

This is a repository copy of Isolation of 39 polymorphic microsatellite loci and the development of a fluorescently labelled marker set for the Eurasian badger.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/366/

# Article:

Carpenter, P.J., Dawson, D.A., Greig, C. et al. (3 more authors) (2003) Isolation of 39 polymorphic microsatellite loci and the development of a fluorescently labelled marker set for the Eurasian badger. Molecular Ecology Notes, 3 (4). pp. 610-615. ISSN 1471-8278

https://doi.org/10.1046/j.1471-8286.2003.00529.x

## Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

## Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.



# PRIMER NOTE Isolation of 39 polymorphic microsatellite loci and the development of a fluorescently labelled marker set for the Eurasian badger (*Meles meles*) (Carnivora: Mustelidae)

PETRA J. CARPENTER,\* DEBORAH A. DAWSON,\*† CAROLYN GREIG,† ANDREW PARHAM,† CHRIS L. CHEESEMAN‡ and TERRY BURKE\*†

\*Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK, †Department of Biology, University of Leicester, Leicester LE1 7RH, UK, ‡Central Science Laboratory, Sand Hutton, York, YO41 1LZ, UK

#### Abstract

We have isolated 78 microsatellite loci from the Eurasian badger (*Meles meles*). Of the 52 loci characterized, 39 were found to be polymorphic. A fluorescently labelled primer set was developed to enable individual-specific 17-locus genotypes to be obtained efficiently.

Keywords: badger, DNA profile, fluorescent set, Meles, microsatellite, Mustelidae

Received 2 February 2003; revision received 14 May 2003; accepted 27 August 2003

British badgers (*Meles meles*) form stable social groups (Neal & Cheeseman 1996). As badgers occupy underground setts during the day and forage alone nocturnally, studying their breeding behaviour is extremely difficult. To enable investigation of relatedness, maternity and paternity, and so understand the social structure and mating system in this species, we have characterized 39 polymorphic microsatellite loci and developed a 17-locus fluorescently labelled primer set.

Blood was collected from individual badgers inhabiting Woodchester Park, Gloucestershire, England. Genomic DNA was extracted from blood using proteinase K and phenol:chloroform:isoamyl alcohol (Sambrook *et al.* 1989). Badgers have been implicated in the transmission of bovine tuberculosis. Therefore to reduce the possibility of human infection, the transfer of blood tissue was handled in a Level 3 containment laboratory (Advisory Committee on Dangerous Pathogens 1995) and blood samples were incubated at 95 °C for 30 min (Rubin 1991), after the proteinase K digestion had been performed.

Two unenriched microsatellite libraries were constructed. For the first library (A), genomic DNA from one male badger was digested with *Rsa*I, *Alu*I and *Hae*III (Advanced Biotechnologies, Abgene) and the 300–600-bp fraction was ligated to *Sma*I-digested CIP-dephosphorylated pUC18 (Stratagene, La Jolly, CA, USA). For the second library (B),

Correspondence: Deborah Dawson. Fax: + 44 (0)114 2220002; E-mail: d.a.dawson@sheffield.ac.uk genomic DNA (pooled from three male badgers, from three different social groups) was digested with *MboI* (Advanced Biotechnologies) and the 250–1150-bp fragments were ligated to *Bam*HI-digested SAP-dephosphorylated pBluescript II (Stratagene).

For both libraries, transformant colonies were screened with  $(CAGT)_n$ ,  $(GACT)_n$  (Amersham Pharmacia Biotech) and  $(TTTC.AAAG)_n$  oligonucleotides [prepared as for  $(CATG.GTAC)_n$  in Armour *et al.* 1994] radiolabelled with  $[\alpha^{32}P]$ -dCTP.

In total, 238 positive clones were sequenced using an ABI 373 DNA Sequencer (Applied Biosystems). Seventy-eight clones were sequenced in both directions to create consensus sequence files. Sequences were found to be unique within each separate library (A or B) using GENEJOCKEY software (Biosoft). After submission to the EMBL database (accession numbers: AJ230687–97, AJ230699–725, AJ293349–85, AJ293387–89), all 78 sequences were checked for duplicates within and between libraries A and B, and confirmed to be unique using BLASTN 2.2.4 software (Altschul *et al.* 1997).

We designed primer pairs for the 78 loci using PRIMER3 software (Rozen & Skaletsky 2000). Each primer pair was used to polymerase chain reaction (PCR)-amplify a panel of 10–33 unrelated badgers, with each individual belonging to a different social group (Table 1). PCR profiles are provided in Table 1. PCR amplification was performed in a Hybaid Touchdown thermal cycler (Thermo Hybaid).

The 17 loci displaying the highest number of alleles with complementary size ranges were selected for the creation

| Fable 1 Polymorphic microsatellite loci in the Eurasian badger, Meles                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------|
| a) Seventeen loci for which primers were fluorescently labelled and optimized for use on an ABI 377 DNA Sequencer in two gel-loading sets‡ |

| Locus<br>name | EMBL record, library<br>(A/B) (= gel loading set)<br>and clone name | Repeat<br>motif (5'-3')†               | Primer sequences (5'–3') ( and 5' primer<br>label or 'pigtail', which is underlined) | Primer<br>T <sub>m</sub> (°C) | PCR<br>profile T <sub>a</sub><br>used (°C) | MgCl <sub>2</sub><br>conc. (тм) | Dil. | Ν  | A‡ | Exp. allele<br>size (bp)† | Obs. allele<br>size range<br>(bp)‡ | $H_{\rm E}$ | H <sub>O</sub> |
|---------------|---------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------|---------------------------------|------|----|----|---------------------------|------------------------------------|-------------|----------------|
| Mel101        | AJ293349                                                            | (CA) <sub>17</sub>                     | F: <u>gtttctt</u> -acggtccaccaatgatgaat                                              | 60                            | 64–50                                      | 1.5                             | 1:7  | 15 | 4  | 114                       | 120–136                            | 0.57        | 0.40           |
|               | A, BAD04D                                                           |                                        | R: 6-FAM-CACAAATGGGAAGGTGTCCT                                                        | 60                            |                                            |                                 |      |    |    |                           |                                    |             |                |
| Mel102        | AJ293353                                                            | (GT) <sub>20</sub>                     | F: <u>gtttctt</u> -ctataatggaaggtgggttga                                             | 57                            | 64–50                                      | 1.5                             | 1:20 | 24 | 4  | 187                       | 193–199                            | 0.69        | 0.71           |
|               | A, CGBA53                                                           |                                        | R: 6-FAM-ACACGGATTTAACGCCTACG                                                        | 60                            |                                            |                                 |      |    |    |                           |                                    |             |                |
| Mel103        | AJ293356                                                            | (AC) <sub>20</sub>                     | F: <u>GTTTCTT</u> -CCCTGAAAGGCTATTGGGTA                                              | 59                            | 64–50                                      | 1.5                             | 1:20 | 25 | 4  | 249                       | 255–263                            | 0.63        | 0.64           |
|               | A, CGBA79                                                           |                                        | R: 6-FAM-ggctgatgcagttagtctgg                                                        | 58                            |                                            |                                 |      |    |    |                           |                                    |             |                |
| Mel104        | AJ293352                                                            | (CA) <sub>17</sub>                     | F: <u>gtttctt</u> -ccttgtgaactcactgcaac                                              | 57                            | 64–50                                      | 2.5                             | 1:13 | 29 | 8  | 306                       | 315–331                            | 0.80        | 0.59           |
|               | A, CGBA37                                                           |                                        | R: 6-FAM-TACACTGACACCCTCAAGTCC                                                       | 58                            |                                            |                                 |      |    |    |                           |                                    |             |                |
| Mel105        | AJ293350                                                            | (gt) <sub>6</sub> g(gt) <sub>16</sub>  | F: <u>GTTTCTT</u> -GATATTCCCCTCCCACCACT                                              | 60                            | 64–50                                      | 1.5                             | 1:13 | 26 | 8  | 129                       | 136–150                            | 0.86        | 0.81           |
|               | A, BAD05A                                                           |                                        | R: TET-CTCCAAGGGATCCTGGAACT                                                          | 60                            |                                            |                                 |      |    |    |                           |                                    |             |                |
| Mel106        | AJ293355                                                            | (CA) <sub>21</sub>                     | F: <u>gtttctt</u> -ctgaagccaaatccactgag                                              | 58                            | 64–50                                      | 1.5                             | 1:20 | 25 | 4  | 211                       | 220-226                            | 0.66        | 0.68           |
|               | A, CGBA78                                                           |                                        | R: TET-GCCACACTGGTGCCCTAAG                                                           | 62                            |                                            |                                 |      |    |    |                           |                                    |             |                |
| Mel107        | AJ293359                                                            | (GT) <sub>22</sub>                     | F: <u>GTTTCTT</u> -CAAGATCTCCGCAATTCTCC                                              | 60                            | 64–50                                      | 1.5                             | 1:13 | 19 | 3  | 280                       | 284–288                            | 0.36        | 0.37           |
|               | A, CGBA103                                                          |                                        | R: TET-AACCCTAAATGTCTGTCAGTGG                                                        | 58                            |                                            |                                 |      |    |    |                           |                                    |             |                |
| Mel108        | AJ293354                                                            | (CA) <sub>13</sub>                     | F: <u>GTTTCTT</u> -GTCTGGAGCCCCATGTTG                                                | 60                            | 64–50                                      | 2.5                             | 1:13 | 20 | 2  | 313                       | 322–326                            | 0.26        | 0.30           |
|               | A, CGBA71                                                           |                                        | R: TET-TCTTTGGAATGGAAGTTAATGG                                                        | 58                            |                                            |                                 |      |    |    |                           |                                    |             |                |
| Mel109        | AJ293357                                                            | (GT) <sub>21</sub>                     | F: <u>GTTTCTT</u> -TGCCAATTAAGTGTCACGGT                                              | 59                            | 64–50                                      | 1.5                             | 1:6  | 25 | 5  | 122                       | 106–129                            | 0.73        | 0.56           |
|               | A, CGBA98                                                           |                                        | R: HEX-ATGTTTCCAGTTCTCAGAGGC                                                         | 58                            |                                            |                                 |      |    |    |                           |                                    |             |                |
| Mel110        | AJ293360                                                            | (GT) <sub>25</sub>                     | F: <u>GTTTCTT</u> -CATGTTTGCCATTGGAAGG                                               | 60                            | 64–50                                      | 2.5                             | 1:5  | 10 | 5  | 326                       | 324–334                            | 0.73        | 0.70           |
|               | A, CGBA110                                                          |                                        | R: HEX-GCCAGTGCTTGAAATAAAGTAG                                                        | 56                            |                                            |                                 |      |    |    |                           |                                    |             |                |
| Mel111        | AJ230692                                                            | (CA) <sub>15</sub>                     | F*: 6-FAM-tgcatacagctccctgaaag                                                       | 59                            | 64–50                                      | 1.5                             | 1:9  | 24 | 3  | 126                       | 130–138                            | 0.66        | 0.58           |
|               | B, B10E08                                                           |                                        | R*: <u>GTTTCTT</u> -GTGGTAGATGCTGGGATAGTG                                            | 57                            |                                            |                                 |      |    |    |                           |                                    |             |                |
| Mel112        | AJ230700                                                            | (CA) <sub>7</sub> CG(CA) <sub>20</sub> | F: <u>GTTTCTT</u> -GATCAAGTCCCACATTGCG                                               | 60                            | 64–50                                      | 2.5                             | 1:6  | 21 | 5  | 414                       | 418-430                            | 0.74        | 0.48           |
|               | B, B17D09                                                           |                                        | R: 6-FAM-AAGGTCCATCCATGGTGTTG                                                        | 61                            |                                            |                                 |      |    |    |                           |                                    |             |                |
| Mel113        | AJ230713                                                            | (CA) <sub>18</sub>                     | F: HEX-ATAGTTTGGGTTATTTTCTGGG                                                        | 56                            | 64–50                                      | 1.5                             | 1:9  | 20 | 4  | 120                       | 120-130                            | 0.43        | 0.55           |
|               | B, B28B03.1                                                         |                                        | R: <u>gtttctt</u> -ttgagaggaaagaccctacg                                              | 57                            |                                            |                                 |      |    |    |                           |                                    |             |                |
| Mel114        | AJ230695                                                            | (CA) <sub>15</sub>                     | F: <u>GTTTCTT</u> -TGCTGAGAGTAGAGTGAACATG                                            | 56                            | 57                                         | 1.5                             | 1:9  | 22 | 4  | 222                       | 231–237                            | 0.74        | 0.68           |
|               | B, B12C07                                                           |                                        | R: HEX-AGAAGTGACAGAGATGAAGATAAAC                                                     | 55                            |                                            |                                 |      |    |    |                           |                                    |             |                |
| Mel115        | AJ230703                                                            | $(TTTTC)_3(TTTC)_{15}$                 | F*: <u>GTTTCTT</u> -GATCAGTGCCTTCTGGTGAG                                             | 58                            | 64–50                                      | 2.5                             | 1:6  | 28 | 7  | 342                       | 330–351                            | 0.79        | 0.71           |
|               | B, B19D10                                                           |                                        | R*: HEX-TCCTGAGTCTGCATAACTAGCC                                                       | 59                            |                                            |                                 |      |    |    |                           |                                    |             |                |
| Mel116        | AJ293351                                                            | (TG) <sub>15</sub>                     | F: NED-AATAATTGTCAAGTCAATCACCG                                                       | 58                            | 64–50                                      | 1.5                             | 1:9  | 29 | 6  | 107                       | 113–135                            | 0.62        | 0.45           |
|               | A, CGBA13                                                           |                                        | R: <u>GTTTCTT</u> -CCCATTCCCTTAGAAAGCAC                                              | 59                            |                                            |                                 |      |    |    |                           |                                    |             |                |
| Mel117        | AJ293358                                                            | (CA) <sub>17</sub>                     | F: NED-TTATCTGAGCCAACTTGTGAC                                                         | 55                            | 57                                         | 1.5                             | 1:6  | 24 | 4  | 184                       | 174–193                            | 0.69        | 0.71           |
|               | A, CGBA102                                                          |                                        | R: <u>GTTTCTT</u> -CCACTCACCATCTCATCTGG                                              | 59                            |                                            |                                 |      |    |    |                           |                                    |             |                |

**Table 1** Continued(b) Characteristics of an additional 22 loci

| Locus<br>name  | EMBL record,<br>library (A/B)<br>and clone name | Repeat motif (5'–3')†                                                                                                                       | Primer sequences (5'–3')    | Primer<br>T <sub>m</sub> (°C) | T <sub>a</sub> used<br>(°C) | MgCl <sub>2</sub><br>conc. (тм) | п  | Aş | Exp. allele<br>size (bp)† | $H_{\rm E}$ | H <sub>O</sub> |
|----------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------|-----------------------------|---------------------------------|----|----|---------------------------|-------------|----------------|
| Mel118         | A 1230706                                       | (CA)                                                                                                                                        | Ε*· ληςηςλοηςλολοπολλητος   | 55                            | 55                          | 1.0                             | 9  | 3  | 238                       | 0.50        | 0.44           |
| 1/10/110       | B B21C08                                        | (CA) <sub>14</sub>                                                                                                                          | R* CARTECONCENTER           | 56                            | 55                          | 1.0                             |    | 5  | 250                       | 0.50        | 0.11           |
| Mel119         | Δ1230714                                        | $(\mathbf{T}_{\mathbf{C}})$ $(\mathbf{T}_{\mathbf{A}})$ $(\mathbf{C}_{\mathbf{A}})$ $(\mathbf{C}_{\mathbf{C}})$ $(\mathbf{C}_{\mathbf{A}})$ |                             | 58                            | 58                          | 1.0                             | 10 | 3  | 179                       | 0 59        | 0.50           |
| 10101117       | B B28C05                                        | $(10)_4(1A)_2(CA)_{14}CO(CA)_3C(CA)_2$                                                                                                      | R: GAAGACCCCACATCTCCAC      | 61                            | 50                          | 1.0                             | 10 | 5  | 17.5                      | 0.57        | 0.50           |
| $M_{el}120$    | Δ1230701                                        | (CA)                                                                                                                                        |                             | 58                            | 58                          | 1.0                             | 10 | 4  | 197                       | 0.68        | 0.80           |
| 11101120       | B B17D12                                        | (GA) <sub>15</sub>                                                                                                                          | P. CACACCTAACCAACTCAGC      | 57                            | 50                          | 1.0                             | 10 | 4  | 197                       | 0.00        | 0.00           |
| $M_{a}$        | A 1230688                                       | (CA)                                                                                                                                        |                             | 57                            | 57                          | 1.0                             | 7  | 2  | 245                       | 0.50        | 0.43           |
| 11101121       | B B04B07                                        | (CA) <sub>13</sub>                                                                                                                          |                             | 56                            | 57                          | 1.0                             | /  | 2  | 243                       | 0.50        | 0.45           |
| Mal100         | A 1220601                                       |                                                                                                                                             |                             | 57                            | 56                          | 1.0                             | 7  | 2  | 260                       | 0.14        | 0.14           |
| IVIEIIZZ       | R B08404                                        | (CA) <sub>14</sub>                                                                                                                          |                             | 57                            | 50                          | 1.0                             | /  | 2  | 200                       | 0.14        | 0.14           |
| Mal122         | A 1220607                                       |                                                                                                                                             |                             | 50<br>61                      | 60                          | 1.0                             | 0  | 2  | 222                       | 0.21        | 0.00           |
| 1/10/125       | AJ230097                                        | (CA) <sub>14</sub>                                                                                                                          |                             | 50                            | 60                          | 1.0                             | 9  | 2  | 232                       | 0.21        | 0.00           |
| Mal124         | D, D12F05                                       |                                                                                                                                             |                             | 60                            | 60                          | 1.0                             | 0  | 2  | 120                       | 0.20        | 0.22           |
| IVIEI 124      | AJ230712<br>P P27P04 2                          | (CA) <sub>16</sub>                                                                                                                          |                             | 60                            | 60                          | 1.0                             | 9  | 2  | 156                       | 0.29        | 0.55           |
| M-110E         | D, DZ/ DU4.Z                                    |                                                                                                                                             |                             | 60<br>E9                      | 50                          | 1.0                             | 2  | 2  | 105                       | 0.50        | 0.50           |
| 1/10/125       | AJ230702                                        | $(C1)_8$ and $(CA)_{15}$                                                                                                                    |                             | 58<br>50                      | 58                          | 1.0                             | Z  | 2  | 195                       | 0.50        | 0.50           |
| 14.110/        | D, D1/HUZ                                       |                                                                                                                                             | R*: ACCACGAGGATTGACATGAG    | 59                            |                             | 1 5                             | 10 | 2  | 150                       | 0.64        | 0.50           |
| IVIel 126      | AJ293370                                        | $(1G)_{21}$                                                                                                                                 | F: GIGAIGICAATAGCAAGGIICA   | 58                            | 55                          | 1.5                             | 10 | 3  | 158                       | 0.64        | 0.50           |
| 11107          | A, CGBA99                                       |                                                                                                                                             | K: ACACTACCAGAATACCCTAAGCG  | 59                            |                             | 1 5                             | 10 | 2  | 104                       | 0.62        | 0.70           |
| IVIel 127      | AJ293368                                        | $(1G)_{15}TC(1G)_7$                                                                                                                         | F: GCATACCCTCTGGGTCCATC     | 62                            | 55                          | 1.5                             | 10 | 3  | 184                       | 0.63        | 0.70           |
| 14 11 00       | A, CGBA45                                       |                                                                                                                                             | R: CAAATGATCTGTATTCCCACTG   | 57                            |                             | 1 -                             | 0  | •  | 201                       | 0.07        | 0.00           |
| Mel128         | AJ293369                                        | (CA) <sub>23</sub>                                                                                                                          | F: ATCCAAACATGAAGCCCG       | 59                            | 55                          | 1.5                             | 9  | 2  | 206                       | 0.37        | 0.22           |
|                | A, CGBA47                                       |                                                                                                                                             | K: TTACAGGTAGGCTCTGAGAAGG   | 58                            |                             |                                 |    | _  |                           |             |                |
| Mel129         | AJ293366                                        | (GC) <sub>6</sub> (AC) <sub>17</sub>                                                                                                        | F: TTCACATAAAGGAGCACGCA     | 60                            | 55                          | 1.5                             | 10 | 5  | 213                       | 0.72        | 1.00           |
|                | A, CGBA28                                       |                                                                                                                                             | R: GAATGGGACGTCTTGAGGTT     | 59                            |                             |                                 |    |    |                           |             |                |
| Mel130         | AJ293364                                        | (CA) <sub>18</sub>                                                                                                                          | F: GAGGACCACACGACTGCG       | 62                            | 55                          | 1.5                             | 10 | 4  | 296                       | 0.70        | 0.50           |
|                | A, CGBA17                                       |                                                                                                                                             | R: AAAGCGCCAGAGCACCTAGA     | 62                            |                             |                                 |    | _  |                           |             |                |
| <i>Mel</i> 131 | AJ293367                                        | $(\text{TCCC})_5(\text{TC})_4$ and $(\text{GT})_{14}$                                                                                       | F: AAAATCCTGCCTACGTGTGG     | 60                            | 55                          | 1.5                             | 10 | 3  | 116                       | 0.20        | 0.20           |
|                | A, CGBA35                                       |                                                                                                                                             | R: GATACAGCATGAAATAGCACTAGG | 57                            |                             |                                 |    |    |                           |             |                |
| Mel132         | AJ293361                                        | (CA) <sub>17</sub>                                                                                                                          | F: tgatgcaatgcccacaac       | 60                            | 55                          | 1.5                             | 10 | 2  | 139                       | 0.40        | 0.30           |
|                | A, BAD06A                                       |                                                                                                                                             | R: gggggatgcatgtaatcttg     | 60                            |                             |                                 |    |    |                           |             |                |
| Mel133         | AJ293363                                        | (GA) <sub>16</sub>                                                                                                                          | F: AATGGAATCAAGTGCCTCCT     | 59                            | 55                          | 1.5                             | 10 | 2  | 196                       | 0.27        | 0.30           |
|                | A, CGBA6                                        |                                                                                                                                             | R: GAAATTCAAACTCATGTCAGGT   | 56                            |                             |                                 |    |    |                           |             |                |
| Mel134         | AJ293365                                        | (AC) <sub>19</sub>                                                                                                                          | F: GGCTCATCTCATGCTCCTTC     | 60                            | 55                          | 1.5                             | 10 | 2  | 266                       | 0.52        | 0.30           |
|                | A, CGBA19                                       |                                                                                                                                             | R: CCATGGGCTGTGGATGATT      | 62                            |                             |                                 |    |    |                           |             |                |
| Mel135         | AJ293371                                        | (GT) <sub>16</sub>                                                                                                                          | F: TCCCTGTTGTCAAACATTGC     | 60                            | 55                          | 1.5                             | 10 | 2  | 131                       | 0.27        | 0.10           |
|                | A, CGBA100                                      |                                                                                                                                             | R: tgggcagaggatctgagtag     | 58                            |                             |                                 |    |    |                           |             |                |
| Mel136         | AJ293372                                        | (CA) <sub>19</sub>                                                                                                                          | F: сссааастдаастдасаада     | 56                            | 55                          | 1.5                             | 8  | 2  | 234                       | 0.40        | 0.50           |
|                | A, CGBA101                                      |                                                                                                                                             | R: TCAATAACCCACAACTTTCG     | 56                            |                             |                                 |    |    |                           |             |                |

| Table 1 ( | Continued |
|-----------|-----------|
|-----------|-----------|

| Locus<br>name | EMBL record,<br>library (A/B)<br>and clone name | Repeat motif (5'-3')† | Primer sequences (5'–3')    | Primer<br>T <sub>m</sub> (°C) | T <sub>a</sub> used<br>(°C) | MgCl <sub>2</sub><br>conc. (тм) | п  | Aş | Exp. allele<br>size (bp)† | $H_{\rm E}$ | H <sub>O</sub> |
|---------------|-------------------------------------------------|-----------------------|-----------------------------|-------------------------------|-----------------------------|---------------------------------|----|----|---------------------------|-------------|----------------|
| Mel137        | AJ293373                                        | (GT) <sub>18</sub>    | F: aggctcggttctattcacca     | 60                            | 55                          | 1.5                             | 10 | 2  | 120                       | 0.48        | 0.50           |
|               | A, CGBA111                                      |                       | R: AACTAGGGCAAGAAGAAGG      | 55                            |                             |                                 |    |    |                           |             |                |
| Mel138        | AJ293375                                        | (AC) <sub>19</sub>    | F: AAGTAGAAATGTAATGTGAGGCA  | 56                            | 55                          | 1.5                             | 10 | 3  | 243                       | 0.42        | 0.50           |
|               | A, CGBA115                                      |                       | R: gcttaaccaaatgaggcacc     | 60                            |                             |                                 |    |    |                           |             |                |
| Mel139        | AJ230694                                        | (CA) <sub>19</sub>    | F: TGAATGGATAAAGAAGATGTGGTG | 60                            | 58                          | 1.0                             | 7  | 2  | 200                       | 0.44        | 0.57           |
|               | B, B11H08                                       | ~                     | R: CTCTGCTCAGTGGAGAGCCTG    | 63                            |                             |                                 |    |    |                           |             |                |

\*Primers designed from reverse complement of sequence on EMBL database.

+From original sequenced clone.

‡Scored on an ABI 377 DNA Sequencer after running in two gel loading groups: Group 1, *Mel*101–110 (from library A) was run as an ABI-C-set and group 2, *Mel*111–117 (from library B) was run as an ABI-D-set.

SPCR products were scored on (40-cm long) 4 or 6% denaturing polyacrylamide gels by end-labelling one primer with [α<sup>33</sup>P]-dCTP using polynucleotide kinase (Amersham Pharmacia Biotech) (library A) or by staining with silver (Promega; Bassam *et al.* 1991) (library B).

PCR profiles.

Library A loci: 95 °C 1 min; 55 °C, 1 min; 72 °C, 1 min for 30 cycles.

Library B loci: 96 °C for 2 min for 1 cycle then 96 °C, 1 min;  $T_a$  °C, 30 s; 72 °C, 30 s for 30 cycles.

Fluorescent-labelled loci *Mel*101–*Mel*117: Touchdown PCR program, 94 °C for 3 min; then 94 °C for 15 s, 64–50 °C (dropping 2 °C every 2 cycles) for 20 s, 72 °C for 30 s; 35 cycles; followed by 72 °C for 10 min, except for *Mel*114 and *Mel*117, which were amplified as previously but with an annealing temperature of 57 °C. The 5' end of one primer in each pair was labelled with a fluorescent phosphoramidite and the 'pigtail' sequence GTTTCTT was added to the other primer, to reduce noise from variable adenylation during the PCR (Brownstein *et al.* 1996).  $T_{m'}$  melting temperature of primer (without modifications) as calculated using PRIMER version 3 (Rozen & Skaletsky 2000);  $T_{a'}$  annealing temperature for unlabelled and labelled primers;

 $M_{m'}$  includes the primer of primer (white a non-neutron) is calculated as in primer (robotic (robotic concerts) 2007)  $T_{a'}$  and and primers). MgCl<sub>2</sub> conc., magnesium chloride concentration for unlabelled and labelled primers; Dil., dilution of individual fluorescent PCR product: total multiplexed gel load; *n*, number of unrelated individuals tested; *A*, number of alleles;  $H_{\rm F}$ , expected heterozygosity;  $H_{\rm CV}$  observed heterozygosity.

#### 614 PRIMER NOTE

| Family      | Species                        | Number of loci<br>amplifying/<br>loci tested | Number of loci<br>polymorphic/<br>loci amplifying | Number of alleles/<br>number of unrelated<br>individuals tested ( <i>n</i> ) | Reference                                  |
|-------------|--------------------------------|----------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------|
| Mustelidae  | Eurasian otter, Lutra lutra    | 5/12                                         | 2/5                                               | Mel101 = 2/9<br>Mel104 = 1/9<br>Mel108 = 2/9<br>Mel109 = 1/9<br>Mel110 = 2/9 | J.F. Dallas<br>(personal<br>communication) |
| Mustelidae  | Stoat, Mustela erminea         | 11/17                                        | 2/11 (n = 1)                                      | _                                                                            | This study                                 |
| Mustelidae  | American mink, Mustela vision  | 9/17                                         | 6/9                                               | _                                                                            | This study                                 |
| Herpestidae | Meerkat, Suricata suricata     | 0/21                                         | 0/0                                               | _                                                                            | Griffin et al. 2001                        |
| Felidae     | Cat, Felis catus               | 2/17                                         | 2/2                                               | Mel106 = 4/6<br>Mel110 = 2/6                                                 | This study                                 |
| Canidae     | Dog, Canis familiaris          | 4/17                                         | 0/4                                               | Mel110 = 1/6<br>Mel112 = 1/6<br>Mel114 = 1/6<br>Mel117 = 1/6                 | This study                                 |
| Canidae     | Wolf, Canis lupus              | 3/17                                         | 1/3 ( <i>n</i> = 1)                               | Mel112 = 2/1<br>Mel114 = 1/1<br>Mel117 = 1/1                                 | This study                                 |
| Hyenidae    | Spotted hyena, Crocuta crocuta | 0/17                                         | 0/0                                               | _                                                                            | This study                                 |

Table 2 Cross-utility of our Eurasian badger Meles meles microsatellite loci in other carnivores

of a fluorescently labelled primer set (*Mel*101–*Mel*117, Table 1).

Each 10-µL PCR reaction contained 50 ng of genomic DNA, 0.25 µM primers, 0.15 mM of each dNTP, 1.5–2.5 mM MgCl<sub>2</sub> (Table 1) and 0.25 units of *Taq* DNA polymerase (Thermoprime<sup>Plus</sup>, Advanced Biotechnologies) in the manufacturer's buffer [final concentrations: 20 mM (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, 75 mM Tris-HCl pH 9.0, 0.01% (w/v) Tween]. PCR products were separated on an ABI 377 DNA Sequencer and analysed using GENESCAN version 3.1 and GENOTYPER version 2.5 software (Table 1).

Of the 52 loci tested, 39 were polymorphic (Table 1) and 13 were monomorphic. Primers were designed for an additional 26 loci but these require further testing. Primer sequences for all 78 loci, including the uncharacterized and monomorphic loci are available from our website http:// www.shef.ac.uk/misc/groups/molecol/badgers.html or (for most) from the individual EMBL records (AJ230687– 97, AJ230699–725, AJ293349–85, AJ293387–89).

Observed ( $H_{\rm O}$ ) and expected heterozygosities ( $H_{\rm E}$ ) were calculated using CERVUS version 2.0 (Marshall *et al.* 1998; Table 1). An exact test performed using GENEPOP 3.3 (Raymond & Rousset 1995) found none of the 17 loci (*Mel*101–117) to be in linkage disequilibrium after correcting for multiple tests (Rice 1989).

The low levels of polymorphism, may in part be due to the small number of individuals tested (2–10 individuals for 35 of the 52 loci tested) or alternatively due to a low level of genetic variation in the Woodchester badger population. However, preliminary results from badger populations elsewhere in Britain and continental Europe (unpublished data) suggest that the overall number of alleles may not be significantly greater than shown here.

Despite the low variability of individual markers, we have isolated sufficient loci to develop a set that has successfully provided individual-specific genotypes for the Woodchester Park population. The seven most polymorphic loci were sufficient to distinguish, with 99% certainty, between full siblings in a group of 36 badgers from three Woodchester Park social groups (unpublished data). Seventeen loci (*Mel*101–117) were found to be necessary to determine parentage.

Previous studies have found mustelid microsatellite loci to be of utility in other mustelid species (see web-based appendix: http://www.shef.ac.uk/misc/groups/molecol/ badgers.html). Our badger loci have been found to be polymorphic in Eurasian otter (*Lutra lutra*), Stoat, (*Mustela erminea*) and American mink (*Mustela vision*) (Table 2); and we expect them to be polymorphic in other mustelids.

#### Acknowledgements

The team at Woodchester Park kindly obtained the badger blood samples and Knud Christensen, Stephen O'Brien, Jan Martenson, Kerstin Wilhelm and Alison Ruhe kindly provided the American mink, cat, hyena, dog and wolf DNA. We thank Rob Buckland, John Dallas, Kristien Erven, Alain Frantz, Lisa Pope and Elena Rafart-Plaza for providing data on the utility of these markers. This work was supported by the Natural Environment Research Council, UK and the Department for Environment, Food and Rural Affairs, UK.

#### References

- Advisory Committee on Dangerous Pathogens (1995) Categorisation of Biology Agents According to Hazard and Categories of Containment, 4th edn. HSE Books, Sudbury, Suffolk, UK.
- Altschul SF, Madden TL, Schäffer AA *et al.* (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Research*, **25**, 3389–3402.
- Armour JAL, Neumann R, Gobert S, Jeffreys AJ (1994) Isolation of human simple repeat loci by hybridization selection. *Human Molecular Genetics*, 3, 599–605.
- Bassam BJ, Caetano-Anolles G, Gresshoff PM (1991) Fast and sensitive silver staining of polyacrylamide gels. *Analytical Biochemistry*, 196, 80.
- Brownstein MJ, Carpten JD, Smith JR (1996) Modulation of nontemplated nucleotide addition by *Taq* DNA polymerase: Primer modifications that facilitate genotyping. *Biotechniques*, **20**, 1004– 1010.
- Griffin AS, Nürnberger B, Pemberton J (2001) A panel of microsatellites developed for meerkats (*Suricata suricata*) by cross-

species amplification and species specific cloning. *Molecular Ecology Notes*, **1**, 83–85.

Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. *Molecular Ecology*, 7, 639–655.

Neal E, Cheeseman CL (1996) Badgers, pp. 141-143. Poyser, London.

- Raymond M, Rousset F (1995) GENEPOP (version 1.2): a population genetics software for exact tests and ecumenicism. *Journal of Heredity*, **86**, 248–249.
- Rice WR (1989) Analysing tables of statistical tests. *Evolution*, **43**, 223–225.
- Rozen S, Skaletsky HJ (2000) PRIMER3 on the WWW for general users and for biologist programmers. In: *Bioinformatics Methods* and Protocols: Methods in Molecular Biology (eds Krawetz S, Misener S), pp. 365–386. Humana Press, Totowa, NJ.
- Rubin J (1991) Mycobacterial disinfection and control. In: Disinfection, Sterilization and Preservation, 4th edn. (ed. Block SS), pp. 377–384. Lea & Febiger, Malvern, PA.
- Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring. Harbor Laboratory Press, New York.