
b (〈b〉)⇒ ϕ holds for all ϕ ∈ KBc, we also obtain

|= 〈b〉 ⇒ µb(KBc). Note that we even have |= 〈a〉 ⇒ µa(〈c〉) and |= 〈b〉 ⇒ µb(〈c〉).
Finally, we show that |⟪c⟫|+(∑1≤i≤n |ALc

i |)+ |ALc|+ |PTc|< |⟪a⟫|+(∑1≤i≤n |ALa
i |)+

|ALa|+ |PTa| if a is not a generalization of b.
We first show that ⟪c⟫ = 〈c〉. The reason is that whenever there is a t1 = t2 ∈ 〈c〉, then

t1 = t2 ∈ µ−1
a (⟪a⟫) and thus also t1 ≥ t2, t1 ≤ t2 ∈ µ−1

a (⟪a⟫). As |= µ
−1
b (〈b〉)⇒ t1 = t2 also

implies |= µ
−1
b (〈b〉)⇒ t1 ≥ t2 and |= µ

−1
b (〈b〉)⇒ t1 ≤ t2, we also have t1 ≥ t2, t1 ≤ t2 ∈ 〈c〉.

Moreover, suppose that t1 6= t2 ∈ 〈c〉 and |= 〈c〉⇒ t1 > t2. This implies |= µ−1
a (〈a〉)⇒ t1 > t2

(i.e., t1 > t2 ∈ µ−1
a (⟪a⟫)) and |= µ

−1
b (〈b〉)⇒ t1 > t2. Hence, we also obtain t1 > t2 ∈ 〈c〉.

The case where t1 6= t2 ∈ 〈c〉 and |= 〈c〉⇒ t1 < t2 is analogous. Finally, consider the case that
|= 〈c〉⇒ v1−v2 = k1 ·k2∧v3−v4 = k2 holds for some k1,k2 ∈N and v1,v2,v3,v4 ∈ Vsym(c)
with (v1,v2) 6= (v3,v4). Since |= 〈a〉 ⇒ µa(〈c〉), we also have µa(v1− v2 = k1 · (v3− v4)) ∈
⟪a⟫, i.e., (v1−v2 = k1 · (v3−v4)) ∈ µ−1

a (⟪a⟫). Moreover, due to |= 〈b〉 ⇒ µb(〈c〉) we have
|= µ

−1
b (〈b〉)⇒ v1− v2 = k1 · (v3− v4). This implies v1− v2 = k1 · (v3− v4) ∈ KBc ⊆ 〈c〉.
Next note that 〈c〉= KBc. Again the reason is that for any ϕ ∈ 〈c〉we have ϕ ∈ µ−1

a (⟪a⟫)
and |= µ

−1
b (〈b〉)⇒ ϕ . Thus, we only have to show that |KBc|+(∑1≤i≤n |ALc

i |)+ |ALc|+
|PTc| < |⟪a⟫|+(∑1≤i≤n |ALa

i |)+ |ALa|+ |PTa|. From the definition, it is obvious that we
always have |KBc| ≤ |⟪a⟫|, |ALc| ≤ |ALa|, |ALc

i | ≤ |ALa
i | for all 1≤ i≤ n, and |PTc| ≤ |PTa|.

Hence, it suffices to show that if |KBc| = |⟪a⟫|, |ALc| = |ALa|, |ALc
i | = |ALa

i | for all
1 ≤ i ≤ n, and |PTc| = |PTa|, then a would be a generalization of b with the instantiation
µb ◦µ−1

a . To see this, note that we have LVb
i (x) = µb(vi

x) = µb(µ
−1
a (LVa

i (x))), i.e., condition
(b) of the generalization rule is satisfied. Clearly, |ALc| = |ALa| means that µ−1

a (ALa) =
µ
−1
b (ALb). Thus, if Jv1, v2K ∈ ALa, then Jµ−1

a (v1), µ−1
a (v2)K ∈ µ−1

a (ALa) = µ
−1
b (ALb) and

hence, Jµb(µ
−1
a (v1)), µb(µ

−1
a (v2))K ∈ ALb, which shows condition (d). Conditions (e) and

(f) follow from |ALc
i |= |ALa

i | resp. |PTc|= |PTa| for similar reasons. Finally, |KBc|= |⟪a⟫|
means that for all ϕ ∈ µ−1

a (⟪a⟫), we have |= µ
−1
b (〈b〉)⇒ ϕ . Let ψ ∈ µb(µ

−1
a (KBa)). Then

we have µ
−1
b (ψ) ∈ µ−1

a (KBa) ⊆ µ−1
a (⟪a⟫). Hence, we can infer |= µ

−1
b (〈b〉)⇒ µ

−1
b (ψ)

which implies |= 〈b〉 ⇒ ψ , cf. condition (c). ut

4 Correctness of Symbolic Execution

We now prove the correctness of our approach in Sect. 2 and 3, i.e., that our symbolic ex-
ecution graphs represent an over-approximation of all concrete program runs. We proceed
in two stages, as depicted graphically in Fig. 4. This proof structure is inspired by the cor-
rectness proof of our termination technique for Java w.r.t. a suitable formal semantics [11].
First, we relate the formal definition of the LLVM semantics from the Vellvm project [73] to
our semantics→LLVM of LLVM from Sect. 2 and 3 that we use for program analysis. Here,
→LLVM is defined by applying our symbolic execution rules of Sect. 3 to concrete states.
Only for rules that deal with memory access (via load, store, alloca, or malloc), our
symbolic execution rules have to be adapted slightly. This is necessary since the concrete
rules essentially have to implement an LLVM interpreter. For example, in a concrete state we
know the size of an allocated memory block in AL∗ (say, n bytes). Thus, the concrete rules
put n entries for this block into PT to track the contents of all currently allocated memory. In

Automatically Proving Termination and Memory Safety for Programs with Pointer Arithmetic 21

a1 a2 a′2 a′′2 a3 . . .

c1 c2 c3 . . .

v1 v2 v3 . . .

} Thm. 10

} Thm. 9

E VA L G E N E R A L I Z E R E F I N E E VA L

LLVM LLVM

repr repr repr repr repr

T R A N S T R A N S T R A N S

Vellvm Vellvm

Fig. 4 Relation between evaluation in LLVM and paths in the symbolic execution graph

our abstract rules, the size of an allocated memory block may be unknown, and thus, we do
not know how many ↪→ty-entries to add to PT . Hence, we can only represent a part of the
memory contents in PT . Similarly, our symbolic execution can abstract information when a
store operation partially overwrites a multi-byte value. However, for the concrete semantics
→LLVM, we need to keep track of each allocated byte of memory. See [3] for the four cases
where our rules for the abstract semantics need to be adapted for the concrete semantics.

Vellvm is a formalization of LLVM in the Coq [7] theorem prover. In this subsection,
we only regard programs over the fragment supported by our rules. While Vellvm’s non-
deterministic semantics LLVMND returns undef (which we currently do not support) for a
load from uninitialized allocated memory, its deterministic semantics LLVMD returns the
value 0. Thus, we use the semantics LLVMD and denote its transition relation by→Vellvm.

For our proof, we define a relation T R A N S between Vellvm states and concrete states
in our representation. Thm. 9 will state that for every evaluation step v1 →Vellvm v2 with
T R A N S(v1,c1), there is a c2 with T R A N S(v2,c2) such that c1→LLVM c2 holds. Moreover,
if Vellvm’s execution gets stuck in a state v (i.e., if the next instruction to execute would
violate memory safety, denoted Stuck(v)) and T R A N S(v,c), then we have c→LLVM ERR. So
the idea is that we can “replay” any Vellvm execution as an execution on our concrete states.
In a second step, we relate symbolic execution on abstract states to evaluation on concrete
states. Thm. 10 states that if some concrete state c1 is represented by a state a1 in a symbolic
execution graph (denoted by “repr” in Fig. 4) and c1→LLVM c2, then the graph contains a
path from a1 to a state a2 in the symbolic execution graph such that a2 represents c2.

Together, Thm. 9 and Thm. 10 show that symbolic execution graphs simulate Vellvm
execution, and hence, they imply the soundness of our technique for analyzing memory
safety w.r.t. the Vellvm semantics of LLVM: Suppose that there is an LLVM-computation
v1→Vellvm v2→Vellvm . . .→Vellvm vn with Stuck(vn) and v1 is represented in the symbolic ex-
ecution graph (i.e., there is a state a1 in the graph with T R A N S(v1,c1) and c1 is represented
by a1). Then by Thm. 9 there is a symbolic evaluation c1 →LLVM c2 →LLVM . . .→LLVM

cn→LLVM ERR, where T R A N S(vi,ci) holds for all i. Hence, Thm. 10 implies that the sym-
bolic execution graph also contains a path from the state a1 to an ERR node.

Thm. 9 and 10 can also be used as a basis for the certification of termination proofs for
LLVM. Several certifiers were developed to check the soundness of automatically generated
termination proofs for term rewrite systems [8,25,69]. The correctness of these certifiers has
been formally proved using Coq [7] or Isabelle/HOL [60]. To certify termination proofs
for LLVM, one could build upon Vellvm by formalizing and proving the soundness of our
symbolic execution (Thm. 9 and 10) within Coq or Isabelle.10 Building on that, one could
then formalize our approach to generate integer transition systems from the symbolic execu-
tion graph (Thm. 13 in Sect. 5) and one would also have to formalize the techniques used to
prove termination of these ITSs. Steps in this direction are currently investigated within the
certifier CeTA [69], which can already be directly coupled with AProVE [38, Sect. 3].

10 This step corresponds to other work for machine-checked abstract interpreters [9,17,46].

22 Thomas Ströder et al.

Vellvm’s representation of (concrete) program states is similar to our Def. 3. The main
difference is that Vellvm does not use symbolic variables since its program states are not
designed for symbolic execution. This was also our main reason for developing a new repre-
sentation for program states. We now express Vellvm’s representation in our terminology.

Vellvm States. A Vellvm state has the form (M,
−→
Σ) for a memory state M and a list of stack

frames
−→
Σ which is analogous to our call stack CS. In a stack frame Σ = (fid,b,−→c , tmn,∆ ,α),

fid is the id of the current function, b is the label of the current basic block, −→c are the
remaining instructions to be executed in the current block, with tmn as the terminator of the
block (its last command). Together, these components correspond to our position p = (b, j)
in the program where the command sequence “−→c , tmn” begins in block b at line j. Recall
that we assume block labels to be different across different functions. Thus, we do not need
to represent fid explicitly in our states. The component ∆ keeps track of the values of the
local variables of the block and corresponds to our functions LV i. The final component α

(roughly) corresponds to our lists ALi and keeps track of the memory blocks allocated by the
current stack frame that are released automatically when the current function returns.

Vellvm does not use absolute memory addresses, but pairs of a memory-block identifier
(a number which is increased in each allocation) and an offset in that block. We say that a
block identifier is valid if the corresponding memory block has been allocated and not yet
released. In a Vellvm memory state M = (N,B,C), N denotes the number of the next fresh
memory block to allocate, B is a partial map from valid block identifiers to the size of the
blocks (like our entries Jv1, v2K ∈ AL∗ with size v2− v1 + 1), and C is a partial map from
pairs of a valid block identifier and an offset in that block to values (similar to our PT).

Vellvm represents values in three ways. For integers, mb(sz,byte) represents the memory
content byte and the bit-width sz of the overall integer (but not the position in the integer that
this byte corresponds to). We represent similar information in PT . For uninitialized memory
cells, the pseudo-value muninit is used, which stands for the value 0 in the semantics LLVMD.
For pointers, Vellvm uses mptr(blk,ofs, idx), where the block blk and offset ofs characterize
the pointer’s target, and the index idx indicates which of the bytes of the pointer is represented.

Translation T R A N S. We now define a translation relation T R A N S between Vellvm states
and concrete states. The reason why T R A N S is a relation instead of a function is that in
contrast to us, Vellvm represents blocks of memory by their size and an identifier number but
without absolute addresses. So for a Vellvm state v, we want to describe all concrete states
(cf. Def. 3) c = (CS,KB,AL,PT) where T R A N S(v,c) holds.

Consider a Vellvm memory state M = (N,B,C). To assign start and end addresses for its
memory blocks, we relate M to any memory allocation AL∗ of blocks of the same sizes. So we
require AL∗ = {Jvblk, wblkK | B(blk) is defined} with |= KB⇒ wblk−vblk = B(blk)−1 where
vblk and wblk are pairwise different symbolic variables for all blk where B(blk) is defined.

To handle actual memory contents, we consider the values of C(blk,ofs) and introduce
fresh symbolic variables such that PT = {x(blk,ofs) ↪→i8 y(blk,ofs) |C(blk,ofs) is defined}. The
value for the address x(blk,ofs) is obtained by adding ofs to the corresponding symbolic vari-
able vblk for the start of the block blk. So we require |= KB⇒ x(blk,ofs) = vblk +ofs whenever
C(blk,ofs) is defined. Moreover, KB must contain knowledge about the values stored in
memory. If C(blk,ofs) = muninit, then y(blk,ofs) = 0 according to the deterministic seman-
tics LLVMD. If C(blk,ofs) = mb(sz,byte), we require |= KB⇒ y(blk,ofs) = byte. Here, we
assume that byte is already represented as a signed integer from [−27,27−1]. Similarly, if
C(blk,ofs) = mptr(blk′,ofs′, idx), then KB must contain the knowledge that y(blk,ofs) is the
idx’s byte of the value forming the address vblk′ +ofs′ (this byte is obtained as in Def. 5).

Automatically Proving Termination and Memory Safety for Programs with Pointer Arithmetic 23

Finally, we relate Vellvm’s call stack
−→
Σ =[fr1, . . . , frn] with fri = (fidi,bi,

−→ci , tmni,∆i,αi)
to a call stack CS= [(p1,LV1,AL1), . . . ,(pn,LVn,ALn)] for our concrete state. For any 1≤ i≤
n, let pi = (bi, ji), where ji is the position in the block bi where the command sequence
“−→ci , tmni” begins. Moreover, LV i(x) is defined iff ∆i(x) is defined. In this case, LV i(x) is a
fresh symbolic variable with |= KB⇒ LV i(x) = ∆i(x). To determine AL1, . . ., ALn, and AL,
we define ALi = {Jvblk, wblkK | blk ∈ αi} for 1≤ i≤ n and AL = AL∗ \

⋃
1≤i≤n ALi.

Evaluation Rules. We now show that our evaluation→LLVM simulates→Vellvm. For reasons
of space, we only demonstrate this for one Vellvm evaluation rule from [73], adapted to our
notation. In the following rule for br, eval(∆ , t) evaluates t according to ∆ . Vellvm uses an
operation findblock to obtain the block b1 with the instructions

−−→
phi1
−−−→
cmd1tmn1. Here,

−−→
phi1

are the phi instructions of the block b1. This operation is implicit in our rules. Similar to
our br rules, computephi(∆ ,b,b1,

−−→
phi1) yields a new mapping ∆ ′ for the local variables

according to the phi instructions
−−→
phi1 in the target block b1.

br true (tmn : “br i1 t, label b1, label b2” with t ∈ VP ∪{0,1} and b1,b2 ∈ Blks)

M, (fid,b, [], tmn,∆ ,α) ·−→Σ

M, (fid,b1,
−−−→
cmd1, tmn1,computephi(∆ ,b,b1,

−−→
phi1),α) ·−→Σ

if

• eval(∆ , t) = 1,
• findblock yields b1 with the instructions

−−→
phi1
−−−→
cmd1tmn1

Thm. 9 shows that our evaluation rules on concrete states correspond to evaluation w.r.t.
Vellvm. As mentioned, here we only consider the LLVM fragment handled by our rules and in
addition, we assume that a load operation for a type in with n mod 8 6= 0 is only performed
for values that were written by a store of type in. Similarly, we assume that values written
by a store operation for a type in with n mod 8 6= 0 will only be read by a load of the
same type. The reason is that for simplicity, our concrete states do not keep track of the type
with which a store operation was performed. Therefore, we cannot distinguish whether a
later load of, e.g., an i20 value should yield the contents of the memory cell or an unknown
value. Our abstract domain over-estimates such incompatible reads by an unknown value.

Theorem 9 (Simulating Vellvm by Evaluation of Concrete States) Let P be an LLVM
program. For all Vellvm states, v →Vellvm v implies that for any concrete state c with
T R A N S(v,c) there exists a concrete state c with T R A N S(v,c) such that c→LLVM c. More-
over, if Stuck(v) holds, then T R A N S(v,c) implies c→LLVM ERR.

Proof We show the simulation of Vellvm’s rule br true by our corresponding rule. The
other cases are analogous. Let v = (M,(fid,b, [], tmn,∆ ,α) ·−→Σ) and v = (M,(fid,b1,

−−−→
cmd1,

tmn1,∆
′,α) ·−→Σ) such that v→Vellvm v holds by the rule br true. Assume that we have

T R A N S(v,c) for c = (((b, j),LV1,AL1) ·CS,KB,AL,PT). As br true is applicable to v,
we know eval(∆ , t) = 1 and hence t = 1 or t ∈ VP with ∆(t) = 1, implying |= 〈c〉 ⇒
LV1(t) = 1. Thus, we can apply our rule for “br i1 t, label b1, label b2” to c and
obtain c →LLVM c for a state c = (((b1, j1),LV ′1,AL1) · CS, KB ∪ KBphi, AL, PT) with
(LV ′1,KBphi) = computePhi(LV1,b,b1) and j1 = firstNonPhi(b1).

It remains to prove that T R A N S(v,c) holds. Note that (b1, j1) with j1 = firstNonPhi(b1)

corresponds exactly to the position where “
−−−→
cmd1, tmn1” begins in b1. Moreover, the compo-

nents of AL∗, PT , and M do not change in the steps c→LLVM c and v→Vellvm v. The compu-
tations for the phi instructions are analogous in both settings, i.e., from |= 〈c〉 ⇒ LV1(x) =

∆(x) we get |= 〈c〉⇒ LV ′1(x) = ∆ ′(x) for all x, where ∆ ′ = computephi(∆ ,b,b1,
−−→
phi1). ut

24 Thomas Ströder et al.

We now show that evaluation of concrete states with→LLVM can be simulated by sym-
bolic execution of abstract states. Together with Thm. 9, this proves that our symbolic execu-
tion correctly simulates LLVM according to the semantics of Vellvm, cf. Fig. 4.

Theorem 10 (Simulating Evaluation of Concrete States by Abstract States) Let P be
an LLVM program with a complete symbolic execution graph G. Let c be a concrete state
that is represented by some abstract state a in G. Then c→LLVM c implies that there is a path
from a to an abstract state a in G such that c is represented by a.

Proof Let c→LLVM c, where c is represented by a state a in the graph G, i.e., (asc,memc) |=
σ(〈a〉SL) for some concrete instantiation σ . Then c is also represented by a state in G:
(a) If a has an outgoing evaluation edge to a, then (asc,memc) |= σ(〈a〉SL) for a concrete in-

stantiation σ with σ(v) = σ(v) for all v∈Vsym(a). This is trivial for all rules except those
for load, store, alloca, and malloc, since the same rules are applied to the concrete
and abstract states (note that the evaluation rules are non-overlapping). The proof for the
slightly adapted concrete rules for the four instructions above can be found at [3].

(b) If a’s outgoing edges are refinement edges, then one of its successors ã has an eval-
uation edge to another abstract state a, where (asc,memc) |= σ(〈a〉SL) for a concrete
instantiation σ with σ(v) = σ(v) for all v ∈ Vsym(a).

(c) If a’s outgoing edge is a generalization edge to a state ã with some instantiation µ , and
ã has an evaluation edge to another abstract state a, then (asc,memc) |= σ(〈a〉SL) for a
concrete instantiation σ with σ(v) = σ(µ(v)) for all v ∈ Vsym(ã).

(d) Otherwise, there is a generalization edge from a to a state ã with some instantiation µ , a
refinement edge from ã to some â, and an evaluation edge from â to some a, where
(asc,memc) |= σ(〈a〉SL) for a concrete σ with σ(v) = σ(µ(v)) for all v ∈ Vsym(ã). ut
Recall that a complete symbolic execution graph must not contain the state ERR. Thus,

all concrete states represented by the abstract states in the graph are memory safe.

Corollary 11 (Memory Safety of LLVM Programs) Let P be a program with a complete
symbolic execution graph G. Then P is memory safe for all states represented by G.

Proof If a concrete state c is represented by an abstract state a in the graph G where
T R A N S(v,c) and Stuck(v) for some Vellvm state v, then by Thm. 9 we have c→LLVM ERR.
By Thm. 10, c→LLVM ERR implies that there is an edge from a to ERR in G. However, this
contradicts the prerequisite that G is complete and therefore does not contain ERR. ut

5 From Symbolic Execution Graphs to Integer Transition Systems

Finally, we extract an integer transition system from the symbolic execution graph and use
existing tools to prove its termination. The extraction step essentially restricts the information
in abstract states to the integer constraints on symbolic variables. This conversion of memory-
based arguments into integer arguments often suffices for the termination proof. The reason
for considering only Vsym instead of VP is that since the mappings LV i are injective, the
variables VP are completely represented by symbolic variables and the conditions in the
abstract states (which are crucial for termination) only concern symbolic variables.

For example, termination of strlen is proved by showing that s is increased as long as
it is smaller than vend, the end of the input string. In Fig. 1, this is explicit as the invariant
vs < vend holds in all states represented by L. Each loop iteration increases the value of vs.

Formally, ITSs are graphs whose nodes are abstract states and whose edges are transitions.
Let V ⊆ Vsym be the finite set of all symbolic variables in states of the symbolic execution
graph. A transition is a tuple (a,CON,a) where a,a are abstract states and the condition

Automatically Proving Termination and Memory Safety for Programs with Pointer Arithmetic 25

CON ⊆QF IA(V]V ′) is a set of pure quantifier-free formulas over V]V ′. Here, V ′ = {v′ |
v ∈ V} represents the variable values after the transition. An ITS state (a,σ) consists of an
abstract state a and a concrete instantiation σ : V → Z. For any such σ , let σ ′ : V ′→ Z with
σ ′(v′) = σ(v). Given an ITS I, (a,σ) evaluates to (a,σ) (denoted “(a,σ)→I (a,σ)”) iff I
has a transition (a,CON,a) with |= (σ ∪σ

′)(CON). Here, we have (σ ∪σ
′)(v) = σ(v) and

(σ ∪σ
′)(v′) = σ

′(v′) = σ(v) for all v∈ V . An ITS I is terminating iff→I is well founded.11

We convert symbolic execution graphs to ITSs by transforming every edge into a tran-
sition. If there is a generalization edge from a to a with an instantiation µ , then the new
value of any v ∈ Vsym(a) in a is µ(v). Hence, we create the transition (a, 〈a〉 ∪ {v′ =
µ(v) | v ∈ Vsym(a)}, a).12 So for the edge from N to L in Fig. 1, we obtain the condition
{ws = wolds+1,wolds = vs,vs < vend,v′str = vstr,v′end = vend,v′c = wc,v′s = ws, . . .}. This
can be simplified to {vs < vend,v′end = vend,v′s = vs+1, . . .}.

An evaluation or refinement edge from a to a does not change the variables of Vsym(a).
Thus, we construct the transition (a, 〈a〉∪{v′ = v | v ∈ Vsym(a)}, a).

So in the ITS resulting from Fig. 1, the condition of the transition from A to B is {v′end =
vend,u′str = ustr}. The condition for the transition from B to D is the same, but extended by
v′1 = v1. Hence, in the transition from A to B, the value of v1 can change arbitrarily (since
v1 /∈ Vsym(A)), but in the transition from B to D, it must remain the same.

Definition 12 (ITS from Symbolic Execution Graph) For a symbolic execution graph G,
the corresponding integer transition system IG has one transition for each edge in G:
• If the edge from a to a is not a generalization edge, then IG has a transition from a to a

with the condition 〈a〉∪{v′ = v | v ∈ Vsym(a)}.
• If there is a generalization edge from a to a with the instantiation µ , then IG has a

transition from a to a with the condition 〈a〉∪{v′ = µ(v) | v ∈ Vsym(a)}.
From the non-generalization edges on the path from L to N in Fig. 1, we obtain transitions

whose conditions contain v′end = vend and v′s = vs. So vs is increased by 1 in the transition
from N to L and it remains the same in all other transitions of the graph’s only cycle. Since the
transition from N to L is only executed as long as vs < vend holds (where vend is not changed
by any transition), termination of the resulting ITS can easily be proved automatically.

Thm. 13 states the soundness of our approach for termination. If there is an infinite LLVM-
computation v1→Vellvm v2→Vellvm . . . and v1 is represented in the symbolic execution graph
(i.e., there exists some c1 with T R A N S(v1,c1) that is represented by a1), then Thm. 9 and
10 imply that there is a corresponding infinite path in the graph starting with the node a1. We
now show that then the ITS resulting from the graph is not terminating.

Theorem 13 (Termination of LLVM Programs) Let P be an LLVM program with a com-
plete symbolic execution graph G. If IG is terminating, then P is also terminating for all
LLVM states represented by the states in G.

Proof Let c→LLVM c, where G contains an abstract state a with (asc,memc) |= σ(〈a〉SL) for
some concrete instantiation σ . In the proof of Thm. 10, we showed that there is an abstract
state a in G and a concrete instantiation σ with (asc,memc) |= σ(〈a〉SL). To prove Thm. 13,
it suffices to show (a,σ)→+

IG
(a,σ). By Thm. 9, then termination of IG also implies that

there is no infinite LLVM evaluation according to the semantics of Vellvm.

(a) If a has an evaluation edge to a, then σ(v) = σ(v) for all v ∈ Vsym(a). We show that

11 For programs starting in states represented by an abstract state a0, it would suffice to prove termination
of all→I -evaluations starting in ITS states of the form (a0,σ).

12 In the transition, we do not impose the additional constraints of 〈a〉 on the post-variables V ′, since they
are checked anyway in the next transition which starts in a.

26 Thomas Ströder et al.

then (a,σ)→IG (a,σ). Note that IG has a transition (a,〈a〉∪{v′ = v | v ∈ Vsym(a)},a),
so it suffices to show that (σ ∪σ

′) satisfies the condition of this transition. We have
(asc,memc) |= σ(〈a〉SL), and hence (asc,memc) |= σ(〈a〉). Since σ is concrete (i.e.,
σ(〈a〉) does not contain variables), this implies |= σ(〈a〉) and thus, (σ ∪σ

′) (〈a〉). More-
over, for all v∈Vsym(a), we have (σ ∪σ

′)(v′) = σ
′(v′) = σ(v) = σ(v) = (σ ∪σ

′)(v).
(b) If the path from a to a consists of a refinement and a subsequent evaluation edge, then

σ(v) = σ(v) for all v ∈ Vsym(a). We show that then we have (a,σ)→+
IG

(a,σ). To see
this, note that in a’s two successors, the knowledge base is extended by ϕ and ¬ϕ for
some formula ϕ , respectively. If |= σ(ϕ), then let ã be the successor with the knowledge
base K̃B = KB∪{ϕ}. Otherwise, let ã be the successor with the knowledge base K̃B =

KB∪ {¬ϕ}. So in both cases, we have |= σ(K̃B) and thus, (asc,memc) |= σ(〈ã〉SL).
Hence, (ã,σ)→IG (a,σ) can be shown as in (a). As IG has a transition (a,〈a〉∪{v′ =
v | v ∈ Vsym(a)}, ã), we can show (a,σ)→IG (ã,σ) as in (a).

(c) Let a have a generalization edge to ã with instantiation µ and an evaluation edge from ã to
a with σ(v) = σ(µ(v)) for all v ∈ Vsym(ã). We show (a,σ)→IG (ã,σ ◦µ)→IG (a,σ).
We first prove (a,σ)→IG (ã,σ ◦µ). Due to the edge from a to ã, IG has the transition
(a,〈a〉∪{v′ = µ(v) | v∈Vsym(ã)}, ã), and we show that (σ ∪(σ ◦µ)′) satisfies the condi-
tion of this transition. We have (asc,memc) |=σ(〈a〉SL), and hence (asc,memc) |=σ(〈a〉),
from which |= σ(〈a〉) follows and finally |= (σ ∪ (σ ◦µ)′) (〈a〉). Moreover, for all v ∈
Vsym(ã), we have (σ ∪(σ ◦µ)′)(v′) = (σ ◦µ)′(v′) = σ(µ(v)) = (σ ∪(σ ◦µ)′)(µ(v)).
Now we show (ã,σ ◦µ)→IG (a,σ). As there is a generalization edge from a to ã with
the instantiation µ , we know that |= 〈a〉SL ⇒ µ(〈ã〉SL). Thus, (asc,memc) |= σ(〈a〉SL)
implies (asc,memc) |= (σ ◦µ)(〈ã〉SL). Hence, (ã,σ ◦µ)→IG (a,σ) follows as in (a).

(d) Finally, let a have a generalization edge to ã with the instantiation µ , and there is a path
consisting of a refinement and an evaluation edge from ã to a, where σ(v) = σ(µ(v)) for
all v ∈ Vsym(ã). We show that then (a,σ)→IG (ã,σ ◦µ)→+

IG
(a,σ). Here, (a,σ)→IG

(ã,σ ◦µ) follows as in (c), and (ã,σ ◦µ)→+
IG

(a,σ) can be proved as in (b). ut

6 Limitations, Related Work, Experiments, and Conclusion

We have developed a new approach to prove memory safety and termination of C (resp.
LLVM) programs with explicit pointer arithmetic and memory access. It relies on a represen-
tation of abstract program states which allows an easy automation of the rules for symbolic
execution (by using standard SMT solving to check the first-order conditions of these rules).
Moreover, this representation is suitable for generalizing abstract states and for generating
integer transition systems. In this way, LLVM programs are translated fully automatically
into ITSs amenable to automated termination analysis.

Limitations and Future Work. To simplify the formalization of our approach, we have not
discussed global variables, which our implementation supports. In line with most other tech-
niques, we currently do not handle the case that calls to malloc may fail, and we also assume
that reading from uninitialized (but allocated) heap locations is safe and yields an arbitrary
value. Our method could easily be adapted to lift these limitations. Furthermore, in this paper
we disregard integer overflows and treat all integer types except i1 as the infinite set Z. An
extension of our approach to bounded integers can be found in [44].

In the paper, we only gave rules for a subset of all LLVM instructions. Our implementation
handles several more instructions, but there exist instructions (or cases of instructions) where
our implementation does not yet contain suitable rules for symbolic execution. In particular,
our abstract domain currently does not handle undef values, floating point values, or vectors,

Automatically Proving Termination and Memory Safety for Programs with Pointer Arithmetic 27

and consequently, all corresponding instructions are unsupported.13

When encountering an instruction that cannot be handled, the symbolic execution can
still continue by removing all potentially affected knowledge. The same holds if one cannot
prove all conditions of a symbolic execution rule. It often suffices to remove all information
about the value that is computed by the instruction, e.g., for floating point operations.

In this paper, we did not treat recursive programs and we also did not present any method
to prove that an LLVM program is not memory safe or does not terminate. However, we are
working on extending our approach accordingly and our implementation already contains
some support for recursion and non-termination by adapting our approaches for recursion and
non-termination of Java programs [12,13]. Another direction for further work could be to
embed our analysis into a Counter-Example-Guided Abstraction Refinement (CEGAR) loop
[24] to disprove termination or memory safety, and to automatically refine the abstraction.

Finally, we cannot yet analyze C programs using inductive data structures defined via
“struct”. However, in the future, we want to adapt our corresponding technique for termi-
nation analysis of Java programs [11,12,14,63]. Instead of ITSs, here one generates integer
term rewrite systems [35,37] from the symbolic execution graph, where data objects are
transformed into terms to represent them in a precise way.

Moreover, we would like to improve the scalability of our approach by a compositional
treatment of LLVM functions. There are several tools based on separation logic which support
local modular reasoning for shape analysis and the verification of memory safety, e.g., [19–
21]. Moreover, compositional approaches for termination analysis were developed in [22,28,
70], based on [65]. Combining such approaches with the byte-precise handling of explicit
low-level pointer arithmetic for termination analysis will be the subject of further work.

Related Work and Experimental Evaluation. There exist numerous other methods and tools
for termination analysis of imperative programs (e.g., 2LS [22], ARMC [64], ARTMC [41,
45], COSTA [2], CppInv [50], Ctrl [47,48], Cyclist [16], FuncTion [32], HipTNT+ [52],
Juggernaut [30], Julia [66], KITTeL [35], L2CA [10], LoopFrog [70], SeaHorn [71], Sonar/
Mutant [5,4],TAN [49],Terminator [26–28],Termite [39],TRex [42],T2 [15],Ultimate [43],
. . .). Until very recently, most other approaches did not handle the heap at all, or supported
dynamic data structures by an abstraction to integers (e.g., to represent sizes or lengths) or
to terms (representing finite unravelings). In particular, most tools failed when the control
flow depends on explicit pointer arithmetic and on detailed information about the contents
of addresses. While our approach was inspired by our previous work on termination of Java,
in the current paper we extend these techniques to prove termination and memory safety of
programs with explicit pointer arithmetic. This requires a fundamentally new approach, as
pointer arithmetic cannot be expressed in the Java-based techniques of [11,12,14,63].

We implemented our technique in the termination prover AProVE [38,68], which uses
the SMT solvers Yices [34] and Z3 [31] in the back-end. AProVE participated very suc-
cessfully in the International Competition on Software Verification (SV-COMP)14 at TACAS
and in the International Termination Competition (TermComp),15 both of which feature
categories for termination of C programs since 2014.

To evaluate AProVE empirically, we compare its performance with other tools on all 631
programs from the Termination category of SV-COMP 2016. For termination of low-level
C programs, one also has to ensure their memory safety. Approaches for proving memory

13 The instructions supported by our implementation are icmp (eq,ne,sgt,sge,slt,sle, ugt,uge,ult,ule),
add, sub, mul, sdiv, srem, urem, and, or, xor, shl, ashr, lshr, call, br, bitcast, ptrtoint, trunc,
sext, zext, getelementptr (with at most 2 parameters), select, phi, ret, alloca, load, and store.

14 http://sv-comp.sosy-lab.org/
15 http://termination-portal.org/wiki/Termination_Competition

28 Thomas Ströder et al.

safety of programs with pointer arithmetic were proposed in [19,40], for example. However,
while there exist several tools to prove memory safety of C programs, many of them do
not handle explicit byte-accurate pointer arithmetic (e.g., Thor [55,56] or SLAyer [6]) or
require the user to provide the needed loop invariants (as in the Jessie plug-in of Frama-C
[58]). In contrast, our approach can prove memory safety of such algorithms automatically.
More precisely, for the 631 programs in our collection, AProVE shows memory safety for
547 examples. In contrast, the most powerful tool for verifying memory safety at SV-COMP
2016 (Predator [33]) proves memory safety for 431 examples (see [3] for details). However,
this comparison is not very meaningful, since Predator considers bounded integers, whereas
AProVE assumes integers to be unbounded. Thus, the resulting notions of memory safety are
incomparable. Moreover, there exist several tools to disprove memory safety (e.g., Predator,
CPAchecker [54], and LLBMC [36]). In contrast, AProVE can only prove, but not disprove
memory safety, since our symbolic execution graph over-approximates all possible program
runs. So the occurrence of ERR in our graph does not imply that the program is really unsafe.

To evaluate the power of our approach for proving termination, we compared AProVE
to the most powerful other tools (Ultimate and SeaHorn) from the Termination category
of SV-COMP 2016, and to HipTNT+. (AProVE, Ultimate, and HipTNT+ were the most
powerful tools in the C category of TermComp 2015 and in the Termination category of SV-
COMP 2015.) In addition, we included the tool KITTeL in our evaluation, which operates
on LLVM as well. Recall that in the present paper, we only introduced techniques to prove
(but not to disprove) termination of programs. Therefore, to evaluate the contributions of
the present paper, we excluded those C programs from our evaluation that are known to be
non-terminating. This resulted in 498 programs.16

Tool YES MAYBE Runtime

AProVE 409 89 39.9
Ultimate 392 106 24.6
HipTNT+ 310 188 1.3
SeaHorn 245 253 10.9
KITTeL 220 278 0.2

On the side, we show the performance of the tools
for a time limit of 900 seconds per example. For
AProVE, Ultimate, and SeaHorn, we used the results
of SV-COMP 2016. The other tools were run on an
Intel Xeon with 4 cores clocked at 2.33 GHz each and
16 GB of RAM. “YES” gives the number of examples
where termination could be proved, “MAYBE” states how often the tool could not find a
proof within 900 seconds, and “Runtime” is the average time in seconds for those examples
where the tool proved termination. The table shows that in these experiments, AProVE is the
most powerful tool for proving termination of C programs. On the other hand, since AProVE
constructs symbolic execution graphs to prove memory safety and to infer suitable invariants
needed for termination proofs, its runtime is often higher. For details on the experiments and
to access our implementation in AProVE via a web interface, we refer to [3].

Acknowledgements We are grateful to the developers of the other tools for termination or memory safety
[33,35,43,52,71] for their help with the experiments.

References

1. A. Albarghouthi, Y. Li, A. Gurfinkel, and M. Chechik. Ufo: A framework for abstraction- and
interpolation-based software verification. In Proc. CAV ’12.

2. E. Albert, P. Arenas, M. Codish, S. Genaim, G. Puebla, and D. Zanardini. Termination analysis of Java
Bytecode. In Proc. FMOODS ’08.

3. AProVE: http://aprove.informatik.rwth-aachen.de/eval/PointerJournal/.

16 As mentioned above, we also started implementing support for non-termination in AProVE. When
running the tools on all 631 C examples, AProVE proves termination for 409 and non-termination for 91
examples. Ultimate shows termination for 392 and non-termination for 111 programs. Finally, HipTNT+
proves termination in 312 and non-termination in 107 cases. Again, the detailed results can be found at [3].

Automatically Proving Termination and Memory Safety for Programs with Pointer Arithmetic 29

4. J. Berdine, B. Cook, D. Distefano, and P. W. O’Hearn. Automatic termination proofs for programs with
shape-shifting heaps. In Proc. CAV ’06.

5. J. Berdine, A. Chawdhary, B. Cook, D. Distefano, and P. W. O’Hearn. Variance analyses from invariance
analyses. In Proc. POPL ’07.

6. J. Berdine, B. Cook, and S. Ishtiaq. SLAyer: Memory safety for systems-level code. In Proc. CAV ’11.
7. Y. Bertot and P. Castéran. CoqArt. Springer, 2004.
8. F. Blanqui and A. Koprowski. CoLoR: A Coq library on well-founded rewrite relations and its application

to the automated verification of termination certificates. Math. Structures in Comp. Sc., 4:827–859, 2011.
9. M. Bodin, T. Jensen, and A. Schmitt. Certified abstract interpretation with pretty-big-step semantics. In

Proc. CPP ’15.
10. A. Bouajjani, M. Bozga, P. Habermehl, R. Iosif, P. Moro, and T. Vojnar. Programs with lists are counter

automata. Formal Methods in System Design, 38(2):158–192, 2011.
11. M. Brockschmidt, C. Otto, C. von Essen, and J. Giesl. Termination graphs for Java Bytecode. In

Verification, Induction, Termination Analysis, LNAI 6463, 2010.
12. M. Brockschmidt, C. Otto, and J. Giesl. Modular termination proofs of recursive Java Bytecode pro-

grams by term rewriting. In Proc. RTA ’11.
13. M. Brockschmidt, T. Ströder, C. Otto, and J. Giesl. Automated detection of non-termination and

NullPointerExceptions for Java Bytecode. In Proc. FoVeOOS ’11.
14. M. Brockschmidt, R. Musiol, C. Otto, and J. Giesl. Automated termination proofs for Java programs

with cyclic data. In Proc. CAV ’12.
15. M. Brockschmidt, B. Cook, and C. Fuhs. Better termination proving through cooperation. In Proc.

CAV ’13.
16. J. Brotherston and N. Gorogiannis. Cyclic abduction of inductively defined safety and termination

preconditions. In Proc. SAS ’14.
17. D. Cachera and D. Pichardie. A certified denotational abstract interpreter. In Proc. ITP ’10.
18. C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and automatic generation of high-coverage

tests for complex systems programs. In Proc. OSDI ’08.
19. C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Beyond reachability: Shape abstraction in the

presence of pointer arithmetic. In Proc. SAS ’06.
20. C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Space invading systems code. In Proc.

LOPSTR ’08.
21. C. Calcagno and D. Distefano. Infer: An automatic program verifier for memory safety of C programs.

In Proc. NFM ’11.
22. H. Y. Chen, C. David, D. Kroening, P. Schrammel, and N. Wächter. Synthesising interprocedural bit-

precise termination proofs. In Proc. ASE ’15.
23. Clang compiler: http://clang.llvm.org.
24. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction refinement

for symbolic model checking. Journal of the ACM, 50(5):752–794, 2003.
25. E. Contejean, P. Courtieu, J. Forest, O. Pons, and X. Urbain. Automated certified proofs with CiME3. In

Proc. RTA ’11.
26. B. Cook, A. Podelski, and A. Rybalchenko. Abstraction refinement for termination. In Proc. SAS ’05.
27. B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems code. In Proc. PLDI ’06.
28. B. Cook, A. Podelski, and A. Rybalchenko. Summarization for termination: no return! Formal Methods

in System Design, 35(3):369–387, 2009.
29. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a program. In

Proc. POPL ’78.
30. C. David, D. Kroening, and M. Lewis. Unrestricted termination and non-termination arguments for

bit-vector programs. In Proc. ESOP ’15.
31. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Proc. TACAS ’08.
32. V. D’Silva and C. Urban. Conflict-driven conditional termination. In Proc. CAV ’15.
33. K. Dudka, P. Peringer, and T. Vojnar. Predator: A shape analyzer based on symbolic memory graphs

(competition contribution). In Proc. TACAS ’14.
34. B. Dutertre and L. de Moura. The Yices SMT solver. Tool paper at http://yices.csl.sri.com/

tool-paper.pdf.
35. S. Falke, D. Kapur, and C. Sinz. Termination analysis of C programs using compiler intermediate

languages. In Proc. RTA ’11.
36. S. Falke, F. Merz, and C. Sinz. LLBMC: Improved bounded model checking of C using LLVM (competi-

tion contribution). In Proc. TACAS ’13.
37. C. Fuhs, J. Giesl, M. Plücker, P. Schneider-Kamp, and S. Falke. Proving termination of integer term

rewriting. In Proc. RTA ’09.
38. J. Giesl, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, C. Otto, M. Plücker, P. Schneider-Kamp,

T. Ströder, S. Swiderski, and R. Thiemann. Proving termination of programs automatically with AProVE.

30 Thomas Ströder et al.

In Proc. IJCAR ’14.
39. L. Gonnord, D. Monniaux, and G. Radanne. Synthesis of ranking functions using extremal counterexam-

ples. In Proc. PLDI ’15.
40. S. Gulwani and A. Tiwari. An abstract domain for analyzing heap-manipulating low-level software. In

Proc. CAV ’07.
41. P. Habermehl, R. Iosif, A. Rogalewicz, and T. Vojnar. Proving termination of tree manipulating programs.

In Proc. ATVA ’07.
42. W. R. Harris, A. Lal, A. Nori, and S. K. Rajamani. Alternation for termination. In Proc. SAS ’10.
43. M. Heizmann, J. Hoenicke, J. Leike, and A. Podelski. Linear ranking for linear lasso programs. In Proc.

ATVA ’13.
44. J. Hensel, J. Giesl, F. Frohn, and T. Ströder. Proving termination of programs with bitvector arithmetic

by symbolic execution. In Proc. SEFM ’16.
45. R. Iosif and A. Rogalewicz. Automata-based termination proofs. Comp. and Inf., 32(4):739–775, 2013.
46. J.-H. Jourdan, V. Laporte, S. Blazy, X. Leroy, and D. Pichardie. A formally-verified C static analyzer. In

Proc. POPL ’15.
47. C. Kop and N. Nishida. Automatic constrained rewriting induction towards verifying procedural programs.

In Proc. APLAS ’14.
48. C. Kop and N. Nishida. Constrained Term Rewriting tooL. In Proc. LPAR ’15.
49. D. Kroening, N. Sharygina, A. Tsitovich, and C. M. Wintersteiger. Termination analysis with composi-

tional transition invariants. In Proc. CAV ’10.
50. D. Larraz, A. Oliveras, E. Rodrı́guez-Carbonell, and A. Rubio. Proving termination of imperative pro-

grams using Max-SMT. In Proc. FMCAD ’13.
51. C. Lattner and V. S. Adve. LLVM: A compilation framework for lifelong program analysis & transfor-

mation. In Proc. CGO ’04.
52. T. C. Le, S. Qin, and W. Chin. Termination and non-termination specification inference. In Proc.

PLDI ’15.
53. LLVM reference manual. http://llvm.org/docs/LangRef.html.
54. S. Löwe, M. Mandrykin, and P. Wendler. CPAchecker with sequential combination of explicit-value

analyses and predicate analyses (competition contribution). In Proc. TACAS ’14.
55. S. Magill. Instrumentation Analysis: An Automated Method for Producing Numeric Abstractions of

Heap-Manipulating Programs. PhD thesis, CMU, Pittsburgh, PA, USA, 2010. Available at http://www.
cs.cmu.edu/~smagill/papers/thesis.pdf.

56. S. Magill, M. Tsai, P. Lee, and Y. Tsay. Automatic numeric abstractions for heap-manipulating programs.
In Proc. POPL ’10.

57. A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computation, 19(1):31–100, 2006.
58. Y. Moy and C. Marché. Modular inference of subprogram contracts for safety checking. J. Symb. Comput.,

45(11), 2010.
59. R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT modulo theories: From an abstract

Davis–Putnam–Logemann–Loveland procedure to DPLL(T). Journal of the ACM, 53(6), 2006.
60. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof Assistant for Higher-Order Logic.

Springer, 2002.
61. P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs that alter data structures. In Proc.

CSL ’01.
62. http://fxr.watson.org/fxr/source/lib/libsa/strlen.c?v=OPENBSD.
63. C. Otto, M. Brockschmidt, C. von Essen, and J. Giesl. Automated termination analysis of Java Bytecode

by term rewriting. In Proc. RTA ’10.
64. A. Podelski and A. Rybalchenko. ARMC: The logical choice for software model checking with abstrac-

tion refinement. In Proc. PADL ’07.
65. T. W. Reps, S. Horwitz, and S. Sagiv. Precise interprocedural dataflow analysis via graph reachability. In

Proc. POPL ’95.
66. F. Spoto, F. Mesnard, and É. Payet. A termination analyser for Java Bytecode based on path-length.

ACM TOPLAS, 32(3), 2010.
67. T. Ströder, J. Giesl, M. Brockschmidt, F. Frohn, C. Fuhs, J. Hensel, and P. Schneider-Kamp. Proving

termination and memory safety for programs with pointer arithmetic. In Proc. IJCAR ’14.
68. T. Ströder, C. Aschermann, F. Frohn, J. Hensel, and J. Giesl. AProVE: Termination and memory safety

of C programs (competition contribution). In Proc. TACAS ’15.
69. R. Thiemann and C. Sternagel. Certification of termination proofs using CeTA. In Proc. TPHOLs ’09.
70. A. Tsitovich, N. Sharygina, C. M. Wintersteiger, and D. Kroening. Loop summarization and termination

analysis. In Proc. TACAS ’11.
71. C. Urban, A. Gurfinkel, and T. Kahsai. Synthesizing ranking functions from bits and pieces. In Proc.

TACAS ’16.
72. Wikibooks C Programming: http://en.wikibooks.org/wiki/C_Programming/.
73. J. Zhao, S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. Formalizing the LLVM IR for verified

program transformations. In Proc. POPL ’12.

