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ABSTRACT In the current golden age ofmultimedia, human visualization is no longer the singlemain target,
with the final consumer often being a machine which performs some processing or computer vision tasks.
In both cases, deep learning plays a fundamental role in extracting features from the multimedia representa-
tion data, usually producing a compressed representation referred to as latent representation. The increasing
development and adoption of deep learning-based solutions in a wide area of multimedia applications have
opened an exciting new vision where a common compressed multimedia representation is used for both man
and machine. The main benefits of this vision are two-fold: i) improved performance for the computer vision
tasks, since the effects of coding artifacts are mitigated; and ii) reduced computational complexity, since prior
decoding is not required. This paper proposes the first taxonomy for designing compressed domain computer
vision solutions driven by the architecture and weights compatibility with an available spatio-temporal
computer vision processor. The potential of the proposed taxonomy is demonstrated for the specific case
of point cloud classification by designing novel compressed domain processors using the JPEG Pleno Point
Cloud Coding standard under development and adaptations of the PointGrid classifier. Experimental results
show that the designed compressed domain point cloud classification solutions can significantly outperform
the spatial-temporal domain classification benchmarks when applied to the decompressed data, containing
coding artifacts, and even surpass their performance when applied to the original uncompressed data.

INDEX TERMS Classification, coding, compressed representation processing, computer vision, deep
learning, man and machine consumption, point cloud, visualization, taxonomy.

I. INTRODUCTION
Humans communicate with the surrounding world using their
senses, with sight playing a major role. In recent decades,
digital multimedia information, applications, and services
have exponentially increased the human communication

The associate editor coordinating the review of this manuscript and

approving it for publication was Kumaradevan Punithakumar .

capabilities in key areas like personal communications,
broadcasting, streaming, social networks, medicine, educa-
tion, industry, cultural heritage, and virtual reality. The visual
representation models have evolved from 2D pixel-based
models with increasing resolution to sophisticated 3D mod-
els designed to offer the users highly realistic, immersive,
and interactive experiences [1]. In this context, multimedia
coding and compression technologies have been paramount
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in limiting the required transmission and storage resources
for the target qualities, thus allowing multimedia data to
reach more users and consumption conditions. The explosion
of multimedia for human consumption through visualization
was enabled by a number of very popular multimedia coding
standards which offered user interoperability, thus enabling
large scale adoption and deployment. In this context, it is fair
to highlight the JPEG image coding standards [2], [3] and the
MPEG video (and audio) coding standards [4], [5], [6], which
empower the codecs that have invaded our houses, offices,
and pockets. For visual content, notably images and video, the
conventional coding approaches rely on transforms to exploit
the spatial redundancy, temporal differences andmotion com-
pensation to exploit the redundancy, entropy coding to exploit
the statistical redundancy, and quantization to exploit the
perceptual redundancy or irrelevance and control the cod-
ing rate. Along with the exponential growth in multimedia
information produced, shared, and consumed by humans
for visualization, under very heterogeneous conditions, the
recent years have also seen the explosion of multimedia
data consumption by machines in multiple types of computer
vision tasks, notably classification, segmentation, detection,
and recognition, again in a growing number of application
domains. Often, the machine computer vision (CV) tasks are
performed on previously compressedmultimedia content (not
the original data), used for more efficient storage or trans-
mission. These data must be first decompressed before CV
processing, since the best available CV technologies process
spatio-temporal data and not directly compressed data. This
decompressed domain approach for CV tasks is affected by
the negative impact of the compression artifacts inherent to
the lossy decoded data, which depend on the used rate. In this
paper, the term ‘spatio-temporal’ (ST) refers both to origi-
nal as well as decompressed data, and includes multimedia
modalities with and without temporal variation, e.g., images
and static point clouds as well as video and dynamic point
clouds.

In the last decade, the multimedia community was shaken
by the surge of machine learning technologies, boosted by the
emergence of deep learning (DL) algorithms, the large-scale
availability of data, and the advances in computational plat-
forms. In particular, DL-based technologies have taken over
the CV field by achieving dominating performance for a wide
range of tasks, sometimes even above human performance
[7], [8], [9], [10], [11]. This success may be largely attributed
to the adoption of deep convolutional neural networks (CNN)
[12], trained to identify and extract useful features for a
specified task, as opposed to extracting handcrafted features
as before. More recently, attention mechanisms such as trans-
formers have boosted impressive advances in CV tasks such
as image classification, where the Vision Transformer [13],
a pure transformer-based model without any CNN layer,
has demonstrated better performance than the state-of-the-
art CNN models. The idea of the attention mechanism is
to determine the most important input pixels based on the

relationships between pixels. As for images, transformers
have also been designed for point clouds (PCs), notably
the Point Cloud Transformer [14] and Point Transformer
[15], both showing significant improvements compared to the
state-of-the-art in PC classification and semantic segmenta-
tion tasks.

More recently, DL-based multimedia coding has shown its
power and quickly matched or surpassed the compression
performance of state-of-the-art conventional coding stan-
dards [16], [17], [18], [19], [20], [21], [22], [23], which
were the result of decades of research and development. This
evidence has led both JPEG and MPEG, the major multime-
dia coding standardization bodies, to study the potential of
DL-based coding for several multimedia modalities. JPEG
has already launched two learning-based coding standards,
notably JPEGAI for image coding [24] and JPEGPleno Point
Cloud Coding (PCC) [25] for static PCs, with impressive
results. While the current version of the JPEG AI codec (still
under development) achieves more than 30% rate reduction
over the powerful Versatile Video Coding (VVC) standard
in its Intra mode [26], [27], the current version of the JPEG
Pleno PCC codec [28], [29] outperforms the recently devel-
oped MPEG Geometry-based PCC (G-PCC) standard for
static PCs [30]. Current activities place video and light fields
as the nextmodalities in line for the development of DL-based
coding standards.

Before the emergence of DL tools in the multimedia land-
scape, coding and CV processing lived independently in
the sense that CV processing would happen after decoding,
naturally suffering from the coding artifacts introduced by
compression, since the best ‘features’ used to represent the
multimedia data for efficient compression and good qual-
ity human visualization were not the same features as for
CV processing. A clear example may be given for images:
with image coding commonly performed with the first JPEG
standard (and other JPEG standards after, although not as
popular), CV processing would be performed with specific
hand-made image descriptors like Scale-Invariant Feature
Transform (SIFT) and Speeded-Up Robust Features (SURF)
since the JPEG DCT coefficients (the coding features of that
time), although efficient for coding and human visualiza-
tion, would not allow efficient CV tasks processing. Previous
works in the literature have studied the impact of performing
CV tasks on decompressed content after lossy compression,
notably for PC classification [31] and face image recog-
nition [32]. These works clearly show that the CV tasks’
performance is negatively impacted by the coding artifacts,
especially at lower rates, as could be expected.

The above paradigm has totally changed when DL-based
models started offering very efficient solutions for multime-
dia coding, at a stage in which they already offered the best
solutions for CV tasks processing.

The adoption of DL-based media coding opened a new
and bold horizon, which is the target of the two emerg-
ing JPEG coding standards, i.e., JPEG AI and JPEG Pleno
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FIGURE 1. Illustration of the JPEG Pleno PCC unified representation framework for man and machine. Depending on the target use case, the same latent
representation (coding stream) may be: (green) decoded to provide a regular/standard reconstruction; (blue) directly used by a DL-based
super-resolution model to provide a higher resolution reconstruction; or (orange) directly processed to perform a CV task, such as classification or
semantic segmentation, targeting machine consumption.

PCC. Building on the success of DL-based tools for mul-
timedia representation targeting both human visualization
and CV tasks for machine consumption, the scope of these
future JPEG standards envisions for both images and point
clouds ‘the creation of a learning-based coding standard-
forimages/point clouds and associated attributes, offering a
single-stream, compact compressed domain representation,
supporting advanced flexible data access functionalities. The
standard targets both interactive human visualization, with
competitive compression efficiency compared to state of the
art image/point cloud coding solutions in common use, and
effective performance for processing and machine-related
computer vision tasks’ [24], [25]. An illustration of the JPEG
Pleno PCC unified representation framework for man and
machine is shown in Fig. 1. The figure depicts some examples
of the usage of a single compressed representation(coding
stream), commonly known as latent representationor latents,
for multiple use cases: the path in green corresponds to
the past compression purpose, in which the latent represen-
tation is simply (standard) decoded to reconstruct the PC
for human visualization, with a quality depending on the
invested rate; the path in blue corresponds to an enhance-
ment/processing task for human visualization, in this case
super-resolution, with the goal to produce a higher resolution
PC directly from the compressed latent representation,; the
paths in orange correspond to two CV tasks, in this case
classification and semantic segmentation, directly performed
from the compressed latent representation, useful formachine
consumption.

In this context, the development of DL-based compressed
representations and standards, e.g., JPEG AI standard for
images and JPEG PCC standard for PCs, must consider

not only the usual Rate-Distortion (RD) performance to
maximize the decoded quality for a target rate, aiming at
human visualization, but also the CV task performance, e.g.,
detection, classification, recognition accuracy. This double
approach may have a direct impact on the multimedia coding
model, especially in the training phase and associated loss
function, since they define the model optimization strategy
and thus its performance. While in practice the model loss
function may consider/combine both RD and CV task accu-
racy metrics (although only those differentiable), thus having
the CV task processing directly impacting the coding model
parameters, what this paper shows for PCs is that compressed
domain CV processing is more efficient than decompressed
domain CV processing, even if the codingmodel only consid-
ers the RD component in the loss function used for training.
This is extremely important because it allows the easier
adoption and deployment of this type of DL-based coding
solutions for human visualization applications since they
offer the most efficient solutions both for coding and CV pro-
cessing, without having to accept any penalty in compression
performance to reach some performance trade-off between
the two types of purposes.

In summary, DL-based multimedia representation tech-
nologies will not only bring additional compression
performance but shall also enable a common, compressed
representation for multimedia information, effectively serv-
ing both man and machine, thus empowering decoding for
human visualization and featuring processing for machine
consumption from the same compressed stream [33], [34],
[35], [36], [37], [38]. Performing CV tasks on the compressed
domain representation (as opposed to the current decom-
pressed ST domain) has two major advantages: i) increased
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accuracy, by using features extracted from the original media
data and not from its lossy decompressed version; and
ii) reduced complexity, since compressed domain CV tasks
do not require prior decoding and fully extracting features
before processing This integrated vision is a breakthrough
for multimedia content representation since it unites man and
machine multimedia representation into a single, common
framework. In the future, CV tasks may be performed over
the original ST data or its decompressed ST representation
(as nowadays) or, alternatively, directly over its learning-
based compressed representation, containing the features
extracted by appropriately trained DL models, depending on
the application scenarios.

In this context, a compressed domain CV processor may
be either designed from scratch or adapted from an avail-
able ST domain CV processor to allow it to directly process
compressed streams. The latter approach has the potential to
offer some desirable compatibility between the ST and com-
pressed processing domains, e.g., by using partly common
CV processor model architectures and weights, thus reducing
the overall complexity, e.g., avoiding the memory footprint
increase required by independent models. For this reason, the
compatibility-driven design approach for compressed domain
CV processing is adopted and evaluated in this paper.

Since there are multiple ways to design a compatibility-
driven approach, this paper initially proposes a taxonomy
for the various possible alternatives for adapting an existing
ST domain CV processor to directly process the compressed
domain representation generated by aDL-basedmedia codec,
which may also be decoded for human visualization. The
design configurations defined by the various taxonomy
branches offer different trade-offs in terms of complexity,
CV task performance, and compatibility between the com-
pressed and ST domain CV processors. Thus, the proposed
taxonomy, the first of its kind, may guide the design of
compressed domain CV processors, subject to constraints
related to specificCV tasks, application domains, or hardware
requirements.

To demonstrate the potential of the proposed taxonomy,
this paper then focuses on a specific visual modality and CV
task, notably PCs and classification, a very attractive com-
bination due to its practical relevance for several emerging
applications, and designs novel compressed domain proces-
sors. PCs are a powerful 3D visual representation model
which is becoming very popular for immersive and realistic
human visualization experiences, e.g., virtual reality, as well
as CV tasks, e.g., in autonomous vehicles. A PC consists of a
set of points in the 3D space represented by their coordinates
(x, y, z), known as the PC geometry. A PC can offer a realistic
object/scene representation by using a massive number of
points to model the surfaces, which may have associated
attributes such as color or normal vectors.

As for the established 2D visual modalities, e.g., images
and video, it is expected that PC data will be commonly
available using a compressed format since the increasing
resolution and the large amount of content will not be

compatible with (huge) non-compressed storage or transmis-
sion resources. In the image world, most sensors do not even
make available the raw, non-compressed version anymore
and only a compressed version, commonly using the JPEG
(compressed) format, is made available.

Assuming PCs will be mostly available in the compressed
domain, whenever some CV task has to be performed, e.g.,
classification, segmentation, detection or recognition, it is
natural that it is performed in the compressed domain, espe-
cially if better CV performance and lower complexity are
achieved as demonstrated in this paper. Examples of impor-
tant PC classification real-world applications that usually deal
with a very large amount of PC data and can benefit from this
paradigm are (see also Fig. 1):

1. Geographical Information Systems where com-
pressed PCs (to save storage and transmission
resources) may be segmented and classified depending
on the region features, e.g., urban versus non-urban,
different types of buildings in urban areas, and different
types of urban artifacts.

2. Autonomous vehicles where the compressed PCs (to
allow faster processing by transmitting less data in the
pipeline) corresponding to objects around the street
may have to be segmented and classified, e.g., iso-
lated person, group of persons, tree, traffic sign, red
light pole, seating bench, etc. Moreover, the persons
may have to be classified depending on the motion,
as standing, walking, running, etc., which are critical
decisions to drive the autonomous vehicles’ behavior,
thus needing a high level of accuracy.

3. Cultural heritage where compressed PCs (to save
storage and transmission resources) corresponding to
different types of artifacts, e.g., sculptures, columns,
craftsmanship, etc., may have to be classified in terms
of type and style.

4. Shopping where compressed PCs (to save storage
and transmission resources) in a selling website corre-
sponding to different purposes, e.g., clothes, kitchen,
office, etc., may have to be classified in terms of type
or style.

To show the potential of compressed domain (static) PC clas-
sification, two key state-of-the-art DL-based tools have been
selected, one for PC coding and another for PC classifica-
tion, with the target to develop taxonomy-driven compressed
domain PC classification solutions. Due to their performance
and maturity, the selected solutions are the JPEG Pleno PCC
standard codec [28] (at this date reaching final stage) and the
PointGrid PC classifier [39].

Building on these two key components, this paper will
design, assess, and compare several compressed domain
(static) PC classification solutions, guided by the proposed
taxonomy, with the following goals/challenges:

1. Offering a classification accuracy that is equal or bet-
ter than the decompressed domain PC classification
performance.
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2. Offering a complexity equal or lower than the decom-
pressed domain PC classification complexity.

3. Obtaining the previous benefits regarding PC classifi-
cation using a compressed domain representation that
does not penalize the RD performance. This means that
the PC classification benefits are obtained at no cost
in compression performance for human visualization,
what is critical to avoid jeopardizing its deployment
for applications in which the main focus is human
visualization.

The obtained classification performance results show that
compressed domain PC classification may outperform spatial
domain (original and decompressed) static PC classification
with a reduced complexity, especially for the lower rates,
while also offering synergies and some degree of compatibil-
ity between the spatial and compressed domain classification
models. In summary, as far as the authors know, this paper
proposes the first taxonomy for the adaptation of DL-based
ST multimedia CV processors to the compressed domain and
validates the power and benefits of DL-based compressed
domain classification for static PCs by designing novel com-
pressed domain processors.

This paper is organized as follows: after this introduc-
tion, Section II proposes a taxonomy for the adaptation of
ST domain CV processors to directly process compressed
domain information, while Section III describes the relevant
pipelines for performing a CV task. Next, Section IV presents
the specific PC classification pipelines and the adopted
DL-based PC codec and PC classifier, while Section V
presents the compressed domain PC classification solutions,
designed according to the proposed taxonomy. Section VI
presents and discusses the experimental results and, finally,
Section VII concludes the paper and presents future work.

II. TAXONOMY FOR COMPRESSED DOMAIN COMPUTER
VISION PROCESSING
A taxonomy is a scheme of classification that allows to
organize, structure and abstract the ‘entities/solutions’ in
a specific field (in this case ST compatibility-driven com-
pressed domain CV processing) with two main benefits:
i) regarding the present, it makes it easier to discuss, analyze
and compare the alternative solutions and abstract deeper
relations, allowing a more profound knowledge and com-
prehension of the full landscape, notably the strengths and
weaknesses of each solution; and ii) regarding the future,
it makes it easier to understand the most promising design
directions and their implications, not in an isolated way but
rather organized by a taxonomic framework, e.g. allowing
to identify features, strengths and weaknesses inherited from
taxonomy parent and peer nodes.

Since many different design approaches may be used, this
section proposes the first comprehensive taxonomy for the
design of ST compatibility-driven compressed domain CV
processing solutions, targeting the consumption of multi-
media signals by both man and machine. This taxonomy

will focus on compressed domain CV processing solutions
offering some degree of compatibility with available ST CV
processing solutions, since this is often a critical require-
ment to reduce complexity and exploit synergies between
the compressed and ST CV processing domains, especially
in scenarios where both compressed and decompressed con-
tent must be processed or when an existing computer vision
processor with top performance has already been deployed.
If no compatibility is required, the design of a DL-based com-
pressed domain CV processor may be rather similar to the
design (from scratch) of any other DL-based model, naturally
considering the specific task at hand. While this approach
has the potential to improve the task performance, this would
come at the cost of higher memory requirements and also
design effort, in comparison with a compatible approach.

The proposed taxonomy is agnostic to the specific com-
pressed domain conditions, notably the media modality, the
DL-based codec, the CV task and the STDL-based processor.
According to the proposed taxonomy, ST compatibility-
driven compressed domain CV processors may follow rather
different design approaches, each offering specific features
and trade-offs, which allow to fulfill different requirements
and thus effectively serve different use cases.

A. TAXONOMY FOR COMPRESSED DOMAIN CV
PROCESSING
The proposed taxonomy, represented in Fig. 2, is hier-
archically organized according to four dimensions, which
correspond to the horizontal layers shown in the figure.
Within each dimension, different classes and branches in
the taxonomy originate alternative designs, which define the
main features and trade-offs differentiating the compressed
domain CV processing configurations. The proposed tax-
onomy considers six branches which differ on the design
solutions adopted for the four adopted taxonomy dimen-
sions described in the following. This is graphically shown
in Fig. 2 which offers a detailed overview of the proposed
taxonomy for ST compatibility-driven compressed domain
CV processing.

The taxonomy dimensions, organized in a top-down
approach, i.e., from more fundamental to more specific
options, are:

1. Compatibility with ST CV Processor - Refers to the
key requirement of ensuring (or not) some compati-
bility between the compressed and ST CV processing
domains. Two classes are defined with major implica-
tions on the design process:

• Some compatibility - The development of the com-
pressed domain CV processor is based on an
available ST CV processor to offer some degree
of compatibility between the compressed and ST
domains, ideally with reduced complexity. This
may happen either by sharing DL architecture lay-
ers and/or using common weights in the DL model
layers. The proposed taxonomy is essentially about
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FIGURE 2. Overview of the proposed taxonomy for ST compatibility-driven compressed domain CV processing.

this compatibility-driven design and offers away to
organize its alternatives.

• No compatibility– No compatibility requirements
are considered at all and thus the compressed
domain CV processor is designed from scratch,
independently from any legacy ST CV processor.
Since this approach is less constrained, it allows
greater design flexibility with possible gains in
the accuracy performance for the target CV task.
The proposed taxonomy does not detail this branch
since ‘some compatibility’ is the key design
requirement in this paper.

2. Architecture Adaptation- This dimension regards how
the architecture of the selected ST CV processor adapts
to the input compressed domain stream. Since the
starting CV processor is a DL-based model, often
based on a CNN with several layers, the adaptation of
the selected ST CV processor requires dimensionality
matching between the input compressed data stream
and the expected compressed domain CV processor
input, which may be obtained in two main ways:

• Pruning - The compressed domain CV processor
is adapted to the compressed stream by sim-
ply pruning/removing some of the top layers
(those closer to the input data) of the original ST
CV processor, resulting in the so-called Partial
CVprocessor.

• Pruning and Bridging – The compressed domain
CV processor uses an adaptation Bridge that is
included between the compressed latent represen-
tation and the Partial CV processor. The Bridge is a
DL model that acts as a preprocessing extension to
the Partial CV processor. It is designed and trained
to adapt the compressed domain latent represen-
tation of the multimedia signal (i.e., the output of
the DL-based encoder) to the Partial CV proces-
sor, thus facilitating its task. The use of a Bridge
has the potential to improve the performance of the
compressed domain CV processor, at the cost of
increased model complexity and training.

It is important to note that the architecture of the compressed
domain CV processor must guarantee the data volumematch-
ing, i.e., the compressed data stream exactly matches the
dimensions required by the first layer of the Partial CV Pro-
cessor. In some situations, depending on the used DL-based
media codec and ST CV processor, this can be achieved by
carefully pruning the original CV processor model in a way
that ensures that the first layer of the Partial CV Processor
uses a volumematching the dimensions of the latent represen-
tation generated by the DL-based codec. Otherwise, the use
of a Bridge that ensures this so-called data volume matching
constraint by adapting the dimensions of the latents’ data
volume is mandatory.

3. Partial CV Processor Retraining –This dimension
refers to whether or not the Partial CV processor is
retrained, with obvious implications on the degree of
compatibility between the compressed domain and ST
CV processors. The following two classes are defined:

• No Retraining – The Partial CV processor inherits
not just the architecture from the original ST CV
processor but also the weights, i.e., no retraining
is performed. While this class offers the highest
level of compatibility, this may hinder the CV task
performance.

• Retraining – The selected Partial CV proces-
sor layers are retrained to further optimize their
weights; here, reduced compatibility is accepted to
potentially boost the CV task performance.

While retraining the Partial CV processor limits the degree
of compatibility between the starting ST and compressed
domain CV processors, it may be important to improve the
CV task performance, especially considering that the original
weights were obtained for a CV processor version likely
trained with uncompressed ST domain signals.

4. Training Scope–This dimension refers to the scope
of the training/retraining process for the compressed
domain CV processor. The relevant classes for this
dimension are:

• Partial Retraining –Only some of the compressed
domain CV processor layers inherited from the ST

128984 VOLUME 11, 2023



A. Seleem et al.: DL-Based Compressed Domain Multimedia for Man and Machine

CV model are retrained, whereas the remaining
layers directly reuse the already available weights.

• All Layers Retraining – All layers of the com-
pressed domain CV processor are retrained.

Naturally, when a Bridge is used, all its layers must be trained.
For all considered taxonomy branches, increasing the

training scope (number of retrained layers) reduces the com-
patibility between compressed domain and STCV processing
but may lead to a better compressed domain CV processor
performance. The configurations defined by the proposed
taxonomy precisely express this trade-off which must be
resolved when addressing the specific use case requirements.

B. COMPATIBILITY WITH ST DOMAIN PROCESSORS
The design of the compressed domain CV processor is driven
by a key requirement, which is the assurance of some level
of compatibility with the selected ST domain processor. This
compatibility involves two key aspects:

1. Architecture compatibility- Related to the number of
layers in the compressed domain CV processor in com-
mon with the original ST CV processor architecture; in
percentage, this compatibility may go from 0 to 100%.

2. Weights compatibility- Related to the number of
weights in the compressed domain CV processor which
are common with the original ST CV processor; in
percentage, this compatibility may go from 0 to 100%.

These two types of compatibility are directly related to the
possibility to reduce the storage (or transmission) required by
the additional compressed domain CV processor, assuming
that the selected ST domain CV processor is already available
at the receiver. Full compatibility means that all the layers
and weights of the compressed domain CV processor are
inherited and reused. When no compatibility exists, the data
describing the new architecture and all the weights defining
the compressed domain CV model have to be stored or trans-
mitted. It is important to note that typically the amount of data
required to define a new model architecture is less than the
data associated to the model weights. As a result, the impact
of having no weights compatibility, even when full architec-
ture compatibility is ensured, may be quite significant; this
is especially relevant if transmission is required. Naturally,
when there is no architecture compatibility, there is also no
weights compatibility.

Adopting a compressed domain CV processor may allow
achieving reductions in the overall complexity, heremeasured
using the number of model parameters, in multiple ways:

1. First, by offering some degree of compatibility between
the ST and compressed CV processing domains. With-
out any compatibility, two independent models would
be required to accomplish the CV task in the ST or in
the compressed domain. On the other hand, by keeping
in common part of the CV processor model architec-
tures and parameters for these domains, the overall
complexity is reduced as this avoids the memory

footprint increase of using independent solutions for
the two domains.

2. Second, the compressed domain CV solutions avoid the
complexity associated to the decoding process since
the multimedia data, e.g., PCs, do not have to be
decompressed.

3. Third, since compressed domain CV tasks do not
require prior decoding, the process of feature extraction
after decoding is also avoided as the features extracted
at the encoder are directly used for the compressed
domain CV processing.

4. Fourth, this paper designs compressed domain CV pro-
cessors with a total number of parameters lower than
the number of parameters for the original ST domain
CV processor, thus imposing a hard limit on the com-
plexity to guarantee that the developed compressed
domain models are not more complex than the ST
models. This is obtained, notably by controlling the
Partial CV processor and Bridge architectures in terms
of number and complexity of its layers.

All the compressed domain CV processor solutions designed
in Section V and assessed in Section VI offer these complex-
ity reductions.

III. COMPUTER VISION PROCESSING PIPELINES
This section presents the main pipelines relevant for CV pro-
cessing, which may include or not compression, depending
on the use cases. The three pipelines presented in Fig. 3a
will be used in later sections to study the performance of the
designed compressed domain CV processor solutions, guided
by the proposed taxonomy. The pipelines in Fig. 3a are (from
top to bottom):

1. Original Domain CV Processing Pipeline- In this
pipeline, no coding/compression is involved and thus
the ST CV processor acts directly on the original
(non-compressed) ST representation of the multime-
dia signal. Since no coding/compression is used, the
CV processor performance is not impacted by any
compression artifacts during the training or process-
ing stages. However, if the use cases involve storage
or transmission, large data resources for the (non-
compressed) content may be required.

2. Decompressed Domain CV Processing Pipeline-
In this pipeline, coding/compression and decoding/
decompression occur. Therefore, the ST CV processor
acts on a ST representation of the multimedia signal
which is the result of compression and decompression.
In this context, the ST CV processor performance is
impacted by the compression artifacts caused by lossy
coding the original multimedia signal. In this pipeline,
the computational complexity associated to CV pro-
cessing must also include the complexity associated to
the signal decompression.

3. Compressed Domain CV Processing Pipeline- In
this pipeline, coding/compression happens but no
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FIGURE 3. CV processing pipelines: a) generic in terms of multimedia modality, encoding/decoding and CV processing; b) specific for a modality (point
clouds), encoding/decoding (DL-based JPEG PCC) and CV processing (classification with PointGrid).

decoding/decompression is performed and, thus, the
CV processor acts directly on the compressed domain
multimedia signal representation, with the previously
outlined benefits.

The three presented generic pipelines can be used to study the
CV processing performance for any specific modality, codec,
CV task, and CV processor.

IV. COMPRESSED DOMAIN POINT CLOUD
CLASSIFICATION
The taxonomy presented in Section II, as well as the process-
ing pipelines described in Section III, address all multimedia
modalities and accommodates any DL-based codec and ST
CV processor combination. Following the previous generic
presentation, agnostic in terms of modality and CV task,
the following sections will address a particular application
scenario, which has recently gained significant practical
relevance: DL-based compressed domain PC classification.
This section will start by presenting the specific compressed
domain PC classification pipelines, where two key technolo-
gies play a fundamental role: DL-based (static) PC coding
and (static) PC classification. Therefore, the following sub-
sections will present the selected PC coding solution – JPEG
Pleno PCC Verification Model (VM) [28], labeled from
now on as JPEG PCC – and the selected ST PC classi-
fication solution – PointGrid [39]. These models will be
used as the building modules for the design of multiple
ST compatibility-driven compressed domain PC classifica-
tion solutions, based on the proposed taxonomy. Both the
JPEG PCC codec and the PointGrid classifier are DL-based
solutions using a voxel-based approach with integer repre-
sentation. For the PC classification experiments, there are
a few publicly available PC datasets which may be used,
such as ModelNet40 [40] and ScanObjectNN [41]. Due to
its popularity, this paper has adopted the ModelNet40 PC
dataset.

A. PC CLASSIFICATION PIPELINES
The specific pipelines for the classification of (static) PCs
encoded with JPEG PCC, reusing the PointGrid classifier, are
presented in Fig. 3b, thus allowing a direct comparison with

the generic processing pipelines presented in Fig. 3a. Fig 3b
presents (from top to bottom):

1. Original Domain PC Classification Pipeline- The
voxel-based PointGrid classifier is directly applied
to the original ModelNet40 PCs with floating-point
representation.

2. Voxelized Domain PC Classification Pipeline- The
voxel-based PointGrid classifier is applied to a
voxelized version of the original floating-point
ModelNet40 PCs using an integer 8-bit precision
PC representation. This pipeline allows assessing the
impact of voxelization when compared with the previ-
ous pipeline.

3. Decompressed Domain PC Classification Pipeline-
The voxel-based PointGrid classifier is applied to
the PCs obtained after encoding/compression and
decoding/decompression using a conventional or
DL-based PC codec. The decoded/decompressed ver-
sion of the PCmay include compression artifacts which
impact the PC classification performance.

4. Compressed Domain PC Classification Pipeline – A
compressed domain PC classifier, designed and devel-
oped according to the taxonomy proposed in this paper,
is applied to the latents generated by the DL-based
JPEG PCC encoder, corresponding to the representa-
tion of the input PC in the compressed domain.

All the pipelines represented in Fig. 3b process the same input
ModelNet40 PCs, each with 2048 points represented using
floating-point values in a [−1, 1] range, eventually after vox-
elization and scaling. Moreover, all non-compressed domain
pipelines use a PC Resampling module to ensure that the
PointGrid classifier always receives a PC with 1024 points,
since the classifier was trained for these conditions, for which
is offers the best classification performance [39]. The Farthest
Point Sampling (FPS) algorithm [42] is used to resample the
decoded PCs.

B. DL-BASED POINT CLOUD GEOMETRY CODING: JPEG
PLENO PCC
With the focus of this paper being DL-based compressed
representation and processing, it is imperative for both the PC
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codec and the PC classifier to be DL-based solutions. Given
that JPEG Pleno PCC will be the first learning-based PC
coding standard, currently at the latter stages of development,
and the JPEG vision contemplates the design of a common
compressed representation for both man (e.g., regular visual-
ization) and machine (e.g., CV tasks), the ideal choice for a
DL-based point cloud geometry coding solution is the JPEG
Pleno PCC Verification Model (VM) [28] considering its
potential future adoption, deployments and impact; the VM
is a codec that evolves by collaboration towards the final
DL-based JPEG Pleno PCC standard. The selected JPEG
PCC codec corresponds to the so-called IT-DL-PCC-G codec
[29] proposed to JPEG by the authors of this paper. This
codec is used in this paper to create the latent representation
which will be used by the DL-based compressed domain PC
geometry classifier.

The high-level JPEG PCC architecture is shown in Fig. 4a,
and can be divided into three major modules (both encoder
and decoder). The encoder proceeds as follows:

1. PC Block Partitioning: Firstly, JPEG PCC divides
the input PC geometry into 3D blocks, corresponding
to coding units that are independently coded, with a
selected block size (BS).

2. Basic Block Down-sampling: Secondly, the blocks
may be down-sampled, using an appropriate sam-
pling factor (SF), in order to reduce their precision
and densify them prior to coding. This (optional)
down-sampling is a tool that allows achieving lower
rates, and can offer compression gains for sparse PC
content.

3. DL-based Block Encoding: Finally, the actual coding
of each 3D block is performed via a DL model, which
architecture is shown in Fig. 4b.

The DL coding model uses a voxel-based representation
of the PC data, which consists of a 3D block of binary
voxels, corresponding to either occupied (1) or empty (0)
positions. The DL coding model follows a similar approach
as a conventional transform-based codec, consisting of a
transform, followed by quantization of the transform coef-
ficients and then entropy coding. The non-linear transform is
learned by an autoencoder, consisting of multiple 3D convo-
lutional layers that successively reduce the dimensionality of
the data until the bottleneck; furthermore, Inception-Resnet
Blocks (IRBs) [43] are used to extract high quality fea-
tures, by containing multiple convolutional layers in parallel
with different filter support sizes. The autoencoder thus cre-
ates a rich latent representation associated to each block
of the input PC at its bottleneck layer. The latent repre-
sentation is then quantized, and an adaptive entropy coding
is performed using a secondary (hyper) network, which
is responsible for extracting information from the latent
representation itself, generating a more accurate entropy
model.

The decoder proceeds in a symmetrical manner to the
encoder as follows:

FIGURE 4. JPEG PCC codec: (a) high-level architecture; (b) DL-based block
coding model architecture [24].

1. DL-based Block Decoder: The latent representation is
first transformed back into the (lossy) reconstructed PC
blocks using the DL coding model.

2. Basic Block Up-sampling: Then, if down-sampling
was performed at the encoder, the inverse up-sampling
process is applied to restore the original precision.
Optionally, a DL-based super-resolution stage may be
also applied to recover some of the data lost with
the down-sampling, namely increasing the number of
occupied voxels and ultimately improving the recon-
struction quality.

3. PC Block Merging: Finally, the 3D blocks are merged
together to generate the reconstructed PC.

To train the DL coding model, a rate-distortion (RD) driven
loss function is used. This loss function balances the recon-
structed PC distortion (estimated by the Focal Loss [44])
and the coding rate (estimated by the entropy of the latent
representation). A Lagrangeanmultiplier, λ, is used to control
the RD trade-off for compression. This requires training inde-
pendent models with different values of λ, in order to encode
and decode PCs for each target compression ratio [28]. The
training of the models for each of the target compression
ratios follows a sequential training approach, as opposed to
training each of the models independently. With sequential
training, the training of the model for the highest rate (lowest
value of λ) is done first. Then, each subsequent model is
trained by initializing its weights with the weights’ values
from the previously trained model.

JPEG PCC outperforms G-PCC Octree for coding geom-
etry of dense PCs, while for sparse PCs (such as the
ModelNet40 PC dataset), G-PCC Octree is still more effi-
cient. For more details on JPEG PCC, refer to [28].
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C. DL-BASED POINT CLOUD CLASSIFICATION: POINTGRID
CLASSIFIER
Considering the previous codec choice, namely JPEG PCC,
selecting a PC classifier became more constrained since the
way the PC data are represented and processed by both
the codec and classifier must match. Since the JPEG PCC
codec uses a voxel-based representation, the chosen PC clas-
sifier must also use a voxel-based representation instead of
a point-based representation as used by the Point Cloud
Transformer [14] and the Point Transformer [15]. This lead to
the selection of the state-of-the-art PointGrid classifier [39],
which was chosen due to its high classification performance
compared to other ST voxel-based PC classification solu-
tions with publicly available software, like VoxNet [45] and
OctNet [46]. The PointGrid classifier model, represented in
Fig. 5, consists of nine CNN layers, each using a LeakyReLU
activation followed by batch normalization, and three fully
connected (FC) layers, in a total of 10,492,072 weights. The
PointGrid classifier was trained using the cross-entropy loss
function between the ground truth and predicted classes of
the ModelNet40 PC dataset. During training, all ModelNet40
PCs were resampled from 2048 to 1024 points. In this paper,
the PointGrid model is applied to blocks of size 32× 32×32
and four points per cell, since these parameters were reported
to achieve the best classification performance for the Model-
Net40 dataset [40]. Like most classifiers, the main limitation
of the PointGrid classifier is that it processes input blocks
with a fixed predefined size. This means that it may be
necessary to use the intermediate Bridge model to perform
the block size adaptation between the codec and the classifier,
in addition to the latent representation adaptation.

V. TAXONOMY-DRIVEN COMPRESSED DOMAIN POINT
CLOUD CLASSIFICATION SOLUTIONS DESIGN
This section presents the design process for the com-
pressed domain PC classification solutions studied in this
paper, driven by the proposed taxonomy. The designed
solutions process the latents from the JPEG PCC codec
using a compressed domain classifier with different levels
of compatibility with the originally selected ST domain PC
classifier, i.e., PointGrid. Six solutions are proposed in the
next subsection, corresponding to representative taxonomy
branches and offering distinctive compatibility levels and
architectural features. The design and training of these solu-
tions are described in Subsections V-B and V-C, respectively.
The performance of the designed solutions will be assessed
in Section VI.

A. SELECTED COMPRESSED DOMAIN PC CLASSIFIERS
DEFINITION
This subsection proposes six different configurations for the
compressed domain PC classifier, driven by the proposed
taxonomy. The selection of these solutions was based on two
main criteria: i) covering all the design approaches defined
in the taxonomy; and ii) offering distinct compatibility levels

FIGURE 5. PointGrid classifier architecture [39].

between the compressed and ST domain CV processors to
address different use cases.

Following the first criterion, the selected solutions are
classified according to the two main design classes defined
in the Architecture Adaptation dimension of the taxonomy
for compatibility driven compressed domain classifiers (see
Fig. 2): i) Pruning where the compressed domain classifier
is composed only by a number of layers inherited from the
ST DL model, referred as Partial Classifier; and ii) Pruning
and Bridging where the compressed domain classifier uses a
Bridge before the Partial Classifier to adapt the JPEG PCC
latents to the Partial Classifier.

For each of these two classes, three solutions are designed
to offer distinct compatibility levels between the compressed
and the ST domain CV processors:

• High Compatibility (or HighComp)–The percentage of
compatible (meaning the same) weights between the
ST and compressed domain classifiers is higher than
90%. This highest compatibility level is offered, both
in terms of architecture and weights, by reusing Partial
Classifier layers and corresponding weights from the
original PointGrid classifier. In the proposed taxonomy
(see Fig. 2), this corresponds to the ‘‘No Retraining’’
option for both the ‘‘Pruning’’ and ‘‘Pruning and Bridg-
ing’’ branches.

• Medium Compatibility (or MediumComp)–The per-
centage of compatible weights is medium, meaning
higher than 30% and lower than 90%. A medium
compatibility level is offered by still using the Par-
tial Classifier architecture, but without fully reusing
the weights, thus implying that some layers must be
retrained using compressed domain data.

• Low Compatibility (or LowComp)- The percentage of
compatible weights is lower than 30%. A low compat-
ibility level is offered by retraining most of the Partial
Classifier layers. The new weights for the retrained lay-
ers of the compressed domain PC classifiers need to be
stored or transmitted as well as the Bridge weights.

The medium and low compatibility solutions fall into the
‘‘Partial Retraining’’ option for the’’ Pruning’’ and ‘‘Prun-
ing and Bridging’’ branches (see Fig. 2). The ‘‘All Layers
Retraining’’ option would correspond to 0%weights compat-
ibility. The design process for these six proposed compressed
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domain PC classifier solutions is described in detail in the
next subsection.

B. SELECTED COMPRESSED DOMAIN PC CLASSIFIERS
DESIGN
The proposed taxonomy guides the design of the compressed
domain PC classifiers according to the hierarchy of design
dimensions shown in Fig. 2. With this structured approach,
the two main questions that guide the design of the com-
pressed domain PC classifiers are:

1. How many of the PointGrid classifier bottom lay-
ers (closer to the output) shall be kept in the Partial
Classifier.

2. Is a Bridge needed and, if yes, what shall its architecture
be, notably in terms of type and number of layers,
kernel size, stride, and activation function.

As previously mentioned, the key design constraint for the
compressed domain PC classifier is the matching of the
data volume dimensions between the JPEG PCC codec and
the compressed domain classifier. Depending on the design
option, i.e., Pruning or Pruning and Bridging, this can be
ensured by:

• Pruning- Selecting a pruning point for the PointGrid
model so that the input to the first layer of the Partial
Classifier matches the output JPEG PCC latent data
volume.

• Pruning and Bridging- Designing theBridge so that its
model performs the adaptation between the JPEG PCC
latent volume dimension and the Partial Classifier input.
This can be achieved by carefully designing the archi-
tecture, filters, and strides for the down/up sampling
layers using a CNN-based Bridge. To better illustrate
the possible designs, this paper uses a combination of
PC codec and compressed domain PC classifier where
the matching of the data volume dimensions may be
achieved without using a Bridge. In practice, this means
that the fulfilment of the data volume constraint may
be performed by only using the Partial Classifier. It is
important to note that this design is not always possi-
ble, notably when there is no available layer of the ST
domain CV processor for which the input block dimen-
sions match the PC latent representation dimensions.

A second design constraint is, naturally, the complexity of
the compressed domain PC classifier. This paper targets com-
pressed domain PC classifiers with a total number of weights
lower than the number for the original ST domain PointGrid
classifier (10,492,072). This is a relevant requirement for the
practical deployment of compressed domain CV processors.

In order to simplify the presentation and allow for a fairer
comparison between the six proposed design solutions, all
these solutions use a common architecture for the Partial
Classifier and the Bridge (when used). This can be easily
seen in Fig. 6, which shows the architecture details for the six
selected solutions. For better distinction, the solutions using
Pruning and Bridging include ‘‘+ Bridge’’ in their name.

The Partial Classifier and Bridge models have the following
design features:

• Partial Classifier - Corresponds to a pruned version of
the PointGridmodel, so it inherits the architecture for the
non-pruned layers (shown in Fig. 5). To directly fulfil the
data volume matching constraint, pruning is performed
at the fifth layer from top, meaning that the bottom seven
PointGrid model layers (4 convolutional and 3 FC) are
kept. This pruning point was selected since it ensures
that the first layer of the Partial Classifier receives a vol-
ume of size 8×8×8×128, thusmatching the dimensions
of the most efficient JPEG PCC latent representation,
as discussed later in Section VI. In summary, the Partial
Classifier design uses (see details in Fig. 6):

◦ Number of layers: 7
◦ Type of layers:

■ 4 convolutional layers
■ 3 FC layers:

◦ Number of weights: 8,699,176.
The direct use of the Partial Classifier as compressed domain
classifier ensures 100% architecture compatibility. However,
the level of weight compatibility depends on the training
of the corresponding compressed domain PC classification
solution, which will be described in Subsection V-C.

• Bridge- Corresponds to a newDLmodel that is designed
and trained to better adapt the JPEG PCC latents pro-
duced by the JPEG PCC encoder to the Partial Classifier.
To address the data volume matching constraint, and
considering the previously chosen Partial Classifier
design, the Bridge design requires the use of layers with
stride 1 and 128 filters, so that the volume dimensions of
the processed block are not altered (and thus matching).
Furthermore, the complexity constraint limits the num-
ber of layers leading to the following proposed Bridge
architecture (see details in Fig. 6):

◦ Number of layers: 2
◦ Type of layers:

■ 2 convolutional layers (3 × 3×3 kernel, 128
filters, stride 1)

■ LeakyReLU activation function.
◦ Number of weights: 884,992.

Experimental results have shown that this Bridge model pro-
vides the best trade-off between complexity and classification
performance, while ensuring that the compressed domain PC
classifier total number of weights falls below the 10,492,072
weights of the original PointGrid model. The training of the
Bridge will be described in the next subsection.

Table 1 presents a summary of the main design features
as well as a detailed comparison of the number of weights
and the compatibility levels for the designed compressed
domain PC classification solutions. It may be observed that
the weights compatibility ranges between 23.36% and 100%
and the architecture compatibility between 77,8% and 100%.
For all designs, the total number of weights is lower than for
the ST domain PointGrid classifier (10,492,072).
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FIGURE 6. Architectures for the selected compressed domain PC classifier solutions. The colors for the layers represent the corresponding compatibility:
Green – compatible weights, reused from the original PointGrid model; Red – not compatible (trained/retrained) weights.

TABLE 1. Architecture and weights compatibility for the selected compressed domain PC classifier solutions.

C. COMPRESSED DOMAIN PC CLASSIFIER TRAINING
After designing the DL models for the Partial Classifier
and Bridge, their training/retraining process must be defined,
depending on the selected compressed domain PC classifica-
tion solutions, notably the target compatibility level. Since
the Bridge layers are always new, the compatibility level
for the compressed domain PC classifier is directly depen-
dent on the number of compatible (i.e., not retrained) Partial
Classifier layers, as shown in Table 1. As expected, the
training procedure depends on the two architecture adaptation
options:

• Pruning- Only requires theretraining of the non-
compatible (top) layers of the Partial Classifier as
follows:

◦ The Partial Classifier is initialized with the original
PointGrid model weights.

◦ The compatible layers weights (represented in
green in Fig. 6) are frozen during retraining.

The non-compatible layers weights (represented in red in
Fig. 6) are retrained via fine tuning. Unlike training using

random initialization, fine tuning considers the information
learned from the original training in the ST domain, akin to a
transfer learning process.

• Pruning and Bridging- Requires training the Bridge
layers, followed by retraining the non-compatible layers
of the Partial Classifier:

◦ The Partial Classifier is initialized with the original
PointGrid model weights.

◦ The Bridge is trained considering a random ini-
tialization, while the Partial Classifier weights are
frozen.

◦ After training the Bridge, its weights are frozen, and
the non-compatible layers of the Partial Classifier
are retrained via fine tuning.

Differently from ST domain PC classification, the proposed
compressed domain PC classifiers have to be trained with
compressed data. This means that the dataset used for training
each of the compressed domain PC classifier models is com-
posed not by the original PCs in the training dataset, but their
JPEGPCC latent representation. For this purpose, the training
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dataset PCs were compressed using each of the six JPEG
PCC models, each trained for a different compression ratio
(i.e., value of λ) to cover a range of relevant rates/qualities.
Due to the nature of the learning-based codecs, the latent
representations generated by the coding models targeting
different compression ratios tend to vary significantly, imply-
ing that the latents in the same position may represent very
different PC features. As such, it is required to train six
classifier models (one for each target compression ratio) for
each of the designed compressed domain PC solutions.While
this does increase the memory footprint, it is a fundamen-
tal requirement, which in turn is dependent on the selected
learning-based codec. To train the various models for each
proposed compressed domain PC classifier solution, the same
sequential training approach previously explained for the
training of the JPEG PCC coding models was followed. This
approach significantly reduces the overall training time and
allows each compressed domain classifier model to build on
the learning process for the models trained for higher rates.

Having designed the six compressed domain classifier
solutions offering different architectural options and levels of
compatibility with the ST domain, the next section presents
their experimental validation and performance assessment.

VI. PERFORMANCE ASSESSMENT
This section presents the experimental setup and performance
assessment for the proposed compressed domain PC clas-
sification solutions. These solutions are compared with ST
domain (original, voxelized and decompressed) PC classifi-
cation solutions, using the four PC classification pipelines
presented in Section IV. After describing the test condi-
tions and experimental setup, Subsection VI-B reports and
analyses the RD performance for the DL-based JPEG PCC
codec and the benchmark G-PCC Octree standard. After
Subsection VI-C reports and analyses the classification per-
formances for the various ST domain classification pipelines,
which will act as performance benchmarks for the pro-
posed compressed domain PC classification solutions in
Subsection VI-D.

A. TEST CONDITIONS AND EXPERIMENTAL SETUP
This subsection presents the test conditions and the experi-
mental setup used for performance assessment.

Dataset – All training and tests PCs are from the
Modelnet40 dataset, which is the most used dataset for PC
classification [40]. The ModelNet40 PC dataset is composed
of 12,308 PCs divided into 40 classes, corresponding to
objects represented as 3D CADmodels. The PCs are grouped
into three subsets, used for training, validation, and testing,
with 9,840, 2,048, and 420 PCs, respectively. All PCs have
floating-point precision, with coordinates’ values ranging
from -1 to 1, and a total of 2048 points per PC.

Regarding the training datasets, it is relevant to highlight:

• The training of the PointGrid PC classifier was per-
formed as in [39], i.e., the original PCs from the

ModelNet40 training dataset with floating point repre-
sentation were used.

• The DL models for the JPEG PCC codec were trained
according to the PCC Common Training and Test Con-
ditions (CTTC) set by JPEG [47]. The training dataset
was composed by 28 static PCs with varying features,
notably in terms of resolution and sparsity. It is impor-
tant to note that the codec was not trained using the same
dataset used for the PointGrid classifier. Six values of λ

(0.008, 0.004, 0.002, 0.001, 0.0005 and 0.00025) were
used to train six JPEG PCC coding models, to reach
different target rates/qualities.

• The training dataset for each compressed domain PC
classifier models (one for each λ value) was composed
by the PC latent representation for the ModelNet40
training dataset. This means that each PC was com-
pressed using the JPEG PCC model trained for the
corresponding compression ratio (i.e., λ value). Based
on the RD performance, the JPEG PCC coding con-
figurations were set to BS=64 and SF=4 as will be
explained in the next subsection.

While it would be possible to train JPEG PCC using the same
ModelNet40 dataset, which could potentially improve the RD
performance and perhaps even the compressed domain classi-
fication performance, the current JPEG PCC training dataset
consists of a richer set of diverse point clouds with more com-
plex and realistic objects and scenes than the ModelNet40
dataset, which is more representative of the real-world con-
tent as targeted by the JPEG PCC coding standard. Using
the ModelNet40 dataset to train the JPEG PCC codec would
likely have a negative impact in on its RD performance for
real-world PC content, as shown in previous studies in the
literature such as [48].

Regarding the test datasets, it is relevant to highlight:

• All tests performed in this paper, both for compres-
sion and classification performance assessment, used the
geometry of the 420 PCs in the ModelNet40 test dataset.

• For the original and voxelized domains PC classification
pipelines (see Fig. 3b), the original and voxelized (with
8-bit precision) versions of the test PCs were classified
using the PointGrid classifier.

• For the decompressed domain PC classification pipeline
(see Fig. 3b), the test PCs were encoded and decoded
using the selected codec (JPEG PCC or G-PCC Octree)
and then classified using the PointGrid classifier.

• For the compressed domain PC classifiers (see Fig. 3b),
the test PCs were encoded using the JPEG PCC codec
and then the latent representation was used for classifi-
cation using one of the designed compressed domain PC
classification solutions.

Training Hyperparameters- The Adam optimizer was used
to train the designed compressed domain PC classification
solutions, with a batch size of 32. The cross-entropy loss
function was used between the predicted and ground truth
classes. For the compressed domain PC classifiers, early
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stopping with a patience of 50 epochs was used. The learning
rate was set to 10−4, halving it whenever the classification
accuracy over the validation dataset stopped increasing for
10 epochs.

Compression Performance Metrics - The RD perfor-
mance for the ModelNet40 PC dataset compressed using
the two selected geometry-only codecs, JPEG PCC and
G-PCC Octree, was evaluated using the PSNR D1 metric,
since this is the fidelity geometry quality metric recom-
mended by bothMPEGCommon Test Conditions (CTC) [49]
and JPEG CTTC [47]. The compressed rate was measured in
bits per input point (bpp).

The PSNR D1 metric is based on the Euclidean distance
(error) between each pair of points of the reference PC,
referred to as A, and the PC under evaluation (decoded),
referred to as B. For each point in B, its associated point in A
is determined using a nearest neighbor algorithm. Let eB,A be
the arithmetic mean of the errors of all points in B. To ensure
that the PSNR D1 metric is symmetric and invariant to which
of the PC is used as reference, both eB,A and eA,B are used in
the final PSNR D1 computation:

PSNR D1 = 10 log
3peak2

max
(
eB,A, eA,B

) , (1)

where peak = 2bitdepth − 1 is the geometric resolution
associated with the voxel-based PC representation, e.g., for
a voxel bit depth of 10, peak=1023 [47].

Classification Performance Metrics- The classification
performance for all tested PC classification pipelines was
measured using the Top-1 and Top-5 metrics, since they are
the most predominantly adopted metrics in the literature.
Top-1 is the percentage of test examples for which the class
with the highest probability exactly matches the ground truth.
Top-5 is the percentage of test examples for which the ground
truth is included in the 5 classes with the highest probabilities
output by the classifier. Naturally, Top-5 is always equal to or
higher than Top-1.

For compressed domain PC classification, the Bjontegaard
Delta metric (BD)-Top-k is also used to compare the clas-
sification performance (versus rate) of two PC classification
solutions. BD is a common metric to assess the improvement
of one performance curve over another peer performance
curve used as reference [50]; a positive BD-Top-k implies
a Top-k improvement for the same rate and vice-versa. The
BD metric is extensively used in the literature for comparing
the RD performance of different codecs, e.g., for images
and PCs.

B. RD PERFORMANCE
This subsection reports and analyses the RD performance
for the selected PC codecs, one learning-based and one
conventional, i.e., JPEG PCC [29] and G-PCC Octree [30].
Analyzing the RD performance is important since the (lossy)
compression artifacts impact the classification performance
for the decompressed and compressed pipelines. Fig. 7 shows

FIGURE 7. RD performance for G-PCC Octree and JPEG PCC using three
relevant coding configurations.

the average RD performance for the 420 test PCs of the
ModelNet40 test dataset, for the two PC codecs. The G-PCC
reference software, TMC13, version v14 was used under the
configurations defined in the MPEG CTC [49]. For JPEG
PCC, three different coding configurations are consideredfor
the SF and BS parameter values: SF=2 BS=128, SF=4
BS=64, and SF=8 BS=32; the study of the compression
performance for these configurations will allow to iden-
tify the most appropriate for the ModelNet40 test dataset,
notably considering its sparsity. The results in Fig. 7 allow
concluding:

• G-PCC Octree offers a better RD performance than
JPEG PCC, notably for the higher rates, what
is explained by the very high sparsity of the
ModelNet40 PCs. However, this behavior is not the same
for denser PCs coding, for which the JPEG PCC codec
has a clear RD performance advantage [29].

• For JPEG PCC, the SF and BS configuration values have
a noticeable impact on both the reconstruction quality
and coding rate.

• Higher values for the JPEG PCC SF parameter allow
to achieve a better RD performance for very low rates,
while lower SF values allow improving the RD perfor-
mance for higher rates.

• The JPEG PCC configuration using SF=4 and BS=64
offers the best overall RD performance trade-off for
coding the selected ModelNet40 test dataset.

The next subsection presents the PC classification perfor-
mance for the ST domain (original, voxelized, and decom-
pressed) pipelines.

C. SPATIAL TEMPORAL DOMAIN PC CLASSIFICATION
This subsection reports and analyses the PC classification
performance for the three ST domain classification pipelines,
i.e., original, voxelized and decompressed, described in
Section IV and presented in Fig. 3b. Fig. 8 presents the
average classification accuracy as a function of the rate (in
bpp), for the Top-1 and Top-5 classification metrics, for the
adopted ModelNet40 PC test dataset. The results in Fig. 8
allow concluding:
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FIGURE 8. Top-1 (left) and Top-5 (right) classification performance for the adopted ST domain PC classification pipelines.

FIGURE 9. Top-1 (left) and Top-5 (right) classification performance for the adopted compressed domain PC classification pipelines. For all solutions
involving JPEG PCC coding, SF=4 and BS=64 are used. Note that the results for the HighComp solution are not shown in the plots since they fall well
below the shown performance range: from 0.7% to 1.2% for Top-1 and 8.3% to 15.95% for Top-5.

• For the original and voxelized domains, PointGrid offers
similar PC classification performance for both Top-1
and Top-5, meaning that the voxelization of the input
PCs (to 8-bit) has no major impact.

• For the decompressed domain, JPEG PCC generally
offers better classification performance than G-PCC
Octree, notably for the SF=4 BS=64 and SF=8 BS=32
configurations, for both Top-1 and Top-5. Note that
this does not follow the same relative behavior as for
the compression performance shown in Fig. 7 (where
G-PCC Octree shows better RD performance), meaning
that JPEG PCC introduces compression artifacts on the
reconstructed PC that do not seem to impact as much
the PC classification performance as those introduced by
G-PCC Octree.

• For the JPEG PCC codec, the classification performance
depends significantly on the used coding configurations.

• The PC classification performance for the decompressed
ModelNet40 PC test set follows closely the relative per-
formance behavior observed for the RD performance.

Besides the objective RD performance and classification
performances, human visual inspection has shown that the
JPEG PCC (de)coded PCs with the SF=4 BS=64 configu-
ration look visually better. As this paper targets both man
and machine consumptions, this is the JPEG PCC coding

configuration selected to assess the performance of all the
designed compressed domain PC classification solutions, dis-
cussed in the next subsection.

D. COMPRESSED DOMAIN PC CLASSIFICATION
This subsection reports the PC classification performance for
the six compressed domain classification solutions designed
and presented in Section V. Fig. 9 presents the average
accuracy as a function of the rate (in bpp) for the Top-1
and Top-5 classification metrics for the adopted ModelNet40
PC test dataset. Table 2 presents a comparison between
the compressed and decompressed domains PC classifi-
cation curves using the BD-Top-k metric. The reference
pipeline/configuration selected for the BD-Top-k computa-
tion is the Decompressed JPEG PCC with SF=4 BS=64
solution. These results allow concluding:

• When considering a HighComp solution without any
retraining and without a Bridge, the classification results
are catastrophically low (the BD losses reach 77.5%
for Top-1 and 83% for Top-5). This is expected since
there is no adaptation between the latents produced by
the JPEG PCC codec and the latents expected by the
designed HighComp classifier, thus demonstrating the
need to design and train better solutions as described in
Section V.
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TABLE 2. BD-Top-1 and BD-Top-5 for the selected compressed domain PC
classification solutions.

• On the other hand, all other designed compressed
domain PC classification solutions offer considerably
better classification performance than the decompressed
domain classification solutions. This is most notable at
lower rates, where decompressed domain PC classifica-
tion tended to badly suffer from the heavier compression
artifacts, whereas the compressed domain classification
produces a more robust performance even at lower rates
since latents extracted from the original PCs are used.
Furthermore, some of the compressed domain PC clas-
sification solutions even present gains when compared
with the PointGrid classifier applied to the original or
voxelized PCs; this can be explained by considering that
the JPEG PCC autoencoder layers generate features that
are richer than those generated by the pruned layers from
the original PointGrid.

• The solutions using a Bridge have a PC classification
performance that is always better than the corresponding
versions only using a Partial Classifier (Pruning solu-
tions). This is expected since the additional layers in
the Bridge result in a deeper model with more layers
trained specifically for PC classification based on the
latent representation.

• For the designed compressed domain PC classifica-
tion solutions, as the compatibility level increases, the
PC classification performance decreases. This is easily
observed for the solutions using a Bridge, where the
best classification performance is achieved by the low
compatibility solution (9.67 versus 8.75 for BD-Top-1
for the LowComp and HighComp compatibility solu-
tions). This demonstrates the expected trade-off between
compatibility and classification performance.

• The compatibility versus classification trade-off is not as
evident for the solutions only using a Partial Classifier,
since the LowComp and MediumComp solutions have
approximately the same PC classification performance
(the HighComp solution has extremely low PC classifi-
cation results, as mentioned before).

• For BD-Top-5, the compressed domain PC classifica-
tion performance follows the same relative performance
behavior as for BD-Top-1, with more similar perfor-
mances for all solutions since Top-5 is a ‘more relaxed’
classification metric.

TABLE 3. BD-Top-1 and BD-Top-5 for different compressed domain
classification solutions.

The results clearly demonstrate that the design of the com-
pressed domain PC classification solution has a strong
influence on the related classification performance, even
more than the influence of the quality/rate of the latent
representation. The use of a Bridge (even with the simple
architecture proposed for the designed solutions to limit the
complexity) is a clear requirement for the improving PC
classification performance. It is important to note that all
the designed compressed domain PC classification solutions
use a lower number of weights than the original PointGrid
classifier.

E. PC CLASSIFICATION PERFORMANCE SENSITIVITY
STUDY
Table 3 shows the results of a sensitivity study targeting to
assess the performance of compressed domain PC classifica-
tion solutions with progressively lower weights compatibility.
The first half of the table corresponds to solutions using
only a Partial Classifier and the second half to solutions
also using a Bridge. The weights compatibility, shown in the
second column, is varied by decreasing the number of Partial
Classifier layers e with weights compatibility (i.e., the frozen
layers), shown in column 3. The results allow concluding:

• There is a general tendency for increasing the PC
classification performance as the level of compatibility
decreases, although the variations may be small and not
strictly monotonical.

• All the solutions with Bridge offer better classification
performance than the solutions without Bridge.

• While the difference between the HighComp and the
first MediumComp solution (shown in the first two rows
of the table) is limited to the retraining of a single Partial
Classifier CNN layer, the small variation of 100% to
89,82% in weights compatibility corresponds to a huge
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gain in PC classification performance (from a 77.49%
loss into a 3.22% gain for BD-Top-1). This is naturally
due to the absence of any JPEG PCC latents adaption in
the HighComp solution.

• Although training just the first Partial Classifier CNN
layer, the MediumComp (3CNN+3FC) solution already
offers better classification performance than the ref-
erence decompressed domain PC classification for
BD-Top-1 and BD-Top-5.

• For both LowComp cases, with and without Bridge,
when retraining all layers including the FC layers, the
classification performance does not improve much. This
may be explained by the fact that these layers are fun-
damentally responsible to aggregate the features and
perform the final classification, and so they do not ben-
efit from finetuning with compressed data.

Despite all the previous considerations being related to the
particular conditions used in this performance assessment,
the obtained results clearly validate the vision of compressed
domain CV processing for the future JPEG PC coding
standard. Moreover, given the generally good gains for all
tested compressed domain solutions, the selection of the best
compressed domain PC classification solution in terms of
compatibility with the original ST PointGrid classifier may
be based primarily on considerations related to exploiting
weights or architecture compatibility associated with each
particular use case.

VII. CONCLUSION AND FUTURE WORK
This paper proposes a taxonomy, the first of its kind, for
the design of ST compatibility-driven compressed domain
CV processing solutions, targeting the consumption of mul-
timedia signals by both man and machine using a single
compressed stream. The constraints related to performing
CV tasks in the compressed domain are presented consid-
ering the specific case of PC classification. To demonstrate
the potential of the proposed taxonomy, the state-of-the-art
DL-based JPEG PCC codec and the DL-based PointGrid
PC classifier were selected. Driven by the proposed taxon-
omy, six compressed domain PC classification solutions were
designed, covering different branches of the taxonomy, and
offering varying compatibility levels with the original Point-
Grid classifier. The experimental PC classification results for
four alternative classification pipelines (original, voxelized,
decompressed and compressed domains) show that the com-
pressed domain PC classification solutions offer the best
classification performance, while achieving a reduction in
the overall classifier model complexity. These results demon-
strate the potential of the current JPEG vision to develop
multimedia coding standards that simultaneously accommo-
date efficient fidelity-to-original coding and effective CV
tasks processing, not only for PCs but also for images with
JPEG AI.

Despite the positive presented results, the chosen codec
and classifier have some limitations. In future work, for the

JPEG PCC codec, the constraint imposed by the computa-
tionally heavy voxel-based representation may be overcome
by adopting a sparse tensor representation, which functions
similarly to the voxel-based representation, but it only rep-
resents explicitly the occupied voxels and their coordinates;
this makes it significantly lighter in terms of computational
complexity, and it allows the use of point-based classifiers
as well as the voxel-based classifiers. As for the classifier,
in this case PointGrid, its major limitation is the use of a fixed
input block size, which may be overcome by designing an
adaptive Bridge that is able to resize the compressed latent
representation produced by the codec into the size expected
by the Partial Classifier.

Future work will also follow the development of JPEG
DL-based standards and develop architectures for other com-
pressed domain CV tasks and modalities.
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