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THE CROSS-EQUATORIAL STRUCTURE OF TROPICAL
INSTABILITY WAVES IN SEA SURFACE HEIGHT

1 INTRODUCTION

The large-scale structure of Tropical Instability Waves (TIWs) in the Pacific
was first characterized by Legeckis [1977] from a geostationary satellite measur-
ing sca surface temperature (SST). Cusps in the northern equatorial front a few
degrees north of the equator were observed with periods of about 23 days and
wavelengths of about 1000 km. TIWs are now known to be a dominant feature
in the Equatorial Pacific, influencing the dynamics and biology of the region. The
predominately zonal currents, important to the El Nifo/Southern Oscillation cy-
cle, provide strong shears and density gradients which act as sources of energy for
the TIWs [Philander, 1978; Cox, 1980; Hansen and Paul, 1984; Luther and John-
son, 1990; McCreary and Yu, 1992; Proehl, 1998; Masina et al., 1999b]. Like the
currents in the Pacific that spawn them, TIWs are seasonal, occurring primarily
from June to February. As TIWs grow they become highly nonlinear [Kennan and
Flament, 2000] obtaining significant amplitudes. The heat flux associated with
these large perturbations are substantial, acting as an important contributor to
the heat balance of the equatorial cold tongue [Swenson and Hansen, 1999]. TIW-
induced perturbations of the SST front interact with the atmospheric boundary
layer forming bands of wind stress curl and divergence north and south of the
equator [Chelton et al., 2001] that may in turn force the ocean. The fully devel-

oped TIWs also form regions of convergence and divergence, introducing nutrients



into the upper ocean, which in turn produce areas of high hiological productivity
that are evident in measurements of chlorophyll [Foley et al., 1997: Strutton et al.,
2001] and zooplankton [Flament et al., 1996] concentrations. These increases in
biological activity increase COs uptake that could contribute significantly to the
equatorial Pacific carbon cycle [Strutton et al., 2001].

The origins of TIWs have been investigated hy examining linear models of the
mean circulation in the equatorial Pacific. The simplest of these models, a 1 1/2
layer model [Philander, 1978], produced unstable solutions with a wavelength of
1000 km, period of 30 days and no appreciable amplitude in the south. These
results were consistent with the observations of Legeckis [1977]. A more compli-
cated model, a 2 1/2 layer beta plane model [McCreary and Yu, 1992] produced
several unstable solutions. Two solutions were antisymmetric about the equator in
pressure and one solution had a wavelength of 766km and a period of 22 days that
was symmetric in pressure. Most recently, the linear stability of a 20-layer beta
plane model was investigated by Proehl [1998]. The fastest growing solutions had
wavelengths around 800-900 km, periods of about 30-35 days and were laregest
within a few degrees north of the equator. The mean fields on which these studies
were based included idealized currents derived from either under-sampled in situ
estimates [Philander, 1978; Prochl, 1998] or from the mean flow in a nonlincar 2
1/2-layer model [McCreary and Yu, 1992).

A recent in-depth analysis of TOPEX sea surface height (SSH) data by Chelton
et al. [2003] has revealed an asymmetric latitudinal structure in the amplitude of
monthly variability in the equatorial pacific. Their observations can be character-

ized latitudinally by a SSH structure with approximately constant cross-equatorial



phase and a larger amplitude in the north. The signal has peak amplitudes in
SSH at 3°N and 5°S and an approximate wavelength of 1600 km with a period
of about 33 days. These characteristics are not shared by the solutions of the
previous linear stability analysis (see section 2.2.2). In particular, the latitudinal
structure or the dispersion characteristics of the past linear stability analyses are
not consistent with these new observations from TOPEX. Either the eigenvector
structure is non-existent south of the equator [Legeckis, 1977], the wavenumber or
period are too small [Legeckis, 1977;: McCreary and Yu, 1992; Proehl, 1998], or the
maxima in the cigenvectors lie too close to the equator [Proehl, 1998].

Because in situ measurements of currents in the equatorial Pacific are not avail-
able with adequate spatial and temporal resolution, a mean current structure for
investigation of the linear stability and latitudinal structure of the SSH signatures
of TTWs was obtained from the Parallel Ocean Climate Model (POCM), which gen-
crates TIWs [Semtner and Chervin, 1992; Stammer, 1997; McClean et al., 1997).
It will be shown in chapter 3 that POCM qualitatively reproduces the SSH features
of TIWs that are observed in TOPEX.

The major goal of this study is to gain a better understanding of both the origins
and characteristics of monthly variability of SSH in TOPEX and POCM. Rather
than investigating a complicated multi-layer model as considered in Proehl [1998],
the mean current structure of POCM is represented in this analysis by projecting
the state variables onto the set of vertical baroclinic eigenfunctions, referred to here
as the projection model (see chapter 4). This produces a set of equations that yield
a representation of the background mean flow that is less subjective than the 1

1/2- or 2 1/2-layer models. Chapter 2 contains a background of observational and
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modeling studies of TIWs. Chapter 3 shows the similarities between TOPEX and
POCM SSH, examining in detail the vertical and meridional structure of TIWs in
POCM that vary over the 60-day period investigated. Chapter 4 contains a detailed
derivation of the one-mode projection model which is expanded to the n-mode
projection model in appendix 7.1. The one- and two-mode projection models are
then used to investigate the stability of the POCM mean currents at 134°W during
a La Nifia event in Chapter 5. The two-mode projection model is found to contain
instabilities consistent with TIWs in POCM, while the one-mode projection model
does not. In chapter 6, reasonable variations of the mean currents in the two-mode
projection model can explain the spatial and temporal variability of the meridional
structure in POCM. Chapter 7 investigates the different representations of critical
layers in the one and two-mode projection models. It is shown that an increase in
the maximum allowable phase speed from the one-mode to the two-mode projection

model explains the ability of the two-mode projection model to reproduce TIWs.



2 BACKGROUND

An iminense amount of literature exists concerning TTWs. Not only have TIWs
been observed from satellite measurements of SST and SSH, but they have also
been observed in situ from drifters, moorings, ships and planes [Qiao and Weisbery,
1995]. This chapter is an attempt to summarize their characteristics in the Pacific.
Along with observations, a series of linear and nonlinear models of TIWs have
attempted to describe the structure and energetics of TIWs [Qiao and Weisbery,
1993]. The first section gives an overview of observations of TIWs. The second
section summarizes modeling studies of TIWs. The last section distills points
concerning the structure and source of TIWs inferred from the observational and

modeling studies.

2.1 Observations

2.1.1 Drifters

Hansen and Paul [1984] deployed 20 satellite-tracked ARGOS drifters in the sum-
mer of 1979 in a region from 125°W to 105°W and 10°S to 10°N. From these data,
they were able to show that shear between the Equatorial Undercurrent (EUC)
and the northern branch of the South Equatorial Current (SECN) was the major
source of energy for the instabilities. However, there was also energy transfer from
the shear between the North Equatorial Counter Current (NECC) and the SECN,
along with a significant amount of baroclinic energy transfer. The amplitude and
phase structure of the instabilities resembled the eigenvector structure in Philan-

der [1978] (sec section 2.2.2). Estimates of meridional heat flux from the drifters



showed that eddy heat flux was an important contributor to the heat balance in
the region.

From 1980 to 1994, more than 1900 drifters were released in the equatorial
Pacific [Baturin and Niiler, 1997]. By separating the data into two regions with
dimensions of 20° in longitude by 20° in latitude centered on 0°N, 110°W and 0°N,
140°W and examining the meridional heat flux, momentum flux and energetics,
Baturin and Niiler [1997] examined the life cycle of TIWs. The long time series
allowed for the creation of an index of the amplitudes of TIWs which showed
increased TIW activity during La Nifla years and decreased TIW activity during
El Nifio years. Combining the drifter data with TOGA-TAO moorings and AVHRR
SST, they found that eddy fluxes associated with TIWs reduce the meridional shear
of the currents and warm the equatorial cold tongue. The maximum eddy fluxes
occur in October and the maximum kinetic energy production occurs between the

NECC and the SECN.

2.1.2  Moorings and Tide Gauges

Some of the earliest observations of monthly variability in the Pacific came from
three near-bottom current meter moorings placed near the equator at 95°W [Har-
vey and Patzert, 1976] and were attributed to a first meridional (m=1), first baro-
clinic (n=1) mode Rossby wave. A period of 25 days and a wavelength of 1000
km were estimated from a two-month period that began near the end of February
1975.

Subsequently, the Pacific Equatorial Ocean Dynamics (PEQUOD) project placed

six moorings between 148°W and 138°W within a degree of the equator from Jan-



uary 1981 to March 1983 [Eriksen, 1985: Eriksen and Richman, 1988]. Velocity
measurements in the bottom 500 m to 3000 m were consistent with the dispersion
characteristics of first baroclinic (n=1) Rosshy-gravity (m=0) and Rossby (m=1)
waves. These disturbances were narrow banded in zonal and vertical wavenumber
for a given frequency. A combination of Rosshy-gravity waves and Rossby (m=1)
waves transported energy down and towards the east for periods shorter than 30
days while Rossby (m=1) waves alone transported energy down towards the west
for periods longer than 45 days. For periods between 9 and 90 days, 72% of the
cnergy flux was attributed to the Rossby (mm=1) wave, and the remaining energy
flux was ascribed to Rossby-gravity waves. The authors noted that the variability
was consistent with remotely forced waves that originate at the surface.

Seven moorings that recorded velocity and temperature in the upper 250 m of
the Pacific were deployed from May 1979 to October 1985 near the equator between
95°W to 152°W [Halpern et al., 1988]. The velocity had spectral peaks at periods
of 20 days near the surface. These peaks were attributed to n=1 Rossby-gravity
waves that originated from instabilities in the equatorial current system. Beneath
the thermocline, spectral peaks were found with periods of 30 days and longer.
When a 2-year record from the mooring at 140°W was compared with a similar
mooring on the equator in the Atlantic at 28°W, 20-day variability in the Pacific
was found to be much more energetic [Halpern and Weisberg, 1989).

As a part of the Equatorial Pacific Ocean Climate Studies program (EPOCS),
five inverted echo sounders were deployed from the equator to 9°N along 110°W for
a 14-month period beginning in August 1980 [Miller et al., 1985]. During the first

nine months, there was a dominant spectral peak in dynamic height variability
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with a period of 34 days. Monthly variability had a maximum amplitude at 5°N
which appeared to be correlated with features in SST with 1000-km wavelengths
but was not dependent on the presence of the Equatorial Front (EF). The northern
structure of monthly dynamic height was consistent with eigenvectors with monthly
periods that Miller et al. [1985] computed from the linearized model developed by
Philander [1978] (see section 2.2.2).

Bryden and Brady [1989] computed eddy momentum and heat flux from six
moorings that were centered on the equator at two different locations. Three of
the moorings were deployed from April 1979 to June 1980 at 153°W as part of
the North Pacific Experiment (NORPAX). The other three moorings were part
of an EPOCS array centered on 110°W which recorded data from January 1979
to October 1981. The 20-day variability, also noted in Halpern et al. [1988], was
found to transport heat poleward at all depths, while momentum was transported
poleward above the core of the EUC and equatorward below the core of the EUC.
The vertical integral of this eddy flux was equivalent to heating the equatorial cold
tongue at a rate of 245 Wm =2,

Using tide gauges from the Pacific Sea Level Network established by Wyrtki
[1979], two 730-day time series were constructed for 1979-1980 and 1982-1983.
Examining the spectra from five latitudinal bands, a peak in variability in the 25-
to 50-day band was noted north of the equator with a weaker signal south of the
equator [Mitchum and Lukas, 1987]. This was interpreted as TIWs originating as
shear instabilities.

Five moorings centered on 140°W near the equator as part of the Tropical In-

stability Wave Experiment (TIWE) were deployed from May 12, 1990 to June 18,



1991. These moorings, which measured currents in the upper 250 m, showed TIW
wave energy that was primarily confined above the core of the EUC. The data
indicated that the 1990-1991 TIW season starts in August and ends in December.
This TIW scason was found to be consistent with seasonal variation in accelera-
tions of the SEC [Qiao and Weisberg, 1995]. Examination of perturbation energy
equations led to the conclusion that the observed TIWs originated from the shear
between the EUC and the SEC [Qiao and Weisberg, 1998].

The Tropical Atmosphere Ocean (TAO, recently known as TAQ/TRITON) ar-
ray presently consists of 70 moorings spanning the equatorial Pacific from 95°W
to 137°E and from 12°N to 8°S. All of these moorings measure winds, SST, rela-
tive humidity, air temperature, and subsurface temperatures to a depth of 500 m.
Additionally, five of the moorings along the equator measure subsurface velocity.
Implementation of the TAQ array began in carly 1984 but was not fully completed
until Dec 1994, In 1988-1989, monthly variability was observed at six moorings
between 2°S to 9°N along 140°W. The moorings at 0°,140°W and 7°N,140°W also
measured monthly variability in velocity. McPhaden [1996] characterized the vari-
ability as being in geostrophic balance with sea level, having periods between 15-50
days, estimated wavelengths between 750-1150 ki and originating most, likely from
instabilities in the shear between the SEC and the NECC. The maximum temper-
ature variance occurred in the thermocline between 5°N and 7°N while maxima in
the SST variance occurred between 2°N and 5°N [McPhaden, 1996]. Current me-
ters on the mooring at 0°,170°W also showed evidence of TIWs in 1988 [Weisberg

and Hayes, 1993].
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2.1.3 Ships & Aircraft

In preparation for NORPAX. Airborne Expendable Bathythermographs (AXBTs)
were dropped from a P-3 aircraft that was flown weekly between 20°N to 17°S along
150°W and 158°W for 3 mouths starting in November 1977 [Barnett and Patzert,
1980]. Highly coherent structures in temperature with time scales of 2-3 1‘1’101’1"51’13
and spatial scales of 2000 km were found in AXBT data within 10° of the equator.
Subsequently, NORPAX moorings were placed at 0°,152°W; 0°40'N,153°W and
0°40'S,153°W and monthly shipboard ADCP and CTD measurements were made
from February 1979 to June 1980 along a section from Hawaii to Tahiti during the
NORPAX Hawaii-Tahiti Shuttle experiment [ Wyrtki et al., 1981].

Initial analysis of NORPAX data within 75km of the equator found energetic
variability in the 19-31 day band that was attributed to barotropic instabilitics that
originated from the shear between the SECN and the EUC [Lukas, 1987]. A more
extensive analysis of the NORPAX ADCP and CTD sections from 10°N to 4°S
showed three distinet regions of instability [Luther and Johnson, 1990]. The first
region occurred between the EUC and the SECN where mean kinetic energy was
converted to eddy kinetic energy. The second region was at the EF where the mean
potential energy was converted to eddy potential energy. The last region existed at,
the thermocline near the NECC where mean kinetic energy was converted to eddy
potential energy. It was also found that when neglecting vertical stresses the zonal
momentum equation was balanced at 90m, with geostrophy dominating north of
3°N [Johnson and Luther, 1994].

Four cruises were conducted during April, June, October and Novewber of 1984

extending as far west 170°W and to 85°W in the east. From 140°W to 85°W the
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cruise tracks are along the equator, only occasionally venturing a few degrees north
and south of the equator. West of 140°W, the cruise tracks extended as far north
as Hawaii and as far south as Tahiti [Wilson and Leetmaa, 1988]. Although this
sampling pattern was not ideal for characterizing the scales of TIWs, a dominant
band of variability with a wavelength of approximately 1000km and a period of
about 30 days was identified. Barotropic instability originating from the northern
edge of the EUC was found to be an order of magnitude larger than baroclinic
energy conversion in the region. It was hypothesized that the onset of TIWs 1s due
to an increase in the transport of the EUC [Wilson and Leetrnaa, 1988).

A large-scale survey was conducted in November of 1990 that involved ship
CTD surveys with a towed platform (SeaSoar), ship-mounted ADCP sections,
ARGOS-tracked drifters, TAO moorings, and infrared satellite images of SST [ Fla-
ment et al., 1996: Kennan and Flament, 2000]. The rich array of data allowed for
a three dimensional picture of what the authors describe as a vortex with a 500 kim
diameter. The survey was constrained between 1°S and 7°N and showed a highly
nonlinear vortex traveling between the shear of the NECC and SECN at .3 .
This vortex affected the meridional transport of heat, salt and momentuin. Up-
welling on the leading edge of the vortex, due to conservation of potential vorticity
caused the introduction of nutrients to the region and was associated with an order
of magnitude increase in zooplankton concentrations [Flament et al., 1996]. Lati-
tudinal variation in phase speed suggested a different mechanism acting between

the EUC and SECN than between the NECC and the SECN.
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2.1.4 Satellites

2.1.4.1 Sca Surface Temperature

TIW signals in Sea Surface Temperature (SST) have been observed from passive
measurements of infrared and microwave radiation. The defining description of
the northern hemisphere signature of TIWs in the equatorial Pacific was made
by Legeckis from infrared measurements from a geostationary satellite [Legeckis,
1977; Legeckis et al., 1983]. From cloud-free days spanning the period from 1975 to
1981, crests in the EF, which lies 1° — 3° north of the equator, were characterized
as having a period of about 25 days and a wavelength of approximately 1000 k.

The Advanced Very High Resolution Radiometer (AVHRR) on the polar or-
biting NOAA-6 and NOAA-Ta satellites captured the zonal structure of TIWs on
cloud-free days. From June to July 1981, TIWs in SST were observed to extend
from 93°W to 125°W with an approximate period of 25 days and a wavelength
of about 1000 km [Pullen et al., 1987]. From August 1983 to February 1984, the
waves were observed to extend from 90°W to 160°W with periods ranging from 14
to 43 days and wavelengths of 600-1400 km [Legeckis, 1986]. The locations of the
cusps 1n SST during 1981 are coincident with the shear between the NECC and
the SECN [Pullen et al., 1987].

The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI)
has been measuring SST in all-weather conditions since December 1997. Records
from 1998 to 1999 show cusped patterns in the SST fronts both north and south
of the equator extending from near the eastern boundary to 160°E [Chelton et al.,

2000]. These northern and southern hemisphere signatures of TIWs propagate
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westward with a phase speed of .5 -, both north and south of the equator. The
displacements were 50% larger in the north than in the south and suggested an
antisyminetric structure in SST.

An optimum interpolated data product, referred to as Reynolds SST, combines
ship, buoy and satellite SST to provide a global estimates of SST from 1982-1993
[Reynolds and Smith, 1994]. Although sharp features of TIWs are smoothed out,
the long Revnolds SST record allows examination of their interannual variability.
Typically, TTWs have been observed to travel westward with a phase velocity of
0.5 2 between 160°W and 100°W from July to the end of the year [Contreras,
2001]. However, the waves have occasionally persisted for multiple years with a

variable westward extent.
2.1.4.2 Wind Stress

Estimates of surface wind divergence from the Earth Remote Sensing (ERS-1)
scatterometer were shown by Xie et al. [1998] to be significantly correlated with
TIW induced SST signatures from AVHRR data set prepared at the Jet Propulsion
Lab during the 27 week period beginning on June 19 1993. Xie et al. [1998] used an
atmospheric general circulation model to show that the TIW-perturbations seen
in the surface wind divergence can penetrate well above the atmospheric boundary
layer.

Wind stress estimates from QuikSCAT during the strong La Nifia of 1999 were
observed to propagate westward with the SST signal from TMI at 0.6 =+, both north
and south of the equator [Chelton et al., 2001]. During August and September of

m

1998 phase speeds south of the equator abruptly slowed to 0.25 2. Signals in
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column-integrated water vapor, cloud liquid water and precipitation from TMI are
also observed to travel westward with SST [Hashizume et al., 2001]. The curl of
the wind stress was found to be in proportion to the crosswind component of SST
gradient. while the divergence of the wind stress is proportional to the downwind
component of the SST gradient [Chelton et al., 2001]. These correlations, along
with phase lags scen between SST and vector winds [Liu et al., 2000], support the
negative feedback system between SST and wind proposed by Hayes et al. [1989)].
The effect of SST on wind stress causes a narrow zonal band of wind stress curl to
form north of the equator [Chelton et al., 2001] that is thought to be important to

the development of the SECN [Kessler, 2001].
2.1.4.3 Sea Surface Height

TIWs have been observed in sea surface height (SSH) measured by three different
satellite altimeters; Seasat, Geosat and TOPEX /Poseidon (T/P). The first of these
missions, Seasat, had a 3-day exact repeat orbit that lasted from September 15 to
October 10, 1978. The 500 km spacing of ascending and descending ground tracks
at 5°N could just detect 1000-2000 km wavelength TIWs [Malardé et al., 1987;
Musman, 1989]. SSH anomalies 600 km in diameter with 15-20 cm amplitude
were scen traveling westward at 0.46 2 along 5°N. A less coherent TIW signal was
also evident along 3°S which displayed a significant degree of symmetry with the
signal in the north [Malardé et al., 1987].

The Geosat altimeter mission lasted from November 15, 1986 to Januaryls,
1989. The ground tracks from Geosat were 160 km apart at 5° and were much
better suited to detect the spatial structure of TIWs. However, the 17-day exact

repeat period of Geosat was barely adequate to sample the 20-40 day period of
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the TIWs. Mapping Geosat data onto a 1° by 10-day grid, Périgaud [1990] found
1000-2200 ki waves traveling westward at 0.4 2. A maximum amplitude of 8
cm oceurred around 5°N. Low correlations over the 26 month record between a
SSH signal filtered to retain TIWs at 5°S and 5°N along 150°E to 90°W, led to
the conclusion that the anomalies were not equatorial trapped waves. During the
2-year record, TIWs were strongest from December to January and weakest from
April to May.

Several studies have shown that T/P is suited for the investigation of TIWs.
Menkes et al. [1996] validated T/P measurements in the equatorial pacific for
periods longer than 35 days by comparing T/P with dynamic heights computed
from TAO buoys [Menkes et al., 1996]. Similarly, Carton et al. [1996], while looking
at the importance of different data products in a data assimilation of the equatorial
Pacific, noted that T/P was well suited to observing TIWs.

A recent analysis of 9 years of T/P data record starting in 1993 described
the latitudinal and temporal characteristics of TIWs [Chelton et al., 2003]. The
spatial and temporal resolution problems of Seasat and Geosat altimeter missions
are greatly reduced by the 9.9 day exact-repeat orbit and the 2.8° longitudinal
spacing of ascending and descending ground tracks of the T/P sampling pattern.
Zonally banded maxima in monthly variability were identified 5° north and south
of the equator. The amplitudes north of the equator were 2-3 times larger than
those in the south. Northern and southern structures were predominant in phase,
but could vary as much as 90° or more. Lawrence and Angell {2000] hypothesized
that a Rossby wave is present when TIWs are in phase north and south of the

equator. Chelton ct al. [2003] estimated the phase speed of the signal to be 0.55
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= westward with a wavelength between 1600 and 1700 km and a period around
34 days. The energy of the signal appeared to propagate to the west with a group
velocity of 0.15 2. The variability was most energetic in the boreal fall/winter and

weakest in spring.

2.2 Models

2.2.1 Nounlinear Models of TIWs

Efforts to understand the time evolution, spatial structure and energetics of fully
developed TIWs have led to the development of non-linear models of the equa-
torial Pacific. Investigating the circulation of the equatorial Pacific, Semtner and
Holland [1980] found waves with 33 and 44 day periods in a 14-level channel model
with constant wind forcing. The 33-day signal propagated westward with a wave-
length of 800 kin and had a meridional and vertical structure that was similar to a
n=1 vertical mode, m=1 meridional mode equatorially trapped Rossby wave, i.e.
symmetrical in SSH. Unlike the 33-day signal, the 44-day wave was antisymmetric
in SSH, resembling an m=2 meridional mode equatorially trapped Rossby wave.
These waves were reportedly maintained by baroclinic instabilities on both sides
of the equator.

TIWs with 1000 km wavelengths and 30-day periods were found north of the
equator in the eastern and central Pacific by Coxz [1980] in a 14-level model with
bottom topography and coastlines that was driven by a seasonal cycle of the
monthly wind stress. A flat bottom version of the model with no coastlines and

a specified mean flow was used to explore the origins of the TIWs. It was found
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that the main source of TIWs was barotropic instabilities from the shear between
the SECN and the NECC, although baroclinic conversions were also present. Cox
[1980] showed that vertical mode 1 Rosshy-gravity waves and m=1 meridional
mode Rossby waves can transport the TIW energy castward and into the deep
ocean. The dominant waves in the model were m=1 Rossby waves which trans-
ported energy mostly downward into the deep ocean. Sensitivity of both growth
rate and period was observed when the strength of the SEC was altered [Seigel,
1985]. Increases in the SEC led to shorter periods and faster growth rates.

The scasonal cycle of the tropical Pacific and Atlantic was explored by Phi-
lander et al. [1986] from a 27-level general circulation model. The majority of the
TIW signal occurred during boreal fall/winter between 3°S-3°N. Characterized by
a period of 30-days and wavelength of 1000 km, the TIWs varied somewhat in
time and longitude. The upwelling in the troughs and downwelling in the crests
of the TIWs was significant, reaching the same magnitude as the mean vertical
velocity. The presence of monthly variability in the deep ocean was attributed to
Rossby-gravity waves that were spawned by surface trapped instabilities.

Nonlinear 2 1/2 layer models have been used to examine the stability of the
equatorial Pacific [Schopf and Cane, 1983; McCreary and Yu, 1992; Donohue and
Wimbush, 1998]. The simple plysics in a 2 1/2-layer model allows for more
straightforward analyses of TIW structure and dynamics. Schopf and Cane [1983]
applied a uniform wind stress and found symmetric instabilities in pressure cen-
tered between 5°-4° north and south of the equator with wavelengths of 800 km.

McCreary and Yu {1992] added a longitudinally variable wind stress and an

upper layer that could entrain and detrain water. The model developed three
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types of instabilities, two antisymmetric and one symmetric in pressure. One of
the antisymmetric disturbances was surface trapped with a period of 21 days, while
the other instability was in the lower layer and had a period between 35-53 days.
The symmetric disturbance had a period of 28-days and resembled an n=1, m=1
Rosshy wave. The ability of the upper layer to alter its density enabled what the
authors referred to as frontal instability, which was found to be important to the
existence of TIWs. Sources of the instabilities also included barotropic and Kelvin
Helmbholtz instabilities, while traditional baroclinic instabilities acted as an energy
sink.

Zheng et al. [1994] devised an analytical model to investigate the effects of
the SEC and the NECC on the dispersion characteristics of first meridional mode
Rossby Waves. The current system was modeled by a hyperbolic function that
was symmnietric about the equator. Their analytical model was able to reproduce
eastward and stationary phase propagation observed in 25-day variability of SST
i the equatorial Pacific from an Advanced Very High Resolution Radiometer.

Although the upper layer could not entrain water, the model described by
Donohue and Wimbush [1998] was forced by a more realistic longitudinally and
latitudinally variable mean monthly wind stress climatology. Two instabilities were
found: one asymmetric in pressure with a maximum at 6°N and a slight peak near
5°S, a period of 30 days, and a wavelength of 1100 km; the other instability had
SSH maxima near 1.3°N and 1.5°S, a period of 15 days and a wavelength of 1100
km. Two sources of these instabilities were identified: one on the equatorward side
of the SECN, which was primarily barotropic, and another weaker source on the

poleward flank of the SECN that was both baroclinic and barotropic.



19

It has been suggested that the winds are important in determining the temporal
phase of TIWs [Allen et al., 1995; Lawrence et al., 1998; Vialard et al., 2001].
The temporal phase of TIWs in a multi-level primitive equation model forced
by ECMWEF winds were found to be correlated with observations of TIWs in
SST from TAO and Along Track Scanning Radiometer (ATSR) satellite infrared
measurenents of SST. Altering the winds by removing the intraseasonal cycle
reduced the correlation between the model and the observations [Allen et al., 1995;
Lawrence et al., 1998]. They suggest that this is an indication that TIWs are phase
locked with the winds. Vialard et ol. [2001] went on to show that this phase locking
was also dependent on the magnitude and type of wind product used, but was not
sensitive to the initial conditions applied to the model. This further implicates the
importance of winds in determining the characteristics of TTWs.

Assimilation of TAO, T/P altimeter and XBT data into a 20-level Modular
Ocean Model 2 (MOM?2) forced by weekly averaged NCEP winds produced TIWs
with realistic temporal variability and phase [Carton ¢t al., 1996; Seidel and Giese,
1999]. At 110°W, the TTWSs were identified as both a 19-day surface-trapped signal
and a 29-day signal that peaked at depth with increasing amplitude towards the
west [Seidel and Giese, 1999)].

A detailed look at the structure and energetics of TIWs in a general circulation
model is given in Masina et al. [1999a, b]. Forcing MOM with winds representing
strong La Nina conditions, TTWs were found to develop in the eastern and central
Pacific. In the eastern Pacific, there were two regions of instability: a baroclinic
instability between 2°N and 6°N along the north equatorial front, which is the

primary triggering mechanism for the TIWs, and a barotropic instability in the
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shear hetween the EUC and the SECN, which is triggered when energy from the
baroclinic instability radiates equatorward. In the central Pacific, the sources of
cnergy were much the same: a baroclinic instability in the south equatorial front
and a barotropic instability in the shears between the EUC and both branches of
the SEC. Wavelet analysis of the variability showed that TIWs had a complicated
structure in period and wavelength, which varies in time, latitude, longitude and
depth. The TIW variability at 140°W, 2°N in the model had a period of 21
days and a wavelength of 800 km at the surface, while below the thermocline, the
period was 42 days and the wavelength was 1200 km. In the eastern Pacific, the
two instabilities north and south of the cquator were phase locked, producing a
signal that propagated westward at approximately 0.5 2. In the central Pacific,
the westward phase speed south of the equator slowed to 0.1 %, a characteristic
not previously attributed to TIWs. There is also evidence of westward traveling
m=1, n=1 Rossby waves and n=1 Rossby-gravity waves in the model below the
thermocline.

TIWs have also been found in the Parallel Qcean Climate Model (POCM), a
20-level global ocean circulation model driven by ECMWF winds and containing
realistic bathymetry and coastlines [Serntner and Chervin, 1992; Stammer, 1997;
McClean et al., 1997]. The TIWs produced in the POCM model are similar to
those that have been observed. TIW patterns of divergence and relative vorticity
in POCM are remarkably similar to in situ observations [Kennan and Flament,
2000]. The mean phase speeds of TIWs from T/P data, computed over a five year
record, also agreed with POCM [Weidman et al., 1999]. Additionally Weidman

et al. [1999] found to first order that phase difference in POCM TIW SSH and
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SST corresponded to the geostrophically balanced cat’s eve stream-line pattern
suggested from Musman [1989], i.e. the phase difference between SSH and SST
varied continuously from 0° to 180° as latitude increased to the north with SSH

leading SST.

2.2.2 Linear Models of TIWs

Linear models of mean ocean conditions give insight into the origins of TIWs
that cannot be easily deduced from the fully non-linear solutions. The general
characteristics of the observations of TIWs in SST north of the equator with a
period of 25 days and a wavelength of 1000 km [Legeckis, 1977; Legeckis et al.,
1983] were reproduced by Philander [1978] in a 1 1/2 layer model linearized about
an idealized version of the equatorial current system consisting of a broad SEC,
which was not split by the EUC, and a NECC centered on 5°N. The cigenvectors
corresponding to the fastest growing modes were restricted in amplitude to the
region north of the equator, and had a wavelength of 1000 km and a period of
30 days. These solutions were barotropically unstable, obtaining energy from the
meridional shear between the SECN and NECC.

The effects of weakly latitudinally varying background mean currents on equa-
torial trapped Rossby waves have been examined by Chang and Philander [1989).
By implementing the WKB approximation in a 1.5-laver model and examining
the resulting ray paths, they found that eastward flow enhances meridional group
velocity, while westward flow retards it. Therefore, the EUC and the NECC have
the effect of decreasing the phase speeds of equatorial trapped waves, while the

SECN and SECS increase the phase speeds of the same waves.



N
N

Proehl [1990] revisited the topic looking at the effects of strong shear between
the eastward EUC and westward SEC on the structure and propagation of low
meridional mode Rosshy waves. The EUC and SEC were represented by equato-
rially symmetric Gaussian velocity profiles. He found that eastward flows had a
tendency to expand the meridional structure of the pressure field and increase the
rate of vertical energy propagation. The existence of critical layers in westward
flows did not prevent the establishment of vertical modes. When the combined
system of the SEC and the EUC was examined, Proehl [1990] found that, near
the equator, the system was ‘opaque’to vertical modes higher than mode one,
suggesting a dominance of the first baroclinic mode in equatorial regions.

Investigating the origins of TIWs in their 2 1/2 layer non-linear model, Me-
Creary and Yu [1992] also looked at a version of their model that was linearized
about the mean current structure from the full model. The linearized model was
able to reproduce the two antisymmetric modes in pressure but was unable to rep-
resent the symmetric mode accurately, producing symmetric solutions with periods
of 22 days and 766 ki wavelengths.

A more detailed look at the energetics in the 2 1/2 layer linearized model was
given by Yu et al. [1995] in an attempt to understand why TIWs are largest north
of the equator. By altering an idealized mean current structure, they showed that
the two antisymimetric modes are affected by cross-equatorial asymmetries in the
SEC and the equatorial SST fronts, while the existence of the NECC had little or
no effect on the symmetry of the solutions. Reductions in the southern branch of
the SEC (SECS) and the south equatorial front led to unstable solutions with the

largest amplitude north of the equator. These solutions had smaller growth rates
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and similar dispersion characteristics as those from a symmetric background state.
The energy sources for the TIWs were both frontal and barotropic instabilities.
Expanding the vertical resolution of previous linear stability analysis, Proehl
[1998] looked at the effect of asymmetries in the background flow on the stability
of a 20-layer equatorial beta plane model. Although the shears on both sides of
the SECN were found to be potentially unstable, the barotropic instabilities on
the southern side of the SECN were the primary energy source for the TIWs. A
physical description was presented in terms of what Proehl [1998] refers to as wave
over reflection, which was able to explain the origins of the TIWs by the location of
critical layers and surfaces of zero potential vorticity gradients. The most unstable
solution from Proehl [1998] had maximum amplitudes within a few degrees of the

cquator, periods between 30-35 days and wavelengths around 800-900 km.

2.3 Summary

Finite amplitude TIWs have complicated origins. It is clear from modeling and ob-
servations that barotropic, baroclinic and frontal instabilities are possible sources
of energy. However, there is not a consensus concerning which sources dominate:
barotropic instabilities from the shear between the SECN and the EUC [Hansen
and Paul, 1984:; Lukas, 1987; Luther and Johnson, 1990; Qico and Weisberg, 1995:
Donohue and Wirnbush, 1998; Proehl, 1998], barotropic instability in the shear be-
tween the SECN and the NECC [Philander, 1978; Coz, 1980; McPhaden, 1996;
Baturin and Niiler, 1997], baroclinic instabilities [Semtner and Holland, 1980;
Masina et al., 1999b] or frontal instability in the north equatorial front [McCreary

and Yu, 1992]. The NECC has been found to have little effect on TIWs in some
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models [ Yu et al., 1995; Masina et al., 1999b], while instabilities from the shear be-
tween the NECC and the SECN are an important feature in observations [Hansen
and Paul, 1984; Luther and Johnson, 1990; McPhaden, 1996; Baturin and Niiler,
1997]. Regardless of which form of energy transfer is dominant, the story is further
complicated by modeling and observational evidence of the existence of more than
one type of source [Coz, 1980; Luther and Johnson, 1990; Masina et al., 1999b).
There also appears to be at least two sets of TIW characteristics [Kennan and
Flament, 2000]. One instability is surface trapped near the EUC and the SECN,
with wavelengths around 700-1100 km and periods between 15-25 days [Legeckis,
1977, 1986; Halpern et al., 1988; Pullen et al., 1987; Miller et al., 1985; McCreary
and Yu, 1992; McPhaden, 1996; Masina ¢t al., 1999a; Contreras, 2001]. These
instabilities have equatorially antisymmetric structure in pressure and are mani-
fested as meanders in the north and south equatorial SST fronts [McCreary and
Yu, 1992; Proehl, 1998; Masina et al., 1999a; Seidel and Giese, 1999: Chelton et al.,
2000]. The other instability near the base of the thermocline between the SECN
and the NECC has a longer wavelength (1000-1600 kn1) and a longer period (28-
40 days) [Miller et al., 1985; McCreary and Yu, 1992; McPhaden, 1996; Donohue
and Wimbush, 1998; Kennan and Flamnent, 2000; Masina et al., 1999a; Seidel and
Giese, 1999; Chelton et al., 2003]. The structure is asymmetric in pressure and
resembles signals seen in SSH [Miller et al., 1985; Malardé et al., 1987; Périgaud,
1990; McCreary and Yu, 1992; Donohue and Wimbush, 1998; Chelton et al., 2003].
Both of these instabilities are thought to spawn n=1, m=0 antisymmetric [Coz,
1980; Miller et al., 1985; Halpern et al., 1988; Eriksen, 1985; Eriksen and Rich-

man, 1988; Philander et al., 1986; Masina et al., 1999a], n=1, m=1 symmetric
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[Coz, 1980; Miller et al., 1985: Halpern et al., 1988: Eriksen, 1985; Eriksen and
Richman, 1988; McCreary and Yu, 1992; Masina et al., 1999a] and n=1, m=2
antisymmetric [Semtner and Holland, 1980] equatorially trapped Rossby waves.
The cross-equatorial structures of the amplitude and phase of TIWs have not
been widely discussed. Disturbances south of the equator have been observed
with similar characteristics to northern instabilities [Barnett and Patzert, 1980:
Malardé et al., 1987] but have only been mentioned in passing. Linear modeling
surveys of TIWs has concentrated on why the signals were larger in the north,
rather than describing characteristics of southern variability [Philander, 1978; Yu
et al., 1995; Proehl, 1998]. With regard to TIWs observed in SSH, there is now a
detailed description of the cross-equatorial structure from 9 years of T /P altimeter
data. Amplitudes are 3 times larger in the north than the south with spatially and
temporally varying phase difference north and south of the equator. Linear mod-
eling studies have not successfully reproduced these features. The linear stability
analysis in this study of mean current structure from POCM reproduces the cross
cquatorial structure in amplitude and phase of TIWs obscrved in T/P altimeter

data and POCM SSH model output.
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3 POCM: MONTHLY VARIABILITY IN THE TROPICAL PACIFIC

TIWSs are among the most energetic features in TOPEX altimeter observa-
tions of SSH. The vertical structure of the TIW-induced perturbations, as well
as the slowly-varying background mean conditions, are only sparsely observed (as
discussed in chapter 2). To circumvent the issue of data availability, TITWs are
investigated here from the Parallel Ocean Climate Model (POCM). To the extent
that POCM is capable of reproducing TIWs, the dynamics of TTWs inferred from
the model provide insight into the dynamics of TIWs in the real ocean.

In this chapter, the characteristics of the SSH signatures of TIWs in POCM
are first compared to TOPEX observations. While there are differences between
modeled and observed TIWs, the salient features are sufficiently similar to justify

a detailed analysis of the POCM model output.

3.1 Comparisons Between POCM and TOPEX

The existence of monthly variability in POCM has previously been noted in sev-
cral studies [Semtner and Chervin, 1992; Stammer, 1997; McClean et al., 1997;
Kennan and Flament, 2000; Weidman ¢t al., 1999]. In particular, Kennan and
Flament [2000] compared the vertical structure of a TIW from POCM with in
situ observations of what they referred to as an individual vortex in the westward
propagating TITW wave train and found that the distributions of the modeled and
observed divergence and relative vorticity fields were in agreement. This suggests
that the dynamics of monthly variability can be investigated from the POCM sim-
ulation. In this section, additional evidence is provided justifying the use of POCM

to investigate TIWs in the tropical Pacific.
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Figure 3.1: The standard deviation of SSH from TOPEX filtered to retain periods
between 25 and 60 days. The standard deviation was computed over a 5-year
record beginning in November 1992 and ending October 1997.

In a recent study, Chelton et al. [2003] investigated monthly variability of SSH
in the tropical Pacific from 10 years of TOPEX altimeter data. Using complex em-
pirical orthogonal functions (CEOFs), they depicted the variability as a westward
propagating, latitudinally asymmetric wave with larger amplitudes north of the
equator. This asymmetry can be seen in the standard deviation of SSH measure-
ments from TOPEX (Fig. 3.1) that have been filtered to retain periods between
25 and 60 days. Two bands of high SSH variability straddle the equator at 5°N
and 5°S. The band at 5°N is much more energetic and extends from about 100°W
to about 170°E. The less energetic band in the south extends from 125°W to the

dateline.
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RMS ssh variability, Semtner—Chervin or Parallel Ocean Climate Model (POCM)
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Figure 3.2: The standard deviation of SSH from POCM filtered to retain periods
between 25 and 60 days, computed over the same 5-year period as Fig. 3.1.

Monthly variability of SSH in POCM is qualitatively similar to that observed in
the TOPEX data. Like TOPEX, there are two bands of high variability along 5°N
and 5°S in the standard deviation of filtered POCM SSH (Fig. 3.2), with larger
amplitudes north of the equator. In addition, time-longitude plots of 5 years of
filtered SSH along 5°N for TOPEX and POCM (Fig. 3.3) show similar annual and
interannual variability in the amplitudes of the TIW signals. The SSH signals in
both TOPEX and POCM are weak to non-existent during the 1997 El Nifio and
strong during the 1995-1996 La Nifia. Over the period of the data record shown in
Fig. 3.3, the TIWs have very similar amplitudes and longitudinal structure along
5°N in both TOPEX and POCM.

While the characteristics of TIWs are similar in TOPEX and POCM, there are

quantitative differences. Spectral estimates from time-longitude plots of TOPEX
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Figure 3.3: Time-longitude plots along 5°N of SSH filtered to retain periods be-
tween 25 and 60 days for TOPEX (left) and POCM (right).
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variability (the left panel in Fig. 3.3) vield a period and wavelength of the TTWs to
be about 33 & 2 days and 1650 £ 150 km respectively. However, spectral estimates
from the time-longitude plot of POCM variability (the right panel in Fig. 3.3)
vield a shorter period of 28 + 2 days and a shorter wavelength of 1350+ 1350 km. In
both cases, the uncertainties in the period and wavelength estimates are derived
from the Fourier Frequency and wavenumbers intervals based on the duration of
a TIW season. In addition to these differences in the dispersion characteristics,
the longitudinal extents of the variability differ between TOPEX and POCM. In
POCM, the variability extends bevond the dateline to 170°E in the south and
extends all the way to the western boundary in the north. In the east, the POCM
variability does not appear until 120°W in the north and 130°W in the south (Fig.
3.2).

The degree of asymmetry about the equator also differs between TOPEX and
POCM. In the TOPEX data, the TIW standard deviation north of the equator
is up to a 1.4 times larger than in POCM (Figs. 3.1 and 3.2), while the TIW
variance south of the equator is up to a factor of 1.5 times larger in POCM than in
TOPEX. The equatorial asymmetry therefore is larger in TOPEX than in POCM.

The differences between the POCM simulations and TOPEX observations of
monthly variability are quite likely indicative, at least in part, of a misrepresen-
tation of the slowly varying background mean velocity fields in POCM. However,
to the extent that equatorial dynamics are adequately represented in POCM, the
niodel output can be analyzed to investigate the effects of the mean tropical Pacific

currents of the TITWs in the model. While the effects of mean flow in POCM cannot
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be expected to quantitatively explain the TOPEX observations, the dynamics of
TIWs in POCM should provide insight into the dynamics of the observed TIWs.
The version of the POCM analyzed here is run 4C. It is a 1/4° resolution, 20-
level model, forced by 3-day European Centre for Medium-Range Weather Fore-
casts (ECMWTF) renanalysis winds and updated every 30 minutes (R. Tokmakian,
personal communication, 1999). The fields used in this analysis were averaged
over 3 days. For more details on POCM, see Semtner and Chervin [1992] or

http://vislab-www.nps.navy.mil.

3.2 The Vertical structure of monthly variability

In the projection model described in scction 4.2, it is initially assumed that the
first baroclinic mode explains the majority of the vertical structure of the monthly
variability. The validity of this assumption is investigated here by examining the
vertical structure of monthly variability of meridional velocity in POCM from
July 8, 1995 to September 6, 1995, the time period for which the mean fields are
calculated for the stability analysis in chapters 4 and 5. Here the perturbation

meridional velocity is decomposed as:

vr=v+V (3.1)

where vr is the total meridional velocity, V' is the slowly varying meridional
velocity and v is the perturbation meridional velocity, defined here to be the vari-
ability with periods shorter than 60 days.

Meridional velocity was chosen to examine the vertical structure of TIWs for

several reasons. First, unlike zonal velocity, the perturbations in meridional ve-
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locity are larger than the mean meridional velocity. Hence, the perturbations in
meridional velocity are less noisy. Second, unlike density, the vertical structure of
the baroclinic eigenfunctions for meridional velocity are the set of functions ¢, (z)
which are used in the projection model. Meridional velocity has also classically
been the variable used to explain equatorial Rossby waves [Gill, 1982] and is not
a derived quantity from POCM like pressure.

It is generally agreed that monthly SSH signals in the equatorial Pacific are
associated with TIWs [Malardé et al., 1987; Musman, 1989; Périgaud, 1990; Giesc
et al., 1994] that extend a few hundred meters in depth [Philander et al., 1985, 1986;
Halpern et al., 1988; Masina ct al., 1999a; Kennan and Flament, 2000]. The
standard deviation of perturbation meridional velocity in POCM along 5°N in
Fig. 3.4 shows that the majority of the variance is in the upper few hundred
meters, which is consistent with the notion that the variability is surface trapped.
However, it can also be seen that there is variability in the deep ocean to the west,
of about 130°W.

Additional evidence that the monthly variability associated with TIWs extends
much deeper than a few hundred meters can be found in the literature. McPhaden
[1996] examined the vertical structure of meridional velocity from current meter
moorings at 7°N, 140°W and 0°, 140°W . The current meters only extended to
300m, which is not deep enough to include the zero crossing of the first mode (see
appendix 7.1). However, the frequency domain EOF in » at 7°N was dominated
by monthly variability that was in phase throughout the upper 300 m, which is
consistent with the vertical structure of the first baroclinic mode in POCM. Halpern

et al. [1988] found peaks at 30 days in the velocity spectra at depth of 200 and 250
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Figure 3.4: The standard deviation of meridional velocity. Velocity has been fil-
tered to retain periods shorter than 60 days along 5°N for a 150-day period begin-

ning on June 8, 1995. The upper 450 m are shown on an expanded scale in the
top panel.
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m, below the thermocline. Eriksen and Richman [1988] found evidence of 30-day
M1 Rossby waves at depths between 1400-3000 m in current measuremnents of zonal
velocity (u) at the equator near 140°W, showing clearly that monthly signals can
penctrate below 300 mi.

The vertical structure of the perturbation meridional velocity can be separated
into the baroclinic modes of variability. The perturbation fields are projected onto
the set of vertical eigenvectors 1, (z) calculated from the mean N?(z) (see equation
4.13) for the case of zero background flow as discussed in appendix 7.1. Typical
¥1(z) and ¥s(z) profiles are shown in Figs. A.1 and A.2. From Fig. A.l, it can
be seen that the zero crossing of the first baroclinic mode is at a depth of about.
1200m. It is also apparent that the character of ¥ changes at 300m, where there
is a slope break in the eigenvector structure.

The perturbation meridional velocities were projected onto the set of vertical
eigenfunctions, v, over an area extending from 180°W to 111°W in longitude and
from 20°N to 20°S in latitude during the period June 1-August 31, 1995. The
resulting projections vary in latitude, longitude and time. The average percent
variance described by each mode was computed, yielding the maps of the average
percent of the variance described by #; and 5 during June through August of
1995 that are shown in Figs. 3.5 and 3.6.

Two bands exist north and south of the equator in which ¢ describes more
than half of the vertical structure of the perturbation meridional velocity variabil-
ity. The northern band is approximately centered on 7°N and explains up to 80%
of the vertical structure. The southern band is approximately centered on 7°S

explaining a slightly smaller amount of the vertical structure than in the north.
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Similarly, between 10°N and 10°S there are two bands where v explains a sig-
nificant percentage of the variance. The northern band is approximately centered
on 2°N and explains up to 40% of the vertical variability. The southern band is
approximately centered on 2°S and explains a similar amount of the vertical vari-
ability as the northern band. Higher order modes (not shown) individually account
for less than 20% of the variance within 20° of the equator.

The presence of the second vertical mode in POCM monthly variability near
the equator is also evident in the temperature variability. If the variability were
entirely in the first vertical mode, then temperature fluctuations above the base of
the mixed layer would vary in phase with variation in the thermocline. It is clear,
however, from Fig. 3.7 that the two are out of phase. This difference in phase is
evidence of higher order vertical mode contributions.

Although the first baroclinic mode dominates the perturbation meridional ve-
locity in POCM, we conclude that the second vertical mode is also apparently
important in the tropical band. The initial formulation of the projection model in
chapter 4 considers only the first baroclinic mode. The second baroclinic mode is
included in section 5.3 where it is shown to be crucially important to the formation

of TTWs.

3.3 The Mean current at 134°W

The mean zonal current used in the linear stability analyses in chapters 4-7 is de-
fined to be the average over 60 days centered on August 8, 1995 and 14° in longitude
centered at 134°W. This corresponds to about two periods and one wavelength of

the TIW variability in the high-pass filtered POCM fields. This time-period and
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Figure 3.5: The percent of the vertical structure of perturbation meridional velocity
variability that is described by the first baroclinic mode, ¢; computed over the 3-
month period June 1-August 31, 1995.
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Figure 3.6: Same as Fig: 3.5, except for the second baroclinic mode, 5.
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Figure 3.7: The temperature from POCM along 5°N averaged over a three day
period centered on September 6, 1995. The solid line is the temperature at 37.5
meters and the dashed line is the temperature at 222.5 meters. In both cases the

longitudinal mean has been removed.
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area were chosen because they coincide with a La Nifia event during which TIWs
are generally most energetic [Baturin and Niiler, 1997: Chelton et al., 2003]. The
1995 La Nina in particular was chosen because the monthly SSH signal in the
POCM record was similar to TOPEX observations (see Fig. 3.3).

The POCM mean zonal current structure (Fig. 3.8) contains all the components
of the equatorial current system that are thought to be important in the formation
of TIWs. There is an EUC, NEC, SECN and SECS all of which contain strong
vertical and meridional shears.

There are many ways the mean zonal currents can be represented in a simplified
linear model. The currents could be averaged to a particular depth (e.g. as shown
by the red dotted line in Fig. 3.8) or to the depth of a particular isotherm (e.g.,
the 20° isotherm as shown by the red dashed line in Fig. 3.8). These methods
have an arbitrary nature. An alternative, which will be described in chapter 4,
mvolves weighting the mean fields by the baroclinic vertical eigenfunctions. This
method produces more consistent and less arbitrary results and is the basis of the

projection model described in chapter 4.

3.4 The Temporal and Meridional Structure of Monthly Variability at
134°W

The characteristics of TIWs are known to vary both geographically and temporally
over the course of a 9-month TIW season [Philander et al., 1986; Luther and
Johnson, 1990; Masina et al., 1999a; Chelton et al., 2003]. These variations can be
quantified by a wavelet decomposition, which is similar to a Fourier decomposition

except that the decomposition is over a set of specified basis functions (wavelets)
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Figure 3.8: A contour plot of the mean currents from POCM at 134°W, averaged
during the early period of the 1995-1996 TIW season (July 8, 1995 to September
6, 1995). The two red lines represent options for arbitrary vertical averaging of
the currents. The red dotted line is the 260m isobath and the red dashed line is

the 20° isotherm.
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that are localized in both time and frequency space, rather than the set of sine
and cosine functions [Mallat, 1999]. The structure of the wavelet used in the
decomniposition is chosen to resemble the structure of the signal of interest. The
Morlet. wavelet, which is an exponentially tapered sine and cosine (middle panel
Fig. 3.9), resembles the temporal variability of TIWs (top panel Fig. 3.9). The

Morlet wavelet is described hy:

1 skt _1(t)?
Ws(t) = —e' S o239 (3.2)

where # is time, S characterizes the temporal scale of the wavelet and k is the
order of the wavelet, characterizing the number of sinusoidal oscillations within a
e-folding scale. For the analysis presented here, the order of the wavelet was held
constant at & = 3. The frequency of the wavelet is % and the e-folding time is
Sv2. By representing SSH by Morlet wavelets and identifying the wavelet scale S
with the largest amplitude it is possible to look at how the TIW periodicity and

meridional structure change in time.

The amplitude of fit of a particular wavclet at the time ¢ is given by,

[ Flu)W(u —t)du

As(t) = »
As(1) TW2(u)du

(3.3)

In the case presented in this section, f represents the time series of SSH. Be-
cause W,(t) is complex, the resulting amplitude time series (Ag(#)) yields both a
magnitude and a phase. These two pieces of information are used later in this
section to look at the cross equatorial structure of the phase and amplitude of the

TIWs.
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Figure 3.9: The wavelet decomposition of filtered SSH from POCM. The top panel
1s a slice of filtered SSH at 5°N, 134°W during the early period of the 1995-1996
TIW season. The second panel is a plot of the & = 3 Morlet wavelet that was fit
to SSH. The solid and the dashed lines are the Gaussian tapered cosine and sine
functions of the Morlet Wavelet. Wavelets of different. periods, i.e. different scales
(S), were fit to SSH for each time. The bottom panel is the period of the wavelet
with the best fit to SSH as a function of time.
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The k = 3 Morlet wavelets were fit to the filtered SSH signal along 5°N, 134°W
(top panel Fig. 3.9) at cach successive 3-day time step. The process was repeated
for wavelet time scale S corresponding to periods ranging from 20 and 40 days in 1-
day increments. At each 3-day time step, the period % that described the greatest
amount of variance was chosen to represent SSH (bottom pamnel of Fig. 3.9). The
small span of the exponentially decaying envelope compared with the periodicity
of the Morlet wavelet allows for higher resolution of the temporal variations of the
structure of the signal. The down side of the small envelope is poor frequency
resolution [Mallat, 1999]. The plot of the period as a function of time is therefore
only a rough guide to the frequency content of the signal and we do not consider
the small variation in period to be significant.

The scale of Morlet wavelet with the largest amplitude at 5°N, 134°W was used
to characterize the meridional structure of SSH as a function of time. For a given
time, this best fit wavelet at 3°N was fit to cvery other latitude along 134°W.
Because the Morlet wavelet is complex, this fit yields an amplitude and phase that
varies in latitude and time. The results of this decomposition are shown in Fig.
3.10. The top panel of Fig. 3.10 shows a contour plot of filtered SSH at 134°W.
The phase relative to 3°N and the amplitude of the fit are shown in the second
and third panels, respectively. This decomposition describes more than 70% of the
variance in SSH between the equator and about 8°N (bottom panel of Fig. 3.10).
Between about 2° and 8°S, about 40% of the variability is accounted for by this
decomposition. The small amount of the variance described in the south by the
wavelet decomposition is largely due to the small amplitude of the signal in the

south during the first few weeks of the time period shown in Fig. 3.10. Over the
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entire TIW season (July 1995-July 1996), the percent of the variance described in
the south increases to about 70% (see Fig 3.11).

The meridional characteristics of the TIWs seen in the time-latitude plot of
SSH are quantified by the wavelet decomposition. For example, the amplitude of
the SSH in the time-latitude plot in the bottom panel of Fig. 3.10 is larger in the
north. From the wavelet decomposition, the amplitude at 5°N is about a factor of 5
larger than at 5°S in early July. The asymmetry decreases over the 2-month record,
becoming about a factor of 3 times larger in the north by the end of August. The
phase of the SSH, more elusive than amplitude in the time-latitude plot (Fig. 3.3),
can also be quantified by the wavelet analysis. The tilting near the equator in the
SSH signal (top panel Fig. 3.10), which is evidence of barotropic energy conversion
(see chapter 3), represents a phase lag of about 45° at the equator relative to 5°N
in the second panel of Fig. 3.10. Likewise, the phase lag of SSH at 5°S relative to

9°N varies from 45° in July to 0° in August.
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Figure 3.10: The decomposition of filtered SSH from POCM into phase and am-
plitude as a function of time and latitude. The top panel is a time-latitude plot
of the SSH at 134°W during the early period of the 1995-1996 TIW season. At
each 3-day time step, the best-fit wavelet at 5°N (Fig. 3.9) was fit to SSH at each
latitude. The second panel is the phase of the wavelet fit relative to the phase
at 5°N. The third panel is the amplitude of the wavelet fit in cm. The bottom
panel is a plot of the amount of SSH variance that the wavelet explained over this

2 month record.
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Figure 3.11: The percentage of SSH variance explained by the & = 3 wavelet over
the period July 19935 through July 1996.



4 THE PROJECTION MODEL

Sea surface height variability in the equatorial Pacific is widely believed to be
dominated by the first baroclinic mode. To understand the dynamics of the first
baroclinic mode it is useful to separate it from higher order baroclinic effects. The
simplest representation of the first baroclinic mode is a 2-layer reduced gravity
model. When applied as a diagnostic tool, the 2-layer reduced gravity model re-
quires an arbitrary averaging scheme in the vertical (see Appendix ?7?). Here, we
develop a model that contains the dynamics of a representative first baroclinic
mode, yet also incorporates information about the vertical structure of the equa-
torial oceans without employing an arbitrary vertical averaging scheme. In the
presence of strong zonal currents, it should be noted that energy is scattered from
the first baroclinic mode to higher-order modes as the first baroclinic mode sets
up [Proehl, 1998].

The vertical dependence of the state variables u, v and p in a contimiously
stratified model can be projected onto any complete basis set of orthogonal eigen-
functions. The most common projection of this kind is the Fourier transform, where
the set of sines and cosines are used as an orthogonal basis set. In the equatorial
oceans, trigonometric functions do not have a particular physical meaning. There
is, however, an orthogonal set of eigenfunctions, defined by the mean background
stratification, that does have physical meaning. These vertical eigenfunctions are
defined by the vertical profile of the buoyancy frequency and represent the vertical
structure of the baroclinic modes in the absence of any mean background current

(see appendix 7.1).
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The method of projecting the continuous model onto the baroclinic cigenfunc-
tions is described in this chapter. The full 3-dimensional continuous model is
described in section 4.1. In section 4.2, the continuous set of equations are pro-
jected onto the vertical eigenfunctions, integrated and truncated such that the
results yield a set of equations representative of the first baroclinic mode which

are not subject to an arbitrary averaging schemnie.

4.1 The Continuous Model

The continuous, 3-dimensional equations at the equator subject to a rigid lid, the
Boussinesq approximation, and linearized around a mean background zonal cur-
rent U,(y, 2) and the associated geostrophically balanced mean background density

poly, z) (sec appendix 7.1) are:

E;Zt + UU% U+ %[:; — By v+ i(,%p-l— %L; w = 0 (4.1)
-(,% + U, (,% v+ Byu + 7)1:(%1) =0 (4.2)

Eu-l—a—[/z +(7;%U‘ =0 (4.4)

p = —_J—lb%p (4.3)

In the above equations:

£ = zonal coordinate axis

y = meridional coordinate axis
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z = vertical coordinate axis

@ = the perturbation zonal velocity

vo= ﬂl() perturbation meridional velocity

w = the perturbation vertical velocity

p = the perturbation pressure

p = the perturbation density
Po = the mean background density structure
p~ = the constant reference background density

Equations (4.1)-(4.5) are subject to the boundary conditions:

v = 0, at northern and southern boundaries (4.6)
w = 0, at the top and bottom boundaries (4.7)

In linearizing the equations around a mean background density structure, it is
assumed that:

density = p. + p,(y, 2) + p(z,y, 2,1) (4.8)

It is also assumed that p,(y, z) is a weakly varying function of y,
po(y,2) = pi(2) + €p2(y. 2) (4.9)

where € < 1.
Equations (4.1)-(4.5) can be combined to obtain a single equation in terms of
any one of the state variables, However, there are extraneous roots to this equation

[Proehl, 1991]. In order to avoid these extrancous roots, equations (4.1)-(4.3) are
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rewritten in terms of a coupled set of three equations involving w.v and p. as

suggested by Proehl [1998]. The resulting equations are

) LU 3] - oU, 5 g 0U, 3/)(, -
ot °dr ) Jy /),“\’ 0z 8{/ /
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0/
(9 ) 0 0 g 0/)()
oz + [01} ta: 0z (px.\ 01/) +

where

represents the buoyancy frequency.

4.2 Projection onto the Vertical Eigenfunctions

(4.10)

(4.11)

(4.12)

(4.13)

The vertical dependencies of the state variables in (4.10)-(4.12) can be projected

onto the set of eigenfunctions v, (z) derived in appendix 7.1:

o= Y u (T, y, ), (z)
vo= > vy, 1) (2)

o an(l‘g-«f)lf)n(;:)

(4.14)
(4.15)

(4.16)

The projections (4.14)-(4.16) can then be substituted into the continuous model,

equations (4.10)-(4.12). The terms in the new set of equations can be categorized

into two groups. The first group of terms do not contain any mean fields, hence
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the z dependence is solely due to a single eigenvector, ¢,. The vertical dependence
in these terms is eliminated by multiplying each equation by ¢, integrating with
respect to z and applying the boundary conditions (A.2). The orthogonality con-
dition of the eigenvectors eliminates terms that contain projections onto vertical
modes greater than mode 1

The second group of terms contain state variables and mean fieclds. When the
equations are multiplied by #;, the vertical dependence is expressed as a product
of two eigenfunctions with a mean field. Here, orthogonality does not eliminate
terms containing higher order vertical modes, as in the case of the first group.
Consequently, the terms containing vertical modes greater than one are truncated,

vielding the following definitions of the mean fields:

TO(y) = /_OH Ut dz (4.17)
W = [ G (4.18)
T (y) = /OH ;(; 88(:) o dz (4.19)
Fo = [, e 20
a(y) = /OH pi;)2 8;” P dz (4.21)
stl)(y) = o /OH plx(?(i (%3 %?) P dz (4.22)
P = af () v (423)

An example of these mean fields is shown in Fig. 4.1.
For zonally propagating wave solutions, the x-t dependences of the coefficients

uy, v; and p; in the expansions (4.14-4.16) are assumed to have the form eftk¢=<t)
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Figure 4.1: Plots of the mean fields from equations. (4.17)-(4.23) computed over
the period from July 8, 1995 to September 6, 1995 at 134°W (the same as Fig.
3.8). The top left panel is a plot of (D (the solid line) and U® + T ) (the dotted
line). The top right panel is a plot of Uf) (solid line) and f~ (the dotted line).

The bottom left panel is a plot of @ and the bottom right panel is a plot of H.él)
(solid line) and H” (dotted line).




Then the system of equation can be written in matrix form as:
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where uy, v; and p; are now functions only of y.

Although the first vertical mode dominates the vertical structure of the currents
in the equatorial pacific there are small areas the equator where the second vertical
mode describes a significant percentage of the vertical variability (see section 3.2).
To cxplore whether contributions from second and higher order vertical modes
affect the lincar stability of a given meridional current profile, a formulation of
equation (4.24) is given in Appendix 7.1 for an arbitrary number of vertical modes.
The results of this analysis are discussed in chapter 5.

The terms in the matrix equation (4.24) can be simplified by determining
the relative magnitudes of the coefficients computed from the projection of time-
averaged zonal and vertical velocity sections from the POCM model. An example
of the mean fields along 134° W for the 3-month period from July to September
1995 1s shown in Fig. 4.1. Restricting attention to the region of the dispersion

space where TIWs are found,

w/k <1 ms™ (4.25)
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it is apparent that

o] <« |— (4.26)
P
w 1 .
*--—L" < '—- (4.27)
k3. «
If these smaller terms are neglected, (4.24) reduces to:
U0k i3y — (UM + 7)) Lk ” )
—i3y UMDk _;)Lb% vy | =W oy
Gk —ip- (g (B + HD ) + &) @0 +T@k || p P
(4.28)

This equation bears a striking resemblance to the matrix equation (B.3) for a
2-layer reduced-gravity model (sce Appendix ??). For the zero mean flow case,
the matrix equations (B.3) and (4.28) are exactly the same. When the mean
background fields are considered, counterparts can be drawn between the two

equations (see table 4.1). The equivalent to ¢'H(y) in (B.5) becomes ¢? in (4.28),

U, becomes UD) in the equations for u; and v, while, U, becomes (C +U®) in
the equation for pressure where the addition of U® is an effect of the chain rule,
U,/ dy is modified to LJ + f~and 9H (y)/dy replaces (H(U + HY ) Gradients in
mean layer thickness, 9H /9y in the 2-layer reduced gravity model, are represented
by gradients in density, (H 9 + H ) in the projection model. Hél) corresponds
to geostrophy in the 2-layer reduced gravity model, while H_J_ is a new term in the

projection model, which resemnbles a density gradient in geostrophic balance with

U®. f~ can be seen to be 8y divided by the gradient Richardson number, (—d_}_av%
dz



Reduced-Gravity Projection Model Projection Model
Model mornentum equations | continuity equation
JH(y) ot
Ualy) vm (T +0®)
oU,/dy U+ T
0H/dy <—H_§17 + W)

Table 4.1: A summary of the relationship between the terms in the 2-layer reduced
gravity model and the one mode Projection Model.
The energy conversion in the one-mode projection model are defined by the

fallowing equation:
0, = g (50, 50 :
— - (Dbl) + f*) [vruy] — :Jz (Hé” + H!S))) [vip] = [(ip1),] = wil EA] (4.29)
A

In equation (4.29), w; is the imaginary part of the eigenvalue, £, = p. (v? + u?) +
751(—] is the total vertically integrated mode-1 perturbation energy, the potential
energy has been derived from the traditional definition [Luther and Johnson, 1990]
and the bracketed terms have been zonally averaged over a wavelength.

From left to right, the terms in equation (4.29) represent barotropic and Kelvin-

Helmholtz energy conversions, baroclinic energy conversion, and wave flux diver-

gence, which only redistributes energy in the domain. The %L; 294 term i1 equation

(4.1) is the source of Kelvin-Helmholtz energy conversions. In matrix equation

U®) in the first row equation. The partic-

(4.28) aL”’u, is replaced by f~, @ and cp
l *

ular scales in POCM show that @ and -

ap 72 are negligible, as shown in equations
1P« ’

(4.26) and (4.27), while f~ can make a small contribution to Kelvin-Helmholtz en-

ergy conversion near the equator.
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We thus have a system of equations that are not arbitrarily averaged in depth
and contain information about the vertical structure of the ocean. Compared with
the 2-layer reduced-gravity model, the projection model provides a less subjective
and more representative model of a vertical mode 1 equatorial ocean while retain-
ing relatively simple physics. The vertical resolution of the model can easily be
icreased by including higher order vertical modes (see appendix 7.1).

The matrix eigenvalue problem (4.28) was solved on a c-grid with u; and v,
sharing the same grid points and p; at the adjacent grid points. The northern
and southern boundaries were placed at the wy and vy grid points at 19.75°N and
19.75°S. The eigenvalues and eigenfunction of the matrix were solved using the

EISPACK subroutine package.



5 APPLICATION OF THE PROJECTION MODEL

The meridional structure and dispersion characteristics of Rossby waves in the
presence of mean currents are examined during the beginning of the 1995-1996
TIW season. This time period was chosen because the SSH signals in TOPEX and
POCM are similar during the TIW season (Fig. 3.3) as discussed in chapter 3. The
characteristics of the SSH variability from the Projection Model are compared with
those from the wavelet analysis of POCM SSH over the same time period considered
in Section 3.1. The meridional structure and the dispersion characteristics are
found by substituting the mean fields along 134°W from POCM into the eigenvalue
problem (4.28) and examining the resulting eigenvalues and eigenvectors. The
mean fields are computed during the beginning of the TIW season before the
TIWs become finite amplitude [Kennan and Flarent, 2000] and the assumption
of linearity is no longer valid. For this study, the period from July 8, 1995 to
September 6, 1995 was chosen because the TIW signal was small. The structure
of the mean currents is shown in Fig. 3.8.

In this analysis, the mean fields from POCM were used to compute eigenvectors
and eigenvalues over a range of wavenumbers, k. The real part of the eigenvalue
represents the frequency of the wave and is displayed as a dispersion relation, while
the imaginary part of the eigenvalue represents the growth rate of the wave. When
written in Eulerian form, the phase between u, p and v represents the amount
of energy transfer between the mean and the perturbations, eq. (4.29), while the
amplitude is the size of the disturbance. If the wave is stable, u and p will be in

quadrature with v and hence there will be no energy transfer.



5.1 UW at 134°W

The mean background current in POCM (Fig. 3.8) was adjusted slightly for the
computation of mean fields in eqs. (4.17)-(4.23) and eqgs. (C.1)-(C.6) as to repre-
sent. more closely the geostrophic current in the model by reducing the effects of
Ekman currents. This was achieved by replacing the mean current in the top layer
with the mean current in the second layer of the model.

It is useful to look at the general structure of U (y), which acts similarly to the
upper layer mean zonal velocity U(y) in the upper layer of a 2-layer reduced grav-
ity model (see section 4.2). From Fig. 3.1, the presence of the NECC, the north-
ern branch of the South Equatorial Current (SECN), the EUC, and the southern

branch of the South Equatorial Current (SECS) are apparent in the meridional

profile of UM (y). Hence, the vertical projection method retains all of the currents
that are thought to be important to the stability of the equatorial current systern.
For present purposes, U(y) was defined to be the average over the upper 260 m
of the POCM model. It is evident that the amplitudes of the components of the
equatorial current system in U (y) are diminished compared U(y) (the dotted
line in Fig. 5.1). The differences in the amplitudes of the currents in UM (y) and
Ul(y) are sensitive to the depth of the vertical average, highlighting the arbitrary
nature of a vertical average as discussed previously in chapter 4. There arc small
differences in the westward currents (SECN and SECS), which are less stable than
the eastward currents [Philander, 1976). The largest difference is in the relatively
stable castward EUC whose vertical structure contains higher vertical modes then

the NECC, SECN and SECS (see Fig. 3.8).
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Figure 5.1: Two different estimates of the upper-ocean mean velocity along 134°.
Both are derived from the mean vertical velocity section shown in Fig. 3.8. The
solid line is U(N(y) from the one-mode projection model. The dotted line is a 260

m vertical average of the U(y, z) section in Fig. 3.8
5.2 The One-Mode Projection Model

The solutions to the simplest version form of the projection model are investigated
in this section. By only projecting onto one vertical mode, the structure of the
equations are similar to the 2-layer reduced gravity model (see section 4.2) and
act as a good first-order look at the effects of mean fields on the structure and
dispersion characteristics of TIWs.

The mean fields (Fig. 4.1) produce the solutions shown in Fig. 5.2. The first-
meridional, first-baroclinic Rossby waves (referred to as M1) shown as the middle
solid line in panel ¢ of Fig. 5.2 are closest in dispersion space to the observed
SSH variability in POCM (the black box in panel ¢ of Fig. 5.2). The dotted lines

in the same figure are the solutions for the case with no background flow. The



60

addition of the mean flow systematically reduced the phase speed of M1 Rossby
waves for wavenumbers smaller then 7.5 X 10~" eycles/km. The phase speeds of the
second-meridional mode, first-baroclinic mode Rossby waves (referred to as M2)
re increased for wavelengths less than 1250 ki, These results are consistent with
those of Chang and Philander [1989]. At shorter wavelengths, the phase speed of
the M1 and M2 Rossby waves decrease and begin to interact with the SECN, which
has a speed of 0.25 m/sec and is represented by the red line. All of the solutions are
effectively stable in this single-mode projection; 1.e. the most unstable solutions
have e-folding times several times longer than the duration of the TIW season.

While the dispersion characteristics are only moderately affected, the merid-
ional structure of the M1 Rossby wave is significantly altered by the background
mean currents. Panels d-f in Fig. 5.2 show the meridional structure of the M1
Rosshy wave for solutions with 30-day period and 1300 ki wavelength. The solid
curves represent the solutions based on UM(y) shown in Fig. 5.1, while the dash-
dotted lines represent the zero-mean flow case. In SSH (panel d), the mean flow
causes the maxima to shift poleward, the amplitude in the south decreases to 40%
of the amplitude in the north, and the trough at the cquator deepens by 50%. The
structures in u and ¢ show similar differences, with peaks shifting poleward and
amplitudes decreasing in the south. As noted above, these solutions are stable,
hence u and p are in or out of phase with each other. Likewise, v is 90° out of
phase with u and v.

These effects on the meridional structure of the solutions are a robust feature
of this analysis. Panels a and b of Fig. 5.2 show the wavenumber dependence

of the meridional structure of p for the mean flow case and the zero-mean flow
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Figure 5.2: The solutions to the one-mode projection model. Panel a) is a contour
plot of SSH of the M1 Rosshy wave vs. wavenumber for the case with the mean flow
UM (y) shown in Fig. 5.1. Panel b) is the same as a), but for the case of zero mean
flow. Panel ¢) is the dispersion relation. The solid lines represent the eigenvalues
from the mean flow case. The dotted lines represent the eigenvalues from the zero
mean flow case. The black dashed line represents a phase speed of 1 m/sec. The
red dashed line represents the fastest westward value of U(1)(y) in Fig. 3.1. The
black and red boxes represent estimates of the wavenumber-frequency content of
TIWs in POCM and TOPEX, respectively. Panel d) is a latitudinal profile of the
eigenfunction for SSH for the 1300km, 30 day wave, where the maximum value
has been normalized to one. The solid and dotted lines represent the mean flow
and zero mean flow cases, respectively. Panels ¢) and f) are the same as panel d),

except for the eigenfunctions of v and u, respectively.
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case, respectively. While the zero-mean flow case shows symmetric structure in
amplitude for all wavenumbers, the presence of the mean flow can be seen to
decreasce the amplitude of the SSH in the south for wavelengths between 800-20,000
km. At higher wavenumbers, the amplitude in the south become 60% of that in the
north. As the wavenumber decreases, the amplitude in the south also decreases,
reaching a minimmum of 35% of the amplitude in the north at a wavelength of about
1800 km. TTWs exist in the 1000-2000 km region where the meridional asymmetry
in SSH is most sensitive to changes in wavenumber. Additionally, the mean flow
consistently deepens the trough at the equator and shifts the northern maximum
in SSH poleward.

This simple model provides a valuable first-order look at the meridional struc-
ture of wave solutions close to the TIW period and wavenumber range. The am-
plitudes of the asymmetric solutions are similar to those deduced in section 3.4
from POCM SSH fields. The degree of asymmetry is somewhat sensitive to the
wavenumber of the instability, particularly in the range of reasonable values for
TIWs. These solutions give an estimate of the structure of the free waves that are
thought to be generated by TIWs [Coz, 1980]. Because the one-mode projection
model is stable for the mean zonal velocity section considered here, these solutions

cannot explain the phase structure of TTWs in POCM.

5.3 The Two-Mode Projection Model

The one-Mode Projection model discussed in the pervious section, was not able to
capture the instabilities that generate TIWs. By increasing the vertical resolution

to include the first two vertical modes, the mean current structure Fig. 3.8 is
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more completely represented. The added complexity produces a set of six coupled
equations (see appendix 7.1). The mean fields are computed over the same time
period as for the one-mode projection model and are shown in Fig. 5.1.

Unlike the one-mode projection model, the two-mode projection model pro-
duces unstable solutions (Fig. 5.3). The top panel shows a plot of the growth
rate as a function of wavenumber for the most unstable solutions. The fastest
growing solution, with a wavelength of 1384 km, is the most likely to occur. The
dispersion relation for the two-mode projection model (the bottom panel in Fig.
5.3) shows an increase in phase speed from the one-mode model such that the
observed wavenumber-frequency characteristics of the TTWs in POCM (the black
box in the lower panel of Fig. 3.3) are consistent with the dispersion relation of the
two-mode projection model. At longer wavelengths, the solutions become stable,
splitting into two stable modes at —3 x 107 epkm. The characteristics of these
two stable modes will be investigated later in chapter 7.

As in the case of the one-mode projection model, the meridional structures of
the solutions of the two-mode projection model are sensitive to wavenumber in the
TIW wavenumber range. The amplitude and phase of the fastest growing solution
over the TIW wavenumber range are shown in the lower two panels of Fig. 5.4.
Amplitudes at 3° north are 2 to 10 times larger than those at 5° south and the
phase at 3° north leads the phase at 5° south by 0° to 45° degrees. This sensi-
tivity provides an environment in which a host of different meridional structures
are possible, depending on the wavenumber, making identification of a particular

structure in the SSH record difficult.
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Figure 5.3: The eigenvalues from the stability analysis of the two-mode projection

model. The upper panel shows the growth rate of the solutions as a function of
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7.2 x 107" cpkm is plotted in Fig. 5.5. The bottom panel shows the frequency

of the solutions as a function of wavenumber. The box in the plot represents the

estimate of the wavenumber-frequency content of TIWs in POCM.
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The fastest growing mode from the two-mode projection model (Fig. 5.5) has an
amplitude structure in SSH very similar to that of the stable solution from the omne-
mode projection model (Fig. 53.2d). Most notably, the peaks in SSH amplitude are
still at 3°N and 5°S, with a larger amplitude in the north. However, the amplitude
in the north is more than 5 times larger than in the south, compared with less
than a factor of 3 difference in the one-mode projection model. This structure of
the eigenfunction from the two-mode projection model is more similar to the SSH
variability in POCM shown in Fig. 3.10.

Whereas the stable one-mode solution had constant phase with latitude, the
phase of the unstable two-mode solution varies with latitude (second panel Fig.
5.5). SSH at 5°S is in phase with SSH at 5°N. The approximate 90° phase lag near
the equator is evidence of an equatorward eddy transport of zonal momentum
which leads to the barotropic conversion of energy in the presence of the large
mean velocity shears in the region. As in amplitude, these latitudinal variations
in phase are similar to latitudinal ” tipping” of the structure of SSH in POCM.

The vertical structure of the pressure field is shown as the fraction of the
total amplitude in each of the baroclinic modes in the bottom panel of Fig. 5.5.
Except within a few degrees of the equator, SSH variability is dominated by the
first baroclinic mode. Near the equator, the variability is approximately equally
partitioned between vertical modes on and two.

The relationships between p, u and v are not as simple as in the one-mode
projection model. The introduction of the instability forces the phases of u and p
to no longer be in quadrature with v (compare second panels of Figs. 5.5, 5.6 and

5.7). This results in a transfer of energy between the mean and the perturbations
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(cq. 4.29). The vertical structure of the state variables is also different. The
meridional velocity v has a vertical structure similar to p poleward of 2°. Unlike
p, however, v is almost wholly made up of mode 2 near the equator. Within 5° of
the equator, v alternates being dominated between mode 1 and mode 2 (Fig. 5.6).
Outside of this region, u variability is dominated by only mode 1, similar to p and
v

The energy transfer of this mode is mostly barotropic (Fig. 5.8) and occurs
just north of 2.5°N on the poleward flank of the SECN (see Fig. 3.1). However,
baroclinic energy conversion is not negligible (see the thin solid line in Fig. 5.8),
which also contributes to perturbation energy conversion on the poleward flank
of the SECN. The dominance of the poleward flank of the SECN as a region of
energy transfer hints at its importance in the development of the instability. This
is discussed extensively in the sensitivity studies in chapter 6.

The nature and location of the maximum energy transfer is not surprising.
Previous linear stability analyses have all found barotropic conversion associated
with the SECN to be the main source of energy for TIWs [Philander, 1978; Proehl,
1998]. However, there has been debate as to which side of the SECN is important.
Originally, Philander [1978] and Coz [1980] found the shear between the SEC and
the NECC to be important, which has been supported by observations [Baturin and
Niiler, 1997]. A More recent linear stability analysis finds that the shear between
the SECN and the EUC is the energy source for the instabilities [Proehl, 1998],
a region where observations have also found barotropic energy transfer [Luther
and Johnson, 1990; Qiao and Weisberg, 1995]. The present analysis finds that

the shear on the poleward flank of SECN near the maximum of the SECN is the
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lat

Figure 5.8: The energy conversion from the two-mode projection model for the
unaltered mean flow U (y) shown in Fig. 5.1. The thick solid line represents the
total energy conversion. The thin solid line represents the baroclinic conversion
and the dashed line represents the barotopic conversion (see eq. 4.29).

location of most of the energy transfer. Because the region of energy transfer is
far from the NECC, the present analysis suggests that the NECC is not crucial to

the instability. This is investigated further in chapter 6.

5.4 Five-Mode projection Model

The solutions to the one and two-mode projection models have been shown in
sections 5.2 and 5.3, respectively. In the area of wavenumber-frequency space that
we are interested in, it was shown that the one-mode model produced stable solu-
tions while the two-mode projection model was able to produce instabilities that
are similar to the initial stages of the 1995 TIW season in POCM. It is of inter-
est to determine whether the addition of higher order vertical modes changes the

characteristics of the instability. This was investigated by increasing the vertical
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resolution of the model to include projeetion onto the first five baroclinic modes
(appendix 7.1). The mean ficlds for the five-mode projection model were computed
over the same tine period as the one and two-mode projection models considered
previously.

The latitudinal structure of SSH for the fastest growing solution to the five-
mode projection model is shown in Fig. 3.9; the dashed lines are the fastest grow-
ing solution from the two-mode projection model. There are minor changes in the
solution: the e-folding time increases insignificantly from 68 to 73 days and the
wavelength increase from 1384 to 1592 k. The latitudinal structures of the eigen-
vectors are almost identical. The amplitudes in the top panel differ insignificantly
at all latitudes; the phases in the second panel differ near the equator by only
about 10°. The vertical mode partitioning in the bottom pamnel is almost wholly
made up of the first two baroclinic modes, with higher order modes cumulatively
accounting for less than 25% of the variability near the equator.

It is thus apparent that there is not much difference in the meridional structure,
vertical structure or dispersion characteristics between the fastest growing solutions
in the two and five-mode projection models (Fig. 5.5). The similarity in the
solutions between the two and five-mode projection models implies that the import
physics of this instability are captured in the two-mode projection model. The
analysis in chapter 6 therefore focuses on the results of the two-mode projection

model.
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6 SENSITIVITY OF THE TWO-MODE INSTABILITY TO
ALTERATIONS IN THE MEAN FIELDS

SSH from the two-mode projection model was shown in section 5.3 to capture
most of the features of the TIWs in POCM. However, over the 60-day averaging
period of the mean zonal velocity field used in the two-mode projection model,
there were substantial variations in the latitudinal structure of the amplitude of
SSH associated with TIW variability in POCM, ranging from 3-5 times larger in
the north than in the south. Additionally, the phase difference of the TIWs in
the north and in the south varied from 0°-45°. These variations can partially
be expected because the mean-fields computed from POCM (Fig. 5.1) do not
necessarily represent the background mean flow that influence the TIWs in the
model. The background mean currents are not constant. They cvolve seasonally
in response to the varying wind forcing. In addition, the TIWs will inevitably alter
the structure of the mean flow as the instabilities extracts energy from the mean
flow and the TIWs become non-linear [Pedlosky, 1987] (pp. 490-492).

In order to determine what features of the background mean currents are im-
portant to the structure and strength of the two-mode instability, elements of the
mean background flow were altered. Eight different alterations were made to the
mean currents. First, all the currents were increased and decreased both south of
the EUC and from the EUC north. Then only the SECN was increased, decreased
and shifted north and south. Close attention was paid to how the amplitude, phase,
e-folding time, period and wavenumber of the fastest growing solution changed rel-
ative to the unaltered solution considered in section 5.3 and the structure of SSH

in the POCM model inferred from the wavelet analysis of POCM in section 3.4.
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6.1 Altering the currents south of the EUC

The most striking feature in the TOPEX data, the POCM model and in the two-
mode instability solutions is the latitudinal asymmetry of the SSH amplitude. The
features that control this asymmetry are investigated in the section by increasing
and decreasing the mean currents north of EUC (including the EUC) and south
of the EUC (excluding the EUC).

When altering the mean fields, it is important that the new current profiles are
smooth, minimizing the addition of small-scale variability and shear that is unre-
alistic. Keeping this in mind, the altered ficlds were obtained by multiplying the
mean current, structure by an error function, i.c. the integral of a Gaussian (bot-
tom panels of Figs. 6.2-6.10). The weighting function was produced by integrating

the Gaussian,

¢~ b=t /W (6.1)

from south to north when the currents were altered in the north and from north
to south when the currents were altered in the south: W represents the e-folding
scale of the Gaussian, 8y is the latitude of the center of the Gaussian and # in the

independent variable, latitude. The maximum value of the error function was set

to 0.2, a magnitude that is typical observed fluctuations in the magnitude of U,(P
in POCM (see Fig. 6.1). This quantity was added to 1 to increase the currents
and subtracted from 1 to decrcase the currents. When the currents were altered
north of the equator, the Gaussian was centered on the EUC. When the currents
were altered in the south, the Gaussian was centered on 2°S. This translation of

the error function separated alteration of the EUC from alteration of the SECS.
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solutions are restricted to where (/'1(1) > 2k,

For both cases, W was set equal to 1°, which gave a smooth transition between
the regions. The error function and the resulting W profile and shear are shown
in Figs. 6.2, 6.3, 6.8 and 6.10.

The mean fields defined in equations (C.1)-(C.6) were altered such that the
currents remain in geostrophic balance. Increasing and decreasing the southern
mean currents causes only the SECS to change in amplitude, while increasing and
decreasing the northern mean currents causes the EUC, SECN and the NECC to

change in magnitude.
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When the currents are increased or decreased in the south (Fig. 6.2 and 6.3),
there is very little change to the eigenvectors or the eigenvalues of the fastest
growing mode (Figs. 6.4 and 6.5). The amplitude of SSH for both cases are
essentially unchanged from the unaltered case. The wavelength is the same for all
three cases, within the resolution of the analysis. The period and e-folding time
change by insignificant amounts. The only noticeable changes are small changes in
the phase. The phase lags the unaltered case in the south by a few degrees when
the currents are increased and leads by a similar amount when the currents are
decreased.

The magnitude of these alteration are reasonable estimates of the range of
variations of the SECS [Johnson et al., 2002]. The insensitivity of the e-folding
time to the changes in the mean fields south of the EUC should be expected. As
shown in Fig. 3.8, the majority of the energy production occurs in the north. It is
surprising, however, that altering the currents in the south has such a small affect
on the meridional structure of the amplitude and phase of TIWs.

The extreme case of effectively eliminating all the flow in the south determines
whether the SECS has an effect on the latitudinal structure of the unstable solution.
For this purpose, the weighting function used to eliminate the currents in the
south had a minimum value of 0.1 and was centered on the EUC rather than
2°S (Fig. 6.6). This was done to maximize the possible effects of the southern
current structure. Surprisingly, removing the SECS had no effect on the amplitude
structure of SSH (Fig. 6.7). There was also no change in the wavelength, period

and e-folding time of the fastest growing mode. The only significant change is that
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in the south decreased by 20% (see Fig. 6.3). This solution has an e-folding time
of 69 days, a period of 31 days and a wavelength of 1384 km.
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the phase south of the equator systematically increased by about 20° relative to

the unaltered case.

6.2 Altering the currents north of the EUC

In contrast to the minor influence of the currents south of the equator on the un-
stable eigensolutions, altering the mean structure of the northern currents, where
the energy transfer is large, significantly affects the fastest growing solutions. In-
creasing the currents in the north (Fig. 6.8) produced somewhat faster growing
stabilities with e-folding times of 48 days compared to 68 days from the unaltered
case (see Fig. 6.9). The wavelength and period of the instability changed by small
amounts to 1448 days and 30.5 days, respectively. Although faster growing, there
was very little change in the meridional structure of the instability. The largest
difference occurred in the phase structure south of the shear between the EUC
and the SECN. In comparison to alterations in the currents south of the equator,
these phase differences are large, on the same order as the phase difference when
the currents south of the equator were completely eliminated.

Decreasing the currents north of the equator (Fig. 6.10) caused the fastest
growing solution to become more stable, with an increased e-folding time of 104
days, and shortened the period of the wave to 30.5 days and the wavelength to 1192
km (see Fig. 6.11). The reduced shear in the north had an unexpected effect on
the meridional structure of the instability. As the instability became more stable,
its meridional structure became more similar to that obtained for the stable M1
Rossby wave from the one-mode projection model considered in section 5.2. This

change can be seen in all three panels of Fig. 6.11: the amplitude increased in the



1/sec le—6

I
N
@]

|
@]
@]

2.0

1.0

0.5

0.0

Figure

83

lllllllllHIllIHIIIII]IIIIIllIHI|IIIIllIllIlllllHIl

IIHI|IlllHTIHHI'IHIllllllllIHIIH IIIIlIIIIIIIIIIlIII

N
O b
o
)
o

-10

IIIIIIIII|Il|ll||ll|IIllHHllIIIIIIILlIlIIIIIIII

IIIHIII||IlllllIIIIHHIHHiWHIIIIIIIHIIIHI

N
(@]

10

™ - T b T T v T T T

r ! ! ]
B [ i _
- | ! —
- | | —
L | I _
i t ! i
L | t n
— | }

L | | |
- ] ! ]
N ! I _
- | | _
L | i n
L | | a
_ I ' ]

PP I L L ! 1 "

N
(@]

20 -10 0 10

6.6: The same as Fig. 6.2, except for the effects of eliminating the currents.



84

Amp litde BSSH

1.2
1.0
0.8

0.4

0.2
0.0

Illlllllllllllllllllllll

m

o

(=]
Illllllll'lllll'lfl]]

N
o

-10 0 10
lot (deg)

N
o

Phae 6SSH

180 v | 1
1B = = o i e fe==—q=====

lot (deg)
Perent dSSH in aclWerticalbde
100F H T — 1\
80 ' ; -
= : : . Mode 1 .
60 - 1 1 1 7
e - | | a
40— I I I =]
- v/ I V-4 Mode2 -
20— ] i (™ —=
C _- 1 | | S~ - =
oC =2 1 Il 1 ol L R
-20 -10 0 10 20
lat (deg)

Figure 6.7: The same as Fig. 6.4, except for the latitudinal structure of SSH for
the fastest growing solution to the two-mode projection model with currents south
of the equator eliminated. This solution has an e-folding time of 69 days, a period
of 31 days and a wavelength of 1384 km.



IlllHllIHIIIHIIIIIHIIIIIHIIIIHI IIIIIIIIIIHIIIIIII

]_llHJJJJ_I_lJJJllIIIHIIIIIIIIIIIIII Illlllllllllll“lllll

[
N
O

-10

N
O

10

ol
—

(1)
yll

-

1/sec le~6

lIlIIIlI)lIIII]I[IIIIIHILHI[IIllllllllllllllll

N AT IO T[T T
5 IHI Il IIIHI T I T

-10

N
O

0 10

[l[llll_ﬁ

1.0

0.5

Illlll(ll

0.0 L

Illllll

LIII[IIIII!

—-20 —-10

(@]
(@]
N
(@]

Figure 6.8: The same as Fig. 6.2, except for the effects of increasing currents in

the north.



86

Amplitude of SSH

llIIIJ_LIllIIIIIIIIIIIIlI

o
>
llr[lll'lll']lllllll[

o

-20 -10 0 10 2
lat (deg)

Phase of SSH

180

lat (deg)

Percent of SSH in each Vertical Mode

100

|

3

]
I
|
) RAEN

IIIIIIIIIIIIIIII

lll]lllll‘lllll

]
I
|
|
|
|
1
0
lat (deg)

Figure 6.9: The same as Fig. 6.4, except for the latitudinal structure of SSH for
the fastest growing solution to the two-mode projection model with the currents
in the north increased by 20%. This solution has an e-folding time of 48 days, a
period of 30.5 days and a wavelength of 1448 km.
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south (top panel), the latitudinal variations in phases decreased (middle panel),
and the variability becomes mostly vertical mode one (the bottom panel).

The larger amplitude in the south seen here is surprising, given that the al-
teration to the SECS had almost no effect on the amplitude in the south. It will
be shown later in chapter 7 that, in the low wavemunber limit, the instability is
created from a resonance between the first baroclinic mode M1 Rossby wave and
an altered second baroclinic mode M2 Rossby wave. The reduction in meridional
shear reduces the instability and moves the solution closer to the high wavenumber

resonance point where the meridional structure resembles the M1 Rosshy wave.

6.3 Altercating the SECN

It was shown in section 6.2 that altering the currents in the north causes large
changes in the structure of the unstable wave solutions. It was also shown in
section 5.3 that the majority of the energy transfer occurs near the maximum of
the SECN. For these reasons, the effects of increasing, decreasing and shifting the
SECN in isolation are examined in detail in this section.

The same Gaussian function (eq. 6.1) used to create the weighting functions
i sections 6.1-6.2 was used to alter only the SECN. In this case, the Gaussian
had an amplitude of 0.2, 6y was set to the center of the SECN and the width,
W, was 2°, which localized the alterations of the SECN and associated shears but
did not change the location of the shears. This Gaussian was either added to 1
to increase the SECN, or subtracted from 1 to decreased the SECN. The results

were multiplied by the mean fields to produce changes in the SECN with similar
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the fastest growing solution to the two-mode projection model with the currents
in the north decreased by 20%. This solution has an e-folding time of 104 days, a
period of 30.5 days and a wavelength of 1192 km.
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magnitude to the previous alterations of the northern currents (Figs. 6.12 and
6.13).

Increasing and decrcasing the SECN had similar effects to increasing the cur-
rents north of the equator (Figs. 6.14 and 6.15). The most noticeable differences
between the two cases were in the eigenvalues. Increasing the SECN produced a
fastest growing solution with a short e-folding time of 36 days, a period of 28.6
days and a wavclength of 1352 km. This is more unstable than the case where all
the currents in the north were increased. Decreasing the SECN produced a fastest
growing solution that was more stable than the case when all the currents in the
north were decreased, increasing the e-folding time to 171 days with an associated
period and wavelength of 30.3 days and 1240 km. These 20% alterations of the
SECN thus deterniine whether or not the solution is essentially stable or unstable.

The changes in the stability of the solutions are also reflected in the meridional
structure of the phase. Increasing the SECN causes the phase to lag more at
southern latitudes (second panel of Fig. 6.14) compared with the case where all
of the northern currents are increased(second pancl of Fig. 6.9). Decreasing the
SECN has the opposite effect, producing less phase lag at low latitudes (second
panel of Fig. 6.15) compared with the case when all of the currents are decreased
(second panel of Fig. 6.11). The solution with the decreased SECN also has a
greater amount of the variability in first baroclinic mode (bottom panel of Fig.
6.15) compared with the case when all the éurrents in the north were decreased.

To further investigate its importance to the stability of the solution, the SECN
was shifted north and south by 0.25°. So as not to alter the latitudinal structure

of the shear at the same time (except for the latitudinal shifts), the north side of
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Figure 6.15: The same as Fig. 6.4, except for the latitudinal structure of SSH
for the fastest growing solution to the two-mode projection model with only the
SECN decreased by 20%. This solution has an e-folding time of 171 days, a period
of 30 days and a wavelength of 1240 km.
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EUC and south side of the NECC were broadened or sharpened as required. For
the 0.25° shifts considered here, these effects are small (Figs. 6.16 and 6.17).

The effects of latitudinal shifts if the SECN produced small but not negligible
changes in the solutions. Shifting the SECN 0.25° to the north caused the solution
to become more stable, increasing the e-folding time from 68 to 96 days. Shifting
the SECN to the south produced solutions that were somewhat more unstable,
decreasing the e-folding time from 68 to 38 days. The period and wavenumber of
the fastest growing solution changed by small amounts, increasing to 33 days and
1480 ki when the SECN was shifted north and (1(.'!(31'(!'(1Si1‘1g to 30 days and 1336
km when the SECN was shifted south.

As in the other sensitivity studies, the phase lag at low latitudes changed when
the solutions became more or less unstable. Shifts to the south increased the
phase lag (Fig. 6.19), while shifts to the north decreased phase lag (Fig. 6.18).
The vertical structure of the more stable solutions was represented by a higher
percent of variance in the first baroclinic mode than the second baroclinic mode,
similar to the case when the SECN was decreased. Although latitudinal shifts
of the SECN altered the meridional structure of the phase, there was almost no

change in the meridional structure of the amplitude.

6.4 Summary of Alteration

Slight alterations to the current system have been shown to alter the e-folding time,
dispersion characteristics and meridional structure of the instability. Increasing or
decreasing the SECN by only 20% produced SSH amplitudes ranging from 3 to

5 times larger in the north than in the south, phase lags in SSH between the
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for the fastest growing solution to the two-mode projection model with the SECN
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north and the south ranging from 0° to 65° and e-folding times ranging from 36
to 171 days (Figs. 6.14 and 6.15). These variations in the meridional structure
are consistent with the temporal variability of the latitudinal structure of SSH
in POCM (section 3.4). Similar changes to all the currents north of the equator
produce smaller changes in the e-folding time and the associated variation in the
meridional structure of the SSH (Figs. 6.9 and 6.11). In addition. the largest
energy transfer occurred on the poleward flank of the SECN (Fig. 5.8).

The stability and meridional structure of the unstable solutions are thus much
more sensitive to alterations north of the equator than to alteration south of the
equator. Altering only the SECN produces the same types of variations in the
solutions as altering all of the currents north of the equator, except with greater
sensitivity. This, combined with the source of the energy occurring on both flanks
of the SECN, points to the SECN as the most important feature in the Pacific
equatorial current system for determining the structure and stability of the solu-
tion.

The eigenvalues from all of the altered velocity profiles considered here are
summarized in Fig. 6.20. The estimated range of uncertainty of the wavenumber-
frequency content of TIWs in POCM is shown by the box. The case in which the
SECN was increased by 20% lies near the middle of the box. The scatter of the
solutions in wavenumber-frequency space is relatively small, with the cases consid-
ered here covering an area only slightly larger than the box that defines the range
of uncertainty of the wavenumber-frequency content of TIWs in POCM. However,
the stabilities of the solutions vary widely with e-folding times (proportional to the

diameters of the circles) ranging from effectively stable solutions (the case where
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the SECN was decreased by 20%) to fast growing instabilities (the case where the
SECN was increased by 20%).

In a constantly changing mean environment, the solutions to the appropriate
eigenvalue problem are also constantly changing. The sensitivity analyses in this
chapter have shown that, for reasonable variations in the magnitude and location of
the mean currents, significant variation in the meridional structure of the solutions
can be expected. This provides for complicated spatial and temporal variations of

the structure of SSH over the course of the TIW season.
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Figure 6.20: Eigenvalues of the solutions from all of the altered current profiles
considered here. The box represents the range of uncertainty of the wavenumber-
frequency content of TIWs in POCM. The diameters of the circles represent the
growth rate of the fastest growing solution. The position of the center of circle
represents the wavenumber and period of the fastest growing solution.
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7 A CLOSER LOOK AT THE INSTABILITY IN THE TWO-MODE
PROJECTION MODEL

It was shown in chapter 5 that the onc-mode projection model produced only
stable solutions in the wavenumber-frequency regime of the TIW variability in
POCM, while the two-mode projection mode produced unstable solutions. In this
chapter, a qualitative explanation for this difference is given from counsideration of a
simplified version of the projection model. Additionally, the latitudinal structure
and dispersion characteristics of the solutions in the low-wavenumber limit are

examnined.

7.1 The Low-Wavenumber Limit

The unstable solutions obtained from the unaltered current profile in the two-mode
projection mode were shown to he unstable over a range of wavenumbers (see the
top panel Fig. 5.3). The growth rate decreases towards zero as the wavenumber
magnitude decreases. The dispersion relation (bottom panel in Fig. 5.3) shows
the solution splitting at a wavelength of about 2000 km; at longer wavelengths
(smaller wavenumber magnitudes) the solutions are stable.

For the unaltered current profile, the splitting of the dispersion relation occurs
at wavelengths far away from those of the TIWs. However, when the westward
SECN is reduced (section 6.3), the splitting point in the dispersion relation shifts
to higher wavenumber magnitudes as the maximum mean westward velocity is
decreases (Fig. 7.1). In this case, the wavenumber splitting occurs close to the
wavemunber region of interest for studies of TIWs and the structures of the ecigen-

vectors can be more readily interpreted.
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The meridional structures of the two free modes, which occur at wavenumbers
smaller then —7.2 x 10~* in Fig. 7.1, resemble the meridional structure of the free
mode solutions from the one-mode projection model (Figs. 7.2 and 7.3). The SSH
structure for the upper branch of the dispersion curve in Fig. 7.1 is shown 1n Fig.
7.2. Tts amplitude and phase structure are virtually indistinguishable from the
altered first meridional mode Rosshy wave from the one-mode projection model at
the same wavenumber (Fig. 7.2). Although the addition of second vertical mode
altered the dispersion relation at higher wavenumber magnitudes, the period of the
1800 km wave remains almost unchanged, as 35.5 days in the one-mode model and
35.6 days in the two-mode projection model. Additionally, the two-mode solution
is almost wholly vertical mode one (bottom panel of Fig. 77). Because of these
characteristics, the solutions along the upper branch of the dispersion relation for
the two-mode projection model can be interpreted as a vertical mode 1, meridional
mode 1 Rossby wave (M1 Rosshy wave).

The SSH structure of the solutions along the lower branch of the dispersion
curve to the right of the split cannot be explained quite as simply as the solutions
along the upper branch. The 1800 km wave solution from the upper branch of
the dispersion relation (Fig. 7.3) is nearly identical in phase and amplitude to
the second meridional mode from the one-mode projection model (Fig. 7.3), with
only slight differences in amplitude near 5°S. The 43.2 day period of the 1800
km two-mode solution is nearly identical to the 43.8 day period of the one-mode
projection model. The solution of the two-mode projection model thus appears
to be the vertical mode 1, meridional mode 2 Rosshy wave (M2 Rossby wave).

However, the bottom panel in Fig. 7.3 shows that there is an interaction with the
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Figure 7.2: The latitudinal structures of the amplitude (top) and phase (middle)
of SSH for the 1800 km, 35.5 day wave from the one-mode stability analysis (thin
black line in top panel) and the 1800 km, 35.6 day wave from the two-mode stability
analysis (thick black line in top panel). In both cases, the SECN was decreased by
20%. The phase of the one- and two-mode solutions are the same. The one-mode
solution corresponds to the structure of the altered first meridional Rossby wave.
The two-mode solutions corresponds to the upper branch of the stable portion of
the dispersion curve to the right of the split in Fig. 7.1. The bottom panel shows
the relative contribution of the first and second vertical modes of variability from

the two-mode projection model.
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second vertical mode near the equator. This solution cannot therefore be solely
described as a M2 Rossby wave, and hence will be referred to he! re as an altered
M2 Rossby wave.

At the wavenumbers to the right of the splitting point the M2 Rosshy wave
speeds up and begins to interact with the M1 Rossby wave (Fig. 7.1). At the
point where the two solutions coalesce, the M1 Rossby wave resonates with the
altered M2 Rossby V-*éve and an instability is formed. For the wavenumber range
over which there is a single dispersion curve, there are two distinct eigenvalues
that are complex conjugates of each other. These solutions have the same period
and wavenumber but one has a positive growth rate and the other has a negative

growth rate.

7.2 Why does the Two-Mode Projection Model produce TIWs and the
One-Mode Projection Mode does not?

Although the one-mode projection model is stable in the region of dispersion
space where TITWS reside, it does yield instabilities in other regions of wavenumber-
frequency space (Fig. 7.4). Hence, the mean fields in both the one-mode and two-
mode projection models produce unstable solutions and any necessary conditions
for instability, such as a change in the sign in the gradient of potential vorticity,
are met in both cases.

Compared to the two-mode projection model, the mean currents in the one-
mode projection have little effect on the phase speed of the altered M2 Rossby.
The slower M2 Rossby wave doesn’t interact with the M1 Rossby wave in the
TIW wavenumber-frequency range. This can be seen in Fig. 7.4. where the first

doted line bellow the rectangle is the M1 Rossby wave and the second dotted
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Dispersion Realation for the one-mode projection model
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Figure 7.4: The dispersion relation for the unaltered current profile in the one-
mode projection model. The rectangle represents an estimate of TIWs in POCM.
The dots represent the cigenvalues, with the location corresponding to the fre-
quency and wavenumber. Unstable solutions are plotted as small squares with size
corresponding to the growth rate. The square corresponding to the fastest growing
unstable wave is filled. Eigenvalues with growth rates less than 1/2000 days™' are

plotted as dots.
line bellow the rectangle is the alter M2 Rossby wave. In the one-mode projection
model projection model these lines run parallel and the M1 and altered M2 Rossby

waves are unable to resonate to form the instability as in the case of the two-mode

projection model (see Fig.7.1).
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8 SUMMARY AND CONCLUSIONS

TIWs are a dominant feature of monthly SST and SSH variability in the equa-
torial Pacific and Atlantic oceans. They appear in T/P SSH data as two bands
of variability centered on 5°N and 5°S with an approxiniate period of 34 £ 2 days
and a wavelength of 1600 4 150 km which have both annual and interannual mod-
ulations. It has been established that TIWs are generated from instabilities in the
nieridionally and vertically sheared equatorial current systems. However, direct
observations of the equatorial currents have inadequate spatial and temporal res-
olutions for use in a linear stability analysis of TIWs. This study has therefore
investigated the cffects of mean currents from the POCM model. The TIW sig-
natures in POCM SSH are similar to those found in T/P: there are two bands of
ariability centered on 5°N and 5°S, they have an approximate period of 2842 days
and a wavelength of 13004150 km with both annual and interannual modulations.
Although there are quantitative differences between the TIWs in POCM and T/P,
they are similar enough that POCM can provide insight into the dynamics of TIWs
in the real world.

The cross-equatorial phase and amplitude of the SSH signatures of TIWs in
POCM during the period of July 8 to September 6 1995 are reproduced in a
linearized model that projects the vertical structure onto the first and second
baroclinic modes. Amplitudes north of the equator are 3 to 5 times larger than
south of the equator, while the phase lag between 3°N and 3°S ranges between 0°
and 45°. These structures, which are similar to those seen in T/P data, have not

been reproduced by previous linearized stability analysis.



111

Perhaps surprisingly, two vertical modes are sufficient to describe the initial
stages of TIWs. It was shown in section 5.4 that the addition of higher modes
(shown for the five-mode projection model) lead to TIWs with cross-equatorial
structure, wavenumber-frequency content and vertical structure very similar to
the TIWs produced by the two-mode projection model. The one-mode projec-
tion model however, does not produce an unstable solution in the wavenumber-
frequency regime of observed TIWs. As shown in section 7.1, this is because the
mean currents fail to speed up the M2 Rossby wave when the frist vertical mode
is only considered in the projection of the state variables.

Unexpectedly, changes in the SECN in the two-mode projection model were
found to have the largest effect on the amplitude of the TIW SSH signal south
of the equator. Decreasing the SECN by 20% increases the amplitude south of
the equator, which increases the equatorial symmetry. Likewise, increasing the
SECN by 20% decreases the equatorial symmetry. These effects are attributed to
the SECN because alterations of the mean currents south of the equator do not
have a noticeable effect on the latitudinal structure of the TIWs. Reconfirming
previous analyses, the SECN is also shown to have the largest effect on the growth
rate of TIWs in the two-mode projection model (chapter 6). Increasing the SECN
causes the growth rate of the TIWs to increase, while decreasing the SECN has
the opposite effect.

Several previous linear stability analyses of TIWs used layer models. Given
a mean current, these linearized layer models have either low vertical resolution
and an arbitrary vertical averaging scheme [Philander, 1978; McCreary and Yu,

1992] or very complicated vertical structure [Proehl, 1998]. The projection model
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avoids these problems. By weighting the vertical average of the mean fields by
the vertical eigenfunctions the projection model avoids the need for an arbitrary
vertical averaging schbeme. The projection model is also relatively simple, requiring
only two vertical modes to describe TIWs. An advantage of the simple vertical
structure in the two-mode projection model is the easy identification of the two
stable solutions (the first and second meridional mode Rossby waves) that form
the TIWs in the low-wavenumber limit.

When fully developed, TIWs are non-linear [Kennan and Flament, 2000]. As
in the case of all linearized models, the assumptions of the projection model are
then invalid. The projection model therefore cannot describe the structure of the
TIWs across the entire Pacific or during all times. It was shown in Chapter 3,
however, that TIWs develop during the beginning of the 1995-1996 TIW secason
as an asymmetric and almost completely barotropic instability. Another shared
deficiency of linearized stability analyses is the need for a prescribed mean current
profile. In practice, the mean current is not known or even well defined since the
background currents evolve considerably over the curse of a TIW season. The
mean change temporally and spatially due to external forcing and are altered
by the TIWs. The sensitivity of TIWs to moderate changes in the background
currents makes it difficult to identify a dominant cross-equatorial structure in the
SSH signatures of TIWs (see chapter 6).

The projection model was only applied here to study TIWs in the Pacific from
POCM. Other regions, such as the equatorial Atlantic, have yet to be explored.
Ultimately, the mean current profiles used in the projection model will be obtained

from in situ data, rather than from POCM. The eigenfunctions can then be com-
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pared to T/P SSH data. The projection model can also be applied to investigate

the effects of mean currents on stable low-frequency Rossby waves.



114
BIBLIOGRAPHY

Allen, M. R., S. P. Lawrence, M. J. Muray, C. T. Mutlow, T. N. Stockdale, D. T.
Llewellyn-Jones, and D. L. T. Anderson, Control of tropical instability waves
in the Pacific, J. Phys. Oceanogr., 22, 2581-2584, 1995.

Barnett, T. P., and W. C. Patzert, Scales of thermal variability in the tropical
Pacific, J. Phys. Oceanogr., 10, 529-540, 1980.

Baturin, N. G., and P. P. Niiler, Effects of instability waves in the mixed layer of
the equatorial Pacific, J. Geophys. Res., 102, 21,771-21,793, 1997.

Bryden, H. L., and E. C. Brady, Eddy momentum and heat fluxes and their effects
on the circulation of the cquatorial Pacific ocean, J. Mar. Res., 47, 55-79,

1989.

Carton, J. A., B. S. Giese, X. Cao, and L. Miller, Impact of altimeter, thermis-
tor, and expendable bathythermograph data on retrospective analysis of the
tropical Pacific ocean, J. Geophys. Res., 101, 14,147-14,159, 1996.

Chang, P., and S. G. H. Philander, Rossby wave packets in baroclinic mean cur-

rents, Deep-Sea Res., 36, 17-37, 1989.

Chelton, D. B., F. J. Wentz, C. L. Gentemann, R. A. deSzoeke, and M. G.
Schlax, Satellite microwave sst observation of transequatorail Tropical Insta-
bility Waves, Geophys. Res. Lett., 27, 1239-1242, 2000.

Chelton, D. B., M. G. Schlax, S. K. Esbensen, N. Thum, M. H. Freilich, F. J.
Wents, C. L. Gentemann, and M. J. McPhaden, Observations of coupling
between surface wind stress and sea surface temperature in the eastern tropical

Pacific, J. of Climate, 14, 1479-1498, 2001.

Chelton, D. B., M. G. Schlax, J. M. Lyman, and R. A. deSzoeke, The latitudinal
structure of monthly variability in the tropical Pacific, J. Phys. Oceanogr., in
prep, 2003.

Contreras, R. F., Long-term observation of Tropical Instability Waves, unknown,

wn prep, 2001.



115

Cox, M. D., Generation and propagation of 30-day waves in a numerical model of
the Pacific, J. Phys. Oceanogr., 10, 1168-1186, 1980.

Donohue, K. A., and M. Wimbush, Model results of flow instabilities in the tropical
Pacific Ocean, J. Geophys. Res., 103, 21,401-21.412, 1998.

Eriksen, C. C., Moored observation of deep low-frequency motions in the central
Pacific ocean: Vertical structure and interpretation as equatorial waves, J.
Phys. Oceanogr., 15, 1,085-1,113, 1985.

Eriksen, C. C., and J. G. Richman, An estimate of equatorial wave energy flux at 9-
to 90- day periods in the central Pacific, J. Geophys. Res., 93, 15,455-15,466,
1988.

Flament, P. J., S. C. Kennan, R. A. Knox, P. P. Niiler, and R. L. Bernstein, The
three-dimensional structure of an upper ocean vortex in the tropical Pacific
Ocean, Nature, 383, 610-613, 1996.

Foley, D. G., et al., Longwaves and primary productivity variations in the equato-
rial Pacific at 0°,140°W, Deep-Sea Res. IT, 44, 1,801-1,826, 1997.

Giese, B. S., J. A. Carton, and L. J. Holl, Sea level variability in the eastern trop-
ical Pacific as observed by TOPEX and Tropical Ocean-Global Atmosphere
Tropical Atmosphere-Ocean Experiment, J. Geophys. Res., 99, 24,739-24,748,
1994.

Gill, A. E., Atmosphere-Ocean Dynamics, Academic Press, 1982.

Halpern, D., and R. H. Weisberg, Upper ocean thermal and flow fields at 0°,28°W
(Atlantic) and 0°,140°W (Pacific) durring 1983-1985, Deep-Sea Res., 36, 407-
418, 1989.

Halpern, D., R. A. Knox, and D. S. Luther, Observations of 20-day meridional
current oscillations in the upper ocean along the Pacific equator, J. Phys.
Oceanogr., 18, 1514-1534, 1988.

Hansen, D. V., and C. A. Paul, Genesis and effects of long waves in the equatorila

Pacific, J. Geophys. Res., 89, 10,431-10,440, 1984.



116

Harvey, R. R., and W. C. Patzert, Deep current measurements suggest long waves

in the eastern equatorial Pacific, Science, 193, 883-885, 1976.

Hashizume, H., S.-P. Xie, W. T. Liu, and K. Takeuchi, Local and remote atmo-
spheric response to tropical instability waves: A global view from space, .J.

Geophys. Res., 106, 10,173-10,185, 2001.

Hayes, S. P., M. J. McPhaden, and J. M. Wallace, The influence of sea-surface
temperature on surface wind in the east equatorial Pacific: weekly to monthly
variability, J. Clirn, 2, 1500-1506, 1989.

Johnson, E. S.; and D. S. Luther, Mean zonal momentum balance in the upper
and central equatorial Pacific Ocean, J. Geophys. Res., 99, 7689-7705, 1994.

Johnson, G. C., B. M. Sloyan, W. S. Kessler, and K. E. McTaggart, Direct mea-
surements of upper ocean currents and water properties across the Tropical

Pacific Ocean during the 1990s, Prog. Oceanogr., in prep, 2002.

Kennan, S. C., and P. J. Flament, Observations of a tropical instability vortex, J.
Phys. Oceanogr., 30, 2277-2301, 2000.

Kessler, W. S., personal communications, 2001.

Lawrence, S. P., and J. P. Angell, Evidence for Rossby wave control of Tropical
Instability Waves in the Pacific ocean, Geophys. Res. Lett., 27, 2,257-2,260,
2000.

Lawrence, S. P., M. R. Allen, D. L. T. Anderson, and D. T. Llewellyn-Jones, Effects
of subsurface ocean dynamics on instability waves in the tropical Pacific, J.

Geophys. Res., 103, 18,649-18,663, 1998.

Legeckis, R., Long waves in the eastern equatorial Pacific Ocean: A view from a
bl 3
geostationary satellite, Science, 197, 1179-1181, 1977.

Legeckis, R., Long waves in the equatorial Pacific and Atlantic oceans durring
1983, Ocean-Air Interactions, 1, 1-10, 1986.



117

Legeckis, R., E. Pichel, and G. Nesterczuk, Equatorial long waves in geostationary
satellite observation and in a multichannel sea surface temperature analysis,

Bull. Am. Meteorol. Soc., 64, 133-139, 1983.

Liu, W, T., X. Xie, P. S. Polito, S.-P. Xie, and H. Hashizume, Atmospheric man-
ifestation of tropical instability wave observed by QuikSCAT and Tropical
Rain Measuring Mission, Geophys. Res. Lett., 27, 2,545-2.548, 2000.

Lukas, R., Horizontal Reynolds Stresses in the central equatorial Pacific, J. Geo-
phys. Res., 92, 9453-9463, 1987.

Luther, D. S., and E. S. Johuson, Eddy energetics in the upper equatorial Pacific
during Hawaii-to-Tahiti Shuttle Experiment, J. Phys. Oceanogr., 20, 913-944,
1990.

Malardé, J. P., P. D. Mey, C. Périgaud, and J. F. Minster, Observations of long
equatorial waves in the Pacific ocean by Seasat altimetry, J. Phys. Oceanogr.,
17, 22732279, 1987.

Mallat, S., @ Wauvelet tour of signal processing, Academic Press, 1999.

Masina, S., G. Philander, and A. Bush, An analysis of tropical instability waves in
a numerical model of the Pacific ocean. Part I: Spatial variability, J. Geophys.
Res., 104, 29,613-29,636, 1999a.

Masina, S., G. Philander, and A. Bush, An analysis of tropical instability waves
in a numerical model of the Pacific ocean. Part II: Generation and energetics,

J. Geophys. Res., 104, 29,637-29,662, 1999b.

McClean, J. L., A. J. Semtner, and V. Zlotnicki, Comparisons of mesoscale vari-
ability in the semtner-chervin 1/4° model, the Los Alamos Parallel Ocean
Program 1/6° model, and TOPEX/POSEIDON data, J. Geophys. Res., 102,
95,203-25,226, 1997,

McCreary, J. P., and Z. Yu, Equatorial dynamics in a 2.3-layer model, Prog.
Oceanogr., 29, 61-132, 1992.

McPhaden, M. J., Monthly period oscillations in the Pacific North Equatorial
Countercurrent, J. Geophys. Res., 16, 6337-6359, 1996.



118

Menkes, C., J.-P. Boulanger, and A. J. Busalacchi, Evaluation of TOPEX
and basin-wide Tropical Ocean and Global Atmosphere-Tropical Atmospliere
Ocean sea surface topographies and derived geostropic currents, J. Geophys.

Res., 101, 25,087-25,099, 1996.

Miller, L., D. R. Watts, and M. Wimbush, Oscillations of dynamic topography in
the eastern equatorial Pacific, J. Phys. Oceanogr., 15, 1759-1770, 1985.

Mitchum, G. T., and R. Lukas, The latitude-frequency structure of the Pacific sea
level variance, J. Phys. Oceanogr., 17, 2362-2365, 1987.

Musman, S., Sea height wave form in equatorial waves and its interpretation, .J.

Geophys. Res., 94, 3303-3309, 1989.
Pedlosky, J., Geophysical Fluid Dynamics, Springer, 1987.

Périgaud, C., Sea level oscillations observed with Geosat along the two shear fronts
of the Pacific North Equatorial Countercurrent, J. Geophys. Res., 95, 7239-
7248, 1990.

Philander, S. G. H., Instabilities of zonal equatorial currents, J. Geophys. Res.,
81, 3725-3735, 1976.

Philander, S. G. H., Instabilities of zonal equatorial currents, 2, J. Geophys. Res.,
83, 3679-3682, 1978.

Philander, S. G. H., D. Halpern, D. Hansen, R. Legeckis, L. miller, C. Paul,
R. Watts, R. Weisberg, and M. Wimbush, Long waves in the equatorial Pacific
Ocean, FOS Trans. AGU, 66, 154, 1985.

Philander, S. G. H., W. J. Hurlin, and R. C. Pacanowski, Properties of long equa-
torial waves in models of the seasonal cycle in the tropical Atlantic and Pacific

oceans, J. Geophys. Res., 91, 14,207-14.211, 1986.

Proehl, J. A., Equatorial wave-mean flow interactions: The long Rossby waves, J.

Phys. Oceanogr., 20, 274-294, 1990.

Proehl, J. A., On the numerical dispersion relation of equatorial waves, J. Geophys.

Res., 96, 16,929-16,934, 1991.



119

Prochl, J. A., The role of meridional flow asymmetry in the dynamics of tropical
instability, J. Geophys. Res., 103, 24,597-24,618, 1998.

Pullen, P. E., R. L. Bernstein, and D. Halpern, Equatorial long-wave characteris-
tics determined from satellite Sea Surface Temperature and in situ data, J.
Geophys. Res., 92, 742-748, 1987.

Qiao, L., and R. H. Weisberg, Tropical instability wave kinematics: Observations
from the Tropical Instability Wave Experiment, J. Geophys. Res., 100, 8677~
8693, 1995.

Qiao, L., and R. H. Weisberg, Tropical instability wave energetics: Observations
from the Tropical Instability Wave Experiment, J. Phys. Oceanogr., 28, 345—
360, 1998.

Reynolds, R. W., and T. M. Smith, Improved global sea surface temperature anal-

vsis using optimum interpolation, J. Phys. Oceanogr., 24, 929-948, 1994.

Schopf, P. S., and M. A. Cane, On cquatorial dynamics, mixed layer physics and

sea surface temperature, J. Phys. Oceanogr., 13, 917-935, 1983.

Seidel, H. F., and B. S. Giese, Equatorial currents in the Pacific ocean 1992-1997,
J. Geophys. Res., 104, 7849-7863, 1999.

Seigel, A. D., A comment on long waves in the Pacific ocean, J. Phys. Oceanogr.,

10, 1881-1883, 1985.

Semtner, A. J. J., and R. M. Chervin, Ocean general circulation from a global
eddy-resolving model, J. Geophys. Res., 97, 5493-5550, 1992.

Semtner, A. J. J., and W. Holland, Numerical simulation of equatorial ocean cir-
culation. part i: A basic case in turbulent equilibrium, J. Phys. Oceanogr.,

10, 667-693, 1980.

Stammer, D., Steric and wind-induced changes in TOPEX/POSEIDON large-scale
sea surface topography observations, J. Geophys. Res., 102, 20,987-21,009,
1997.



120

Strutton, P. G., J. P. Ryan, and F. P. Chavez, Enhanced chlorophyll associated
with tropical instability waves in the equatorial Pacific, Geophys. Res. Lett.,

28, 2005-2008, 2001.

Swenson, M. S., and D. V. Hansen, Tropical Pacific ocean mixed layer heat budget:

the Pacific Cold Tongue, J. Phys. Oceanogr., 29, 6981, 1999.

Vialard, J., C. Menkes, and D. L. T. Anderson, Phase locking of Pacific ocean

tropical instability waves, J. Geophys. Res., in press, 2001.

Weidman, P. D., D. L. Mickler, B. Dayyani, and G. H. Born, Analysis of legeckis
eddies in the near-equatiorial Pacific, J. Geophys. Res., 104, 7865-7887, 1999.

Weisberg, R. H., and S. P. Hayes, Upper ocean variability on the equator in the

Pacific at 170°W, J. Geophys. Res., 100, 20,485-20,498, 1995.

Wilson, D., and A. Leetmaa, Acoustic doppler current profiling in the equatorial

Pacific in 1984, J. Geophys. Res., 93, 13,947-13,966, 1988.

Wyrtki, K., Sea level variations: Monitoring the breath of the Pacific, EOS Trans.
AGU, 60, 25-27, 1979.

Wyrtki, K., E. Firing, D. Halpern, R. Knox, G. J. McNally, W. C. Patzert, E. D.
Stroup, B. A. Taft, and R. Williams, The Hawwaii to Tahiti shuttle experi-
ment, Science, 211, 22-28, 1981.

Xie, S.-P., M. Ishiwatari, H. Hashizume, and K. Takeuchi, Coupled ocean-
atmospheric waves on the equatorial front, Geophys. Res. Lett., 25, 3863-3866,
1998.

Yu, Z., J. P. McCreary, and J. A. Proehl, On the meridional asymmetry and
energetics of tropical instability waves, J. Phys. Oceanogr., 25, 1680-1686,
1995.

Zheng, Q., X. H. Yan, C. R. Ho, and C. K. Tai, The effects of shear flow on
propagation of Rossby waves in the equatorial oceans, J. Phys. Oceanogr.,

24, 1680-1686, 1994.



APPENDICES

121



122

A VERTICAL EIGENFUNCTIONS

A set of vertical eigenfunctions can easily be obtained that span the space of the
mean fields and state variables, are orthogonal, and are physically representative
of the vertical structure of the ocean. These eigenfunctions are the solutions to
the general equations of motion, (4.10)-(4.12), with U,(y, z) = 0. Physically, they
define the vertical structure of the baroclinic modes in the absence of a mean flow.

The equation that defines the vertical eigenvalue problem can be obtained when
equations (4.1)-(4.5) are written in terms of p with U, = 0 and p, = p,(2). If it

1s then assumed that p = ¢(2)p(x, y,t), an equation for the vertical dependence of

t(z) can be separated, resulting in

_Q— ]:) aL,’n — _)]. L)" (_.’3&1)
0z \N? 9z o) ‘
where,
1 .
—— = the eigenvalue for mode n
Ch,
¥, = the eigenfunction for mode n

The associated equation for p(x,y,t) reveals that ¢, is the baroclinic phase
speed for mode n [Pedlosky, 1987]. The eigenfunctions ), are defined by a repre-
sentative mean density profile p,(z) which is consistent with the density decompo-

sition eq. (4.9). In order to solve eq. (A.1), boundary conditions eq. (4.7)
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must be satisfied. Applying (4.3), (4.3) and the assumption that p,(y,z) is a
weakly varving function of y, boundary condition (4.7) can be rewritten as,

Oy,
0z

=0atz=0and z =—H, (A.2)

where H is the depth of the water column.
The solutions ¥, of the Sturm-Liouville eigenvalue problem egs. (A.1) and
(A.2) are orthogonal and span the space subject to their boundary conditions.

Examples of the structure of the first two modes are shown in Figs. A.1 and A.2.
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Figure A.1: The first baroclinic vertical eigenfunction used in the projection model.

The phase speed of this mode is 2.6 m/sec.
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Figure A.2: The second baroclinic vertical eigenfunction used in the projection
model. The phase speed of this mode is 1.6 m/sec.
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B THE 2-LAYER REDUCED GRAVITY MODEL

A 2-layer, reduced-gravity model is one of the simplest representations of equa-

torial dynamics [Gill, 1982]. The model can be expressed by the three equations,

8 - (9 ) a(/'r() . / a oy i

<§f + L(,(y)aa ) v+ Jyu+g (,%7} =0 (B.2)

9 N OH 9 )
<(9f+(/"( )0 )1/+<81 + H(y )aj)z + H(y )Eu =0 (B.3)

where,

n = the perturbation sea surface height
¢ = the reduced gravity
U,(y) = the mecan flow in the upper layer
H(y) = the upper layer thickness

The equations (B.1)-(B.3) have been linearized about U,(y) which is in geostrophic
equilibrium with mean layer thickness H(y) and are subject to a rigid lid approxi-
mation and the Boussinesq approximation. These equations are further subject to

the boundary conditions:

v =0, at the northern and southern boundaries (B.4)

If the state variables, u, v and 7 are assumed to be a traveling wave solutions
of the form e'**=“Y then equations (B.1)-(B.3) can be rewritten in matrix form

as:



I 17 ] r 7
T al, 17 , ,
Uo(y)k @ (p’y — —5!/—) p—*l‘, U 0
—idy Uo(y)k —% v =Wl (B.3)
g Hyk —igp. (B + Hy)Z) Uly)ok 12 A

The quantities U,(y), ¢ and H(y) must be specified in the matrix equation
(B.3). Even if sufficient information is available about the vertical and horizontal
structure of the velocity and density fields, the definition of U,(y), ¢’ and H(y) are

inevitably subject to arbitrary vertical averaging.
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C HIGHER ORDER PROJECTION MODEL

Matrix equation (4.28) can be expanded to contain higher order vertical modes.
The method is similar to that for one mode described in section 4.2.

The set of equations for mode j are obtained by expanding the state variables
in equations (4.10)-(4.12) in terms of ¢;, according to (4.14)-(4.16). The results
are multiplied by ¥; and vertically integrated. Modes higher then j are truncated.

The mean fields in turn become:

v (y) - /_ OH Uitz (c.1)
e = /_ OH %%/—HJ(L (C.2)
Ui = /_OH _\(; %L vz (C.3)

Fi(w) = /_OH ;_g—\_;%[/—z%'” iz (C4)
Ey(l‘_}(y) = (;'JZ. /‘OH p—{% (.\i? %fj;) Yivdz (C.3)
alo = af) L{g5e) v c6)

After applying the assumptions (4.23), (4.26) and (4.27), the equations of mo-
tion can be rewritten in terms of these mean fields for an arbitrary number of
vertical modes. The matrix representing the equations for the first two vertical

modes is:



where,

1413 AM Al,_', 0

4463 ‘464 4465 -"'166j

0 4"14/] 4413 4’11/16

= i(Jy — (L,,(,ll)l + i)

1
— bk

3

P

U9

P2
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c.7)
(C.8)
(C.9)

(C.10)

(C.11)

(C.12)

(C.13)

(C.14)

(C.15)

(C.16)

(C.17)

(C.18)

(C.19)
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D N? FORMULATION

: N2/ . . . . .
The buoyancy frequency N*(y, z) in equation (A.1) is computed from the integrat-

ing the thermal wind equation:

. . o
NZ(y,z) = N2(z) —/y U..(y, z)dy (D.1)

where N is the geostrophically balanced buoyancy frequency, Yy is the south-
ern boundary, Yy is the northern boundary, U(y, z) is the mean background zonal
velocity and N, is some initial buoyancy frequency. N2 is determined such that the
square of the differences between N2 and the square of the buoyancy frequency

. .. AT e e s .
determined from the model salinity and temperature, N?, arc minimized. The

integral

is thus minimized with respect to N2 to obtain a least-squares estimate of N2.
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E QUASI-GEOSTROPHIC PROJECTION MODEL

Although the quasi-geostrophic (QG) assumptions do not apply at the equator,
they do provide useful description of the critical surfaces at low latitudes. In this
appendix, the QG equations are linearized about a mean background current and
then projected on to the baroclinic eigenfunction in a manner similar to that
described in section 4.2. Here we examine the two-mode projection model.

The QG equations in a continuously stratified fluid are:

d 060 09 0 0? a7\ 9 [ fo Al
<E+578_(/—5§8—1> [(51—2+BTJ2> @‘!‘E (.—\T“;g + 3yl =0 (E.1)

where,

0é

U = —— E.2

U 9y (E.2)
do

p = pfoo (E.4)

If the form of ¢ is linearized about a mean ®(y) and assumed to have a depen-

dance on z and ¢ of the form e’**=<!) then equation (E.1) becomes:

, ., 0 (f2aN]
(Toly) — ¢ ':BTJQ — k"4 ER (%g)] oy, z)+

2 2 T
[3_6_“”—;-({—%)}@(” =0 (£.5

- %)
7 w

where ¢ is now dependent only on y and z with Up(y) = —g—j and ¢ = %
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S )2 . 2
[0+ ) (-1~ ) s
0y? 1

—— 2 SR,
[3~%(H§H+H§‘>{) 0‘9 (L“)er(”)] =0 (E.9)
‘1

In regions where there are critical layers, L ) 4+ Usi v = = ¢. Similarly, the coupled
equations representing the second vertical mode produce a critical layer defined by,
Us, (1) +U ](i) = ¢. This simplified description of the critical layers in the fluid provides
uscful insight into the maximum phase speed of the instabilities in a two-mode

projection model.





