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Concurrent error detection (CED) is the detection of errors or faults in a

circuit or data path concurrent with normal operation of that circuit. The general

approach for CED is to calculate a check symbol for the inputs to the circuit under

operation, predict the check symbol that will result for the output of the circuit for

those inputs, and compare the predicted check symbol to the one that is actually

calculated for the output. If the predicted and actual check symbols are different,

an error or fault has been detected. The alternative to this check symbol prediction

is to use a second copy of the circuit under operation and compare the results of the

two circuits. For some classes of circuits the prediction of the output check symbol

can require less circuitry than a second copy of the circuit being tested. Four

examples of these types of circuits are examined in this dissertation: Arithmetic

Logic Units (ALUs), array multipliers, self-synchronous scrambler-descrambler

pairs with their intervening data path, and switch fabrics.
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Faults in integrated circuits tend to produce unidirectional errors.

Unidirectional errors are those in which all of the errors are in the same direction

(e.g., 0 to I errors) within the block of data covered by a given check symbol. For

this reason, codes that are optimized for unidirectional errors are the focus of

investigation for most of the applications. In particular, the Bose-Lin codes are

examined for those applications where unidirectional enors are expected to be

typical. In order to examine the performance of the Bose-Lin codes in one of these

applications, it was necessary to determine the theoretical performance for Bose-

Lin codes for error rates beyond what had been previously studied. This analysis of

Bose-Lin codes with large numbers of "burst" errors also included a further

generalization of the codes.
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Concurrent Error Detection

1. INTRODUCTION TO CONCURRENT ERROR DETECTION

Concurrent error detection (CED) refers to the detection of faults and errors

concurrent with the normal operation of a circuit. A typical implementation for

concurrent error testing is to first calculate error check codes for the inputs to the

circuit. Then, based on the knowledge of how the circuit processes these inputs, a

second circuit calculates a predicted value for the output of the original circuit for

these inputs. The circuit performing this prediction calculation is referred to as a

check prediction circuit. Finally, the error check code is calculated for the actual

output of the original circuit and compared to the predicted value. An alternative

implementation is for the check prediction circuit to be an identical, second copy of
the original circuit and for the outputs of the two circuits to be compared directly.

For some classes of circuits, however, the check prediction circuit can be

implemented with a much smaller circuit than a second copy of the circuit being

tested. This dissertation focuses on such circuits where the check prediction circuit
will be smaller than the circuit being tested under operation.

Typically, the faults and errors encountered in integrated circuits are unidirectional.
Unidirectional errors are defined as having all of the errors occur in the same
direction. In other words, either the error causes 0 to 1 data errors or 1 to 0 data

errors, but not both in the same region of interest (i.e., within the data covered by

the same error check code).
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Input 1 C.S. Ii
I Input 2 C.S. 12

Circuit Check
Under Prediction
Test Circuit

Check
Calculation

I Output C.S. 0 I

I
Comparator

Check

Figure 1.1 Illustration of a circuit under operation
with CED using a check prediction approach

Berger codes, in which the check symbol is binary count of the number of zeros in
the data block, have been popular for CED applications because they have the
ability to detect all unidirectional errors in a block of data [1]. Bose-Lin codes [2]
are also based on the count of the number of zeros in the information data block.

The Bose-Lin check symbol is the binary value of this count shortened to a fixed
number of bits by taking the modulo remainder of this count. The most significant
bits of the check symbol are an m/2 out of m code. Bose-Lin codes with r check
bits have the advantage of being able to detect up to an appropriate t unidirectional

errors in a data block, irrespective of the length of that data block. Due to this
property, and the relative simplicity of the Bose-Lin codes, they appear to be
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potentially well-suited for concurrent error detection applications. Other popular

error detecting codes are Bit-Interleaved Parity (BIP) and Cyclic Redundancy

Check (CRC) codes. The Berger, Bose-Lin, BIP, and CRC codes are described in

greater detail in the following portion of this introduction.

The types of circuits that are best suited to concurrent error detection are those that

have a regular structure. For example, [3], [4], and [5] show the application of

Berger codes to the concurrent error detection of arithmetic logic units (ALUs) and

unsigned array multipliers. Since the Bose-Lin check symbol is an arithmetic value

based on the number of zeros in the data, similar to the Berger codes, circuits that

perform arithmetic functions should be particularly amenable to using the Bose-Lin

codes for concurrent error detection.

Chapter 2 of this dissertation examines the application of Bose-Lin codes to

concurrent error detection with ALUs and presents the results of this analysis.

Chapter 3 examines the applicability of Bose-Lin codes to concurrent error

detection in unsigned and two's complement array multipliers. Chapter 5 examines

concurrent error detection in switch fabrics and compares the performance of Bose-

Lin, BIP, and CRC codes that are popular in many telecommunications
applications.

One interesting additional question is how the Bose-Lin codes perform when there

are errors beyond t unidirectional errors. Chapter 4 gives a framework for

analyzing the performance of Bose-Lin codes with >t unidirectional errors. The

results of chapter 4 are used in the analysis of chapter 5.

Chapter 6 examines the interaction between CRC concurrent error detection codes

and self-synchronous payload scramblers. The problem here is that the feedback
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taps inherent in a self-synchronous descrambler give multiple errors in the data due

to each transmission channel error. The analysis of Chapter 6 examines the criteria

required to maintain error detecting capability in this situation, as well as the

criteria required for error correction.

I .1 BERGER AND BOSE-LIN CODE DESCRIPTION

1.1.1 Bergercodes

The Berger error detecting codes are implemented by counting the number of

zeros in the information word and appending this (binary) number to the

information word. Thus, a Berger code requires a minimum of r check bits, where

r is the smallest integer such that rlog2(k+1) and k is the number of bits in the

original data word. For example, for an information word of 10010100, which has

five zeros, the Berger coded word is 1001010001101.

.1.2 Bose-Lin codes for detecting double and triple errors

Both the double and triple error-detecting codes are constructed by counting the

number of zeros in the information word, in the same manner as the Berger codes.

The counts for the double and triple error-detecting codes are performed modulo 4

and 8, respectively. In other words, the double and triple error-detecting codes

have check length r=2 and r=3 bits, respectively, and the check symbol (CS) is

calculated as:
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CS = kOmod2'i

(kO is the number of zeros in the information word.)

1.1.3 Bose-Lin codes with more than three check bits (Method 1)

These codes are constructed by taking the modulo 2' 1 count of the number of

zeros in the information word and then creating the most significant bit (MSB) of

the CS by adding 22 to this count value. i.e.,

CS (kOmod2'-')+2'-2

where adding 2r2 is the same as setting the (r1)St bit equal to the (r-2) bit, and

then complementing the (r-2)' bit. The resulting codes are capable of detecting

2r-2+r2 unidirectional errors [1].

1.1.4 Bose-Lin codes with more than four check bits (Method 2)

These codes are formed by following steps. First, take the modulo(6 X 2r-4) of

the number of zeros in the information word. The r-4 least significant bits (LSBs)

of the remainder are used as the r-4 LSBs of the CS. The three MSBs of this

remainder can take the values {000, 001, 010,011, 100, 101). These six values

are then mapped to one of the possible 2-out-of-4 codes { 0011, 0101, 0110, 1001,

1010, 1100). In summary, then:



CSLSB = r-4 LSBs of kOmod(6 X 2'-)

CSMSB = f[3 MSBs of kOmod(6 X 2'-)I

where f[] is the function mapping from the modulo remainder to the 2-out-of-4

codes. The resulting codes are capable of detecting 5 X 2r-4 + r 4 unidirectional

errors. These codes are more efficient than the above Method 1 codes for r>6 [1].

Table 1.1 Example check code values for the Berger and Bose-Lin
codes for a 64-bit data word with 37 zeros.

Code Type Code Value

Berger 0100101

Bose-Lin Double Error 01

Bose-Lin Triple Error 101

Bose-Lin with> 3 check bits

(Method 1 with 4 bits) 1001

Bose-Lin with > 4 check bits

(Method 2 with 5 bits) 11001

1.2 BIT-INTERLEAVED PARiTY (BIP) CODE DESCRIPTION

A BIP-r code is constructed by partitioning the data block into r interleaved blocks

and applying a parity check bit to each partition. For example, a BIP-2 uses one
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parity check bit over all the even numbered bits in the data block and a second

parity check bit over all the odd numbered bits in the data block. Another popular

example is the BIP-8 code that is used on data blocks that contain some number of
eight-bit bytes. The first bit of the error check symbol is a parity check over first

bit in each data byte, the second check symbol bit is a parity check over the second

bit in each data byte, etc. Both the BIP-2 and BIP-8 are described in [6].

1.3 CYCLIC REDUNDANCY CHECK CODE DESCRIPTION

A CRC is a linear, cyclic code. A CRC-r is an r-bit code that is constructed with

the following steps. The data block to be protected is regarded as a GF[21

polynomial. Specifically, a k-bit long data block, is regarded as a GF[2]

polynomial of degree k-i with the data block's most significant bit (MSB) being

the coefficient of the term and its least significant bit (LSB) being the
coefficient of the x0 term. Letting m(x) represent this data block, the first step is to

multiply m(x) by 2' which results in a degree k+r- 1 polynomial with zeros in the r
LSBs. The second step is to divide this resulting degree k+r-1 polynomial by the

code's degree r generator polynomial g(x). (GF[2} division is used, which is also
called modulo 2 division.) The r-bit remainder resulting from this division, r(x), is

the CRC-r and is then appended to the LSB end of m(x) to form the r LSBs of the
degree k+r-i code word c(x). At the receiving or decoding end, c(x) is divided by

g(x). A consequence of the code construction is that all code words are divisible by
g(x). A non-zero remainder at the decoder therefore indicates the presence or an

error. There are variations in the specific details of the code construction (e.g., the

remainder is complemented before appending it as the check symbol for some

implementations), however the analysis of this dissertation assumes the approach
outlined here without loss of generality. CRC codes are discussed in detail in [7].
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Abstract: uses Berger codes and compares the check value of the ALU output to a

predicted check value that is calculated based on the input operand check values.

Berger codes have the property of being able to detect all unidirectional errors.

More efficient codes exist for detecting up to t unidirectional errors. This paper

examines applying these codes to self-testing ALU designs and shows that the

potential savings in check circuitry over Berger codes is up to 61 %, depending on

the code and the information word length.

2.1 INTRODUCTION

Recently, a self-checking ALU circuit was proposed based on Berger error

detecting codes [1]. Berger codes have the property of being optimal for detecting

all unidirectional errors in a data word [2]. In many applications, however, it is not

necessary to be able to detect all unidirectional errors, but is sufficient to detect up

to t unidirectional errors. A family of codes has been developed by Bose and Lin

[3] that are optimal for detecting up to t unidirectional errors and require fewer bits

than Berger codes. This paper begins with a review of the Berger and Bose-Lin

check codes and then reviews the Berger check prediction ALU of [1]. The
application of Bose-Lin codes to this type of ALU is then discussed, and the

potential circuitry savings is shown to be significant. (Depending the check code

and the length of the information word, the check circuitry savings over Berger

codes is in the range of 0-61%.) Finally, it is shown that when Bose-Lin codes are

used, the single fault secure property of the ALU is preserved.
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2.2 ERROR DETECTING CODES

Both the Berger and Bose-Lin codes are systematic. Bose-Lin codes have the

additional property that they need only a fixed number of check bits, independent

of the number of information bits. The codes are implemented as follows with

examples shown in Table 2.1:

2.2.1 Berger codes

The Berger error detecting codes are implemented by counting the number of

zeros in the information word and appending this (binary) number to the

information word. Thus, a Berger code requires a minimum of r check bits, where
r is the smallest integer such that r? log2(k+l) and k is the number of bits in the

original data word. For example, for an information word of 10010100, the

Berger coded word is 100101000101.

2.2.2 Bose-Lin codes for detecting double and triple errors

Both the double and triple error-detecting codes are constructed by counting the

number of zeros in the information word, similar to the Berger codes. The counts

for the double and triple error-detecting codes are performed modulo 4 and 8,

respectively. In other words, the double and triple error-detecting codes have

check length r 2 and r = 3 bits, respectively, and the check symbol (CS) is

calculated as:
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CS = kO mod 2.

(kO is the number of zeros in the infonnation word.)

2.2.3 Bose-Lin codes with more than three check bits (Method 1)

These codes are constructed by taking the modulo 2' 1 count of the number of

zeros in the information word and then creating the most significant bit (MSB) of

the CS by adding 22 to this count value. i.e.,

CS = (kO mod 2r-]) + 2r-2

where adding 22 is the same as setting the (r- I )st bit equal to the (r-2)' bit, and

then complementing the (r-2)' bit. The resulting codes are capable of detecting

2r-2 + r 2 unidirectional errors {3].

2.2.4 Bose-Lin codes with more than four check bits (Method 2)

These codes are formed by following steps. First, take the modulo (6 X 2') f
the number of zeros in the information word. The r-4 least significant bits (LSBs)

of the remainder are used as the r-4 LSBs of the CS. The three MSBs of this

remainder can take the values {000, 001, 010, 011, 100, 101). These six values

are then mapped to one of the possible 2-out-of-4 codes {0O11, 0101,0110, 1001,

1010, 1100). In summary, then:
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CSLSB = r-4 LSBs of kO mod (6 X 2')

CSMSB = f[3 MSBs of kO mod (6 X 2')]

where f[] is the function mapping from the modulo remainder to the 2-out-of-4

codes. The resulting codes are capable of detecting 5 X 2r-4 r 4 unidirectional

errors. These codes are more efficient than the above Method 1 codes for r> 6

[3].

Table 2.1 Example check code values for the Berger and Bose-Lin
codes for a 64-bit data word with 37 zeros.

Code Type Code Value

Berger 0100101

Bose-Lin Double Error 01

Bose-Lin Triple Error 101

Bose-Lin with > 3 check bits

(Method 1 with 4 bits) 1001

Bose-Lin with > 4 check bits

(Method 2 with 5 bits) 11001

2.3 CHECK PREDICTION ALU STRUCTURE

The basic idea of the check prediction ALU is to predict the check value of the

ALU output based on the values of the operands and their check values. In [1], it
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has been shown that for Berger codes, the check symbols for the following

arithmetic and logic operations are:

SX+Y > ScXc+Yc-Cc-cjn+cout
S = X Y > Sc = Xc c Cc cin + cout + n (2's complement)

SXAY> ScXc+Yc-(XvY)c
S=XvY=> ScXc+Yc(XAY)c
S=XEfY> Sc=Xc+Yc-2(XAY)c+n
S=X => Sc=Xc
SX > Sc=n-Xc
S=o => 5c=
S=l => SC=O

For addition and subtraction, the formulas are derived from the observation that

for the addition of the th bit of the two operands, the operation can be described

as:

xj+yj+cji =2cj-i-sj

where c is the carry. C is the number of zeros in the internal carries from the

ALU. Note that [11 includes the prediction formulas for the complete set of logic

functions, but the above set is sufficient for the immediate application.

The ALU proposed in [1] is shown in Figure 2.1 and Table 2.2. The aoa2 signals

are the control signals which select the ALU operation. The t1 signals are test

control signals that are generated as part of the test logic. Examination of the
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circuit in Figure 2.1 confirms that it is capable of performing all of the required

check prediction calculations for Berger codes for both arithmetic and logic

operations. The MCSA (Multi-operand Carry Save Adder) block is effectively a

two-stage, 2's complement adder circuit that performs the check prediction

arithmetic specified above.

X Y

fl A'fl

Cout Gin AND OR

ALU Ca(n)
aO

MUX
n n

ZERO COUNTER YcS
k k

t2 X2

Xc

k
t3

4k A'k
MCSA

+n t5

t3

t4

Figure 2.1 Berger check prediction arithmetic and logic unit
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Table 2.2 Function table for the BCP ALU of Figure 2.1

Control

aO al a2 Functions

ti

1

i =

2 3 4 5

00 X S=X+Y+cj 0 0 1 0 0 cout-cin+l
0 1 X S=X-Y-cin 0 0 1 1 1 cout-cin+2
100 S=XAY 1 0 1 0 0 1

101 S=XEY 0 1 1 0 1

110 S=XvY 00100 1

111 S=X xx00 0 0

2.4 APPLICATION OF BOSE-UN CODES TO CHECK PREDICTION ALUS

Throughout this paper, notations such as Xc are used to denote Berger check

values, while the notation Xc' is used for an equivalent Bose-Lin check value.

2.4.1 Double and triple error-detecting Bose-Un code

For these codes, the adaptation of the ALU in Figure 2.1 is straightforward. The

modulo 4 and modulo 8 arithmetic here is simply implemented by discarding the

appropriate MSBs. Thus, the k-bit wide portions of the check prediction circuit

are reduced to being two and three bits wide, respectively (i.e., use k = 3 and

k = 4). Also, the Bose-Lin check codes for the operands can be used directly (i.e.,
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use Xc' and Y' instead of Xc and Yc in the prediction circuit). Consider for

example the prediction formula for addition:

Sc' = Sc mod2' (Xc + Yc Cc Cj + cout) mod2r

S' = (Xc' + c' Cc' cm + cout) mod2'

2.4.2 Bose-Lin codes with more than three check bits

For these codes, the arithmetic circuits are not as straightforward. Care must be

taken in determining the MSB, because including the MSB in the arithmetic

operations of the prediction circuits will not always produce the correct results.

Remember that the MSB is formed by adding 2r-2 to the r-1 LSBs. This

operation guarantees that the resulting two MSBs will have different values. If all

r bits are used in the check prediction calculations, overflow can occur in the MSB

location that will produce a different predicted MSB than the CS MSB of the

result. (The addition of FFOFHEX and EO9FHEX provides an example

illustrating this problem.)

To solve the MSB overflow problems, we can first convert the r-1 LSBs back into

a modulo 2' count by subtracting and using these LSBs in the check

prediction operation. (Note that subtracting 2r-2 here is the same as

complementing the (r2)fld bit.) After the final r- 1 LSB values have been

calculated, the MSB is determined in the final stage by again adding For

example, consider again the addition operation (recalling that for modulo 21

arithmetic, adding 2r-2 is the same as subtracting 22):
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SC' (Sc mod2rl) + 2r-2

= (Xc + Yc Cc Cj + Cout) mod2rl + 2r-2

[(Xc'+ 2r-2) + (Yc'± 2r-2) C cj + + cout] mod2r + 2r-2

Sc' = [Xc' + Yc' Cc Cm + cout] mod2' + 2r-2

Similarly, the prediction formulas for the other operations become:

S X Y=> 5c' [Xc'- Yc'- C -cin +cout++n] mod2rl +2r-2

S = X A Y > 5c' = [Xc' + c' (X V Y)c] mod2' + 2r-2

S = X V Y > 5c' = [Xc' + Yc' (X A Y)c] mod2' + 2r-2

S = X Y > Sc' = [Xc' + Yc' 2(X A Y)c + n] mod2rl + 2r-2

SX >Sc'Xc'
S = X > Sc' = [n Xc' + 4] mod2' + 2r-2

S = 0 > c' = (n) mod2' + 2r-2

S=1 Sc'zOlOO

Thus, the check prediction can be performed by making the k-bit wide portions of

Figure 2.1 r- 1 bits wide, and making the appropriate arithmetic circuit changes in

the MCSA block (including adding 22 to the result in most cases). Again, Xc'

and Yc' are used instead of X and Y in the prediction circuit.
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2.4.3 Bose Lin codes with more than four check bits

Remember that the four MSBs of the CS are a 2-out-of-4 code derived from the

three MSBs of the modulo (6 X 2r-4) remainder. Rather than using the 2-out-of-4

codes for the prediction calculations, the four MSBs of Xc' and Y' are mapped

back to the three-bit values (i.e., take f[four MSBs of Xc'] and

f'[four MSBs of Yc']). The modulo (6 X 2r-4) remainder of the zeros counter

output is taken, and all operations are performed with modulo (6 X 2r-4)

arithmetic. The NAND, AND, and XOR gates of Figure 2.1 remain the same with

k = r- 1. Since all arithmetic for the MSBs is performed modulo (6 X 2r-4), the

"X 2" block is more than just a simple right-shift. The "X 2" block becomes a

(z + z) mod (6 X 2r-4) circuit, where z is the input. At the output of the check

circuit, either the three MSBs must be mapped into a 2-out-of-4 code, or the MSBs

of S' must be mapped (left) as three-bit values in order to compare the predicted

CS to actual CS.

To perform modulo (6 X 2r4) arithmetic, some modification is required to

conventional adder circuits. For example, if A and B are already

modulo (6 X 214) numbers, then:

ifAB<6X2r-4:
(A+B)mod(6X2'4)=A+B

if A + B 6 x 2r-4:

(AB)mod(6X214)=A+B6X2r4
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The modulo (6 X 2r4) arithmetic can be implemented as modulo 2' with an

additional subtraction being performed when A + B 6 X This subtraction

function can be included into the adder logic. (Note that for modulo I

arithmetic, subtracting 6 X 214 is the same as adding 2'.)

2.5 COMPARISON OF HARDWARE FOR THE DIFFERENT CODES

In order to compare the hardware impacts of various code alternatives, the

following assumptions are made. (1) A 'gate' here is equivalent to the number of
transistors in a two-input NAND gate. (2) The circuitry considered includes the
registers for the CS in both operands and the CS of the ALU output, as well as all
circuits shown outside the ALU in Figure 2.1 and the logic to generate the t and d

control signals. (3) The circuitry that generates the CS for the operands and ALU
output is not included. (4) The size of the check prediction circuits for the Berger

codes is 270, 417, 635, and 1035 gates for 8, 16, 32, and 64 bit words,
respectively, and (5) For check codes with more than four bits, the comparison of
the CS MSBs is performed with the 3-bit values rather than with the 2-out-of-4
codes.

The hardware impacts are compared in Table 2.3 for all cases in which the Bose-
Lin codes require fewer bits and less circuitry than the Berger code. The word
sizes considered are 8, 16, 32, and 64 bits. It can be seen from Table 2.3 that the

additional complexity of calculating the predicted value of the MSBs for Bose-Lin
codes with more than four bits (Method 2) offsets the savings from reducing the
CS length.
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As discussed extensively in [1], the Berger check prediction circuits of Figure 2.1

add some delay to the ALU operation. The use of Bose-Lin codes reduces this

delay in most cases by reducing the length of the adder circuits in the MCSA

block. For the Bose-Lin codes with more than four check bits, however, the

additional delay of performing the arithmetic (including the X2 shift) with modulo

6 X 2r-4 offsets the savings from the shorter MCSA adder circuits, so that these

codes will have somewhat more delay than with the Berger codes.

Table 2.3 Comparison of the hardware impacts of the alternative codes

Word # of BoseLinr Estimated gate savings
Length code bits over the Berger check ALU Savings

2 120 gates 44 %
8 3 56 gates 21%

2 200 gates 48 %
16 3 120 gates 29%

4 56 gates 13 %

2 336 gates 53 %
32 3 200 gates 31 %

4 117 gates 18%
2 634 gates 61 %
3 336 gates 32 %

64 4 197 gates 19%
5 (Method 1) 117 gates 11 %
5 (Method 2) 0 gates 0 %
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2.6 SINGLE FAULT SECURENESS

It has been shown in [I] that if the ALU uses a ripple carry adder, then single
faults in the adder circuits will affect the check prediction such that:

S' Sc' = 2(cm cm') + (Sm Sm')

where: Sc* CS of the corrupted ALU output,

Sc" = corrupted prediction circuit CS,

Cm = uncorrupted carry-out from adder cell m,

Sm = uncorrupted sum output from adder cell m,

Cm' = corrupted carry-out from adder cell m,

Sm' = corrupted sum output from adder cell rn.

When no faults are present, S'' Sc,' = 0. When a fault is present, lSc* 5c"I 2.

All of the codes discussed in this paper are capable of detecting this fault, since

the smallest modulo used is four.

It was also shown in [1] that if the ALU uses group lookahead adders, a single
fault will affect the check prediction such that:
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Sc Sc" 2(cp Cp) + Cq)

where: Cp = uncorrupted carry input of a group of slices m,

cq = unconupted carry output of group of slices m,

Cp' = corrupted carry input of a group of slices m,

cq' = corrupted carry output of group of slices m.

This difference holds true as the worst case for the group lookahead adders of
interest. Here, ISc* Sc"I 4, so all codes except the double error-detecting codes

are capable of detecting the fault. (Since the double error-detecting code uses

modulo 4 arithmetic, it cannot distinguish between Sc* Sc" = 0 and

Sc* Sc" = 4.)

2.7 CONCLUSIONS

For applications where it is sufficient to detect t unidirectional errors, it is more

efficient to use Bose-Lin codes than Berger codes. It has been shown in this paper
that Bose-Lin codes may also be applied to check prediction ALUs. The use of
Bose-Lin codes allows a significant reduction in the amount of check circuitry, but

preserves the single fault secure property of the Berger check prediction ALUs.
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Abstract: Concurrent error detection allows the real-time detection of faults in a
circuit during its normal operation. It has been shown that Berger codes can be
used to provide a single-fault-secure concurrent error detection for unsigned array

multipliers. As demonstrated in this paper, the overhead of the check circuit can be
greatly reduced if a Bose-Lin code can be used instead of a Berger code. This
paper extends the analysis from an unsigned array multiplier to a more general

two's-complement multiplier and demonstrates that a Bose-Lin code is adequate
for providing single-fault-secure coverage of both types of multipliers.

3.1 INTRODUCTION

In concurrent error testing, error check codes associated with the input to a circuit
are used to predict the error check code that will be calculated for the circuit's

output. If the predicted and actual values of the output's check code differ, then a

fault has been detected. It is important to keep the size of the prediction circuit
small relative to the size of the circuit under operation being tested, in order to keep
the probably of a fault in the prediction circuit much, much lower than for one
occurring in the circuit being tested. It has been shown that Berger codes may be
used for concurrent error detection with unsigned array multipliers to give single-
fault-security [1]. Unfortunately, the check prediction circuits can become rather
large with the Berger code, especially relative to residue check code approaches
[9]. The advantage of a Berger code, however, is that it has also been shown to
work well in the more general application of concurrent testing for arithmetic logic
units (ALUs), and it is convenient to use a single type of check code for all
mathematic circuits [2], [8]. It has also been shown that the Bose-Lin codes, which

are related to the Berger codes, can provide a more efficient single-fault-secure

ALU test [3]. In this paper, the Bose-Lin codes are analyzed for their performance
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with array multipliers. In addition to the unsigned array multiplier, the analysis is
extended to a more general two's complement array multiplier.

Section 2 of this paper reviews the Berger and Bose-Lin error detecting codes.
Section 3 analyzes their single fault performance for unsigned and two's
complement array multipliers. Section 4 shows the potential circuit efficiency
gained by using the Bose-Lin codes instead of the Berger codes.

3.2 REVIEW OF BERGER AND BOSE-UN CODES

Both the Berger and Bose-Lin codes are systematic. Bose-Lin codes have the
additional property that they need only a fixed number of check bits, independent
of the number of information bits. The codes are implemented as follows with
examples shown in Table 3.1:

3.2.1 Berger codes

The Berger error detecting codes are implemented by counting the number of zeros
in the information word and appending this (binary) number to the information
word [7]. Thus, a Berger code requires a minimum of r check bits, where r is the
smallest integer such that r log2(k+ 1) and k is the number of bits in the original

data word. For example, for an information word of 10010100, the Berger coded
word is 100101000101.
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3.2.2 Bose-Lin codes for detecting double and triple errors

Both the double and triple error-detecting codes are constructed by counting the

number of zeros in the information word, similar to the Berger codes. The counts

for the double and triple error-detecting codes are performed modulo 4 and 8,

respectively. In other words, the double and triple error-detecting codes have check

length r = 2 and r = 3 bits, respectively, and the check symbol (CS) is calculated as:

CS =kO mod 2'.

(kO is the number of zeros in the information word.)

3.2.3 Bose-Lin codes with more than three check bits (Method 1)

These codes are constructed by taking the modulo 2' 1 count of the number of

zeros in the information word and then creating the most significant bit (MSB) of

the CS by adding 22 to this count value. i.e.,

CS = (kO mod 2r-]) + 2r-2

where adding 22 is the same as setting the (rl)St bit equal to the (r-2)' bit, and

then complementing the (r2)fld bit. The resulting codes are capable of detecting

2r-2 + r 2 unidirectional errors [4].
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3.2.4 Bose-Lin codes with more than four check bits (Method 2)

These codes are formed by following steps. First, take the modulo (6 X 2r-4) of

the number of zeros in the information word. The r-4 least significant bits (LSBs)

of the remainder are used as the r-4 LSBs of the CS. The three MSBs of this

remainder can take the values {000, 001,010,011, 100, lOfl. These six values are

then mapped to one of the possible 2.-out-of-4 codes 0011, 0101, 0110, 1001,

1010, 1100}. In summary, then:

CSLSB = r-4 LSBs of kO mod (6 X 2')

CSMSB = f[3 MSBs of kO mod (6 X 2r-4)]

where f['] is the function mapping from the modulo remainder to the 2-out-of-4

codes. The resulting codes are capable of detecting 5 X 2r-4 + r 4 unidirectional
errors. These codes are more efficient than the above Method 1 codes for r 6 [3].
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Table 3.1 Example check code values for the Berger and Bose-Lin codes
for a 64-bit data word with 37 zeros.

Code Type Code Value

Berger 0100101

Bose-Lin Double Error 01

Bose-Lin Triple Error 101

Bose-Lin with > 3 check bits

(Method 1 with 4 bits) 1001

Bose-Lin with > 4 check bits

(Method 2 with 5 bits) 11001

3.3 ANALYSIS OF BOSE-LIN CODES FOR SINGLE-FAULT-SECURITY IN
ARRAY MULTIPLIERS

3.3.1 Unsigned array multipliers

In [1], it was shown that if the mathematical effects of all of the array multiplier

cells compromising the unsigned multiplier of Figure 3.1 are summed together, the
result is:

where:

Sc = flXc + flYc XcYc Cc

x =>:
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nI n

cc =
2

i=1 j=1

2n1

= k=O Sk

The derivation of this result can be understood from the analysis of the two's

complement multiplier in the next section.

a4xO a3xO a2xO aixO

p9 p8 p7 p6 p5 p4 p3 p2 p1

Figure 3.1 Example of an unsigned array multiplier
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3.3.2 Two's complement array multipliers

The two's complement array multiplier is similar to the unsigned multiplier except

that two new different types of multiplier cells are introduced [5]. The three types

of cells and their mathematical representations are given in Table 3.2. An

illustration of a two's complement array multiplier constructed from these cells is

shown in Figure 3.2.

3.3.2.1 Check prediction calculation derivation

The individual rows of the two's complement array multiplier can be

mathematically represented as follows:

Row 1:

aOxO = p0

alxO+aOxl =pl +2cll
a2xO + aixi = s21 + 2c21

afl2xO + a3xl = Sn2,I + 2cfl2,1

-aixO + afl2xl = -sni,i + 2c1,1

Row 2:

aOx2+cll +s21 =p2+2c22
alx2+c21 +s3l =s32+2c32

a4x2 + c3,1 + Sn2,1 = s.2,2 + 2c22

a3x2 + Cn2,I = -Sn.i,2 + 2c2,2
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-ai,xi + a2x2 + Cn1,1 = Sn,2 2c2

Rowr: (1<rn-2)
aOxr + Cr1,r1 + Sr,r1 + + 2Cr,r

anr2xr + Cn.3,r.j + Sn2,r1 Sn2,r + 2Cn.2,r

+ Cn2,r1 Sn4,11 = Sn1,r + 2Cn1,r

an3xr + Cn4+rrl Sn3+r,r1 = Sn3+rr + 2Cn3+r,r

-a1x11 + a2x + Cn3+r,r1 = Sn.2+r,r + 2Cn2+rr

Row n-i:

-aOxi + C2,n2 Sj2 = Pn-i 2Cni,n!

-aix + C1,2 Sn,n2 = Sn,n1 2c,i

-a3xJ + C2n5,n.2 S2n4,n2 S2n4,n

-a2xI + C2n4,n2 afl.xfl = S2n3n1

This row information can be generalized for each individual cell as follows:

kth cell in Row 1:

k=O: aOxO=pO

1 k n-2: akxO + aklxi = Ski + 2Ck,J

k=n-i: -aixO + a2x1 = -s1, + 2ci,i

k1" cell in Row r (2 r n-2):

0 k n-r-2: akx1 + cr+k,,11 + Sr+k,r.I = Sr+k,r + 2C+k
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n-r-1 k n-3: akxr + Cr+k.1,r1 Sr+k,r1 = -S+k,r + 2Cr+k,r

k = n-2: -anlxr a2x + Cn3+r,r1 = Sn2+r,r +2Cn2+r,r

kth cell in Row n- 1:

0 k n-3 -akx.1 + Cn+k2,n2 Sn+k.j,n2 = Sn+k1,n.i

k=n-2: -afl2xI + c2.4,fl2 a1X2 S2n.3,n1 2c23,1

kth cell in Row n:

k=0: + s,11 = Pn

1 k n-3: c+k1,fl + S+k,nI = Pn+k

k=n-2: -c2fl3,I c2fl3, + ax1 = P2n-2 2p2ni

Next let:

Npm number of is in the magnitude portion of product P
2n-2

Npm j=O I

Nam = number of is in the magnitude portion of input A

N =a1

Nxm = number of is in the magnitude portion of input X

Nxm ij
= the number of is in the positive cell sum outputs

n-2 2n-3N05 n-2
+
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Nsneg = the number of is in the negative cell sum outputs

Nsneg
n-2n:I-2

= the number of is in the positive cell carry outputs

N05
n-2n:r-2

Ncneg = the number of 1 s in the negative cell carry outputs

Ncneg
ii=n-]

Summing the equations for all of the cells in all of the rows and substituting gives:

(Nam)(Nxm) (ani)(Nxm) (Xni)(Nam) + ax1 = Npm 2P2n-1 + Ncneg

If we let Na, N, and N represent the number of ones in the a and x inputs out
product output, respectively, then the check prediction equations become:

Np = (Na)(Nx) (2)(x1)(Na) (2)(aj)(Nx) + Berger
(4)(a.i)(xi) ± (3)(P2n1) + Ncneg

Np = [(Na)(Nx) (2)(x1)(Na) (2)(a1)(Nx) + Bose-Lin

(4)(a1)(x1) + (3)(P2n-1) + Ncneg}modm

The check symbols for the product, a, and x inputs are CSp, CSa, and CSx,
respectively.

CSp = 2n (Npm + P2n)-
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CSa = n (Nam + api)
CSx = n (Nxm + xi)

Substituting and solving for CSp gives;

CSp = (n)(CSx + CSa + 2x1 + 2a1 + 2) n2 (CSa)(CSx)

(2)(x1)(CSa) (2)(a1)(CSx) + (4)(a)(xi)
(3)(P2n-1) + Ncneg

CSp = [(n)(CSa + CSx + 2x1 + 2a1 + 2) n2 (CSa)(CSx)
(2)(x1)(CSa) (2)(a1)(CSx) + (4)(a)(xi) +

Berger

(3)(P2n-1) + Ncneg]modA Bose-Lin

where A is the modulo for the Bose-Lin code (A=4 for the double error detecting 2-
bit code and A=8 for the triple error detecting 3-bit code). In the case where
(n)modA=O, which will be relatively common, the Bose-Lin check prediction
equation further reduces to:

CSp = 11- (CSa)(CSx) (2)(x1)(CSa) (2)(a1)(CSx) +

(4)(a1)(x1) + (3)(P2n-1) + Ncneg1modA

Bose-Lin with (n)modA=O



Table 3.2 Multiplier array cell types

CELL TYPE EQUATION

2c+sx+y+z

2c-s=y+z-x

-2cs=y-x-z

p9 p8 p7 p6 p5 p4 p3 p2 p1

Figure 3.2 Example two's complement array multiplier

p0
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3.3.2.2 Single fault security

From the check prediction equation, it can be seen that a fault it undetectable if

= ANcneg ANcpos

For the purpose of determining single fault security, it is useful to partition the
multiplier array into three sections as shown in Figure 3.3 based on the type of
cells.

P2.1 P2.2 Pr1 Pr1-i Pn-2 p1 p0

Figure 3.3 Partitioned array multiplier
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In the I section, there are four possible cases resulting from a single fault in a
column. Each of these faults results in a change to the product terms coming from
the I section, and in some cases also affects the carry total For the cases of
sum input faults, the change to is due to the carry output, and for the carry
input faults, the change in is due to the combination of the original fault and
its effect on the carry output. A zXN=+l corresponds to a 0 to 1 change and a AN=-

1 corresponds to a 1 to 0 change. These cases are summarized in Table 3.3

Table 3.3 Affects of single input faults to cells in the I
region

Case Affect

ANp + AN0 =

2 ANp+AN0=-1

3 ANp + = +2

4 ANp + = -2

5 ANp + = 0 with a +1 carry out of I

6 ANp+z\N0=0witha1 carryoutofl

NOTE: The values here include the initial fault if that fault
was on a carry input.

Cases 1-4 are contained within the I region are detectable. Cases 5-6 are not
detectable within in the I region, but affect either the adjacent II or 11* regions.



In the II region, there is no direct affect on a product output since all of the outputs

of the II region feed into the JJ* region. The affects of faults in the II region are

summarized in Table 3.4. As noted in the table, cases 7-10 can also be caused by a

carry-in from a fault in the I section.

Table 3.4 Affects of single input faults to cells in the II
region or a carry-in from an I region fault

Case Affect

7 L.Nsneg = AN05 (Note 2)

8 ANsneg 1 = AN05 (Note 2)

9 ANsneg +1 = (Note 2)

10 ANsneg 2 =

11 ANsneg +2 = ANcpos

NOTE I: The values here include the initial fault if that

fault was on a carry input for a cell in the II region.

NOTE 2: The outcomes in the II region are also possible due to

carry in from a fault in the I region, in which case the effect of the

fault in the I region are not taken into account in this table.

Next examine the JJ* region. The possible outcomes due to a fault in the 11* region
are shown in Table 3.5.
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Table 3.5 Affects of single input faults to cells in the 11*
region

Cas{ Affect

12 PNcneg41

13 ANPANcneg=1

14 ANp + AN0 SNcneg = +1

15 ANp + ANcneg = +2

16 ANP+\NcposANcneg1

17 ANp + AN05 ANcneg = -2

18 ANp + ANcneg = 0 with an effect on

P2n-1

NOTE: The values here include the initial fault if that fault
was on a carry input.

Of course, any fault affecting the II region directly effects the 11* region since all of
the II outputs are inputs to the 11* region. It is also possible that the carry out from
an I region fault directly affects the JJ* region without affecting the II region.

Finally, of course, an I fault can affect the II region which in turn affects the JJ*

region. The possible outcomes these combinations of affected regions are shown in
Table 3.6.
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Table 3.6 Affects of faults in the I or II region leading to an
impact on the 11* region

Case Affect

19 ANp + Ncneg +1 I into 11*

20 ANp + ANcneg = -1 1 into 11*

21 ANp + L\Ncneg = -1 II into 11*

22 ANp + ANcpos ANcneg = +1 II into 11*

23 ANp + Ncneg = +2 II into 11*

24 ANp + ANcpos ANcneg = -2 II into 11*

25 ANp + ANcneg = +1 I into II into 11*

26 ANp + ANcpos .Ncneg = -1 I into II into 11*

27 ANp + ANcneg = +2 I into II into 11*

28 ANp + Ncneg = -2 I into II into 11*

From Tables 3.3-3.6, it can be seen that any single input fault will be detectable.
Further, since the mathematical changes are 2, -1, +1, or +2, a 2-bit Bose-Lin
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code, which uses modulo 4 arithmetic, is capable of detecting the fault. Hence,

single fault security can be accomplished with the 2-bit Bose-Lin code.

3.4 CHECK PREDICTION CIRCUITS

The check prediction circuit for the two's complement array multiplier is shown in
Figure 3.4. The MCSA is a multi-function carry-save adder. The amount of

circuitry required for the check prediction can be calculated on the basis if how
many full adder (FA) and half adder (HA) cells are required. It is understood,

however, that analog techniques such as those described by Lo and Metra would

further reduce the amount of overhead circuitry [6].

In order to calculate the amount of circuitry, first consider the following. The

number of cells in the LSB column for both the carry counter and the MCSA is 1 +

(#inputs-3)/2, since the first three inputs occupy one FA cell and the output of that

cell combines with two other inputs for the next FA cell, and etc. The number of

inputs to the second column of the carry counter or MCSA is the number of FA and

HA cells from the LSB column (i.e., the number of possible carries out of the LSB

column). Again, there are 1 + (#inputs-3)/2 FA cells in the second column, and etc.

for log2(#original input) columns. Fractional remainders in a column are a HA cell.
Note that for Bose-Lin codes, the cells in the second column don't need their carry
output circuits, and as a result are counted as fraction of a FA cell.
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Figure 3.4 Check prediction circuit

The number of inputs to the carry counter (2) is u + v = n2 n 1 (i.e., one less
than the number of cells in the main multiplier (1)). The number of inputs to the
MCSA for the Berger code case is: 3 + w + r + r + 2r = 3 + 4r + log2(n2 n 1).

For the case of the Bose-Lin codes, the number of MCSA inputs is 3 + r + r + r + r
= 3 + 4r = 11 for 2-bit Bose-Lin codes, regardless of the size of n. The values for
amount of circuitry in the check prediction circuits is shown in Table 3.7 for the

cases if n = 8, 16, 32, and 64. The amount of circuitry for a second multiplier is

included for the sake of comparison.
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Table 3.7 Amount of check prediction circuitry required for various
values of n

n Berger Bose-Lin 2 2nd Multiplier

8 8OFA+8HA 41FA+3HA 48FA+8HA

(4-bit comparator) (2-bit comparator) (8-bit comparator)

16 277FA+9HA 156FA+2HA 224FA+16HA

(5-bit comparator) (2-bit comparator) (16-bit comparator)

32 1044FA9HA 626FA+2HA 960FA+32HA

(6-bit comparator) (2-bit comparator) (32-bit comparator)

64 41O1FA+1OHA 2526FA+2HA 3968FA+64HA

(7-bit comparator) (2-bit comparator) (64-bit comparator)

As can be seen from Table 3.7, the Berger code check prediction circuits are always
larger that those of a second multiplier, so there is little advantage to a Berger code
approach. The Bose-Lin codes, however, consistently have less circuitry than

using a second multiplier. For n=8, the Bose-Lin code check prediction circuits are

only 84% of the circuitry required a second multiplier. For n=64, the Bose-Lin

code check circuits are only 63% of that for a second multiplier. (The check
symbol calculation circuits are left out of the size comparison under the assumption
that they are already in use to protect the integrity of the other circuits and data
paths.)



3.5 DELAY CONSIDERATIONS

The delay carry outputs from the main multiplier can be input to the carry counter

such that the delay between when the product is available and when the predicted

CS is available is the propagation delay through the columns of the MCSA. If the

delay through an adder cell is tCeIf and the delay through the comparator is
then the delay differential is:(tceii)log2(3 + 4r + log2(n2 n 1)) + tct)nJ for Berger
codes and (tceii)(3) + tcomp for 2-bit Bose-Lin codes.

3.6 CONCLUSIONS

The 2-bit Bose-Lin codes have been shown to provide single fault security for

two's complement array multiplier. They have also been shown to require much
less circuitry than either a second multiplier or a Berger code approach. In

addition, the amount of delay for performing the check prediction is comparable to

that required to compute the CS value over the final product. Thus, Bose-Lin codes

provide an attractive alternative to Berger codes for check prediction in array
multipliers, especially if check prediction is also being applied to ALUs with the
same operands.
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Abstract: Bose-Lin codes are systematic codes where the check symbol is based

on the count of the number of zeros in the information word. The paper

generalizes the codes such that the MSBs are considered to be an m/2-out-of-m
code, where m can range between 0 and r/2, with r being the check symbol length.
A Bose-Lin code is guaranteed to detect up to t unidirectional errors, regardless of
the length of the information word. This paper examines the Bose-Lin codes for
cases where >t unidirectional errors occurs. The analysis shows that the codes can
reliably detect many error cases of>t unidirectional errors, and that the
performance improves with larger m.

4.1 INTRODUCTION

Bose-Lin error detecting codes have the property of being optimum for detecting
up to t unidirectional errors in an information word, regardless of the length of the

information word. [1] Unidirectional errors are typical of those created by faults

within integrated circuits. A fault may occur that affects >t bits (e.g., a fault on
one or more bits of a data path). These cases raise the questions of how well

Bose-Lin codes perform in the presence of errors other than <t unidirectional
errors, which are the subject of analysis of this paper. The results show that Bose-

Lin codes can perform very well for >t unidirectional, and also shows the choice
of m that gives t, (i.e., m = 4) is not the optimum choice for >t errors.

The paper begins with a review and generalization of Bose-Lin codes, and then
proceeds to the analysis for >t unidirectional errors.



4.2 GENERALIZATION OF BOSE-LIN CODES

In the original paper by Bose and Lin, the codes were described as a family with
three different methods of construction, depending on the number of bits used for
the check symbol (CS). Here they are presented in a generalized form with the
three familiar methods being seen as special cases.

In general, Bose-Lin codes are systematic codes that are based on the count of the
number of data zeros in the information word. With Berger codes [2] the CS is
directly the binary number representing the number of zeros in the information
word. [f k is the number of bits in the information word and kO is the number data
zeros, then the required number of CS bits, r, is r=Iiog2(k-F1)1, where [xl is the

smallest integer x. Hence, CS length r is dependent on k. With Bose-Lin codes,
count of kO is taken modulo A so that the r remains the same regardless of k.

Specifically, for Bose-Lin codes count kO is taken modulo A:

(mAI Ix21
m/2)

where them MSBs of the CS are an m/2-out-of-m code and the r-m CS LSBs are
the modulo 2Tm remainder of kO. Examples are given in Table 4.1 Clearly, m=O is
the easiest to implement since the >r MSBs of count kO are discarded. For mO,
the one-to-one mapping of the rn-i modulo remainder bits into m/2-out-of-m code
words is arbitrary.
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Table 4.1 Code construction example for r=10 and kO =
13017=1 10010110110012

m kO mod A A Code Word

0 1011011001 2'° 1011011001

2 011011001 2x28 0111011001

4 011001001 6x26 0110001001

6 11011001 20x24 1110001001

8 10001001 70 x 22 11000011 01

10 10100101 252 0000011111

4.3 CODE PERFORMANCE WITH UNIDIRECTIONAL ERRORS

Note that the proof of the unidirectional error detecting capability of the Bose-Lin

codes here is different than the proof offered in [1] since the approach to the proof

taken here is more instructive for the remainder of this section. To begin with, first

the conditions under which undetectable errors occur must be established. Then we

will determine the fraction of the total possible error cases in which undetectable

errors occur.

Theorem 4.1: Errors are undetectable whenever (u+v)modA = 0, where:

u = the number of errors in the information word

v = the arithmetic change in the CS due to errors in the CS LSBs
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Proof. Clearly, if the number of unidirectional errors in the information word is

equal to the code modulo A and there are no errors in the CS, then the resulting CS

will be the same as the original CS, and hence no errors can be detected. Also,

clearly any errors in the in MSBs are detectable since they will destroy the rn/2-out-

of-rn code. For combinations of errors in the information word and the CS LSBs,

we have the following, situation, which is illustrated in Figure 4.1. Take first the

case of 0 to 1 errors. Each information word error here takes away one zero,

decreasing the received kO (kO') by 1. Each CS error here increases the arithmetic

value of the received CS LSBs by 2, where j is power of 2 represented by that bit.

By definition, errors are undetectable if the CS calculated over the received

information word is equal to the received CS (i.e., the received CS is correct for

that information word). If the raw count kO was used as the CS instead of a modulo

remainder of kO, then all error cases would be detectable. (This type of code is

known as a Berger code [2].) However, due to the modulo remainder being used

for the CS, errors are undetectable if the decrease in the number of zeros in the

information word (u) plus the arithmetic change in the CS LSBs (v) is equal to the

code modulo. QED
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Figure 4.1 Error effect example for 0 to 1 errors

Theorem 4.2: A generalized Bose-Lin code is capable of detecting up to t
unidirectional errors, where:

(m! _1J(2m)+ rm

Proof. The conditions for undetectable errors were established in Theorem 4.1.
Errors in the CS LSBs contribute a 2' term to (u+v)modA = 0, whereas
information word errors only contribute a 1 term. Hence, the smallest number of
total errors that satisfy the undetectability condition occurs when then CS LSBs
are originally all zeros and all are received in error (assuming 0 to 1 errors).
Arithmetically, this gives v 2im 1. So, the smallest number of total errors occurs
with (u+2"1'l)modA = 0. The smallest value of u for which this is true is A-2'm-
1. The maximum number of detectable errors, then is one less than this Umjn plus
errors in all the LSBs (r-m):
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t=(2)!2 _lj(2m)+r_m QED

It has been noted that for <t unidirectional errors, m=4 gives the best code

performance (i.e., the largest value of t for a given r as long as r?5).

A point that becomes apparent from the proof of theorem 4.2 is that not all values
of t>tmax will result in undetectable errors. In fact, due to the modulo arithmetic

used in creating the CS, there is a repeating pattern of errors interacting with the

CS. The number of errors, E, that can be undetectable is given in theorem 4.3.

The number of undetectable error cases is given in theorem 4.4 and the fraction of

all the potential error cases that are undetectable is given in the theorem 4.5.

Theorem 4.3: The number of different error counts, E (i.e., the different numbers

of errors), that can produce undetectable errors is:

NEu=2Ti

Proof: Per theorem 4.2, errors are undetectable whenever v+(u)modA=A. Now E
is the number of errors in both the information word and CS, so E=u+weight(v),

where weight(v) is the number of errors producing v (assuming 0 to 1 errors

without loss of generality). Substituting, we have (E)modA=A-v+weight(v) for

undetectable errors. A-v+weight(v) will take on unique values for each value of v.

However, values of v that differ in only the LSB produce the same A-v+weight(v)

value, since an error in the CS LSB affects both v and weight(v) in the same

direction. (e.g., a 0 to 1 error in the LSB adds one to both v and weight(v).

Hence, only half the CS values can produce a unique, undetectable value of E.
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Since there are 2m CS values, there are 2r-m,2=2r-m-1 unique undetectable values of

(E)modA. QED

Theorem 4.4: The number unique cases, EC, with undetectable unidirectional
errors for a Bose-Lin code is:

EC [(m/2)!2
3rm)

Note: Here the term "unique" means the following. Since E errors in the
information word is indistinguishable from E+A errors, only the case of E errors
will be considered to be unique for our purposes. Also, assuming 0 to 1 errors, the
number of cases here ignores the specific number of ways in which each given kO

zeros can be distributed among the I information word bits and ignores the ways in
which the errors can be distributed among the kO zeros. Similarly for 1 to 0
errors. As I increases, these combinations of zero distributions and error

distributions averages out such that each CS can be regarded as having roughly an
equal number of these combinations.

Proof: Examine the case where only 0 to 1 errors occur. (The proof is the same

for 1 to 0 errors.) There are 2'"' ways for errors to be distributed in the CS LSBs,

including zero errors, however the errors can only occur in the vulnerable bits (i.e.,
(rmthe 0 bits here). There are I I LSB values in which there are no zeros in the

r-m LSBs, and here only one LSB error patterns has undetectable errors (i.e., no

(rmerrors with (u)modA=0). There are
( I ,)

LSB values in which there are a single

zero in the LSBs. Here, there are two values of u that can have undetectable errors
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with LSB error patterns (i.e., no errors and a single error in the one 0 bit).

(rm
Similarly, there are LSB values with all Os, and 2r m error patterns arermJ
possible in the LSBs, since all of the bits are vulnerable. Summing all of these

gives:

rmy (rm
N=LomJ(20)+[ 2)+...+i

I rm)
r- nz/irmN=J (21)=3T_rn

Since there are [(JL)2
J

different MSB patterns per LSB combination, we have

the stated results. QED

Theorem 4.5: The fraction of error cases that result in undetectable errors for a
Bose-Lin code is:

1Fund =
m!(2fl2(m/2)!2)

4 3 j
Proof: The number of unique cases with undetectable errors was established in
Theorem 4.4. Letting A be the code modulo, the total number of ways in which 1
A errors can distribute themselves to give a unique case for a given MSB code is:

rn/2( J')\fr-rn( k (1
1rmCases/MSB=YJ I 'Y.I .1 .'Ai ,')i

where i = the number of errors in the MSBs

k = the number of LSBs vulnerable to errors

j = the number or errors in the LSBs
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A-i-j = the number of errors in the information word

A [(fl2)!2

Reducing and substituting gives:

Cases/MSB=(3rX22I m! rm
'(m/2)! ) 4 3

(Note that again, the ways in which a given number of errors distribute themselves

in the information word are not "unique" since they are all identical in how each

would affect the code performance.) Since there are
J

different MSB

values, we have:

Cases
(nil2)!2

3rmX2ni2[ J(2
m r m

Dividing the number of undetectable cases in a modulo window by the number of

unique error cases in a modulo window and simplifying gives the stated result.

QED
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Figure 4.2 Fraction of undetectable errors with Bose-Lin codes as a function of
the number of code MSBs, m, used in the m/2-out-of-m code
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As m increases beyond 4, Fund decreases with increasing m for a given r. This

means that while m=4 is the optimum value of m for detecting all errors up to t

errors, m>4 can be better if >t unidirectional errors are possible. Fund as a

function of m is shown in Figure 4.2 for three values of r. The choice of m for a

given r, therefore, depends on whether the number of errors is expected to

occasionally exceed tmax. The value of tmax decreases much more slowly with

increasing m than Fund increases with increasing m. Therefore, in general it

would be best to choose mr when it is possible to exceed tmax.

4.4 CONCLUSIONS

The Bose-Lin codes retain a high degree of error detecting capability for >t

unidirectional errors. The undetectable errors patterns repeat themselves using the

same modulo as the code. For >t unidirectional errors, the optimum value of m is

not m=4, which maximizes t. Here the optimum value of m is m=r. In a system in

which there is a combination of random errors <t and burst error >t, a compromise

value can be chosen.
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Abstract: A large portion of modern telecommunications and data

communications equipment contains switch fabrics for the cross-connecting or
routing of data. As the amount of data transiting these fabrics increases, it

becomes increasingly important to detect faults in the fabric, including its

associated data paths. Popular error detecting codes include the bit-interleaved

parity (BIP) and cyclic redundancy check (CRC) codes. This paper analyses the
performance of these popular codes and also analyses the performance of Bose-

Lin codes for this application. The Bose-Lin codes are shown to give superior
performance to the both the BIP and CRC codes. An extension to the well-known

Bose-Lin codes is also discussed which increases its data path fault detecting
capability.

5.1 INTRODUCTION

Switch fabrics are an integral part of much data and telecommunications

equipment, and increasing data rates make it increasingly desirable to detect faults
in these fabrics during normal operation. These switch fabrics can either operate

on time division multiplexed (TDM) data streams or packets/cells such as ATM
cells. Previous work concentrated on off-line tests for pattern-dependent memory
faults [6]. Currently, r-bit bit-interleaved parity (BIP-r) codes are popular for
error detection in TDM switches and r-bit cyclic redundancy check (CRC-r) codes

are popular for error detection in packet/cell switches. BIP codes are simple to

implement in high-speed circuits, however, they are not optimal for this

application from a performance standpoint. CRC codes offer good performance,

however, as discussed in this paper, the complexity of the code construction limits
how they can be used in this application. A different type of error detecting code
known as a Bose-Lin code [1] is proposed in this paper that overcomes the



limitations of the BIP and CRC codes, offering superior performance for most
cases with reasonable implementation complexity.

The paper begins with a brief review of the BIP-r, CRC-r, and Bose-Lin codes.

Section 3 of the paper discusses the problem of concurrent error detection in
switch fabrics, including the implications of the different switch types on this
problem. Section 4 discusses the application of the three error detecting codes to
switch fabrics and compares the performance and some implementation
complexity issues of the codes. The Bose-Lin codes are shown to have superior
performance to both the BIP and CRC codes for this application.

5.2 REVIEW OF THE CANDIDATE ERROR DETECTING CODES

Error detection that occurs during the normal operation of a circuit is referred to as
concurrent error detection (CED). The error detection codes examined in this

paper are systematic, which means that the error check symbol (CS) is appended

to the information blocks that it covers, leaving the original information bits

unchanged.

5.2.1 BIP-rcodes

A BIP-r code has r parity bits. Conceptually, the data in the information word is

divided into an integer number of blocks of r bits. The first bit of the CS is a
parity check over the first bit in each of these blocks. The second CS bit is the
parity check over the second bits in each of these blocks, and etc. For example, a
typical BIP-2 implementation has one CS bit provide parity over all the even-
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numbered bits and the other CS bit providing parity over the odd-numbered bits.

An example of a BIP-8 code is shown in [9] where the data is partitioned into

octets, and the first CS bit is the parity over the first bit in all data octets, the

second CS bit is parity over the second bit in all the octets, etc. BIP-r codes have

the advantage of being able to detect up to r errors in a data word as long as each

error occurs in a different partition. BIP codes have the drawback, however, of

being unable to detect an even number of errors in the data covered by an

individual CS bit.

5.2.2 CRC-r codes

A CRC (Cyclic Redundancy Check) code is formed by treating the data block to

be covered as a polynomial of the form m(x)=akIx+ak2x12+. . .+aix+a0, where

m(x) is a k bit long message block and a is the data value at the ith data position

(akI=MSB). For a CRC-r code, m(x) is divided by the CRC generator polynomial

g(x) and the remainder of that division is appended to the end of m(x) as the CRC

value such that dividing any such resulting n=k+r bit block by g(x) will result in a

remainder that has the same constant value regardless of the original value of
m(x). [Note that there are some variations among different CRC techniques

regarding exactly how the remainder is formatted to create the CRC CS, however

these do not affect the analysis for the purposes of this paper.] At the receiver, the

original data is regarded as error-free if the division of the received data block

(m(x) and the CRC) yields this constant remainder, since transmission bit errors

effectively change the a1 values of the transmitted polynomial. Errors are

undetectable whenever the received data block has been changed into another

valid code word (i.e., into a polynomial that will give the desired constant

remainder of zero when divided by g(x)).



5.2.3 Bose-Lin codes

Bose-Lin codes are optimized for applications with unidirectional errors.

Unidirectional error are defined as having all of the errors in the data block

covered by a given CS being in the same direction (e.g., 0 to 1). Errors due to

faults in integrated circuits are typically unidirectional, which has make

unidirectional error detecting codes popular for CED in ICs. Bose-Lin codes have

the property that they need only a fixed number of check bits, independent of the

number of information bits to be able to detect up to t unidirectional errors.

Bose-Lin codes are formed by taking the count of the number of zeros in the

information data bits modulo (m!/(in/2)!2) x 21m. The r-m LSBs of this binary

count form the r-rn LSBs of the CS. The m MSBs of the modulo count are

mapped into an m/2-out-of-m code that forms the m MSBs of the CS. For

example, if r=8 with m=4, the zero count is taken modulo 6 x 2. Of the seven bits
in the resulting count, the four LSBs are taken directly as the four CS LSBs. The

three MSBs of this remainder can take the values { 000, 001, 010, 011, 100, 101}.

These six values are then mapped to one of the possible 2-out-of-4 codes { 0011,

0101,0110, 1001,1010,1100). TheMSBmappingisarbitrary. Theversionsof
the Bose-Lin codes discussed in the literature use m = 0, 2, and 4, since m=4 is

optimum for guaranteeing the detection of the maximum number of unidirectional

errors. Examples of these codes are shown in Table 5.1. As discussed below,

extending the Bose-Lin codes to m>4 can provide better burst error performance.
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Table 5.1 Example check code values for Bose-Lin codes for a data word with 37
zeros.

Code Type Code Value

Bose-Lin with m = 0, r = 3 101

Bose-Lin with m = 2, r = 4 1001

Bose-Linwithm=4,r=5 11001

5.3 SWITCH FABRICS

The basic function of a switch fabric is to route data between two different ports
on the network. An example switch is shown in Figure 5.1. The two most general

ways to characterize a switch fabric are by the type data it switches and the

structure of the switch fabric. Each of these variations has a somewhat different

implication for error detection.

The two basic traffic types are packets/cells (e.g., ATM cells or Ethernet frames)
and TDM streams (e.g., SONET/SDH signals). In the case of TDM stream

switches, the switch fabric is sometimes called a time-slot interchange (TSI)

matrix since it separates out TDM time-slots (channels) from the incoming data

streams and regroups them into different output TDM streams. The example of

Figure 5.1 is this type of switch, and is very typical in telecommunications

applications. In the case of a packet/cell switch, the packets/cells are taken from



the incoming data streams and are switched into the appropriate outgoing data

streams on a packet/cell-by-packet/cell basis.

The two general categories of fabric structures are a crossbar switch or a multi-

stage switch network. For TDM signals, crossbar switches are typically

implemented with a shared memory such that the incoming data is written into this

memory. The switch output control then determines which data is read out of the

memory for each outgoing data stream. For example, incoming TDM data is

written into memory locations that are typically determined by their time-slots

within the incoming streams. A control memory then establishes the read

addresses and read sequences that are used to place this data into the outgoing data

streams. The size of the memory is usually established such that a convenient

amount of data is stored. For TDM switches, this is usually an integer number of

TDM frames worth of the incoming data. For packet/cell switches, the amount of
memory must take into account overflow situations where packets/cells from

multiple input streams are simultaneously destined for the same output data
stream. Examples of multi-stage switch networks include Cbs, Benes, and

Banyan networks. The key feature of a multi-stage switch network is that the

fabric consists of data paths with no memory elements.

There are two general approaches to applying error-detecting codes to switch

fabrics. The first approach is to apply error-detecting codes to each input grain to

the switch and check the CS at the output port. In the case of TDM streams, the
input grain would be the channel size to be switched (e.g., STS-1 or VT1.5 from

SONET). For packet/cell streams, the grain would be the packet or cell. With this
approach, the CS travels over the same data paths as the information block it

covers. Depending on the grain size or typical packet/cell size, this first approach

could require a significant number of CS bits relative to the information bits.
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Figure 5.1 Example of memory-based space-time-space switch fabric

A second approach is to apply the CS across a group of input grains and check the

CS across the rearranged outputs. This approach is more efficient in terms of

check bits, but is more complicated. For example, it could be applied to a TDM

TSI matrix by calculating the CS over all the data in one TDM stream across all

input streams. When the output is checked, however, the check must take into

account the effects of idle data that is not destined for an output as well as data

that is connected to multiple outputs (multi-cast). Another complication for

packet/cell switches is that it can be difficult to establish the appropriate

boundaries for this check with the corresponding time correlation between the

incoming and outgoing data. Since the point of the fabric is to rearrange the data,



a polynomial code like a cyclic redundancy check (CRC) is too difficult to use in

this application. In this approach, the CS would typically not travel over the same
data paths as the data.

It is assumed in this paper that each memory location is used at most once per data
block. Using the same memory cells multiple times per block leads to multiple

potential errors resulting from the same fault in the same block. As is apparent

from the analysis below, using the memory cells multiple times will degrade the

performance of BIP codes more than Bose-Lin or CRC codes.

5.4 CODE PERFORMANCE

Faults within ICs are typically unidirectional, and that is the assumption made in

the following analysis. There are two general types of faults that must be

considered. The first is a data path fault. The second fault type is a memory
element fault. Each of these fault types are treated separately rather than in

combination.

5.4.1 Data path fault performance

Data path faults will corrupt many bits of data. For example, a 'stuck-at-O' fault
on a data path will cause any data 1 that transits that path to be set to 0. The

number of errors is the number of input bits that have the opposite value as the

stuck fault. Parallel data paths are typically used in high bit-rate systems in order

to keep the data path clock rate at a reasonable value. In a typical data or

telecommunications system, the data is oriented around 8-bit bytes or multiples of



bytes. All switch fabrics here are assumed to be implemented using M x 8 bit

paths. The r-bit CS also typically uses r = N x 8 bits where N and M are not

necessarily the same.

5.4.1.1 BIP-r nerformance for data oath faults

The BIP-r code can be thought of as partitioning the information word into r

partitions. A data path fault is undetectable whenever the number of affected

information bits in that partition for that check bit is even. For 1 to 0 errors, this

means that all odd weight codes in the faulted partition will produce detectable

errors. If we assume that even and odd weight codes are equally likely in each

partition, then the probability that a fault in a partition is detectable is 1/2. The

performance of BJP-r codes with multiple data path faults depends on the ratio of

the check code length r to the data path width w. If all of the faults are in data

paths covered by the same check bit (i.e., are in the same code partition), then the

probability that the fault is detectable is still 1/2. If the faults are spread across

multiple partitions, then the probability of detecting the presence of at least one of

these faults is higher.

Given the presence of n faults, the probability of at least one being detected is:

Pundndpfault =
all combinationsof n in w

where k is the number of affected partitions for a given combination of n data path

faults.
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In the case of up to two data path faults, the total probability of the faults being

undetectable can be readily seen to be:

Pund =1 [ (PdpfaultXl Pdpfault) Q/)

r w/r 1

J
] (5.1)

where the first term in the inner brackets represents the cases where all faults

occur in the same partition, the last term in the brackets represents the case where

each of the faults is in a different partition, and Pdpfault is the probability of a

data path having a fault. In the special case where r=w, only a single fault can

occur in each partition and

Pundlndpfault = 2. (r=w) (5.2)

The results of (5.2) are plotted in Figure 5.3 along side the performance of the

other codes. The resulting total probability of the faults being undetectable is:

Pund total =1
[rrj

)(Pdpfault) (i Pdpfau1t for r=w

Pund total =1 1PdPfauy )' (1 PdpfaultY' (1 Pdpfault)r

[( Pdpfault r

Pundtotal=1_[1_
2 )

_(1_Pdpfault)r] (5.3)



Since Pdfault << 1, we can used the approximation (l-x) (l-nx) and simplify

equation (5.3) to:

(r)(Pdpfault)Pund total 1
2

(5.4)
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For the more typical case of r<w, there is no convenient closed form solution.

Since the probability of data path faults is very small, the two-fault equation above

is a reasonable approximation and lower bound for Fund. As written, (5.1)

assumes that w2r. The w/r ratio makes relatively little difference for any w/r

ratio in the range of interest, with (5.2) and (5.4) forming an upper bound on

Pundlndpfault and Fund total, respectively, as the w/r ratio increases beyond 1.

A drawback of the BIP code relative to the CRC or Bose-Lin codes is that it will

typically not be capable of detecting misconnected data paths. For rw, each CS
bit travels exactly the same data path as the data it checks so that the CS at the

output of the fabric will appear to be correct if no errors or faults have occurred

regardless of data path misconnections. For w>r, the misconnection detectability

is improved, but is still less than would be provided by a CRC or Bose-Lin code.

5.4.1.2 CRC performance for data path faults

For a CRC, the effect of a data path fault is similar to that of a burst error. Since

the burst length will be longer than r for the cases of interest, the probability of an

undetected error will be [2]:

Pundldpfault (2') (5.5)
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which is essentially constant for any number of data path faults. The results of

(5.5) are compared to the other codes in Figure 5.3.

5.4.1.3 Bose-Lin performance for data path faults

If the number of effected bits is t, then the Bose-Lin code will detect the data

path fault. For example, with r = 16, m = 4, the Bose-Lin code will detect up to

20492 unidirectional errors. If the data block is 20492-16 = 20476, then the

Bose-Lin code will detect all data path faults regardless of how many paths are

affected. On the other hand, assume that the bits covered by an 8-bit Bose-Line

code are the same as what is covered by the SONET/SDH B3 BIP-8 (6264 bits).

If an 8-bit data path is used, a single data path fault would cause up to 783 errors,

which is beyond the codes = 84. In this case, similar to CRC codes, the effect

of a data path fault will look like a burst error. It has been shown [3] that the

probability of an undetected unidirectional burst error for Bose-Lin codes is:

Pund
(2f2)

[I (nZ/2)!2
rrn)m r-ml (5.6)

As seen in Figure 5.2, while m = 4 is optimum from the standpoint of t,, [1],

Pund for burst errors decreases with increasing in. The results of (5.6) are plotted

in Figure 5.3 alongside the plots for the BIP and CRC codes.
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Figure 5.2 Burst error performance of Bose-Lin codes as a function
of the number of MSBs m used in the code construction given

that a burst error (e.g., data path fault) has occurred.
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Figure 5.3 Comparison of BIP-8, CRC-8, and 8-bit Bose-Lin (m=6) codes for
data path faults where Pundx(n) is the probability of the fault presence being

undetectable given that there are n faults for code x
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5.4.2 Memory fault performance

The memory faults will, of course, only occur in those switch fabrics that use

memory for either the crossbar fabric or for buffering. A switch network can be

implemented without memory elements (i.e., as a pure data path). Even if

memory is used for input or output buffers, this memory will look like part of the

data path if it is implemented as shift registers. This analysis assumes a memory-

based crossbar switch. The memory cell faults are assumed to be independent

events rather than a block occurrence.

5.4.2.1 BIP-r performance for memory faults

Let N be the total number of bits in the block, including the check symbol (i.e.,

N = I+r), and let n be the number of errors due to a fault. Within each code

partition, the number of vulnerable bits (assuming 0 to 1 faults and p0 and p1

being the respective probabilities of a 0 or 1 occurring in the information word

from the information source) is:

Pnvulnerable
(N/r0k pl

k(k
') (NI rtN/ fl 0k

k=n n) n ) kn

where k is the number of zeros in the information word. (For example, a bit is
vulnerable to a 0 to 1 error iff that bit is originally a 0.) This equation reduces to:

Pnvulnerable = oi[/J (5.7)
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Similarly, the vulnerable bits across all partitions is:

Pnvulnerable
j(N

Ok 1Nk(k ()fl
(N

(5.8)n) n)

Given n errors due to faults:

[ All combinations with an even number 1

[of errors in each affected partition (totalling n)]Pundlnerrors=
[All combinations of n errorsi

[ across all partitions J

For example,

Fund I 2errors [rIN/rJp02/[1vJp02 (rIJ/[NJ (5.9)

[[r1N/rj [ryN/
Fund I4errors=

[ 1 4 + 2
Jjo/[)o

(5.10)
[ (N/r)

4 2

If the fault probability is small, then Fund can be approximated as the sum of (5.9)

and (5.10). Pundis plotted in Figure 5.5 as a function of the given number of

errors with all terms taken into account in the example.
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The total probability for all numbers of errors can be determined as follows. The

probability of having n 0 to 1 errors resulting from faults in a single partition is:

pl/T H Ipe'ipeYpne/part=Ok Nk
(5.11)

k=n k
)

ftn)

where pe is the probability of a 0 to 1 fault, and k is the number of zeros in the

partition. Equation (5.11) can be simplified as follows:

I

O(1pe)rplpe

IN/rYk
Pne/Part=[

kn k fl

( pe j[N/r[N/_no(l)rl
Pne/Part=L k=n kn

1

(_pe /r pe)j 1Pne/Part=l_pe fl }k=O k

Pne/ part (pOpe)(i pOpe)N/ (5.12)

The probability of an undetectable error in a given partition is:

NIr(N/r
Fund/part = pOpe)'(l pOpe)' (5.13)

i=even. )



The total undetectable error probability across all partitions becomes:

Pund tot POpe)1]
(1 pOpe)N (5.14)

Leven fl

5.4.2.2 CRC performance for memory faults

The limit for a CRC-8 is that it is only guaranteed to detect a single error for

blocks of over 255 bits [4], and all of the blocks of interest will be larger than that

in the TDM cases. A CRC- 16 can be designed to detect up to 3 errors for blocks

in the range of interest [4], [5]. Beyond 3 errors, we must again assume that Pund
2. Overall, we would have the approximation:

Pundln errors (2') (5.15)

The CRC generator polynomial can be chosen so that the probability of

undetectable four-error patterns is better than 2, so this approximation is

somewhat rough but will be in the right order of magnitude. A plot of a CRC-8

performance as a function of the given number of errors is shown in Figure 5.5.

5.4.2.3 Bose-Lin performance for memory faults

Independent of the information word block length, the Bose-Line code can detect

up to terrors [1] where:
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t=l(7/)2 (5.16)

As illustrated in Figure 5.4, an 8-bit Bose-Lin code can detect up to 84 memory

faults if it is optimized for t, (i.e., with m = 4). If m = 8 is chosen to optimize

the burst error performance, the resulting is still a t,, = 69. For a 16-bit code, m

4 and m = 16 will give a t, of 20492 and 12869, respectively. Therefore, for

memory faults:

Pundln errors 0

for n in the range of interest.
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5.4.3 Comparison summary

For data path faults, the BIP-r code offers the worst performance. The total

probability of undetectable errors decreases linearly with increasing r. As a

function of the given number of errors, the BIP code Pund equals that for the CRC

only there is a fault in every data path, and is never better than the predicted Bose-

Lin performance. The CRC code performs much better with the probability of any

data path fault event being undetectable being 2'. Bose-Lin code provides the



best performance for data path faults, outperforming the BIP and CRC codes for

all data path fault combinations.

For memory faults, the BIP codes again offer the worst performance for low

probability of errors. As is illustrated in Figure 5.5, if the given number of errors

is odd, then the BIP is guaranteed to detect the presence of a fault. If the number

of errors is even, then the BIP appears to converge on Pund = 1/211. The CRC

code has a low limit on the number of detectable errors. The Bose-Lin codes offer

full fault error detectability for the numbers of faults that would be expected in

practical situations. (For higher numbers of faults, the memory faults look like

burst errors where the relative performance of the codes would be similar to the

data path fault cases.) The Bose-Lin code performance can be optimized for this

combined data path and memory fault application by choosing a compromise

value for in. For example, m=6 would be a good choice for r=8, and m=1O would

be a good choice for r=16.

5.5 CONCLUSIONS

For switch fabrics, the affects of both data path and memory cell faults must be

taken into account in determining the integrity of the fabric. Within an integrated

circuit, faults tend to cause unidirectional errors. The Bose-Lin codes, which are

optimized for unidirectional error performance offer superior performance to the

popular BIP and CRC codes for concurrent error/fault detection in switch fabrics

for both data path and memory faults. In order to optimize the Bose-Lin codes for

the type of burst errors that would result from a data path fault, a generalized

version of the codes with m > 4 should be used.
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Abstract: In order to protect public network data transmission from potential Layer

I attacks by malicious users, self-synchronous scramblers have come into

widespread use. Such networks include those using ATM, Packet over SONET

(POS), and the new Generic Framing Procedure (GFP). Unfortunately, feedback

taps inherent in self-synchronous descramblers cause multiplication of transmission

errors, which in turn degrades the performance of most popular CRC error check

codes. This paper analyzes this scrambler/CRC interaction with respect to the

resulting probability of undetectable errors and single transmission error correction

capability and establishes the theoretical criteria required for a CRC to maintain its

performance in the presence of the scrambler. These theoretical results are

extended for the general case of a t-error correcting linear, cyclic code (e.g., BCH

or Reed Solomon) in the presence of a self-synchronous scrambler. Some CRC-l6

codes are also presented that are optimized for these applications.

6.1 INTRODUCTION

As LAN data traffic is increasingly being carried over public WANs, issues arise

concerning the potential harm data from one subscriber could cause to data from

other subscribers. As will be discussed in more detail in section 2 of this paper,

this issue has lead to the use of self-synchronous payload scramblers for protocols

such as ATM, Packet over SONET/SDH (POS), and Generic Framing Procedure

(GFP). The drawback to self-synchronous scramblers is that the descrambling

process will multiply errors that have occurred during transmission, which in turn

can decrease the effectiveness of a Cyclic Redundancy Check (CRC) error code

over the payload data. After some further background on self-synchronous

scramblers, this paper provides a general analysis of the interaction between self-



synchronous scramblers and CRC polynomials and t-error correcting linear cyclic

codes (e.g., BCH or Reed-Solomon) in general. This analysis establishes the

theoretical criteria required for the code to maintain its overall probability of

undetectable errors and its error correction capability in the presence of a self-

synchronous scrambler. In order to address these interactions issues, a new class of

CRC-16 code has been identified that meets these criteria. It will also be shown

that for several important applications where packet lengths are known to be

relatively short (e.g., <l000bits), these new CRC-16 polynomials provide

substantially better performance than existing standard CRC-16 polynomials. The

preliminary results of this research were shown in [11].

6.2. SCRAMBLERS AND THEIR INTERACTION WITH CRCS

6.2.1 Background on self-synchronous scramblers

The transmission equipment that forms the backbone of the public telephone

network (i.e., SONET/SDH) uses a NRZ line code. The critical advantage of the

NRZ line code is that it makes the most efficient use of the channel bandwidth of

any baseband line code, and is very simple to implement. The main drawback to

NRZ is that if there is no transition between the values of the bits in the transmitted

data, there is no change in the level of the transmitted signal. The receiver relies on

these transitions to synchronize its clock/data recovery circuit for determining the

boundaries of the individual bits. During a long period with no line code

transitions, the relative clock differences between the transmitter and receiver can

cause the receiver to mis-sample the incoming data stream. The solution used in

SONET/SDH is to scramble the data with a frame-synchronized scrambler [1]. A



frame-synchronized scrambler, as illustrated in Figure 6.1 .a, is one in which the

transmitted data is exclusive-ORed bit-by-bit with the output of a pseudo-random

sequence generator, with the sequence generator being reset to a know state at the

beginning of every frame. The frame-synchronized scramblers are very effective in

increasing the transition density to an acceptable level for typical traffic. One

drawback of a frame-synchronized scrambler is that it is a known, relatively short

(2- 1) pseudo-random sequence and it is possible for a malicious subscriber to

attempt to mimic this pattern within the data he sends. The result is that if the

subscriber data lines up with the SONET/SDH scrambler correctly, a long string

can occur with no transitions, which in turn can cause the receiver to fail. This

phenomenon was observed with early ATM and POS systems and was addressed

from the outset with GFP. The solution used for each of these three protocols is a

self-synchronous scrambler over the payload region of the cell/frame.

A self-synchronous scrambler, as illustrated in Figure 6.1 .b, is one in which the

data is exclusive-ORed with a delayed version of itself on a bit-by-bit basis, which

is effectively a GF[2] division process. The specific scrambler used for ATM,

POS, and GFP exclusive-ORs the input data with scrambler output data after a 43-

bit delay [2], [10]. Iii other words, they use an x43-i-1 scrambler polynomial. The

descrambler reverses the process by multiplying the received signal by the same

scrambler polynomial. The advantage to such a scrambler in this application is that

it is very hard for a malicious user to duplicate due to its never having a known

reset point. The value of the scrambler state is function of the previous data rather

than the position of the data within the SONET/SDH frame. The drawback to a

self-synchronous scrambler is that any errors occurring on the transmission channel

will be duplicated 43 bits later by the descrambler. As a result, an error check code

over the data will have to deal with twice the bit error rate as that experienced by

the transmission channel.



6.2.2 Interaction between self-synchronous scramblers and CRCs

A CRC code is formed by treating the data block to be covered as a polynomial of

the form m(x)ak1x1'+ak2x2+. . .+a1x+a0, where m(x) is a k bit long message

block and a is the data value at the ith data position (akI=MSB). For a CRC-r
code, m(x) is divided by the CRC generator polynomial g(x) and the remainder of

that division is appended to the end of m(x) as the CRC value such that dividing

any such resulting n=k+r bit block by g(x) will result in a remainder that has the

same constant value regardless of the original value of m(x). [Note that there are

some variations among different CRC techniques regarding exactly how the

remainder is formatted to create the CRC. For a typical CRC- 16 application, the

division by g(x) is performed on x'6m(x) (i.e., m(x) shifted left by 16 places with

zero fill). The remainder is then appended to the LSB end of the m(x) as the CRC

code. As a result, the resulting k+r data pattern is always divisible by g(x) and

gives a constant remainder of 0.] At the receiver, the original data is regarded as

error-free if the division of the received data block (m(x) and the CRC) yields this

constant remainder, since transmission bit errors effectively change the a1 values of
the transmitted polynomial. Errors are undetectable whenever the received data

block has been changed into another valid code word (i.e., into a polynomial that
will give the desired constant remainder when divided by g(x)).
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Figure 6.1 Scrambler examples

The transmission errors occurring during the transmission of a data block can be

represented by the polynomial e(x). If the transmitted data block is represented by

n(x) (m(x) and the CRC), then the received data block r(x)=n(x)+e(x). As noted

above, error pattern e(x) is only undetectable when r(x)Ig(x) leads to the desired



constant value. Without loss of generality, the subsequent analysis of this paper

assumes that the CRC is implemented as typical for CRC-16s in which the

remainder of n(x)/g(x)=O. Then, the remainder of r(x)/g(x) is the remainder of

[n(x)/g(x)+e(x)/g(x)], which implies that an error pattern is only undetectable if the

remainder of e(x)/g(x)=O. In mathematical representation, the remainder of

a(x)/b(x) can be written as a(x)modb(x). The following error detection analysis is a

generalization of the work of [3], which addressed the specific case of the

interaction of the Ethernet CRC-32 polynomial with the SONET/SDH x43+ 1 self-

synchronous scrambler, and a further generalization of the work in [11].

Since the descrambling process for a self-synchronous scrambler effectively

multiplies the received data polynomial r(x) by the scrambler polynomial s(x), if

we let r'(x) be the descrambled data block, then:

r'(x) r(x)s(x)).

Since r(x) = n(x)+e(x), we have

r'(x) = s(x)[n(x)+e(x)} = s(x)n(x) + s(x)e(x)

r'(x)modg(x) = [s(x)n(x) + s(x)e(x)]modg(x)

= 0 + [s(x)e(x)]modg(x).

Consider a case where s(x) and g(x) have a common factor, f(x) of degree z. Then,
letting a(x) = s(x)/f(x) and b(x) = g(x)/f(x), we have [s(x)e(x)]modg(x) =

[a(x)e(x)]modb(x). This common factor effectively reduces the degree of the CRC

by z, giving a performance equivalent to a CRC-(r-z) polynomial. On the average,

the probability of undetectable errors for a CRC-r code is 1/2 for error magnitudes
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beyond what is guaranteed detectable. The common s(x), g(x) factor therefore

increases the undetectable error probability by a factor of 2, if the transmission

errors and the multiplied errors are all contained within r'(x). [It should be noted

here that the CRC-32 used for Ethernet is a primitive polynomial, and therefore has

no common factors with any typical self-synchronous scramblers.}

Theorem 6.1 The overall probability of undetectable burst errors is unchanged by

the descrambler as long as for CRC generator polynomial g(x) and scrambler

polynomial s(x), gcd(g(x),s(x))= 1.

Proof: As shown in Figure 6.2, there are six cases resulting from the error

multiplication due to the descrambling process. These cases can be analyzed as

follows. It is assumed in this analysis that s(x) and g(x) share no common factors,

or equivalently, that their greatest common divisor is 1, written as gcd(s(x),

g(x))=1.

Case a): All the transmission errors are contained within the one block and

the multiplied errors are in another block.

In this case, there is no error multiplication in this block and there is no

change in the CRC's error detection capability.

Case b): Both the original transmission errors and the multiplied errors are

contained within the same block.

The errors in this case are the original error polynomial multiplied by the

scrambler polynomial, i.e., e(x)s(x). Since s(x) is chosen by design such



92

that gcd(s(x),g(x))= 1, the errors are only undetectable when g(x) divides

e(x) (i.e., e(x)modg(x)=O), and hence there is no change to the error

detecting capability.

Case c): The transmission errors occurred in the previous block and all of

the multiplied errors are in the current block.

Here the errors that are present in the current block are the error polynomial

multiplied by the scrambler polynomial minus the original errors. (The

original errors can be thought of as the error polynomial times the scrambler

polynomial's "1" term.) These errors are detectable as long as the product

(e(x)[s(x)- 1 ])modg(x)O. If s(x)- 1 is chosen by design to have no common

factors with g(x), these errors will only be undetectable if e(x) is divisible

by g(x), and hence there is no change in the error detecting capability.

Case d): The transmission errors are split between the current and previous

blocks with all the multiplied errors in the current block.

The error pattern in this case is h(x)s(x) +j(x)[s(x)-1J = s(x)[h(x)+j(x)j

j(x) = s(x)e(x) j(x), since e(x) =j(x) + h(x). Hence, errors are only

undetectable when [s(x)e(x)-j(x)]modg(x)=O. Since we have chosen s(x)

such that s(x)modg(x)O, there are the following four resulting subcases.



1) Both e(x)modg(x)=O and j(x)modg(x)=O The probability of

undetectable errors here is (2r)(2r) (i.e., the probability of occurrence

for this sub-case). The inequality here is due to the fact that the degree

of j(x) is less than the degree of e(x), and is thus less likely to be divided

by g(x).

2) e(x)modg(x)=O and j(x)modg(x)O The probability of undetectable

errors here is 0.

3) j(x)modg(x)=0 and e(x)modg(x)O The probability of undetectable

errors here is 0.

4) e(x)modg(x)0 and j(x)modg(x)0 Errors are undetectable here if

[e(x)+j (x)] modg(x)=0. The resulting probability of undetectable errors

is

(l-2')(2) (i.e., the probability of e(x)modg(x)O and j(x) having a

value that meets the [e(x)+j(x)Jmodg(x)=0 criteria).

Summing for all four sub-cases gives a total of 2', and hence there is no

overall change in the probability of undetectable errors.

Case e): The transmission errors are all contained within the current block

and the multiplied errors are split between the current block and

the subsequent block.



The error pattern in this case is j(x)s(x) + h(x) = e(x) +j(x)[s(x)-1] = e(x) +

j'(x), and errors are undetectable when [e(x)+j'(x)]modg(x)=O. As with

Case d, there are four resulting sub-cases.

1) Both e(x)modg(x)=O and j'(x)modg(x)=O The probability of

undetectable errors here is (2t)(2). The inequality here is due to the

fact that the degree of j(x) is less than the degree of e(x), and is thus less

likely to be divided by g(x).

2) e(x)modg(x)=O and j' (x)modg(x)O The probability of undetectable

errors here is 0.

3) j'(x)modg(x)=O and e(x)modg(x)0 The probability of undetectable

errors here is 0.

4) e(x)modg(x)0 and j'(x)modg(x)O Errors are undetectable here if

[e(x)+j'(x)Jmodg(x)=O. The resulting probability of undetectable errors

'S

(1 2T)(2T)

Summing for all four sub-cases gives a total of 2, and hence there is no

overall change in the probability of undetectable errors.
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Case f). The transmission errors and the multiplied error both straddle the

boundaries of the block and an adjacent block.

The error pattern in this case is h(x) + h'(x) = e(x)s(x) k(x), where k(x) =

j(x) +j'(x). The analysis is not as straightforward here since h(x) + h'(x)

can either lead to a higher weight error polynomial than e(x)[s(x)-l] or a

lower weight error polynomial due to terms in h(x) canceling terms in h'(x).

The resulting error polynomial has lost much of its correlation with e(x). In

any case, we know that the length of the error burst within the block is

shorter than e(x)[s(x)-l]. Here there are two sub-cases:

1) e(x)modg(x)=O Here the probability of [h(x)+h'(x)]modg(x)=O is

(216), so there is no change to the undetected error probability.

2) e(x)modg(x)O Here the probability of [h(x)+h'(x)}modg(x)=O

remains (26)

The total error probability is (2')(2) + (l-2')(2) = (2) as before, so even

though the specific undetectable error patterns change, there is no overall

change in the probability of undetectable burst errors.

QED



Case a) r'(x)

e(x) e'(x)=e(x)[s(x)-l]

Case b) r'(x)

e(x) e(x)[s(x)-1]

Case c) r'(x)

e(x) e'(x)[s(x)-l]

Case d) r'(x)

e(x) e(x)[s(x)-1}

h(x)
L

h'(x)

Case e) r'(x)

Case I

e(x) e'(x)[s( )-1]

h(x)' j'(x)j(x)

Figure 6.2 Error multiplication cases resulting from descrambling





6.2.3 Criteria for error detection and correction

As has been shown, the CRC will only maintain its error detecting performance in

the presence of the self-synchronous scrambler if g(x) and s(x) have no common
factors. In order to minimize the implementation complexity as well as error

multiplication, self-synchronous scramblers are typically implemented with a

single feedback tap (i.e., use an s(x) = xm+1 polynomial). As noted earlier, the

SONET/SDH payload scrambler uses an x43+l scrambler polynomial. Any

polynomial of the form ml has x+l as a factor. Unfortunately, since this x+l
factor guarantees that a CRC will be capable of detecting all odd numbers of

errors [4], most of the popular standard CRC polynomials, including all the

popular CRC-16s, also have x+l as a factor. The challenge for data that may be

transported over SONET/SDH, then, is finding a g(x) that is single, double, and

triple error detecting (i.e., has a minimum Hamming distance of dmjn4) without

any common factors with the x43+l scrambler polynomial.

It is worthwhile reviewing the error detecting criteria for CRC polynomials at this

point. A g(x) is single error detecting if it has more than one term. As noted in
[4], g(x) can be guaranteed to be double error detecting for a block of length n as
long as it contains a factor that is primitive of degree of at least log2n. This

consequence follows from the definition of a primitive polynomial, which is an

irreducible polynomial for which, if the polynomial has degree m, the smallest
x+1 polynomial that it divides is for n=2m-l. Since a double error pattern in
which the errors are k bits apart is represented by an e(x)=x"+ I, we know that the

remainder of e(x)/g(x) can not be zero as long as g(x) contains a primitive factor

of degree at least log2k. As long as k>n, we can not have two errors in the same

block and still have g(x) divide e(x). The challenge comes for triple error
detecting. The x+l factor is popular for the obvious reason that it provides an



easy method to guarantee triple error detection. Since the x+l factor cannot be

used for an application with a m+l scrambler, different polynomials had to be

tested to determine the smallest degree e(x) for which g(x) divides e(x).

A further desired criterion for g(x) is that it allows single transmission error

correction. A CRC-r is capable of single error correction for blocks of up to 2'-!

bits as long as it maintains a dmj23 over this range. In general, in order to

perform error correction a code must produce unique syndromes for each error

pattern. (A syndrome for a CRC is the remainder produced by the division of the

received block, which is [r'(x)]modg(x) here.)

Theorem 6.2 Single error correction is possible with CRC generator polynomial

g(x) and a scramble polynomial of the form s(x)=xml as long as gcd(g(x),

s(x))=l and dmin4 over the block size n.

Proof: Single error detection is possible if each of the following criteria are met,

which are the mathematical statement for the required uniqueness for each

syndrome:

1. x'modg(x) x3modg(x) for all ij n

2. [(x')(x'+1)}modg(x) [(x)(xm+1)Jmodg(x) for all ij n

3. x'modg(x) [(x-')(x"+l)}modg(x) for all i andj n.

Assume an equality for each criterion, and then determine the criteria under which

a contradiction occurs.



Criterion 1: (x + x)modg(x) 0

[(x')(l + xk)]modg(x) = 0 forj = i + k.

But, since gcd(x', g(x))=1 and gcd(1+x', g(x))=1 due to g(x) providing

dmin4, criterion 1 is met.

Criterion 2: [(xm+1)(x+xJ)]modg(x) = 0

[(xm+1)(x1)(l+xo)]modg(x) = 0 forj = i + k

But, since gcd(x', g(x))=1 and gcd(1+x', g(x))=1 due to g(x) providing

dmin4, criterion 2 is also met.

Criterion 3: [x'+(x)(1+xm)]modg(x) = 0

which gives:

[(xi)(1+x/+xm)]modg(x) = 0 for i =j + k and

[(x1)(1+xk+xm)1modg(x) = 0 forj = i + k

Again, gcd(x', g(x))=l. Since l+XI(+xm and lk+m have a weight of

three, we are guaranteed that gcd( I g(x))= 1 and gcd (1 +k+m,

g(x))= 1 for our assumed dmjn4.

QED
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The proof of theorem 2 is for the strong case in which all possible single errors

and all possible descrambled errors within the block have unique polynomials. A

weaker case is also possible as long the data is always guaranteed to pass through

a scrambler/descrambler, since in this case the only single errors of concern will

occur within k bits of the boundaries of the n bit block. Theorem 2 and its proof

can be further generalized as follows:

Theorem 6.3 Single error correction is possible with CRC generator polynomial

g(x) and a scramble s(x) as long as gcd(g(x), s(x))=1 and dmjn (2 + wt(s(x))) over

the block size n, where wt(s(x)) is the weight of the polynomial s(x).

Proof: Single error detection is possible if each of the the following criteria are

met, which are the mathematical statement for the required uniqueness for each
syndrome:

1. x'modg(x) xmodg(x) for all ij n

2. [(x')(s(x))}modg(x) [(x)(s(x))Jmodg(x) for all ij n

3. x'modg(x) [(x)(s(x))]modg(x) for all i andj n.

Assume an equality for each criterion, and then determine the criteria under which
a contradiction occurs.
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Criterion 1: (x' + x)modg(x) = 0

[(x)(1 + x')]modg(x) = 0 forj = i + k.

But, since gcd(x', g(x))=1 and gcd(1+x', g(x))=1 due to g(x) providing

dmin2, criterion 1 is met.

Criterion 2: [(s(x))(x'+x)]modg(x) = 0

[(s(x))(xI)(1+xo)]modg(x) = 0 forj = i + k

But, since gcd(x', g(x))=1, gcd(1+x', g(x))=1, and gcd(s(x), g(x))=1 due to

g(x) providing gcd(g(x), s(x))=l and dmjn (2 + wt(s(x))), criterion 2 is also

met.
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Criterion 3: [x'+(x)(s(x))]modg(x) = 0

which gives:

[(x')(l+x's(x))]modg(x) = 0 forj = i + k and

[(x')(x"+s(x))]modg(x) = 0 for i =1 + k

Again, gcd(x', g(x))=1. Since the weight of the polynomials 1+x"s(x) and

x'+s(x) are at most one greater than s(x), we are guaranteed that

gcd(l-1-x"s(x), g(x))=l and gcd (x'+s(x), g(x))=l as long as dmin (2 +

wt(s(x))).

QED

Again, the strong case proof has been presented. This theorem can be further

generalized for any linear, cyclic t error correcting code as follows:

Theorem 6.4 It is possible to correct t errors with a generator polynomial g(x)

and a scramble s(x) as long as gcd(g(x), s(x))=1 and dmin 1 + (t)(1+wt(s(x))) over

the block size n, where wt(s(x)) is the weight of the polynomial s(x).

Proof: In general, a djn? 2t +1 is required for the correction oft errors. For any

arbitrary error patterns e(x) or e' (x) with weight t, which are therefore detectable

if no scrambler is present, the error detection criteria for this case become:

1. [(x')(e(x))]modg(x) [(x)(e(x))]modg(x) for all ij,

2. [(x')(e(x))(s(x))}modg(x) [(x)(e(x))(s(x))]modg(x) for all ij,
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3. [(x1)(e(x))]modg(x) [(x)(e'(x))(s(x))]modg(x) for all i,j, e(x), and e'(x)

Criterion 1: {(xt + x)(e(x))]modg(x) = 0

[(x')(l + x")(e(x))]modg(x) = 0 forj = i + k.

But, since gcd(x', g(x))=1, gcd(1+x', g(x))=1, and gcd(e(x), g(x))=1 due to

g(x) providing dmjn2t+l, criterion 1 is met.

Criterion 2: [(s(x))(e(x))(x'+x')Imodg(x) = 0

[(s(x))(e(x))(x')(1+x")]modg(x) = 0 forj = i + k

But, gcd(x', g(x))=l and gcd(1+x', g(x))=l as with criterion 1. Also

gcd(s(x), g(x))=l due to choice of g(x). It's not necessarily true that

gcd(e(x), g(x))=1, however as long as the gcd of the other factors with g(x)

is 1, it is sufficient that e(x)modg(x) 0, and so criterion 2 is also met.

Criterion 3: [(x')(e(x)) + (x)(e'(x))(s(x))]modg(x) = 0 for all i,j, e(x), and e'(x)

The worst case weight of (x')(e(x)) + (x')(e'(x))(s(x)) is t+(t)(wt(s(x))), so

the criterion is met as long as dmjn 1 + (t)(1+wt(s(x))).

QED
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The worst case number of errors seen in the block is (wtm(e(x)))(wt(s(x))) =

(t)(wt(s(x))). In general, to correct this many errors would need dmjn =

(2)(t)(wt(s(x)))+l. But, (2)(t)(wt(s(x)))+1 > 1 + (t)(1+wt(s(x))), since wt(s(x)) ? 2.

Hence, as either t or wt(s(x)) grow, the dmin savings become increasingly

substantial for a code to correct t' errors produced by descrambling relative to a

code that must correct t' errors in general.

For theorems 2-4, the dmjn requirement for criterion 3 is an upper bound. Since a

CRC is typically a shortened block code, it is possible that there may exist unique

syndromes that allow error correction with smaller dmjn values. For the GFP

example shown below, only a total of 536+450=980 syndromes are required to be

unique out of a total of 65365 possible syndromes. The only way to determine

whether the error correction is still possible with the smaller dmjn is to perform an

exhaustive evaluation. One method is to calculate the syndromes for each

possible error case that we desire to correct, and compare them for uniqueness.

Alternatively, using criterion 3 directly, it is sufficient to determine whether

[x1+(x')(s(x))]modg(x) = 0 for all i andj in the range of interest. If we assume a

serial shift division, both alternatives are 0(n2).

6.2.4 Example Transparent GFP superbiock

The target application that originally motivated the search was the 536-bit

superblock structure of Transparent GFP [12]. The results from this example are

instructive since xm+1 is the typical form for a self-synchronous payload

scrambler. Since a factor with at least degree 10 was required to guarantee double

error detecting capability (2b01= 1023), all g(x) candidates containing a factor of

degree of least 10, but with no common factors with x43+1, were evaluated. Note
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that [5] demonstrated that the largest block for which a CRC-16 polynomial can

detect 4 errors is 257, and hence four-error detection is not possible with the 536-

bit block size. The four error detection capability was used, however, as the

deciding factor in choosing g(x) for the Transparent GFP application.

For single error correction with SONET/SDH transport, the CRC must be capable

of correcting not only single errors in the block, but also double errors spaced 43

bits apart from the output of the payload descrambler. As shown in theorem 2, the

choice of g(x) with dmin4 guaranteed the capability.

One significant result of this study is that the largest block over which dmin4 is

possible without an x+l factor is at least 32768 bits, with several degree 16

primitive polynomials giving this coverage. Another interesting result in this

regard is that all g(x) that are the products of any degree 10 primitive polynomial

times the product of the two unique degree 3 primitive polynomials maintain

dmin4 for blocks of up to 7160 bits. Since the highest degree factor is 10, these

particular g(x) polynomials are only theoretically guaranteed to be double error

detecting for up to 1023 bits.

In general, the probability of undetectable errors is:

Pund(e,n)= Ae'(l e)'
i=dm, (n)

where e is the bit error rate and A/ is the number of length n codewords with

Hamming weight i.
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An exhaustive analysis would take a prohibitive amount of computation.

Alternatively, the MacWilliams identity could be used to reduce the computations

as in [5], [6], [7], [8]. For the specific case of the 536-bit Transparent GFP

superblock, and a worst case transmission system bit error rate (BER) of i0,

which is a typical worst case assumption for SONET, it was adequate to test up to

four transmission errors. (i.e., Pund A4536e4.) A total of 1002 g(x) polynomials

provided the desired dmjn=4 and single error correcting capability. The polynomial

that had the best four error performance is x'6 + x15 + x12 + x'° + x4 + x3 + x2 + x + 1.

This g(x) fails to detect only a total of 44,909 out a total 3,400,578,530 possible

four-error cases, which gives an undetectable four error probability of 1.32X105.

As a comparison, the undetectable four error probabilities of the standard CRC-

CCITT and CRC-ANSI CRC-l6s are 2.95Xl05 and 5.00X105, respectively.

Remember, too that the average undetectable error probability for >3 errors is 216

= l.53Xl05 with a CRC-l6. Hence, this polynomial was adopted for the

Transparent GFP superblock application [9], [10]. This g(x) is also an ideal

choice for any relatively short frame that may be carried over GFP, ATM, or POS.

(This polynomial retains its dmjn =4 for blocks of up to 755 bits or 94 bytes.)

6.2.5 CRCs over larger block sizes

An exhaustive analysis was performed to determine the largest block size over

which the dmin4 could be maintained without the x+1 factor. It was determined

that the largest block size that can be covered with dmin4 by a degree 16 primitive

polynomial is 2251 bits (281 bytes). One such g(x) in this category is x16 + x13 +

x11 + x8 + x7 + x + 1. However, primitive degree 16 polynomials did not provide

the largest block size. The largest block size that can be covered with dmin=4 and

no x+1 factor is 19685 bits (2460 bytes). Interestingly, each g(x) that is a product
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of x4 + x3 + x2 + x + 1 times any degree 5 primitive polynomial times any degree 7

primitive polynomial will cover this 19685 block length with dmjn=4, and no other

polynomials reaching this block length. One such polynomial is x16 + x4 + x3 + x2

+ 1.

If a larger block must be covered, then a higher degree CRC polynomial must be

used. For example, the Ethernet CRC-32 is a primitive polynomial with a dmjn=4

for up to 1518 bytes [3], and therefore will also not suffer a performance

degradation due to the payload descrambler. A topic for further study is to

determine whether the result for the longest CRC-16 block size can be generalized

to generate a CRC-r g(x) that covers the longest block size with a dmin4 and no

x+l factor for a given r.

6.3 CONCLUSIONS

Self-synchronous scramblers have become an important part of protecting public

WANs from attacks by malicious users. While the descrambling process causes

multiplication of transmission errors, it has been demonstrated that it is possible to

maintain a CRC's undetectable burst error performance with the appropriate

choice of g(x). Specifically, the performance of CRC is maintained as long as its

generator polynomial has no common factors with the scrambler polynomial. It

has also proven possible to maintain single error correction capability in the

presence of a self-synchronous scrambler with a CRC. The generalization of these

results has shown that with the appropriate choice of g(x), a linear cyclic code

such as a Reed-Solomon or BCH code, t transmission error correction is possible

after descrambling.
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Two resulting CRC-16 polynomials have also been presented that are capable of

maintaining their capabilities in the presence of typical self-synchronous payload

scramblers. The first has been determined to be optimum for use with the

Transparent GFP 536-bit superbiock, and may also be used for any block up to

754 bits. The other CRC-16 maintains its dmjn=4 capability for up through 2251

bits. An area for further research is to determine the optimum generator

polynomial for other block sizes.
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7. CONCLUSIONS

The intent of concurrent error detection is to be able to detect errors or faults in a

circuit during its normal operation. The technique of check prediction, which uses

a check prediction circuit to calculate the error check code for the circuit's outputs

based on the error detection codes for the circuit's input, is effective if the check

prediction circuit is smaller than the circuit being tested. Check prediction circuits

are most likely to have this property when they are used to test circuits that have

regular structures. Berger codes have previously been shown to be effective in

check prediction for circuits that perform arithmetic or logical operations,

including array multipliers. Bose-Lin codes have been shown in this dissertation

to provide similar single-fault-secure CED performance to Berger codes for these

circuits, while having significantly smaller check prediction circuits.

Another class of circuit that are analyzed in this dissertation was

telecommunications and data communications switch fabrics. BIP and CRC codes

have previously been used to detect faults in such circuits. The Bose-Lin codes

have been shown to give a lower probability of undetected errors in this

application than either the BIP or CRC codes with the same number of check bits.

In order to effectively detect errors, the error detecting code must be properly

chosen for the type of errors or faults that are expected for that circuit. The above

examples are all typically confined to be internal to an integrated circuit where

faults are typically unidirectional. Bose-Lin, like Berger codes, are optimized for

unidirectional error detection. In the case of a scrambler / descrambler pair with

an intervening transmission channel, bi-directional errors can be expected in the
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transmission channel. Here, the CRC is known to be a more appropriate error

detecting code. The descrambling process can degrade the CRC's effectiveness,

however, due to error multiplication. This dissertation has derived the conditions

under which this degradation can be avoided or minimized. The analysis was

further generalized to include the case of error correcting capability for any linear,

cyclic code.

One topic for further research is to apply Bose-Lin codes to other circuit types.

Potential candidates here include array dividers and sub-circuits with digital signal

processing circuits. The application to switch fabrics can be extended to cover

error detection in the control memory that determines the input to output mapping.

Another topic for further study is to determine the characteristics of the CRC

generator polynomials that are three-error detecting over the largest block size

without using the x+1 factor.
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